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Abstract—The proliferation in amounts of generated data has
propelled the rise of scalable machine learning solutions to
efficiently analyze and extract useful insights from such data.
Meanwhile, spatial data has become ubiquitous, e.g., GPS data,
with increasingly sheer sizes in recent years. The applications
of big spatial data span a wide spectrum of interests including
tracking infectious disease, climate change simulation, drug
addiction, among others. Consequently, major research efforts
are exerted to support efficient analysis and intelligence inside
these applications by either providing spatial extensions to ex-
isting machine learning solutions or building new solutions from
scratch. In this 90-minutes seminar, we comprehensively review
the state-of-the-art work in the intersection of machine learning
and big spatial data. We cover existing research efforts and
challenges in three major areas of machine learning, namely, data
analysis, deep learning and statistical inference. We also discuss
the existing end-to-end systems, and highlight open problems and
challenges for future research in this area.

I. INTRODUCTION

There has been a recent wide deployment of machine
learning (ML) solutions, with their different areas (e.g., data
analysis, deep learning), in various big data applications,
including public health [24], information extraction [67], data
cleaning [53], among others. Meanwhile, spatial applications
have witnessed unprecedented explosion in the amounts of
generated and collected data. For example, medical devices
produce spatial images (X-rays) at a rate of 50 PB per year,
while a NASA archive of satellite earth images has more
than 500 TB. To efficiently process such tremendous amounts
of spatial data, researchers and developers worldwide have
proposed either spatial extensions to existing machine learning
systems (e.g., Azure Geo AI [3]) or new end-to-end solutions
(e.g., ESRI ArcGIS [14]). Such extensions and new solutions
have motivated a wide variety of applications in biology [71],
environmental science [72], climatology [17], among others.

Scope. In this seminar, we aim to provide a comprehensive
review of existing machine learning systems and approaches
that efficiently support big spatial data. Figure 1 depicts the
landscape of the intersection between machine learning and
big spatial data worlds that will be covered in this seminar. The
horizontal axis in Figure 1 represents the type of each machine
learning solution, whether it takes the distinguishing spatial
data properties into account or not, while the vertical axis
represents the type of application employing such machine
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Fig. 1. Landscape of Machine Learning for Big Spatial Data.

learning solution, whether the application is spatial or not.
We mainly focus on the three quarters Q1, Q2, and Q3 in
Figure 1 because they cover the spatial dimension in the
machine learning solutions and/or the big data applications.
We skip the quarter Q0 as it is already covered by previous
SIGMOD tutorials about the techniques and challenges in
machine learning for big data in general [8], [33], [34].

Related tutorials. There were two previous tutorials [1],
[13] related to this seminar. The first tutorial [13] focused on
big spatial data management. However, unlike this tutorial, our
seminar aims to combine the two worlds of scalable machine
learning and big spatial data together, which is beyond just
applying techniques from one area to another. The second
tutorial [1] focused only on learned spatial indexes, which as
shown in our seminar, is only one category in the quarter Q3

of our proposed landscape.
Prior offerings. The authors have presented a 90-minutes

tutorial about the same topic in the VLDB 2019 and ICDE
2020 conferences [56], [57]. However, this seminar provides
a thorough revision to the previously presented landscape and
adds more recent works in the three quarters Q1, Q2, and Q3.

II. SEMINAR OUTLINE

Figure 2 gives the 90-minutes seminar outline, composed
of five parts. The first part motivates the need for machine
learning systems to support big spatial data, and provides the



basic background on these two worlds (Section II-A). The
second, third, and fourth parts delve into the ongoing machine
learning efforts and challenges in the quarters Q1, Q2, and Q3

from Figure 1, respectively (Sections II-B to II-D). In each of
these three quarters, we explain the main ideas, architectures,
strengths and weaknesses of existing machine learning solu-
tions. We also highlight the strong bond between spatial data
management and spatial machine learning workflows, discuss
the related technical challenges, and outline the open research
opportunities. The fifth part reviews the existing end-to-end
systems for big spatial data analysis (Section II-E).

A. Part 1: Spatial Data and ML Synergy

This part advocates for the need to develop machine learning
systems and techniques for big spatial data that go beyond
simple extensions of existing work for general data. We start
by describing some motivating applications, introducing the
world of big spatial data, and discussing its machine learning
related concepts. We then quickly review the landscape of
spatial machine learning systems, algorithms, applications, and
needs, which will be heavily discussed in the next parts.

B. Part 2: Spatial ML Solutions for Non-spatial Apps

This part covers the role of injecting the spatial awareness
inside the underlying machine learning algorithms used in non-
spatial applications (e.g., knowledge base construction [58],
recommendation systems [41], computer vision [27]) to im-
prove the performance of these applications. We start by
highlighting how the spatial data management techniques
improve the performance of various tasks in neural networks
and reinforcement learning when applying on big spatial
data. For example, Quad-tree partitioning [18] is used for:
(a) balancing the convolution computation in Convolutional
Neural Networks (CNN) for object detection applications [27],
(b) efficient automatic features extraction and matrix factoriza-
tion operations inside deep learning models [79] and (c) par-
allelizing the reinforcement learning computation for motion
planning [23]. Meanwhile, k-nearest neighbor operations are
used to efficiently build specific neural network architectures
from big spatial datasets [6], [49]. Then, we discuss the im-
proved spatial variations of other statistical machine learning
techniques (i.e., not deep learning) used inside knowledge
base construction [58], [60] and recommendation [41] models,
while assuring their impact in obtaining more accurate outputs.

C. Part 3: Non-spatial ML Solutions for Spatial Apps

This part covers the usage of existing machine learning
techniques, without spatial variations, as ”black boxes” in
improving the performance of spatial applications. We start by
discussing the recent machine learning techniques used inside
three specific core applications; routing, traffic prediction and
human mobility. For routing, we show the deep learning [25]
and regression analysis [69] techniques used to prepare the
routing meta-data (e.g., finding weights of routes). We also
present the incremental learning [4] and clustering [21] ap-
proaches that are used to make routing maps and perform the

• Part 1: Spatial Data and ML Synergy (10 mins)
– Importance of ML with big spatial data
– Quick review of spatial ML landscape

• Part 2: Spatial ML Solutions for Non-spatial Apps (20 mins)
– Spatial-aware neural networks and reinforcement learning
– Spatial-aware statistical ML models (not deep learning)

• Part 3: Non-spatial ML Solutions for Spatial Apps (25 mins)
– ML for routing, traffic prediction and human mobility (In-depth)
– ML for disaster analysis, localization and object detection (Brief)

• Part 4: Spatial ML Solutions for Spatial Apps (25 mins)
– Learned spatial data management operations
– Scalable spatial data mining techniques
– Scalable spatial inference and sampling techniques

• Part 5: End-to-end Spatial Data Analysis Systems (10 mins)
– Spatial support in existing big data analysis systems
– Full-fledged big spatial data analysis systems

Fig. 2. Seminar Outline (90 minutes)

routing itself, respectively. For traffic prediction, we present
examples of its existing deep learning [7], [38], [42], [82], as
well as reinforcement learning [76] approaches in details. For
human mobility, we discuss its simulation using reinforcement
learning [47], prediction using federated [36] and deep learn-
ing [73], and behavior modeling using representation learn-
ing [9]. Finally, we give a brief about the machine learning
approaches used in other spatial applications including disaster
managment [30], [65], outdoors localization [68], forecasting
queries [39], and geospatial object detection [78].

D. Part 4: Spatial ML Solutions for Spatial Apps

This part covers the research efforts of learned spatial
data management operations and scalable spatial data analysis
techniques. For spatial data management, we cover recent
works in learning spatial indexes [1], [37], [46], [52], multi-
dimensional histograms [40], selectivity estimation [48] and
approximate processing [81]. For spatial data analysis, we
touch on the efforts for scaling up the performance of three
main categories: (1) Spatial data mining: common operations
in this category include spatial outlier detection [66], [84],
spatial classification [10], [19], [28], [29], [64], spatial regres-
sion [59], spatial clustering [16], [45], [75], [83], hotspot de-
tection [5], and trajectory analysis [11]. (2) Spatial statistical
inference: existing spatial inference approaches are categorized
into: (a) in-memory solutions, where the input dataset of the
inference model is first spatially partitioned into a grid. Then,
each partition is analyzed using a Bayesian spatial process
model (e.g., [20]). Finally, an approximate posterior inference
for the entire dataset is obtained by optimally combining the
individual posterior distributions from each partition [20], [62],
[70]. (b) RDBMS-based solutions, where the assumption of
fitting the whole model data in memory is no longer valid.
Hence, RDBMSs are exploited to support scalable spatial
inference computation (e.g., TurboReg [59] and Flash [55],
[61]). (3) Spatial sampling: existing sampling techniques over
big spatial data can be either incremental (i.e., samples are
refined over many iterations) [12], [74] or satisfying certain
locality constraints (e.g., zooming level) [22], [63].



E. Part 5: End-to-end Spatial Data Analysis Systems

This part covers the big spatial data analysis systems from
two aspects: (1) The research efforts of adding spatial support
in existing big data analysis systems, which are either: (a) in
the form of add-ons libraries and tools that enable process-
ing spatial data with classical operations (e.g., clustering,
classification). Examples include spatial extensions to Spark
core (e.g., Simba [77], Magellan [43], GeoSpark [80], Ge-
oMesa [26], UlTraMan [11]) to enable using Spark MLib [44]
with spatial data, ESRI spatial data analysis extensions for
Hive [15], and PostGIS [50] that can be used along with
MADLib [24] to support spatial analytics for PostgreSQL [51],
or (b) in the form of built-in native support of spatial anal-
ysis operations (e.g., hot spot detection, spatial co-location)
inside existing data analysis engines. (2) The research efforts
of providing full-fledged big spatial data analysis systems
and tools. In such systems, all execution steps in any data
analysis operation are optimized for efficient and scalable
processing of spatial data. We will classify existing work
based on the underlying architecture, which could be either
(a) in-memory systems (e.g., CrimeStat [35], GeoDa [2],
PySAL [54]), (b) RDBMS-based systems (e.g., ESRI Ar-
cGIS [14], Flash [61]), or (c) cloud-based services (e.g., IBM
PAIRS [31]).

III. TARGET AUDIENCE AND RELEVANCE TO MDM

This seminar targets researchers, developers, and practi-
tioners, who are interested in the intersection area between
large-scale machine learning and big spatial data. Research
in this area recently becomes very active in the database and
spatial communities in general, and in the MDM community in
particular. Many of the research efforts covered in this seminar
were recently published in MDM (e.g., [30], [65], [73])
and other major database and spatial conferences including
SIGMOD, VLDB, ICDE and SIGSPATIAL. We expect the
seminar to help the audience in identifying the possible future
work in this intersection area. It can also be very beneficial
for graduate students who search for PhD topics and research
challenges. No prior knowledge is required to understand the
spatial systems and approaches in the seminar. Yet, it requires
basic machine learning knowledge, which is assumed to be
there for the MDM audience. This seminar will act as an
invitation to the mobile data management community to join
arms for satisfying the emerging needs of big spatial data
analysis and machine learning applications.

IV. BIOGRAPHICAL SKETCHES

Ibrahim Sabek (PhD, University of Minnesota) is a
Postdoctoral Associate at MIT. His research interests broadly
include machine learning for systems, scalable data processing
and querying, probabilistic databases, scalable knowledge base
construction, and big spatial data management and analysis.
Ibrahim has been named an NSF Computing Innovation
Fellow (CIFellow) in 2020, and awarded the University of
Minnesota Doctoral Dissertation Fellowship in 2019 for his
dissertation focus on scalable machine learning for big spatial

data and applications. His research work has won the first
place of ACM SIGSPATIAL Student Research Competition
(SRC) 2019, and has been nominated for the Best Paper
Award of ACM SIGSPATIAL 2018. For more information,
please visit: http://people.csail.mit.edu/ibrahimsabek/.

Mohamed F. Mokbel (PhD, Purdue University) is a Profes-
sor at University of Minnesota. His current research interests
focus on building systems for big spatial data and applications.
His research work has been recognized by the VLDB 10-years
Best Paper Award, four conference Best Paper Awards, and
the NSF CAREER Award. Mohamed is the past elected Chair
of ACM SIGPATIAL, current Editor-in-Chief for Distributed
and Parallel Databases Journal, and on the editorial board of
ACM Books, ACM TODS, VLDB Journal, ACM TSAS, and
GoeInformatica journals. He has also served as PC Vice Chair
of ACM SIGMOD and PC Co-Chair for ACM SIGSPATIAL
and IEEE MDM. Mohamed is an IEEE Fellow and an ACM
Distinguished Scientist. For more information, please visit:
www.cs.umn.edu/∼mokbel.

REFERENCES

[1] A. Al-Mamun, H. Wu, and W. G. Aref. A Tutorial on Learned Multi-
Dimensional Indexes. In SIGSPATIAL, 2020.

[2] L. Anselin et al. GeoDa: An Introduction to Spatial Data Analysis.
Journal of Geographical Analysis, 38(1):5–22, 2006.

[3] Azure Geo AI. https://azure.microsoft.com/en-us/blog/
microsoft-and-esri-launch-geospatial-ai-on-azure/.

[4] F. Bastani, S. He, S. Abbar, M. Alizadeh, H. Balakrishnan, S. Chawla,
S. Madden, and D. DeWitt. RoadTracer: Automatic Extraction of Road
Networks from Aerial Images. In CVPR, 2018.

[5] S. Bhadange, A. Arora, and A. Bhattacharya. GARUDA: A System for
Large-scale Mining of Statistically Significant Connected Subgraphs.
PVLDB, 9(13):1449–1452, 2016.

[6] C.-R. Chen and U. T. Kartini. K-Nearest Neighbor Neural Network
Models for Very Short-Term Global Solar Irradiance Forecasting Based
on Meteorological Data. Journal of Energies, 10(2), 2017.

[7] F. Chen, Z. Chen, S. Biswas, S. Lei, N. Ramakrishnan, and C.-T.
Lu. Graph Convolutional Networks with Kalman Filtering for Traffic
Prediction. In SIGSPATIAL, 2020.

[8] T. Condie, P. Mineiro, N. Polyzoti, and M. Weimer. Machine Learning
for Big Data (Tutorial). In SIGMOD, 2013.

[9] M. L. Damiani, A. Acquaviva, F. Hachem, and M. Rossini. Learning
Behavioral Representations of Human Mobility. In SIGSPATIAL, 2020.

[10] E. Diday. Spatial Classification. Journal of Discrete Applied Mathemat-
ics, 156(8):1271–1294, 2008.

[11] X. Ding et al. UlTraMan: A Unified Platform for Big Trajectory Data
Management and Analytics. In VLDB, 2018.

[12] O. Dovrat, I. Lang, and S. Avidan. Learning to Sample. In CVPR, 2019.
[13] A. Eldawy and M. F. Mokbel. The Era of Big Spatial Data (Tutorial).

PVLDB, 10(12):1992–1995, 2017.
[14] ESRI ArcGIS. www.esri.com/en-us/arcgis/about-arcgis/overview.
[15] ESRI Tools for Hive. github.com/Esri/spatial-framework-for-hadoop.
[16] M. Ester, H. Kriegel, et al. A Density-based Algorithm for Discovering

Clusters in Large Spatial Databases with Noise. In SIGKDD, 1996.
[17] J. H. Faghmous and V. Kumar. Spatio-temporal Data Mining for

Climate Data: Advances, Challenges, and Opportunities, pages 83–116.
Springer, 2014.

[18] R. Finkel and J. Bentley. Quad Trees a Data Structure for Retrieval on
Composite Keys. Acta Informatica, 1974.

[19] R. Frank, M. Ester, and A. Knobbe. A Multi-relational Approach to
Spatial Classification. In SIGKDD, 2009.

[20] R. Guhaniyogi and S. Banerjee. Meta-Kriging: Scalable Bayesian
Modeling and Inference for Massive Spatial Datasets. Journal of
Technometrics, 60(4):430–444, 2018.

[21] C. Guo, B. Yang, J. Hu, and C. Jensen. Learning to Route with Sparse
Trajectory Sets. In ICDE, 2018.



[22] T. Guo, K. Feng, et al. Efficient Selection of Geospatial Data on Maps
for Interactive and Visualized Exploration. In SIGMOD, 2018.

[23] C. Hajdu and ron Ballagi. Towards a Quadtree based Approach to Learn
Local Plans in Robotic Motion Planning. In IEEE GPMC, 2020.

[24] J. M. Hellerstein, C. R’e, F. Schoppmann, D. Z. Wang, E. Fratkin,
A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li, and A. Kumar.
The MADlib Analytics Library: or MAD Skills, the SQL. PVLDB,
5(12):1700–1711, 2012.

[25] J. Hu, C. Guo, B. Yang, et al. Stochastic Weight Completion for Road
Networks Using Graph Convolutional Networks. In ICDE, 2019.

[26] J. Hughes et al. GeoMesa: A Distributed Architecture for Spatio-
temporal Fusion. In SPIE Defense+Security, 2015.

[27] P. K. Jayaraman et al. Quadtree Convolutional Neural Networks. In
ECCV, 2018.

[28] Z. Jiang, Y. Li, S. Shekhar, L. Rampi, and J. Knight. Spatial Ensemble
Learning for Heterogeneous Geographic Data with Class Ambiguity: A
Summary of Results. In SIGSPATIAL, 2017.

[29] Z. Jiang and S. Shekhar. Spatial Big Data Science: Classification Tech-
niques for Earth Observation Imagery. Springer Publishing Company,
1st edition, 2017.

[30] M. Y. Kabir, S. Gruzdev, and S. Madria. STIMULATE: A System for
Real-time Information Acquisition and Learning for Disaster Manage-
ment. In MDM, 2020.

[31] L. J. Klein et al. PAIRS: A Scalable Geo-spatial Data Analytics Platform.
In IEEE Big Data, 2015.

[32] M. Koubarakis et al. TELEIOS: A Database-powered Virtual Earth
Observatory. In VLDB, 2012.

[33] T. Kraska. Learned Data Structures and Algorithms (Tutorial). In
SIGMOD, 2019.

[34] A. Kumar et al. Data Management in Machine Learning: Challenges,
Techniques, and Systems (Tutorial). In SIGMOD, 2017.

[35] N. Levine. CrimeStat: A Spatial Statistical Program for the Analysis of
Crime Incidents, pages 381–388. Springer, 2017.

[36] A. Li, S. Wang, W. Li, S. Liu, and S. Zhang. Predicting Human Mobility
with Federated Learning. In SIGSPATIAL, 2020.

[37] P. Li, H. Lu, Q. Zheng, L. Yang, and G. Pan. LISA: A Learned Index
Structure for Spatial Data. In SIGMOD, 2020.

[38] Y. Li, R. Yu, C. Shahabi, and Y. Liu. Diffusion Convolutional Recurrent
Neural Network: Data-Driven Traffic Forecasting. In ICLR, 2018.

[39] Y. Lin et al. Exploiting Spatiotemporal Patterns for Accurate Air Quality
Forecasting Using Deep Learning. In SIGSPATIAL, 2018.

[40] Q. LIU, Y. Shen, and L. Chen. LHist: Towards Learning Multi-
dimensional Histogram for Massive Spatial Data. In ICDE, 2021.

[41] Z. Lu, D. Agarwal, and I. S. Dhillon. A Spatio-temporal Approach to
Collaborative Filtering. In RecSys, 2009.

[42] Z. Lv, J. Xu, K. Zheng, H. Yin, P. Zhao, and X. Zhou. LC-RNN: A
Deep Learning Model for Traffic Speed Prediction. In Proceedings of
the International Joint Conference on Artificial Intelligence, 2018.

[43] Magellan: Geospatial analytics using spark. https://github.com/
harsha2010/magellan.

[44] X. Meng et al. MLlib: Machine Learning in Apache Spark. Journal of
Machine Learning Research, 17(1), 2016.

[45] R. T. Ng and J. Han. Efficient and Effective Clustering Methods for
Spatial Data Mining. In VLDB, pages 144–155, 1994.

[46] V. Pandey, A. van Renen, A. Kipf, I. Sabek, J. Ding, and A. Kemper.
The Case for Learned Spatial Indexes. In AIDB@VLDB, 2020.

[47] Y. Pang, K. Tsubouchi, T. Yabe, and Y. Sekimoto. Intercity Simulation
of Human Mobility at Rare Events via Reinforcement Learning. In
SIGSPATIAL, 2020.

[48] M. M. Patil and A. Magdy. LATEST: Learning-Assisted Selectivity
Estimation Over Spatio-Textual Streams. In ICDE, 2021.
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