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Abstract—As modern life and the world’s services increasingly
electrify, the resilience of the electric power grid is more
important than ever. Current methods of studying electric
power grid resilience generally fall in one of two categories: 1.)
dynamic simulation methods and 2.) network science methods
based upon graph connectedness. The latter use ‘lightweight”
models while the former is considerably more computationally
intensive. Though these methods provide valuable insights, there
is a need for analytical tools that balance analytical insight
with computational complexity. This paper demonstrates, for
the first time, a structural resilience analysis based upon the
application of hetero-functional graph theory to electric power
systems. These measures are of particular relevance to the
grid’s architectural transformation as it comes to accommodate
distributed generation and meshed networks. The paper
concludes with a discussion of some of the key differences
between existing resilience measures and those based upon a
hetero-functional graph analysis.
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I. INTRODUCTION

Modern life has grown to be extremely dependent on electric
power. And yet, the shear size of the electric power grid
means that disruptions are inevitable; be they severe weather,
malicious attacks, or equipment failure[1]. As the world’s
services increasingly electrify, the need to “bounce back” from
these disruptions in the form of resilience is more important
than ever.

Current methods of studying electric power grid resilience
generally fall in one of two categories: 1.) dynamic simulation
methods and 2.) network science methods based upon graph
connectedness. The first category relies on well-established
power systems engineering techniques and their specific choice
depends on the time-scale of the resilience analysis. For ex-
ample, transient stability analysis is used to study disruptions
in the 10-0.1Hz timescale[2]. Alternatively, grid operators
conduct N-1 contingency analysis on the timescale of 5-60
minutes. In either case, these simulation-based techniques
require a complete and appropriate dynamic model of the
associated electric power system phenomena. Consequently,
they 1.) are computationally intensive and 2.) only provide
analytical insight after a full detailed-design iteration.
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Alternatively, the network science methods use the con-
nectedness in graph representations to make their resilience
conclusions[3],[4]. Such highly abstract representations of
system form are computationally light and provide immediate
design and planning feedback. Basic graph models, however,
lack an explicit representation system function and instead
assume a homogeneity of function across the sets of nodes
and edges. Consequently, such approaches (as this paper
demonstrates) have limited utility in systems of heterogeneous
function[5].

Though these two categories of methods provide valuable
complementary insights, there is a need for analytical tools that
balance analytical insight with computational complexity. In
recent years, Hetero-Functional Graph Theory has emerged to
quantitatively and explicitly represent the structure of systems
with heterogeneous functionality[5]. Rather than relying on an
exclusively graph based description of system function, HFGT
focuses on the links between “capabilities” that allocate system
function to system form.

A. Contribution

This paper demonstrates, for the first time, a structural
resilience analysis based upon the application of hetero-
functional graph theory to electric power systems. These
measures are of particular relevance to the grid’s architectural
transformation as it comes to accommodate distributed gener-
ation and meshed networks at the grid periphery. The paper
concludes with a discussion of some of the key differences
between existing resilience measures and those based upon a
hetero-functional graph analysis.

B. Outline

The remainder of the paper is organized as follows. Section
I provides a brief introduction to the background concepts
used in this paper. Section III then introduces the IEEE power
system test case used in the analysis. Section IV then presents
the results of the hetero-functional graph analysis of electric
power system resilience in contrast to more traditional network
science methods. Section V brings the work to a conclusion.
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II. BACKGROUND AND METHODOLOGY

This section provides a brief exposition of graph theory,
hetero-functional graph theory, and relevant graph-based re-
silience measures as background concepts.

A. Graph Theory

In its most basic form, a graph is most commonly defined
as a tuple G = {V, E} where V is the set of (homogeneous)
vertices and F is the set of (homogeneous) edges. Vertices
often represent “point” facilities like power plants or substa-
tions. Meanwhile, edges often represent “connecting” facilities
like power lines. Additionally, graphs are often classified as
directed or undirected depending on whether their edges are
specified as 1-way or 2-way[6]. Table I shows how graphs
have been used in several common applications.

TABLE I
AN EXAMPLE OF VERTICES AND EDGES IN COMMON NETWORKS

Graph Vertices Edges
Internet Computer/Router Wireless Data Connection
World Wide Web Web Page Hyperlinks
Power Grid Plant or Substation Transmission Line
Transport Intersection Roads
Neural Networks Neurons Synapse

The connectedness of a graph is often represented mathe-
matically in an adjacency matrix A;; of size o(V) x o(V)
where the o() function provides the size of a set. The rows
and columns of an adjacency matrix represent vertices and the
elements within A;; represent edges as follows:

1 If an edge connects vertex ¢ to vertex j

] (1)
0 Otherwise

ij =
From a systems engineering perspective[7], it represents
the system form aspect, or “what the system is.” However,
a complete representation of system architecture (or structure)
must also define the system’s function and their allocation
to system form[5]. The distinction between system form and
system structure is particularly important in hetero-functional
systems.

B. Hetero-Functional Graph Theory

Hetero-functional graph theory was developed to provide
an unambiguous and complete mathematical representation
of system architecture. Consequently, it introduces a set of
system processes to describe the system’s functionality, or
“what the system does”. It also introduces a mapping of
system function onto system form in what is called system
concept. Each individual mapping of a process to a resource
creates a unique capability, or structural degree of freedom,
in the system concept. Linguistically, a capability appears as
a “subject + verb + operand” sentence. For example, a power
plant has the capability "Power plant A generates electricity”.
These capabilities (or structural degrees of freedom) become
the vertices in a hetero-functional graph. Meanwhile, the edges

in a hetero-functional graph become the logically feasible
sequences between degrees of freedom, which linguistically
means “and then”. Consequently, a reader can extract a story
by following a hetero-functional graph across a series of edges.
For example, “ Power plant A generates electric power, and
then Transmission line B transports electric power from power
plant A to substation C, and then Substation C' consumes
electric power”. To further contrast (traditional) graphs with
hetero-functional graphs, Fig. 1 models the same hetero-
functional system using both approaches[5].

Original Network Topography:
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Nodes: Edges:
n;: Water Treatment Facility e;: Water Pipeline
Ny Solar PV €y" Power Line 1
n3: House €3t Power Line 2
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Degrees of Freedom:

Y1+ water treatment facility treats water
Yyt solar PV generates electricity

V3 house consumes water

v,: house charges EV

Vs house stores parked EV

V' work location stores parked EV

water pipeline transports water from water treatment
facility to house

power line 1 transports power from solar PV to water
treatment facility

vy
vg:
Vg power line 2 transports power from solar PV to house

V10" road discharges EV from house to work location

¥q1: road discharges EV from work location to house

Fig. 1. A comparison of a traditional graph and a hetero-functional graph

C. Resilience Measures: Graph Theory

The network science study of resilience is grounded in
centrality measures. Of these, degree centrality, closeness
centrality, eigenvector centrality, and the large connected com-
ponent are described here.

1) Degree Centrality: Degree centrality is the simplest
centrality measure. It grants each vertex a score equal to the
number of edges attached to it. When working with directed
graphs, the degree centrality measure is further classified into
in-degree and out-degree centrality; where the former counts
the number of inward pointing edges and the latter counts

Authorized licensed use limited to: Dartmouth College. Downloaded on October 01,2021 at 13:32:58 UTC from IEEE Xplore. Restrictions apply.



the number of outward pointing edges. It is worth noting that
while in-degree and out-degree may differ for directed graphs
they measure equivalent values for undirected graphs. This
paper thus restricts the degree centrality use to the out-degree
to remain compliant with the directed nature of a hetero-
functional graph and reflect the outward flow of a service as
described in section II-D.

2) Closeness Centrality: The closeness centrality measure
C(u) quantifies the average shortest path from one vertex to
every other reachable vertex in the graph.

=13~ d(u,v)
where C'(u) is the centrality of the node u, n is the number
of reachable nodes, N is the number of nodes in the graph,
and d is the length of the shortest path from u to node v. The
term 17\}__11 is applied to weight nodes in larger components
with more importance that those in smaller components [6].

3) Eigenvector Centrality: Eigenvector centrality also de-
termines a vertex’s importance in relation to other vertices in
the graph. Using eigenvalues and vectors, a node’s centrality
score is based upon not just its own degree centrality but also
those of its neighbors. In matrix form the eigenvector centrality
is calculated using (3) where A is the adjacency matrix, A is
the largest eigenvalue of matrix A, and z is the eigenvector
centrality for the set of nodes[6].

Az = \x 3)

4) Largest Connected Component: Although not techni-
cally a centrality measure, the measurement of largest con-
nected component serves to quantify the connectedness of a
graph as it faces various forms of disruption. More specifically,
it records the largest connected sub-graph (or component)
within the original graph. Two vertices are defined to be in
the same component if there is at least one path through
the graph that connects them. Directed graphs distinguish
between strongly and weakly connected components. The
former requires the ability to loop back around to a starting
node while weakly connected components simply require a
single directed path between two nodes [6].

D. Resilience Measures: Hetero-functional Graph Theory

The study of resilience on hetero-functional graphs is
classified into two categories. In the first category, the cen-
trality measures mentioned above (i.e. out-degree, closeness,
eigenvector centrality, and largest component) are reused on
hetero-functional graphs where they were first developed for
(traditional) graphs. The second category consists of measures
that specifically exploit the additional detail found within
a hetero-functional graph theory model. Here, a measure
from the category called the Actual Engineering Resilience
(AER) is introduced[8]. Although its calculation requires a
deeper understanding of hetero-functional graph theory as
detailed elsewhere[8], the intuition behind its calculation can
be presented here. The AER calculates the number of “deliv-
erable services” where a service is defined as the delivery

of a physical operand, acted upon by capabilities, across
the engineering system boundary. In the context of electric
power system, the primary service is: “(Generate electric
power) — (Transport electric power)* — (Consume electric
power)” where the asterisk * denotes a sufficient number
of repetitions. Note that such a service coincides with the
structural degrees of freedom in the hetero-functional graph.
Consequently, calculating the number of “deliverable services”
is equivalent to calculating the number of paths in the hetero-
functional graph that coincide semantically with the service
defined above.

Fortunately, the calculation of the number of paths in a
graph is relatively simple.

Theorem 1. Number of Paths in a Graph[6]: The number of
n-step paths between nodes i and j is given by AN (i, 7).

Rather than using the entirety of the hetero-functional graph
adjacency matrix A,, it is necessary to recognize that the
electricity delivery service consists of a single transformation
process followed by a number of transportation processes
followed by a single transformation process. Consequently,
AN above is replaced by

D
Ap = [(Ana)(Af ) (Ara)] )
d=1
where Ay tracks feasible pairs of transformation to trans-
portation, Ay p tracks the feasible pairs of transportation to
transportation and Ay tracks the feasible pairs of transporta-
tion to transformation. Once the number of feasible service
delivery paths has been captured in Ap, the calculation of
AER as a resilience measure follows straightforwardly[8].

III. TEST CASE

The IEEE 123-Bus Feeder test case was selected resilience
analysis[9] for two reasons. First, it is large enough to see
statistical patterns in the system’s structure via its degree dis-
tribution, but is also small enough to visually confirm results.
Additionally, the test case has a radial topology that resembles
many suburban distribution networks [10]. Consequently, the
(traditional) graph has 123 nodes and 122 edges. These edges
were assumed to be undirected to accommodate backflows as
seen in high distributed energy resource cases[11]. In order to
translate this graph to a hetero-functional one, the intercon-
nection node was replaced with a generator node and labeled
with the transformation process “generate electric power”. The
remainder of the nodes were labelled with “consume electric
power”. Finally, the edges were labelled with transportation
processes in both directions, resulting in two structural degrees
of freedom, one to transport power in each direction.

In order to study the effect of disruptions on resilience
measures, the 123-bus test case case was evolved to produce
three additional topology variants. In the first, 32 additional
distribution lines were added to produce a more meshed
topology. In the second, 41 distributed generators were to the
most peripheral buses. This meant that the associated hetero-
functional graph 41 additional degrees of freedom labelled
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“Generator generates electric power”. Finally, the third variant
used both the meshed topology and the distributed generation.
It is shown in Fig. 2.
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Fig. 2. The IEEE 123-Bus Test Case with 41 peripheral nodes labelled with
distributed generation and 32 additional distribution lines to create a meshed
topology.

IV. RESULTS

To conduct the analysis, nodal disruptions were applied to
both the traditional and hetero-functional graph. Two types of
node disruptions were investigated: random disruptions that
occur indiscriminately within the topology and targeted dis-
ruptions that occur based upon nodes with greatest centrality.
The former is often linked to natural causes or inadequate
maintenance while the latter is often associated with malicious
attacks. To maintain the same physical intuition and meaning,
a disruption of a node (or resource) in the (traditional) graph
was reflected as a disruption of all structural degrees of
freedom that pertain to that resource.

First, as a baseline analysis, we test whether graphs and
hetero-functional graphs respond similarly to random disrup-
tion. Fig. 3 shows the out-degree of the base-case graph
and the base-case hetero-functional graph as they respond
to random disruptions. This comparison shows both models
presented similar characteristics; a relatively linear decrease
as resources are disrupted.

Traditional Graph Hetero-Functional Graph

Graph Mean Out Degree Centrality
Graph Mean Out Degree Centrality

20 12 04 0 o8 10 00 02 3 0e 08 10
Percent of Vertices Randomly Removed Percent of Vertices Randomly Removed

Fig. 3. The normalized out-degree centrality under random disruptions applied
to the base case of both the (traditional) graph (left) and the hetero-functional
graph (right).

Next, we tested whether graphs and hetero-functional graphs
respond similarly to targeted disruption. Fig. 4 shows the size
of the largest component as vertices are removed. Three sets of
numerical experiments were conducted to distinguish between

disruptions that were targeted on the basis of out-degree,
closeness , or eigen-vector centrality. Similar to the random
disruptions, Fig. 4 shows that the (traditional) graph and
the hetero-functional graph respond similarly. Because nodes
with greater centrality are targeted first, largest component
measures decreases sharply at first and then begins to flatten
as fewer central nodes remain.

Fig. 4. The size of the largest component under targeted disruption applied
to the base case of both the (traditional) graph (left) and hetero-functional
graph (right).

Third, we tested whether the AER resilience measure on
hetero-functional graph behaves similarly to a (traditional)
graph with out-degree centrality. Both graphs in Fig. 5 show
a downward trend. The downward trend indicates the electric
power grid’s degrading ability to deliver electric power, where
the steeper the slope the faster the decay. In the case of
the (traditional) graph, the descent is relatively smooth; close
to linear. The AER applied to the hetero-functional graph,
however, demonstrates a much more drastic decrease in the
number of delivered services. This result appears because
AER specifically considers the semantics (and not just the
topology) of the nodes along a path. For example, in the
base case, if the single generator or a node upstream fails,
then all deliverable electric power services downstream are
immediately disrupted. Such a phenomena is reflected in the
AER results, as it drops sharply, where it is not reflected
in a (traditional) graph centrality analysis, as it slowly and
consistently drops. The results from Figure 3-5, confirm that

Traditional Graph Hetero-Functional Graph

Graph Mean Out Degree Centrality

Graph AER Normalized by Base Case

0 02 a4 08 08 1 4 26 o8 10
Percent of Vertices Randomly Removed Percent of Vertices Randomly Removed

Fig. 5. Both the normalized out-degree centrality of the (traditional) graph
base case (left) and the AER of the hetero-functional graph base case (right)
under random disruptions.

in the base-case hetero-functional graphs reproduce many of
the resilience results of (traditional) graphs. Consequently,
we tested whether graphs and hetero-functional graphs would
respond similarly to engineered structural improvements. Fig.
6 shows the effect of a gradual transformation from the base
case topology to the meshed one. On the left, the largest

Authorized licensed use limited to: Dartmouth College. Downloaded on October 01,2021 at 13:32:58 UTC from IEEE Xplore. Restrictions apply.



component measure of the (traditional) graph increases while
the AER of the hetero-functional graph does so similarly.
These two results are intuitive; as lines are added to the
distribution system to create an increasingly meshed structure,
both the size of the largest component and the number of
delivered services (in terms of AER) grow.

Size of Largest Component

— Hetero-Functional Graph

Graph AER Normalized by Base Case

") — Traditional Graph

1

5 0 F) 5 10 15
Number of Lines Added Number of Lines Added

Fig. 6. Size of the largest component of a (traditional) graph (left) and the
AER of a hetero-functional graph (right) as distribution lines are added to the
power grid.

Finally, we tested whether graphs and hetero-functional
graphs would respond similarly to the integration of distributed
generation. Note that such an integration does not change the
topology of the associated (traditional) graph. Consequently,
Fig. 7. shows that such an integration has no impact on the
largest component measure (or any other centrality measure).
To the power system engineer, such a result is entirely inad-
equate. Distributed generation; be it in the form of rooftop
solar or backup combustion-based backup generators offer
additional resilience in the case of unforeseen disruption to the
distribution system topology. In other words, greater resilience
can be achieved without additional network connectivity. This
intuition is indeed confirmed by the AER measure on the
hetero-functional graph. As distributed generation is increas-
ingly integrated the AER steadily grows. This contrasting
result confirms that the study of resilience in the context of
the transition to sustainable energy is more accurately served
by a hetero-functional graph analysis than one based upon
(traditional) graphs.

Traditional Graph — Hetero-Functional Graph

8

Size of Largest Component

Graph AER Normalized by Base Case

10 20 & 10 20 ) @
Number of Vertices with DG Added Number of Vertices with DG Added

Fig. 7. Size of the largest component of a (traditional) graph (left) and the
AER of a hetero-functional graph (right) as distributed generation is added to
the power grid.

V. CONCLUSION

This paper has demonstrated for the first time a structural
resilience analysis based upon the application of hetero-
functional graph theory to electric power systems. The re-
silience results show that (traditional) graphs and hetero-
functional graphs respond similarly to random and targeted

disruptions regardless of whether centrality measures or the
AER measure are used. Similarly, both approaches are able
to quantify the resilience enhancements associated with a
transition to meshed distribution networks.

Despite these baseline similarities, the paper concludes that
the use of centrality measures on (traditional) graphs are
incapable of measuring the resilience enhancements associated
with the integration of distributed generation. In contrast,
hetero-functional graphs when coupled with the AER measure
are able to quantify this type of resilience improvement.
The shortcoming of the former are the direct result of an
incomplete representation of system structure. Namely, (tradi-
tional) graphs quantify the system form without quantifying
the system’s function and its allocation to form. Hetero-
functional graphs, in contrast, provide a complete quantifica-
tion of system structure. Consequently, the latter quantifies the
integration of distributed generation whereas the former does
not.

In addition to the distinctions between (traditional) and
hetero-functional graphs, the AER resilience is more descrip-
tive of resilience phenomena than centrality-based measures.
This is because the AER specifically considers the semantics
and not just the topology of the nodes along a path-based
delivered service. This distinction highlighted the “brittle”
nature of radial distribution networks as they go through
successively disruptions. As society continues it sustainable
energy transition, it will become increasingly imperative to
quantify and highlight these distinctions in the electric power
system’s resilience.
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