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Cognate linkages are mechanisms that share the same mo-

tion, a property that can be useful in mechanical design. This

paper treats planar curve cognates, that is, planar mecha-

nisms with rotational joints whose coupler points draw the

same curve, as well as coupler cognates and timed curve

cognates. The purpose of this article is to develop a straight-

forward method based solely on kinematic equations to con-

struct cognates. The approach computes cognates that arise

from permuting link rotations and is shown to reproduce all

of the known results for cognates of four-bar and six-bar

linkages. This approach is then used to construct a cognate

of an eight-bar and a ten-bar linkage.

∗Address all correspondence to this author.

1 Introduction

Cognate linkages are mechanisms that share the same

motion. Curve cognates, in particular, are distinct mecha-

nisms, each with one degree of freedom, whose respective

coupler points draw the same curve. Since cognates may

occupy different regions of space and have different trans-

mission characteristics, they can be useful in finding a more

suitable mechanical design for the same function. Knowl-

edge of cognates can also be useful when solving mechanism

synthesis problems, especially in confirming that a complete

solution list has been found [1, 2].

We will show how curve cognates for general planar

linkages can be generated by a simple sequence of opera-

tions: form complex-vector loop equations, interchange cer-

tain link rotations, match coefficients in the kinematic equa-
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tions, and then solve the resulting linear equations. An inter-

change of link rotations means to permute complex rotations

applied to the links. For example, swapping rotations for

two links means that one is aiming to construct a cognate in

which the two links in the cognate linkage simply have ro-

tational characteristics that are swapped between the corre-

sponding two links in the original linkage. The matching of

coefficients ensures that the kinematic equations hold for all

input angles and thus the resulting linkage is indeed a curve

cognate since it traces out the same coupler curve.

Given knowledge of which link rotations can be inter-

changed, the procedure is straightforward to carry out, and

the results are easy to interpret graphically and ready for

computer simulation. If one posits an interchange that does

not correspond to a cognate, this is revealed as an inconsis-

tency in the linear equations. The method can be used to re-

produce all the known results for curve cognates of the four-

bar and all the six-bars. In addition, curve cognates are also

constructed for an eight-bar and a ten-bar linkage.

Even if one considers all possible permutations for the

interchange of rotations, a process whose complexity grows

quickly with the number of links, this does not a priori mean

that all possible cognates have been found. Until proven oth-

erwise, there remains the possibility that some more subtle

transformation of the linkage could leave the coupler curve

invariant. A companion paper [3] completes the theory of

cognates for general six-bar linkages by showing that the in-

terchange of rotations does in fact produce all possible cog-

nates. A complete cognate theory for eight-bars and beyond

is still open, but already the approach of [3] sets limits on

which interchanges have a chance to produce cognates. The

method presented here produces the cognates for any valid

permutation one specifies.

The most famous result in cognate theory is from 1875

in which Roberts [4] showed that every four-bar coupler

curve is triply generated. That result is sometimes called the

Roberts-Chebyshev Theorem in recognition of Chebyshev’s

independent discovery of it three years later [5]. To our

knowledge, no results on cognates of six-bar linkages were

found until the work of Hartenberg and Denavit [6], followed

by Roth [7] and Soni [8]. See Nolle [9] (with reference list

in [10]) for a historical review as of 1974. Finally, nearly one

hundred years after Roberts, Dijksman [11, 12, 13] compiled

cognates for all the six-bar planar linkages. In the confer-

ence paper [14] upon which the present article expands, we

showed how our method reproduces the skew pantograph, all

known cognates for the four-bar, Watt six-bars, Stephenson-I

and Stephenson-III six-bars, and a new eight-bar cognate.

Soni also found cognates for certain eight-bars [15].

Dijksman provides the most comprehensive list of six-

bar cognates by showing that cognates can be generated from

permutations of link rotations and presented his results by

means of intricate geometric constructions. Although cor-

rect, these drawings and their explanatory text can be rather

difficult to decode thereby presenting a barrier to understand-

ing and using those results. The purpose of this article is

to present a simple method of understanding by construct-

ing planar cognates using a complex vector approach. We

are by no means the first to approach cognates from this di-

rection; indeed, Nolle [9] states that Schor (1941), Schmid

(1950), Meyer zur Capellen (1956), and Wunderlich (1958)

all used some version of a complex plane formulation in

treating Roberts cognates. No doubt there have been oth-

ers as well since the complex plane formulation is arguably

the most natural way to treat any planar linkage with all ro-

tational joints. Rather than studying each mechanism type in

isolation, our contribution is an approach that allows one to

understand all the known results in terms of how a permuta-

tion of link rotations leads to a cognate and to construct new

cognates for eight-bars, ten-bars, and beyond.
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The rest of the paper is organized as follows. Following

a list of nomenclature in Section 2, Section 3 provides back-

ground information on types of cognates and complex-vector

notation. Section 4 presents our method of constructing cog-

nates. Section 5 illustrates the method by considering in suc-

cession Roberts cognates for four-bars, the Stephenson-2A

six-bar, the Watt-1A six-bar, an eight-bar, and a ten-bar. Af-

ter the summary in Section 6, an appendix gives recipes for

constructing all possible six-bar cognates.

2 Nomenclature

We use the following conventions and notations. Let N

be the number of links and L = N/2− 1 be the number of

loops in the mechanism. One link is designated the ground

and another one is designated the coupler. For example, the

Watt six-bar has Watt-1 and Watt-2 inversions depending on

which link is called ground, and then a choice of coupler link

gives curve types Watt-1A and Watt-1B.

• The ground link is always link 0.

• Rotation θi, i = 1, . . . ,N−1, is the rotation of link i rela-

tive to ground in complex-vector form, i.e., θi = e
√
−1Θi ,

where Θi is the (real) rotation angle of link i.

• Link parameters ai,bi,ci, i = 0,1, . . . ,N − 1, are com-

plex vectors fixed in link i. We choose one joint of each

moving link as its origin, then ai,bi,ci specify the rel-

ative locations of the other joints. The origin for the

ground link is chosen arbitrarily.

• θ′i, i = 1, . . . ,N−1, and a′i,b
′
i,c

′
i, i = 0, . . . ,N −1, are the

rotations and link parameters for a cognate mechanism.

• p is the complex vector from the ground origin to the

coupler point. By definition, it is the same for both the

original and cognate linkages.

• Complex number γ j, j = 1, . . . ,L is a non-zero scal-

ing factor arising in the proof that loop equation j for

the original mechanism is equivalent to a corresponding

loop equation for its cognate.

3 Background

This section provides an introductory review to types of

cognates, and to complex-vector notation as applied to planar

linkages. For this paper, we restrict ourselves to planar mech-

anisms with rigid links connected by rotational (pin) joints.

Each joint connects two links, thereby imposing one vec-

tor constraint, equivalent to two scalar constraints, requiring

that the respective center points of the joint on the two links

must coincide. For the purpose of classifying mechanisms

with one degree of freedom, we consider only unexceptional

mechanisms, being those whose number of freedoms does

not change when the link dimensions are perturbed in a gen-

eral fashion. For N links and J joints, these mechanisms

obey the Grashof mobility criterion: M = 3(N−1)−2J. For

M = 1 degree of freedom, this implies the mechanism must

have N = 2L+ 2 links and J = 3L+ 1 joints, where L is the

number of independent loops in the mechanism.

3.1 Types of cognates

The cognates under consideration here are curve cog-

nates, that is, linkages which draw the same curve. We only

treat cognates of the same curve type, ignoring the possibil-

ity that a six-bar might duplicate a four-bar curve or that two

types of six-bars might draw the same curve.

Some curve cognates satisfy additional criteria that de-

fine subclasses of interest. A coupler cognate is a curve cog-

nate where the coupler link maintains the same orientation

as the original. Alternatively, after selecting an input link, a

timed curve cognate is a curve cognate with the same func-

tional relationship between the input rotation and the point

on the coupler curve. Finally, a timed coupler cognate is both

a coupler cognate and a timed curve cognate with respect to
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Fig. 1. Four-bar linkage

an input link. Once a curve cognate is found, it is straight-

forward to check these additional criteria and we will do so.

Another class of cognates that have been considered

elsewhere are function cognates. These cognates maintain

the functional relationship between an input crank and an

output link. Some function cognates are not curve cognates,

but those that are can be easily recognized here.

3.2 Complex-vector notation

To simplify the mathematical formulas used to represent

linkages and compute cognates, we use a complex-vector

formulation. Thus, a vector [a b] in the plane is represented

by a complex number a + bi where i =
√
−1. Any com-

plex number can be cast in the form seiΘ where s is a scalar

and Θ is an angle in radians. Complex arithmetic facilitates

geometric transformations. In particular, complex addition

implements translation, while multiplication by seiΘ corre-

sponds to a stretch-rotation, which stretches by s and per-

forms a complex rotation by angle Θ. Throughout this pa-

per, we use θ to abbreviate the complex rotation, θ = eiΘ,

and more specifically, after numbering the links of a mech-

anism, θ j is the complex rotation of link j. By convention,

the ground link, which does not move, is always link 0.

To illustrate the complex-vector notation, we begin with

the case of a four-bar linkage. Referring to Figure 1, we have

a loop closure equation

f1 = a0 − b0 + a1θ1 + a2θ2 + a3θ3 = 0 (1)

and a coupler-point equation

f2 = a0 + a1θ1 + b2θ2 = p. (2)

Note that by subtracting one from the other, we have an

alternate coupler-point equation

p = b0 +(b2 − a2)θ2 − a3θ3. (3)

This is just the sum of vectors going on a different path from

the origin to the coupler point. Although equivalent, one of

Eq. (2) or Eq. (3) will prove more convenient depending on

which cognate of the initial linkage one wishes to pursue.

The link dimensions and the placement of the ground

pivots in the plane are given by a0, b0, a1, a2, b2, a3. To

compute the mechanism’s motion, consider that given one

link rotation, say θ1, one can solve Eq. (1) for θ2 and θ3,

keeping in mind that the complex loop equation is equiva-

lent to two scalar equations (by taking its real and imaginary

parts) and the rotations are each parameterized by a single

scalar angle. Then, one can evaluate the coupler point posi-

tion using Eq. (2) or Eq. (3). A more facile approach based

on using the complex conjugate of the loop equation is pre-

sented in [16, 17]. This paper does not need to solve the

loop and coupler-point equations; instead, we merely need

to show that cognate mechanisms satisfy the same equations,

i.e., trace the same coupler curve as the original mechanism.
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4 Cognate Construction Procedure

The key steps in our method for constructing curve cog-

nates for an L-loop mechanism are as follows. It can be seen

that including the origin point in the ground link and the cou-

pler point in the coupler link, an unexceptional, mobility-1,

L-loop mechanism has 4L+ 2 independent link parameters

and N = 2L+2 links. Let q = (q1, . . . ,q4L+2) be the link pa-

rameters of the original linkage and q′ be those for the cog-

nate. Similarly, let θ = (θ1, . . . ,θ2L+1) be the link rotations

for the original linkage and θ′ the rotations for the cognate.

1. Choose a permutation P for interchanging link rota-

tions between the original and the cognate mechanism.

Hence, we are seeking a cognate whose link rotations

are θ′ = P(θ).

2. For the original mechanism, form L independent

complex-vector loop equations,

f1(q,θ) = 0, . . . , fL(q,θ) = 0

and one coupler-point equation for a complex-vector

path from the origin to the coupler point, p,

p = fL+1(q,θ).

3. Similarly, for the cognate mechanism, write equations

f1(q
′,θ′) = 0, . . . , fL(q

′,θ′) = 0, fL+1(q
′,θ′) = p.

4. Substitute θ′ = P(θ) into equations from Step 3 yielding

f ′1(q
′,P(θ)) = 0, . . . , f ′L(q

′,P(θ)) = 0, f ′L+1(q
′,P(θ)) = p.

5. If the corresponding equations in Steps 3 and 4 do not

contain the same set of link rotations, replace equations

f1(q,θ) = 0, . . . , fL(q,θ) = 0, fL+1(q,θ) = p

with independent linear combinations to allow every

link rotation to be properly matched in the final step.

6. Set each loop function for the cognate equal to a stretch-

rotation of its corresponding function from the original:

f ′i (q
′,P(θ)) = γi fi(q,θ), i = 1, . . . ,L.

7. Set the coupler points equal:

f ′L+1(q
′,P(θ)) = fL+1(q,θ).

8. Solve for the cognate parameters q′ and stretch-rotations

γ1, . . . ,γL by matching the coefficients of the link rota-

tions and constant term in the loop (Step 6) and coupler-

point (Step 7) equations.

The final solution is a mechanism that satisfies the same

set of loop equations and the same coupler-point equation as

the original mechanism, hence it is a curve cognate. If the

permutation chosen at Step 1 does not alter the rotation of

the input link, then we obtain a timed curve cognate. If the

permutation does not alter the rotation of the coupler link,

then we obtain a coupler cognate. It is sometimes possible to

satisfy both of these and thus obtain a timed coupler cognate.

For the matching procedure to succeed in Step 8, the

equations produced in Steps 6-7 must have the same link ro-

tations appearing on both sides. For example, if link rota-

tion 1 is to be interchanged with link rotation 2, then every

equation must involve either both links 1 and 2 or neither of

them. Usually, but not always, with appropriate choices of

loops and paths in Steps 2-3, one is able to match rotations

without needing rearrangement in Step 5.

If rotations match properly, the process of solving for

the cognate in Step 8 is simple. As illustrated in Eqs. (1-3),

the equations in the complex-vector formulation are linear

in the parameters and the only unknowns on the right-hand

side of the equations in Steps 6-7 are the stretch-rotations,

which also appear linearly. Hence, the equations to solve in

Step 8 are all linear and so the system is straightforward to

solve symbolically. We note that not all permutations one

might consider at Step 1 lead to cognates: invalid choices

become apparent in Step 8 as an inconsistent set of linear

equations. This may happen if the number of coefficients to

match exceeds the number of unknowns. On the other hand,

Samantha Sherman JMR-20-1433 5



it may also happen that the number of coefficients to match

is smaller than the number of unknowns, in which case there

exists a positive-dimensional set of cognates. In particular,

this happens for the Watt-1A mechanism, which has a two-

dimensional family of curve cognates (see Section 5.3).

5 Examples

Our procedure becomes much clearer when applied to a

specific mechanism. We will first illustrate it using the sim-

plest example of interest, the four-bar linkage, followed by

a Stephenson-2A six-bar, the Watt-1A six-bar, an eight-bar,

and a ten-bar. An appendix summarizes how to derive cog-

nates for all the planar six-bar curve mechanisms.

5.1 Four-bar: Roberts cognates

The existence of three curve cognates for every four-bar

linkage was first proved by Roberts [4]. Figure 2 shows their

geometric construction, as was found by Chebyshev [5] and

Cayley [18]. This arrangement contains three similar trian-

gles, links 2, 2′, and 2′′, and three parallelograms. A proof

that the four-bars labeled “swap 1-2” and “swap 2-3” are

truly cognates of the original requires showing that point c0

stays fixed as the original four-bar moves. In a geometric ap-

proach, this fact follows from showing that the focal triangle

a0,b0,c0 is also similar to the coupler triangle, link 2. Our

approach proves this while at the same time generating the

formulas for the cognate link parameters and for the location

of point c0.

In the Chebyshev-Cayley construction shown in Fig. 2,

the parallelogram attached to a0 shows that link 1′ has the

same rotation as link 2 and link 2′ has the same rotation as

link 1. That is, the cognate linkage labeled “swap 1-2” inter-

changes the rotations of links 1 and 2. In addition, the other

two parallelograms imply that link 3′ and link 3 undergo the

same rotation. Hence the “swap 1-2” cognate has rotations

(θ′1,θ
′
2,θ

′
3) = (θ2,θ1,θ3). As implied by its label, the “swap

2-3” cognate obeys a different permutation of the link rota-

tions, namely (θ′′1 ,θ
′′
2 ,θ

′′
3) = (θ1,θ3,θ2). The key observation

Dijksman used in finding six-bar cognates was that these also

involve permuting link rotations. Our methodology derives

from this observation: once a valid permutation of the link

rotations is specified, all the cognate linkage parameters are

determined by solving a system of linear equations.

We begin by considering the “swap 1-2” cognate. The

four-bar has 1 loop and 4 links, and its 6 link parameters

are denoted a0,b0,a1,a2,b2,a3. In Step 1, we consider the

permutation (θ′1,θ
′
2,θ

′
3) = (θ2,θ1,θ3). The loop equation

Eq. (1) and the coupler-point equation Eq. (2) are used for

the original mechanism in Step 2 and for the cognate mech-

anism in Step 3 with a′0 in place of a0, θ′1 in place of θ1, and

so on. After the substitution in Step 4, Step 5 is unnecessary

since the same set of link rotations appear in f1, f ′1 and in

f2, f ′2, respectively. Steps 6-7 yield

f ′1 = γ1 f1 : a′0−b′0 + a′1θ2 + a′2θ1 + a′3θ3

= γ1(a0 − b0 + a1θ1 + a2θ2 + a3θ3),

(4)

f ′2 = f2 : a′0 + a′1θ2 + b′2θ1 = a0 + a1θ1 + b2θ2. (5)

In Step 8, equating the coefficients of the link rotations 1, θ1,

θ2, θ3 on both sides of these equations yields a set of seven

linear equations in seven unknown parameters, these being

(a′0,b
′
0,a

′
1,a

′
2,b

′
2,a

′
3) for the cognate linkage and the stretch-

rotation γ1. Listing these out, the loop equation Eq. (4) gives

a′0 − b′0 = γ1(a0 − b0), a′2 = γ1a1, a′1 = γ1a2, a′3 = γ1a3 (6)
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Fig. 2. Roberts cognates with numerical values of the parameters

presented in Table 1

while the coupler-point equation Eq. (5) yields

a′0 = a0, b′2 = a1, a′1 = b2. (7)

Since a′1 = γ1a2 and a′1 = b2, one finds that γ1 = b2/a2,

which is the stretch-rotation that transforms a2 into b2.

With γ1 known, all of the cognate parameters are easily de-

termined from Eqs. (6,7). In particular, one sees that ground

pivot a′0 stays fixed, i.e., a′0 = a0, whereas ground pivot b′0

moves to a new location b′0 = c0 := a0 +(b2/a2)(b0 − a0).

We label this new ground pivot as c0 in Figure 2. As is

well-known, (a0,b0,c0) are the singular foci of the four-bar’s

coupler curve and they form a triangle that is similar to the

coupler triangle, (0,a2,b2) [19].

The simple linear relations of Eqs. (6,7) directly imply

the parallelograms and similar triangles in the Chebyshev-

Cayley geometric construction. In particular, b′2 = a1,

a′1 = b2 in Eq. (7) imply that quadrilateral a1,b2,b
′
2,a

′
1 is a

parallelogram, while b′2 = a1,a
′
2 = γ1a1, hence γ1 = a′2/b′2,

along with γ1 = b2/a2 shows that triangle 2′ is similar to

triangle 2. These geometric relations automatically appear

using our approach.

A second cognate is found by swapping rotations be-

tween links 2 and 3. Call its parameters a′′0 , . . . ,a
′′
3 to dis-

tinguish them from those for the first cognate. The same

procedure applies, but to successfully match terms in Step 8,

we can use the alternate coupler-point equation Eq. (3) at

Step 3. Since Eq. (3) was obtained by subtracting Eq. (1)

from Eq. (2), this preliminary rearrangement avoids needing

any additional rearrangement in Step 5. This time, one finds

that b′′0 = b0 stays in place while a0 moves to the third singu-

lar focus, a′′0 = b′0 = c0. Matching all coefficients we find the

stretch rotation factor, call it ζ1, to be

ζ1 = 1− b2

a2

with cognate link parameters

a′′0 = c0 b′′0 = b0 a′′1 = ζ1a1

a′′2 = ζ1a3 b′′2 = a3(ζ1 − 1) a′′3 = ζ1a2.

One may also swap rotations between links 1 and 3.

To carry through the matching procedure without needing

Step 5, one picks Eq. (2) at Step 2 and Eq. (3) at Step 3.

Thus, after the substitution θ′1 = θ3 and θ′3 = θ1 at Step 4,

the same rotations, namely θ1 and θ2 appear on both sides

in Step 7. The result computed in Step 8 is valid but it does

not produce a new four-bar. Instead, this simply produces the

original four-bar with its links renumbered 0-3-2-1 in place

of 0-1-2-3. While this renumbering is not interesting from

a mechanical standpoint, it is meaningful algebraically. As

shown in [2], the system of path-synthesis equations for a

four-bar coupler curve to pass through nine given precision

points has 8652 solutions that arise in a six-way symme-

try: three cognates which each allow a two-way renumber-

ing. Hence, the 8652 solutions correspond with 1442 distinct
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coupler curves, each of which is generated by three four-bar

curve cognates.

Finally, we observe that the first cognate (a′0, . . . ,a
′
3) is

a timed curve cognate if link 3 is the input, while the second

cognate (a′′0 , . . . ,a
′′
3) is if link 1 is the input. Neither is a

coupler cognate since they do not preserve the rotation of

link 2.

Example 5.1. Table 1 lists the parameters for the four-bar

linkage along with the parameters (to 4 decimal places) for

the cognates derived above and drawn in Figure 2.

Original Swap 1-2 Swap 2-3

a0 0.0+ 0.0i 0.0000+ 0.0000i −0.6549+ 2.2196i

b0 3.0+ 0.8i −0.6549+ 2.2196i 3.0000+ 0.8000i

a1 0.8+ 0.8i 0.2000+ 0.9000i 1.4118+ 0.2196i

a2 1.2− 0.3i −0.6118+ 0.5804i 1.2431− 0.4392i

b2 0.2+ 0.9i 0.8000+ 0.8000i 0.2431− 0.7392i

a3 1.0+ 0.3i −0.2431+ 0.7392i 1.0000− 1.2000i

Table 1. Four-bar linkage and cognate parameters

Fig. 3. Stephenson-2A mechanism (top left), swap 2-3 (top right),

swap 4-5 (bottom left), and swap 2-3 and 4-5 (bottom right) with nu-

merical values of the parameters presented in Table 2

5.2 Stephenson-2A

The Stephenson-2 six-bar has two coupler curve types

depending on which link is designated the coupler. Figure 3

shows the Stephenson-2A option where link 5 carries the

coupler point. (The alternative, Stephenson-2B, places the

coupler point on link 2.) Cognates for the Stephenson-2A

appear as a group of four: the original, swap rotations 2-3,

swap rotations 4-5, and swap both 2-3 and 4-5. We will show

how to derive all the Stephenson-2A curve cognates and also

illustrate what goes wrong for an inadmissible permutation.

5.2.1 Swap rotations 2-3

To derive the cognate that swaps link rotations 2 and 3,

we wish to form loop and coupler-point equations that either

contain both or neither of links 2 and 3. Loops 0-1-2-3-4 and

2-3-4-5 suffice, as does the path to the coupler point using

links 0-4-5. Accordingly, at Step 2, we have

f1 = a0 − b0 + a1θ1 + a2θ2 − a3θ3 − a4θ4 = 0, (8)

f2 = b2θ2 + a3θ3 + b4θ4 + a5θ5 = 0, (9)

f3 = b0 +(a4 − b4)θ4 + b5θ5 = p. (10)

At Step 3, we use the same equations with a′0 in place of a0,

θ′1 in place of θ1, and so on. After substituting θ′2 = θ3, and
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θ′3 = θ2, Steps 6-7 give

f ′1 =γ1 f1 :

a′0 − b′0 + a′1θ1 + a′2θ3 − a′3θ2 − a′4θ4

= γ1(a0 − b0 + a1θ1 + a2θ2 − a3θ3 − a4θ4),

f ′2 =γ2 f2 :

b′2θ3 + a′3θ2 + b′4θ4 + a′5θ5

= γ2(b2θ2 + a3θ3 + b4θ4 + a5θ5),

f ′3 = f3 :

b′0 +(a′4 − b′4)θ4 + b′5θ5

= b0 +(a4 − b4)θ4 + b5θ5.

Matching terms on the left to those on the right of these

equalities, one obtains 12 linear conditions in the 12

unknowns, these being the 10 cognate link parameters,

a′0, . . . ,b
′
5, and the two stretch-rotations γ1,γ2. The 12 condi-

tions are quite simple and sparse, including

a′0 − b′0 = γ1(a0 − b0), a′1 = γ1a1, a′2 =−γ1a3,

. . . , b′0 = b0, a′4 − b′4 = a4 − b4, b′5 = b5. (11)

From the whole set of 12 equations, one finds the stretch-

rotations to be

γ1 =
b2(a4 − b4)

b2a4 + a2b4
, γ2 =

a2(b4 − a4)

b2a4 + a2b4
,

and the cognate link parameters as

a′0 = b0 + γ1(a0 − b0)

b′0 = b0 a′1 = γ1a1 a′2 =−γ1a3

b′2 = γ2a3 a′3 =−γ1a2 a′4 = γ1a4

b′4 = γ2b4 a′5 = γ2a5 b′5 = b5.

Links 1 and 4 adjacent to ground keep their original ro-

tations as does the coupler link 5. Accordingly, this cognate

is a timed coupler cognate for input at either link 1 or 4.

5.2.2 Swap rotations 4-5

We will not write out the details for deriving the cog-

nate obtained by swapping the rotations of links 4 and 5.

One may find it similarly to the procedure in section 5.2.1

by using loops 0-1-2-5-4 and 2-3-4-5, and the path 0-4-5 to

the coupler point. Since links 4 and 5 appear in every equa-

tion, these satisfy the matching condition so Step 5 is not uti-

lized. Moreover, we again obtain 12 linear conditions in 12

unknowns which are readily solved for the required stretch-

rotations,

γ1 =
−b5

a5

, γ2 =
b5(a4 − b4)

a5b4
,

and the cognate mechanism’s parameters,

a′0 = b0 + γ1(a0 − b0)

b′0 = b0 a′1 = γ1a1 a′2 = γ1(a2 + b2)− γ2b2

b′2 = γ2b2 a′3 = γ2a3 a′4 = a5(γ2 − γ1)

b′4 = γ2a5 a′5 = γ2b4 b′5 = a4 − b4.
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Since link 1 keeps its original rotation, this cognate is a timed

curve cognate for input at link 1.

5.2.3 Swap both rotations 2-3 and 4-5

Once one has the formulas in hand for swapping 2-3

and for swapping 4-5, one can compute the result of swap-

ping both by applying the two sets of formulas in sequence.

The order of the sequence, 2-3 then 4-5 versus 4-5 then 2-3,

doesn’t matter: the same final cognate results.

Even though the sequential option is available, let’s con-

sider how to derive the cognate as one double-swap. This

will illustrate a case where Step 5 comes into play. The trou-

ble is that although the loop 2-3-4-5 and the coupler path

0-4-5 both satisfy the matching criterion, there is no second

loop equation that does so. The possibilities for a second

loop are 0-1-2-3-4 which swaps to 0-1-3-2-5 as well as the

loop 0-1-2-5-4 which swaps to 0-1-3-4-5. For both, we see

that the cognate loop has a link rotation that is not matched in

the original. The way out of this bind is to use a linear com-

bination of the loops to eliminate the unmatched rotation.

We already wrote the equations for loops 0-1-2-3-4 and

2-3-4-5 and for path 0-4-5 to the coupler point as f1, f2, f3 in

Eqs. (8,9,10). After the double-swap, we get rotations 0-1-

3-2-5 in f ′1. To match these, consider the linear combination

that eliminates θ4 between f1 and f2:

g1 := b4 f1 + a4 f2

= b4(a0 − b0)+ b4a1θ1 +(b4a2 + a4b2)θ2 (12)

+a3(a4 − b4)θ3 + a4a5θ5 = 0.

This combination contains rotations for links 0-1-2-3-5,

which are the same ones that appear in loop 0′-1′-2′-3′-4′

after the double-swap of rotations turns it into 0-1-3-2-5.

Therefore, at Step 5, f1 is replaced by g1 yielding at

Steps 6-7 the following equations:

f ′1(q
′,P(θ)) = γ1g1(q,θ), f ′2(q

′,P(θ)) = γ2 f2(q,θ),

f ′3(q
′,P(θ)) = f3(q,θ)

where P(θ1,θ2,θ3,θ4,θ5) = (θ1,θ3,θ2,θ5,θ4).

After matching coefficients we again end up with 12 lin-

ear equations in 12 unknowns and find the stretch-rotation

factors to be

γ1 =
b2b5

a2a5

, γ2 =−b5(a2b4 + a4b2)

a2b4a5

and the cognate parameters as

a′0 = b0 + γ1(a0 − b0)

b′0 = b0 a′1 = γ1a1 a′2 = γ1a3(
a4

b4
− 1)

b′2 = γ2a3 a′3 = γ2b2 a′4 = b5 + γ2a5

b′4 = γ2a5 a′5 = γ2b4 b′5 = a4 − b4.

Example 5.2. Table 2 lists the parameters for the

Stephenson-2A six-bar mechanism along with the param-

eters (to 4 decimal places) for the three cognates derived

above and drawn in Figure 3.
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Swap

Original Swap 2-3 Swap 4-5 2-3 & 4-5

a0 0.0+ 0.0i 0.3204+ 0.6180i 0.3139+ 0.3869i 1.1198+ 1.1559i

b0 1.0+ 0.0i 1.0000+ 0.0000i 1.0000+ 0.0000i 1.0000+ 0.0000i

a1 −0.2+ 0.5i 0.1731+ 0.4634i 0.0562+ 0.4204i 0.6019+ 0.1713i

a2 0.4− 0.1i 0.3460− 0.4388i 0.5535− 0.3591i 0.2957− 0.8438i

b2 −0.1+ 0.6i −0.3662− 0.0965i −0.1542+ 0.5861i −0.8562+ 0.4630i

a3 −0.6+ 0.1i −0.2100+ 0.3152i −0.6044+ 0.0442i 0.1603+ 0.9601i

a4 −0.2+ 0.3i 0.0495+ 0.3275i 0.5280+ 0.4040i 0.8572− 0.4767i

b4 −0.4− 0.3i −0.1505− 0.2725i 1.1280− 0.2960i 1.4572− 1.1767i

a5 1.1− 0.4i 0.7268+ 0.0538i −0.3693− 0.3343i −0.7612− 0.2463i

b5 −0.6+ 0.7i −0.6000+ 0.7000i 0.2000+ 0.6000i 0.2000+ 0.6000i

Table 2. Stephenson-2A linkage and cognate parameters

5.2.4 An inadmissible permutation: swap rotations 2-5

One may wonder why other permutations besides the

swapping of 2-3 and 4-5 do not give curve cognates for the

Stephenson-2A. To illustrate, consider swapping the rota-

tions of links 2 and 5. Loops 0-1-2-5-4 and 2-3-4-5 and

vector path 0-1-2-5 all contain both 2 and 5, so the match-

ing condition is satisfied. The trouble is that in contrast to the

swaps previously considered, this time the path to the coupler

point traverses four instead of just three links. The conse-

quence is that we have 13 coefficients to match, and we only

have 12 unknowns. A row reduction procedure shows that

these equations are in general incompatible, so rotations 2

and 5 cannot be interchanged.

5.3 Watt-1A six-bar

Among the six-bar coupler curve mechanisms, only the

Watt-1A, shown in Figure 4, has a positive-dimensional set

of curve cognates. Let’s see how our method of constructing

cognates deals with this.

The Watt-1A cognates derive from the trivial permuta-

tion: no swaps at all. The loops are 0-1-2-3 and 2-3-5-4 and a

path to the coupler point is 0-3-5. The number of coefficients

to match in these equations is 4+4+3= 11, and as is always

the case for six-bars, we have 12 unknowns: 10 link parame-

ters and 2 stretch-rotations. Accordingly, we can specify one

Fig. 4. Watt-1A mechanism (left) and a cognate (right) with numeri-

cal values of the parameters presented in Table 3

link vector, say a′0, and still satisfy all the conditions imposed

by matching coefficients of the rotations. Since a link vector

has a real and an imaginary part, the set of curve cognates is

two-real-dimensional.

Specifying a′0, we find the stretch-rotation factors to be

γ1 =
a′0 − b0

a0 − b0
, γ2 = 1+

a3(a0 − a′0)

b3(a0 − b0)

and the cognate mechanism link parameters

b′0 = b0 a′1 = γ1a1 a′2 = γ1a2

b′2 = γ2b2 a′3 = γ1a3 b′3 = γ2b3

a′4 = γ2a4 a′5 = γ2a5 b′5 = b5.

Since all the links of the cognate keep their original ro-

tations, the result is a timed coupler cognate.

Example 5.3. Table 3 lists the parameters for the Watt-

1A six-bar linkage along with the parameters (to 4 decimal

places) for a cognate with a′0 = 0.4+ 0.1i. Both mechanisms

are drawn in Figure 4.

Samantha Sherman JMR-20-1433 11



Original Cognate Original Cognate

a0 0.0+ 0.0i 0.4000+ 0.1000i a3 0.1− 0.1i 0.0286− 0.0571i

b0 0.7+ 0.0i 0.7000+ 0.0000i b3 −0.2− 0.4i −0.1286− 0.4429i

a1 −0.1+ 0.3i 0.0000+ 0.1429i a4 0.4+ 0.1i 0.3871+ 0.1757i

a2 0.7− 0.2i 0.2714− 0.1857i a5 0.1− 0.2i 0.1386− 0.1843i

b2 −0.3+ 0.5i −0.3971+ 0.4514i b5 0.2+ 0.2i 0.2000+ 0.2000i

Table 3. Watt-1A linkage and cognate parameters

5.4 An eight-bar cognate

So far, we have used our approach to provide simple

demonstrations of known results in cognate theory. How-

ever, the beauty of the approach is that it easily generates

cognates for more complex linkages. To show this, we gen-

erate a novel cognate of the eight-bar linkage in Figure 5.

We can generate a cognate by swapping the rotations of

links 1 and 2. Three compatible loops are 0-1-2-3, 1-2-3-5-4,

and 4-5-7-6. The vector path 0-3-5-7 to the coupler point is

also compatible. There are 4+5+4+4 = 17 coefficients to

Fig. 5. An eight-bar mechanism (top) and a cognate (bottom) with

numerical values of the parameters presented in Table 4

match. The number of link parameters is 4L+ 2 = 14 and

there will be 3 stretch-rotations associated to matching the

loops for a total of 17 unknowns. Therefore, we can expect

that this swap will lead to a unique cognate.

The relevant loop and coupler-point equations are:

0 = a0 − b0 + a1θ1 + a2θ2 + a3θ3, (13)

0 = b1θ1 − a2θ2 − b3θ3 + a4θ4 − b5θ5, (14)

0 = b4θ4 − a5θ5 + a6θ6 + a7θ7, (15)

p = b0 +(b3 − a3)θ3 +(a5 + b5)θ5 + b7θ7. (16)

The cognate uses these same equations except interchang-

ing rotations 1 and 2. After introducing three stretch-rotation

factors, one for each loop equation Eqs. (13)-(15), and equat-

ing coefficients, one obtains stretch-rotations

γ1 =
b1(a3 − b3)

a1b3 + b1a3
, γ2 =

a1(b3 − a3)

a1b3 + b1a3
,

γ3 =
a1(a3b5 + b3a5)+ b1a3(a5 + b5)

a5(a1b3 + a3b1)
,

and cognate mechanism link parameters

a′0 = γ1a0 +(1− γ1)b0, b′0 = b0,

a′1 = γ1a2, b′1 =−γ2a2, a′2 = γ1a1,

a′3 = γ1a3, b′3 = γ2b3, a′4 = γ2a4,

b′4 = γ3b4, a′5 = γ3a5, b′5 = γ2b5,

a′6 = γ3a6, a′7 = γ3a7, b′7 = b7.

Since rotation 7 is preserved, this is a coupler cognate.

When link 3 is the input crank, this is a timed coupler cog-

nate. If instead link 1 is the input, timing is not preserved.
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Example 5.4. Table 4 lists the parameters for the eight-bar

linkage along with the parameters (to 4 decimal places) for

the cognate derived above and drawn in Figure 5.

Original Cognate Original Cognate

a0 −4.0+ 0.0i −2.2665+ 1.2640i a4 2.1+ 0.5i 0.7494+ 1.4184i

b0 0.0+ 0.0i 0.0000+ 0.0000i b4 −1.5+ 0.4i −1.4238− 0.6638i

a1 0.8+ 1.0i 1.4797− 0.6767i a5 2.5+ 0.6i 1.5503+ 2.0892i

b1 −1.0+ 0.5i −1.1130− 1.4949i b5 −2.3+ 0.4i −1.3503− 1.0892i

a2 2.5+ 0.2i 0.7693+ 0.3138i a6 1.9+ 0.6i 1.0847+ 1.6995i

a3 0.7− 1.2i 0.0174− 0.9011i a7 2.1− 0.4i 1.8894+ 1.0534i

b3 0.9+ 0.4i 0.2174+ 0.6989i b7 −0.5+ 0.9i −0.5000+ 0.9000i

Table 4. Eight-bar linkage and cognate parameters

5.5 A ten-bar cognate

As a final demonstration of the simplicity of the ap-

proach, we use the method to generate a novel cognate to

the ten-bar linkage in [20, Fig. 15] that is shown in Figure 6.

The following loop and coupler-point equations are

Fig. 6. A ten-bar mechanism (top) and a cognate (bottom) with nu-

merical values of the parameters presented in Table 5

compatible with swapping link rotations 3 and 4:

0 = a0 − b0 + a1θ1 + a2θ2 + a6θ6, (17)

0 = b0 − c0 + b2θ2 + a3θ3 + a4θ4, (18)

0 = b3θ3 + b4θ4 + b5θ5 + a8θ8, (19)

0 = a0 − c0 +(a1 − b1)θ1 + a3θ3

− b4θ4 − a5θ5 − a7θ7 − a9θ9,

(20)

p = a0 +(a1 − b1)θ1 − a7θ7 + b9θ9. (21)

A count of the conditions to be satisfied from matching coef-

ficients is 4+ 4+ 4+ 7+4= 23 while there are just 22 un-

knowns: 18 link parameters and 4 stretch-rotation factors.

By that count, one might hastily conclude that there are too

few freedoms to match all the conditions, but it turns out that

the conditions are in fact compatible. In particular, since nei-

ther θ1 nor θ7 is involved in the swap, their coefficients in

Eqs. (20,21) lead to the following four equations:

a′1 − b′1 = γ4(a1 − b1), a′7 = γ4a7,

a′1 − b′1 = a1 − b1, a′7 = a7.

It is easily seen that these four equations only place three

conditions on the parameters. Carrying out the entire proce-

dure, one finds a unique solution for the stretch-rotations:

γ1 =
a0a4 + b4b0 − b4c0 − c0a4

a4(a0 − b0)
, γ2 =−b4

a4
,

γ3 =−a3

b3
, γ4 = 1,
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and the link parameters:

a′0 = a0 b′0 = c0 + γ2(b0 − c0) c′0 = c0

a′1 = γ1a1 b′1 = b1 + a1(γ1 − 1) a′2 = γ1a2

b′2 = γ2b2 a′3 =−b4 b′3 = γ3b4

a′4 = γ2a3 b′4 =−a3 a′5 = a5

b′5 = γ3b5 a′6 = γ1a6 a′7 = a7

a′8 = γ3a8 a′9 = a9 b′9 = b9.

This is a coupler cognate since the rotation of link 9 is pre-

served. When link 1 or 2 is the input, this is a timed coupler

cognate. When link 3 is the input, timing is not preserved.

Example 5.5. Table 5 lists the parameters for the ten-bar

linkage along with the parameters (to 4 decimal places) for

the cognate derived above and drawn in Figure 6.

Original Cognate Original Cognate

a0 0.0+ 0.0i 0.0000+ 0.0000i a4 0.6+ 0.3i −0.5533− 0.0067i

b0 1.0+ 0.0i 2.3667+ 1.0000i b4 −0.1+ 0.5i −0.2000+ 0.7000i

c0 2.2+ 0.1i 2.2000+ 0.1000i a5 −0.6+ 0.3i −0.6000+ 0.3000i

a1 0.5+ 0.3i 0.8833+ 1.2100i b5 0.7+ 0.3i 0.8941− 0.3235i

b1 0.4− 0.7i 0.7833+ 0.2100i a6 0.2+ 0.0i 0.4733+ 0.2000i

a2 0.3− 0.3i 1.0100− 0.4100i a7 −0.3− 0.5i −0.3000− 0.5000i

b2 0.4+ 0.5i 0.2867− 0.3933i a8 −0.1− 1.1i −1.0294− 0.9176i

a3 0.2− 0.7i 0.1000− 0.5000i a9 −0.9− 0.1i −0.9000− 0.1000i

b3 −0.5+ 0.3i 0.3353+ 0.5412i b9 0.6+ 0.5i 0.6000+ 0.5000i

Table 5. Ten-bar linkage and cognate parameters

6 Conclusion

We have presented a method of deriving planar curve

cognates and illustrated its application to the four-bar, sev-

eral six-bars, one eight-bar, and one ten-bar linkage. Cog-

nates are found by interchanging link rotations in a complex-

vector formulation of loop and coupler-point equations, re-

sulting in formulas that are easy to apply, especially in a

computer graphics environment. As we saw in Section 5.2.4,

not all permutations lead to valid cognates. Thus, at the level

of development presented here, some trial-and-error would

be required to find all cognates of a given linkage type for

linkages with N > 6. A companion paper [3] addresses the

issue of finding all possible valid permutations.

Appendix A summarizes how to derive all known six-

bar curve cognates. Beyond giving simple derivations for

known cognates, the procedure also allows one to produce

new cognates as demonstrated in Sections 5.4 and 5.5 by

finding a novel cognate of an eight-bar and ten-bar linkage.
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APPENDIX A Deriving all six-bar cognates

For easy reference, we provide a quick summary of how

to derive all planar four-bar and six-bar cognates. For each

curve type, we provide:

• the mechanism’s type graph (which represents links as

nodes and joints as edges), where the ground link is al-

ways link 0 and the coupler is marked with an overbar,

• the link rotations that are to be swapped,

• the loops and the path to the coupler point used for the

original mechanism,

• for one cognate of the Stephenson-2A where a lin-

ear combination of loops is required, it is denoted as

(0-1-2-4̂-5)+(2-3-4̂-5) to indicate that the combination

eliminates θ4 as detailed in Eq. (12),

• for one cognate of the Watt-1B where a linear combi-

nation of the path to the coupler point and a loop is

required, it is denoted as p=(0-3̂-4-5)+(2-3̂-4-5) to in-

dicate that the combination eliminates θ3 which is ob-

tained by simply rescaling the loop and adding it to the

path to the coupler point,

• the loops and the path to the coupler point used for the

cognate mechanism, given before and after the permu-

tation of rotations, e.g., if rotations 2 and 3 are to be

swapped, we might write 0′-1′-2′-3′→0-1-3-2.

Comparing the specifications in this appendix for the four-

bar, Stephenson-2A, and Watt-1A to the corresponding

derivations in the main body may help clarify the abbrevi-
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ated notation. One can easily verify that the functions for the

original and the cognate mechanism contain the same rota-

tions, so that coefficient matching can be done, and that the

number of coefficients to be matched is less than or equal to

the number of unknowns (6 link parameters plus one stretch-

rotation for the four-bar, 10 link parameters plus 2 stretch-

rotations for the six-bars). The “less than” case occurs only

for the Watt-1A (as shown in Section 5.3). In all other cases,

further analysis of these linear matching conditions shows

that they are independent, and hence each permutation cor-

responds with a unique cognate.

Four-bar A cognate triple exists (original plus two cog-

nates).

0 1

3 2

Swap Original Cognate

1′2′→21 0-1-2-3 0′-1′-2′-3′→0-2-1-3

p=0-1-2 p=0′-1′-2′→0-2-1

2′3′→32 0-1-2-3 0′-1′-2′-3’→0-1-3-2

p=0-3-2 p=0′-3′-2′→0-2-3

Table 6. Four-bar type-graph and swaps leading to cognates

Stephenson-1 A cognate pair exists.

0

1

2

3

❅❅ ��

❅❅��

4

5

Swap Original Cognate

0-1-2-3 0′-1′-2′-3′→0-2-1-3

1′2′→21 1-4-5-3-2 1′-4′-5′-3′-2′→2-4-5-3-1

p=0-3-5 p=0′-3′-5′→0-3-5

Table 7. Stephenson-1 type graph and swap leading to one cognate

Stephenson-2A A cognate quadruple exists.

5

4

3

2

❅❅ ��

❅❅��

0

1

Swap Original Cognate

0-1-2-3-4 0′-1′-2′-3′-4′→0-1-3-2-4

2′3′→32 2-3-4-5 2′-3′-4′-5′→3-2-4-5

p=0-4-5 p=0′-4′-5′→0-4-5

0-1-2-5-4 0′-1′-2′-5′-4′→0-1-2-4-5

4′5′→54 2-3-4-5 2′-3′-4′-5′→2-3-5-4

p=0-4-5 p=0′-4′-5′→0-5-4

Swap Original Cognate

2′3′→32 2-3-4-5 2′-3′-4′-5′→3-2-5-4

and (0-1-2-3-4̂)+(2-3-4̂-5) 0′-1′-2′-3′-4′→0-1-3-2-5

4′5′→54 p=0-4-5 p=0′-4′-5′→0-5-4

Table 8. Stephenson-2A type graph and swaps leading to cognates

Stephenson-2B A cognate triple exists.

2

4

3

5

❅❅ ��

❅❅��

0

1

Swap Original Cognate

0-1-5-2-4 0′-1′-5′-2′-4′→0-1-5-4-2

2′4′→42 2-4-3-5 2′-4′-3′-5′→4-2-3-5

p=0-1-5 p=0′-1′-5′→0-1-5

0-1-5-3-4 0′-1′-5′-3′-4′→0-1-5-4-3

3′4′→43 2-4-3-5 2′-4′-3′-5′→2-3-4-5

p=0-1-5 p=0′-1′-5′→0-1-5

Table 9. Stephenson-2B type graph and swaps leading to cognates

Stephenson-III There exists a group of six cognates. As

found in [7] and discussed in [14], these can be generated by

applying the 3-way Roberts cognates to the four-bar 0-1-2-

3 and a 2-way skew pantograph transformation to the dyad

0-4-5. Our method also applies, as summarized below.

Samantha Sherman JMR-20-1433 16



1

0

3

2

❅❅ ��

❅❅��

4

5

Swap Original Cognate

0-1-2-3 0′-1′-2′-3′→0-2-1-3

1′2′→21 0-1-2-5-4 0′-1′-2′-5′-4′→0-2-1-5-4

p=0-4-5 p=0′-4′-5′→0-4-5

0-1-2-3 0′-1′-2′-3′→0-1-3-2

2′3′→32 0-3-2-5-4 0′-3′-2′-5′-4′→0-2-3-5-4

p=0-4-5 p=0′-4′-5′→0-4-5

0-1-2-3 0′-1′-2′-3′→0-1-2-3

4′5′→54 0-1-2-5-4 0′-1′-2′-5′-4′→0-1-2-4-5

p=0-4-5 p=0′-4′-5′→0-5-4

1′2′→21 0-1-2-3 0′-1′-2′-3′→0-2-1-3

and 0-1-2-5-4 0′-1′-2′-5′-4′→0-2-1-4-5

4′5′→54 p=0-4-5 p=0′-4′-5′→0-5-4

2′3′→32 0-1-2-3 0′-1′-2′-3′→0-1-3-2

and 0-3-2-5-4 0′-3′-2′-5′-4′→0-2-3-4-5

4′5′→54 p=0-4-5 p=0′-4′-5′→0-5-4

Table 10. Stephenson-III type graph and swaps leading to cognates

Watt-1A A two-dimensional set of cognates exists.

0 3

1 2

5

4

Swap Original Cognate

0-1-2-3 0′-1′-2′-3′→0-1-2-3

none 2-3-5-4 2′-3′-5′-4′→2-3-5-4

p=0-3-5 p=0′-3′-5′→0-3-5

Table 11. Watt-1A type graph, the trivial swap leads to cognates

Watt-1B A cognate quadruple exists.

0 3

1 2

4

5

Swap Original Cognate

0-1-2-3 0′-1′-2′-3′→0-1-3-2

2′3′→32 2-3-4-5 2′-3′-4′-5′→3-2-4-5

p=0-3-2-5 p=0′-3′-2′-5′→0-2-3-5

0-1-2-3 0′-1′-2′-3′→0-1-2-3

4′5′→54 2-3-4-5 2′-3′-4′-5′→2-3-5-4

p=0-3-4-5 p=0′-3′-4′-5′→0-3-5-4

Swap Original Cognate

2′3′→32 0-1-2-3 0′-1′-2′-3′→0-1-3-2

and 2-3-4-5 2′-3′-4′-5′→3-2-5-4

4′5′→54 p=(0-3̂-4-5)+(2-3̂-4-5) p=0′-3′-4′-5′→0-2-5-4

Table 12. Watt-1B type graph and swaps leading to cognates

Watt-2

4 0

5 3

1

2

The Watt-2 linkage can only draw circles and

four-bar curves. The formulas for the four-bar

can be applied to loop 0-1-2-3.
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