

A Hetero-functional Graph Theory for Modeling Interdependent Smart City Infrastructure

Wester C. H. Schoonenberg • Inas S. Khayal
Amro M. Farid

A Hetero-functional Graph Theory for Modeling Interdependent Smart City Infrastructure

Wester C. H. Schoonenberg
Thayer School of Engineering
Dartmouth College
Hanover, NH, USA

Inas S. Khayal
Geisel School of Medicine
Dartmouth College
Lebanon, NH, USA

Amro M. Farid
Thayer School of Engineering
Dartmouth College
Hanover, NH, USA

ISBN 978-3-319-99300-3 ISBN 978-3-319-99301-0 (eBook)
<https://doi.org/10.1007/978-3-319-99301-0>

Library of Congress Control Number: 2018952912

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

*From Wester to my sister Vivien
From Inas & Amro to our daughters
Amina & Ayah*

Preface

Cities have always played a prominent role in the prosperity of civilization. Indeed, every great civilization we can think of is associated with the prominence of one or more thriving cities. And so understanding cities—their inhabitants, their institutions, their infrastructure—what they are and how they work independently and together—is of fundamental importance to our collective growth as a human civilization. But the twenty-first century city is different. No longer do they primarily exist as urban islands in a sea of rural life but they are now ever-more connected with other cities around the world in a network of urbanized population centers. The rise of globalization as an economic activity has brought about a globalized metropolitan culture to the point where many city dwellers are more likely to hop from one city to another than to explore the wilderness of rural life. The twenty-first century is also giving rise to *mega-cities* with more than ten million inhabitants each. While more than 40 cities worldwide hold this distinction at present, population growth and urbanization are set to create many more. And of course, the twenty-first century is infused with ubiquitous technology that fundamentally affects how society, political and economic institutions, and infrastructure develop and function. Perhaps such *smart cities* are best viewed as the ultimate *engineering system*: A class of systems characterized by a high degree of technical complexity, social intricacy, and elaborate processes aimed at fulfilling important functions in society.

Why This Book?

With all of these fundamental changes in the nature of cities in the twenty-first century, it is only reasonable to ask if our collective knowledge of engineering, science, and social science is enough to understand how this new type of complex engineering system works. To truly appreciate an answer to this question, we have to understand how we got here.

The nineteenth and twentieth centuries were marked with new and unprecedented inventions like the generator, the telephone, and the automobile. These technologies developed simultaneously along two fundamentally orthogonal trajectories. In the *reductionist* direction, these technologies developed as individual products with ever greater speed and precision. Many such devices grew in size to achieve economies of scale and others were miniaturized to even the nanometer length scale. Our knowledge of the *physical sciences* grew accordingly to meet the needs of innovation in technological marketplaces. In the *integrationist* direction, these individual technology products were connected to form many of the large-scale infrastructure networks we know today: the power grid, the communication infrastructure, and the transportation system. Over time, these networked systems developed even more interactions while continuing to incorporate many new technologies like solar panels, smartphones, and electric vehicles. Consequently, our knowledge of the *informatic sciences* developed to keep track of the tremendous information required to represent these engineering systems of ever greater scope and function.

Two such informatic sciences are particularly relevant here. *Systems engineering*, and more recently model-based systems engineering, emerged as a practical and interdisciplinary engineering discipline that enables the successful realization of complex systems from concept, through design, to full implementation. It is well equipped to deal with systems of ever-greater complexity, be they for the greater interaction within these systems or because of the expanding heterogeneity they demonstrate in their structure and function. Notable human achievements like sending a man to the moon or landing on the surface of Mars can certainly be attributed to the effective practice of systems engineering. Despite these achievements, model-based systems engineering, however, relies till today on graphical modeling languages that provide limited quantitative insight. In contrast, *network science* has emerged as a scientific discipline for quantitatively analyzing networks that appear in fields across the natural, social, and engineering sciences. And yet, network science, due to its reliance on graphs as a data structure, was often unable to address the explicit heterogeneity often encountered in the systems engineering field. Even the network science developments into *multi-layer networks* have been recognized to have significant limitations in modeling networked systems of arbitrary topology. Despite these methodological differences, these two informatic sciences have often tackled similar intellectual challenges. For example, both fields have contributed immensely to the knowledge of *system life-cycle properties* like centrality, modularity, flexibility, sustainability, and resilience.

These two informatic sciences now face an even greater challenge. Not only are individual products being connected to form infrastructure networks, but these networks are forming interactions between each other to form systems-of-systems. The “smart grid,” the energy-water nexus, and the electrification of transport are all good examples where one network system has fused with another to form a new and much more capable system. This trend is only set to continue. Taken to its finality, it leads us to the pressing need to understand and implement smart cities as a platform upon which to integrate all of these efforts. Naturally, the methodological

and theoretical limitations of model-based systems engineering and network science must be overcome to gain truly novel insight into the development of smart cities.

It is in this context that we have written this book. *A Hetero-functional Graph Theory for Modeling Interdependent Smart City Infrastructure* lays a theoretical foundation that intellectually resembles a fusion of model-based systems engineering and network science. Hetero-functional graph theory relies on multiple graphs as data structures so as to support quantitative analysis. It also explicitly embodies the heterogeneity of conceptual and ontological constructs found in model-based systems engineering. Its application to interdependent smart city infrastructures of arbitrary topology presents a highly demanding use case.

Where Did Hetero-functional Graph Theory Come from?

While hetero-functional graph theory can be viewed as an intellectual fusion of model-based systems engineering and network science, its origins are found elsewhere. Although not called as such at the time, the theory originated from the automated mass-customized production system literature. Production systems, as their own class of engineering system, present some unique modeling challenges. They can have a nearly arbitrary size, an unlimited diversity of production capabilities, and an almost infinite number of product variants. They also demonstrate a consistently changing structure and behavior. The need to compete in dynamic marketplaces with product variants of increasingly short product life-cycle drove mass-customized production systems to explicitly foster **reconfigurability** as a life-cycle property of their integrated automation solutions. To that end, Prof. Farid's doctoral dissertation *reconfigurability measurement in automated manufacturing systems* (2007) specifically developed a quantitative measure of reconfigurability. Perhaps unsurprisingly to a network scientist, it used a **design structure matrix** as a type of graph to address the ease of reconfiguration. Furthermore, and unsurprisingly to a systems engineer, it addressed the allocation of function to form as the **central question of engineering design**. It drew the concept of a **knowledge base** from the **Axiomatic Design** literature and quantified it as a bipartite graph. Beyond these considerations, however, the reconfigurability measurement of mass-customized production systems needed to specifically address **heterogeneity** as its essential characteristic. Finally, because automation was an essential aspect of mass-customized production systems, the research was explicitly **cyber-physical**.

In 2010, the Laboratory for Intelligent Integrated Networks of Engineering Systems (LIINES) was founded with a research program devoted to the sustainability and resilience of intelligent energy systems. Several research themes were launched year after year: first smart power grids, then energy-water nexus, then electrified transportation systems, and then industrial energy management. Each of these represented engineering systems where two intelligent energy systems were integrated. As work in each research theme developed, a pattern emerged. While each new application had its peculiarities that required enhancements to

hetero-functional graph theory, the graph structures originally developed in the Farid dissertation could be used generically across multiple application domains. It is around this time that the LIINES research really began to *converge* and several publications sought to specifically state the cross-domain applicability of hetero-functional graph theory. The article entitled *Static Resilience of Large Flexible Engineering Systems: Axiomatic Design Model and Measures* (2015) specifically demonstrated cross-domain applicability, addressed resilience as a life-cycle property, and acknowledged its roots in Axiomatic Design. In the following year, the book *Axiomatic Design in Large Systems* (2016) used the term **Hetero-functional network** for the first time. The first chapter explicitly links the Axiomatic Design literature to hetero-functional graph theory and engineering systems. Since that time, applications of hetero-functional graph theory have continued to expand. Prof. Khayal's research has applied hetero-functional graph theory to personalized healthcare delivery systems and W.C.H. Schoonenberg has sought to integrate these efforts into interdependent smart city infrastructures.

The Goal of This Book

Consequently, the goal of this book is to present, in one volume, a consistent hetero-functional graph theoretic treatment of interdependent smart city infrastructures as an **overarching** application domain of engineering systems. Naturally, in doing so, the work seeks to reconcile over a decade of research, including the many enhancements that came from tackling new and exciting application domains. Over the course of the text, we have made every effort to provide historical footnotes of how the theory has developed over that time. We have many hopes for the broad appeal of this work. To the systems engineering community, we hope that hetero-functional graph theory will be accepted as a quantification of many of the structural concepts found in model-based systems engineering languages like SysML. To the network science community, we hope to present a new view as how to construct graphs with fundamentally different meaning and insight. Finally, it is our hope that hetero-functional graph theory serves to overcome many of the theoretical and modeling limitations that have hindered our ability to systematically understand the structure and function of smart cities.

What Is in This Book?

This book is organized into seven chapters:

- Chapter 1 introduces the work in terms of the practical need to address smart cities as a pressing grand challenge. It also identifies the original contributions of the book and outlines how its argument evolves in the following chapters.

- Chapter 2 then turns to present the theoretical need for hetero-functional graph theory. An extensive discussion of multi-layer networks is provided. Its limitations are identified by means of a simple example of a hypothetical four-layer network.
- Chapter 3 orients the reader with hetero-functional graph theory preliminaries. The fundamental ontological concepts of soundness, completeness, lucidity, and laconicity are presented as means by which to formally assess the fidelity of a model. Multi-layer networks are found to lack completeness and lucidity. The remainder of the chapter relates the systems engineering foundations for hetero-functional graph theory. In particular, it focuses on the concept of system architecture at the instantiated, reference, and meta levels of abstraction.
- Chapter 4 relates hetero-functional graph theory rigorously as an intellectual fusion of model-based systems engineering and graph theory in terms of its seven constituent mathematical models. Simple examples are provided for each of these so as to demonstrate the conceptual links with SysML as a model-based systems engineering language. Formal definitions of all concepts are also provided so as to facilitate an explicit discussion of the underlying ontological structure.
- Chapter 5 then applies hetero-functional graph theory to an interdependent smart city infrastructure test case called “*Trimetrica*.” One feature of “*Trimetrica*” is its significant heterogeneity of function. The chapter demonstrates the construction of a single system adjacency matrix for such a heterogeneous system. It subsequently discusses how this demonstration overcomes many limitations found in the multi-layer network literature.
- Chapter 6 serves to point the reader to further applications of hetero-functional graph theory. In particular, it summarizes its contributions to (1) mass-customized production systems, (2) transportation systems, (3) electric power systems, (4) electrified transportation systems, (5) microgrid-enabled production systems, and (6) personalized healthcare delivery systems. Along the way, the chapter highlights how hetero-functional graph theory can be used to create dynamical system simulation models and study life-cycle properties.
- Chapter 7 brings the book to a conclusion. It discusses some fertile areas for future research including the quantitative understanding of life-cycle properties, the treatment of cyber-physical systems, and the application of the network science literature on hetero-functional graphs.

In all, these seven chapters provide the reader with a rigorous introduction to hetero-functional graph theory so as to begin making independent contributions to the literature.

Hanover, NH, USA
Lebanon, NH, USA
Hanover, NH, USA
June 2018

Wester C. H. Schoonenberg
Inas S. Khayal
Amro M. Farid

Contents

Preface	vii
Contents	xiii
List of Figures	xvii
List of Tables	xxv
Nomenclature	xxvii
1 Introduction	1
1.1 Book Contribution	3
1.2 Book Outline	5
References	5
2 The Need for Hetero-functional Graph Theory	13
References	17
3 Hetero-functional Graph Theory Preliminaries	23
3.1 Ontological Foundation for Hetero-functional Graph Theory	23
3.2 Systems Engineering Foundations	27
References	34
4 Hetero-functional Graph Theory	37
4.1 System Concept.....	38
4.1.1 System Form	40
4.1.2 System Function	43
4.1.3 Allocation of System Function onto System Form	48
4.2 Hetero-functional Adjacency Matrix	55
4.3 Controller Agency Matrix	60
4.4 Controller Adjacency Matrix.....	64
4.5 Service as Operand Behavior	68
4.5.1 Service Delivery as Service Net.....	70
4.5.2 Service Delivery as Service Graph	73

4.6	Service Feasibility Matrix	73
4.6.1	Service Feasibility Matrix Definitions	74
4.6.2	Service Degrees of Freedom	79
4.7	The System Adjacency Matrix: An Integrated View of Hetero-functional Graph Theory	82
4.8	Conclusion	89
	References	91
5	Modeling Interdependent Smart City Infrastructure Systems with HFGT	95
5.1	The Role of Test Cases in Smart City Development	95
5.2	Smart City Test Case: Trimetrica	96
5.3	System Concept	101
5.3.1	Smart City Resources	101
5.3.2	Smart City Processes	109
5.3.3	Smart City Knowledge Base	114
5.3.4	Visualizing Degrees of Freedom	118
5.4	Hetero-functional Adjacency Matrix	125
5.4.1	Calculating System Sequence	125
5.4.2	Visualizing System Sequence	127
5.5	Controller Agency Matrix	131
5.5.1	Expansion of System Resources	134
5.5.2	Smart City Controller Agency Matrix	135
5.5.3	The Relation Between the Controller Agency Matrix and the Hetero-functional Adjacency Matrix	135
5.6	Controller Adjacency Matrix	136
5.7	Service as Operand Behavior	139
5.7.1	Service Delivery in SysML	139
5.7.2	Service Delivery Using Petri Nets	142
5.7.3	Service Delivery as Service Graph	145
5.8	Service Feasibility Matrix	146
5.8.1	Deliver Potable Water	148
5.8.2	Deliver Electric Power	149
5.8.3	Deliver Electric Vehicle	150
5.8.4	Visualizing the Service Feasibility Matrix	150
5.9	System Adjacency Matrix	152
5.9.1	Trimetrica's System Adjacency Matrix	152
5.9.2	Hetero-functional Graph Visualization	154
5.10	Discussion	155
5.10.1	Ontological Analysis of Hetero-functional Graph Theory	156
5.10.2	Comparison with Multi-layer Networks	158
	References	160
6	Applications of Hetero-functional Graph Theory	163
6.1	Mass-Customized Production Systems	163

6.2	Multi-Modal Transportation Systems.....	165
6.3	Electric Power Systems	165
6.4	Multi-Modal Electrified Transportation Systems	166
6.5	Microgrid-Enabled Production Systems.....	167
6.6	Personalized Healthcare Delivery Systems.....	167
	References	168
7	Conclusion and Future Work	171
7.1	Conclusion	171
7.2	Future Work.....	173
A	Representing a Four-Layer Network in Hetero-functional Graph Theory	175
A.1	System Concept.....	177
A.2	Hetero-functional Adjacency Matrix	182
A.3	Controller Agency Matrix	182
A.4	Controller Adjacency Matrix.....	182
A.5	Service as Operand Behavior	184
A.6	Service Feasibility Matrix	186
A.7	System Adjacency Matrix	186
	List of Definitions	189
	Index.....	191

List of Figures

Fig. 2.1	A hypothetical four-layer network: it represents transportation, electric power, and water distribution infrastructure with a superimposed cyber-control layer. *: The foot path is part of the Transportation System, but differs in modality from the other edges in the system and is represented with a thinner edge	15
Fig. 3.1	Ullman's Triangle [16]: Its ontological definition. On the left, the relationship between reality, the understanding of reality, and the description of reality. On the right, the instantiated version of the definition	24
Fig. 3.2	The relationship between four ontological science concepts [16]: conceptualization, abstraction, modeling language, and model.....	24
Fig. 3.3	Graphical representation of four ontological properties as mapping between abstraction and model: (a) Soundness, (b) Completeness, (c) Lucidity, and (d) Laconicity [16]	25
Fig. 3.4	SysML block diagram: system architecture can be represented at three levels of abstraction: instantiated, reference, and meta	28
Fig. 3.5	201-Bus IEEE test case one line diagram [8, 10].....	30
Fig. 3.6	Reference physical architecture for electric power systems.....	32
Fig. 3.7	Functional design pattern for an electric power system reference architecture	32
Fig. 4.1	An Example 4-Node Smart City Network: a simplistic smart city network that is used as an example throughout this chapter	40
Fig. 4.2	A SysML Block Diagram: a representation of Figure 4.1 using the SysML. The 4-node smart city network consists of transportation, electricity, and water infrastructure	41

Fig. 4.3	A SysML Activity Diagram: swim lanes allocate function to form for the 4-node smart city network as presented in Figure 4.1. The network consists of transportation, electricity, and water infrastructure	42
Fig. 4.4	A SysML Block Diagram: the meta-architecture of the system form of an LFES	47
Fig. 4.5	A SysML Activity Diagram: the meta-architecture of the system function of an LFES	47
Fig. 4.6	A SysML Block Diagram: the meta-architecture of the allocated architecture of an LFES from a system form perspective	50
Fig. 4.7	A SysML Activity Diagram: the meta-architecture of the allocated architecture of an LFES from a system function perspective	51
Fig. 4.8	A two-bar linkage system	52
Fig. 4.9	Degrees of freedom in the example network: a visual comparison of the original network topography on the left, and the system degrees of freedom on the right	53
Fig. 4.10	Transformation, transportation, holding, and system knowledge bases corresponding to Figures 4.2 and 4.3	54
Fig. 4.11	A SysML Block Diagram: system sequence associations are added to the meta-architecture of the allocated architecture of an LFES from a system form perspective	56
Fig. 4.12	Projected hetero-functional adjacency matrix \tilde{A}_p for Example 4.5 (row and column sparsity have been eliminated) ..	59
Fig. 4.13	Degrees of freedom in the example network: a visual comparison of the original network topography on the left, and the hetero-functional adjacency matrix on the right	60
Fig. 4.14	Capabilities with cyber-resources. The distributed system on the left has embedded (dependent) controller Q_D , and the centralized system on the right has an independent controller Q_I [8]	61
Fig. 4.15	A SysML Block Diagram: the meta-architecture of the system form of an LFES with cyber-resources	62
Fig. 4.16	A SysML Activity Diagram: the meta-architecture of the system function of an LFES with control and decision-making algorithms	62
Fig. 4.17	Cyber-resources in the Example Network: independent cyber resources have jurisdiction over physical resources. Cyber-physical interfaces are indicated with grey dashed edges	64
Fig. 4.18	SysML Block Definition Diagram for Example 4.6. This block diagram extends the block diagram from Figure 4.2 to include the Control Agents, who have control authority over resources via (colored) associations	65

Fig. 4.19	Controller agency matrix for Example 4.6. The block form matrix contains two blocks: (1) The left side: the identity matrix of size $\sigma(R_P) \times \sigma(R_P)$. (2) The right side: the independent controller agency matrix of size $\sigma(R_P) \times \sigma(Q)$...	66
Fig. 4.20	Three types of interfaces between physical and cyber resources. Type I is between two physical resources. Type II is between a physical and a cyber-resource. Type III is between two cyber-resources (line thickness represents the complexity of interaction and separation) [8, 9]	67
Fig. 4.21	A SysML Block Diagram: the meta-architecture of the system form of an LFES with cyber-resources and their adjacency	67
Fig. 4.22	Cyber-resources in the example network: independent cyber resources have jurisdiction over physical resources. Cyber-interfaces indicated with red dashed edges. Cyber-physical interfaces indicated with grey dashed edges	68
Fig. 4.23	Controller adjacency matrix for Example 4.7 [8, 9]	68
Fig. 4.24	State machine for the service <i>deliver water</i>	69
Fig. 4.25	State machine for the service <i>deliver power</i>	69
Fig. 4.26	State machine for the service <i>deliver EV</i>	69
Fig. 4.27	Service nets: three service nets in the 4-node example network. Operands from left to right: (a) water, (b) power, and (c) electric vehicle	72
Fig. 4.28	Service graphs: three service graphs in the 4-node example network. Operands from left to right: (a) water, (b) power, and (c) electric vehicle	74
Fig. 4.29	A SysML Activity Diagram: swim lanes allocate function to form for the 4-node smart city network as presented in Figure 4.1. The network consists of transportation, electricity, and water infrastructure	75
Fig. 4.30	A SysML Block Diagram: the meta-architecture of the system form of an LFES with cyber-resources and the service model	76
Fig. 4.31	System Adjacency Matrix: a comparison of the original 4-node example network in (a) with the hetero-functional adjacency matrix in (b), the controller model coupled to the capabilities in (c), and the service model coupled to the capabilities in (d). Graphs (b), (c), and (d) are three distinct representations of subsets of the system adjacency matrix	88
Fig. 5.1	Topological depiction of the Trimetrica smart city infrastructure test case: the networks are topologically superimposed. (a) Topology of (electrified) water distribution system. (b) Topology of electric power system. (c) Topology of electrified transportation system	97

Fig. 5.2	Partial topological depiction of the Trimetrica smart city infrastructure test case: the networks are topologically superimposed	100
Fig. 5.3	SysML specialization of three infrastructure systems relative to the LFES meta-architecture	102
Fig. 5.4	Full SysML overview of the disciplinary system class structure with specialization of atomic disciplinary classes into the complete set of interface classes	104
Fig. 5.5	SysML block definition diagram of the Trimetrica infrastructure systems specialized to define the multi-operand resources that allow the disciplinary systems to interface	105
Fig. 5.6	SysML block definition diagram of the Trimetrica smart city infrastructure system as a specialization of the LFES meta-architecture: This figure shows that Trimetrica's smart city infrastructure system is a single system, rather than three separate systems. The three systems, each classified as an LFES in Figure 5.3, are reconciled into a single smart city infrastructure, of type LFES	108
Fig. 5.7	Activity diagram of the LFES meta-architecture: the diamonds represent exclusive decisions. For example, after "Transform Operand" one of three options must be chosen: (1) "Transform Operand," (2) "Transport Operand with Carry Operand," or (3) End the sequence by creating: "Output Operand"	109
Fig. 5.8	Activity diagram of the water distribution system reference architecture	110
Fig. 5.9	Activity diagram of the electric power system reference architecture	110
Fig. 5.10	Activity diagram of the electrified transportation system reference architecture	111
Fig. 5.11	Activity diagram of a triple operand smart city infrastructure system reference architecture: the three operands are water, electric power, and electric vehicles	112
Fig. 5.12	SysML representation of the system concept for the Trimetrica smart city infrastructure system: this figure contains the unique set of capabilities for each of the resource classes in Trimetrica	115
Fig. 5.13	Structural degrees of freedom of water-related operands	120
Fig. 5.14	Structural degrees of freedom of electricity-related operands ...	121
Fig. 5.15	Structural degrees of freedom of transportation-related operands	122
Fig. 5.16	Trimetrica's structural degrees of freedom: the frame in the bottom-left corner indicates the detail presented in Figure 5.17 on Page 124	123

Fig. 5.17	A comparison between a detail of Trimetrica's topology and the same detail of Trimetrica's structural degrees of freedom as indicated in Figure 5.2 on Page 100 and Figure 5.16 on Page 123	124
Fig. 5.18	Sequence-dependent degrees of freedom of the operands: water, and water with electric power at 132 kV	128
Fig. 5.19	Sequence-dependent degrees of freedom of the operands: electric power at 132 kV, water with electric power at 132 kV, and EV with electric power at 132 kV	129
Fig. 5.20	Sequence-dependent degrees of freedom of the operands: EV, and EV with electric power at 132 kV	130
Fig. 5.21	A comparison between a detail of Trimetrica's topology and the same detail of Trimetrica's structural degrees of freedom as indicated in Figure 5.2 on Page 100 and Figure 5.16 on Page 123	131
Fig. 5.22	Trimetrica's Hetero-functional adjacency matrix with all five layers of degrees of freedom in a single plane	132
Fig. 5.23	Trimetrica's hetero-functional adjacency matrix presented as a five-layer network	133
Fig. 5.24	Trimetrica's controller agency matrix: it presents the control relations between the independent cyber-resources in the top-left and the degrees of freedom under their jurisdiction	137
Fig. 5.25	Trimetrica's controller agency matrix superimposed on the hetero-functional adjacency matrix: the gray edges represent the control relations between the independent cyber-resources and the degrees of freedom under their jurisdiction. The green edges represent the sequence-dependent degrees of freedom as calculated in Section 5.4	138
Fig. 5.26	Trimetrica's controller adjacency matrix: it presents the informatic interfaces between the cyber-resources	139
Fig. 5.27	Trimetrica's controller adjacency matrix superimposed on Figure 5.25, which includes the controller agency matrix and the hetero-functional adjacency matrix. The red edges represent the cyber-interfaces between the cyber-resources	140
Fig. 5.28	State machine for the service "Deliver Potable Water" in the Trimetrica interdependent smart city infrastructure system	141
Fig. 5.29	State machine for the service "Deliver Electric Power" in the Trimetrica interdependent smart city infrastructure system	141
Fig. 5.30	State machine for service "Deliver Electric Vehicle" in the Trimetrica interdependent smart city infrastructure system	142
Fig. 5.31	Service net for the service "Deliver Potable Water" in the Trimetrica interdependent smart city infrastructure system	143
Fig. 5.32	Service net for the service "Deliver Electric Power" in the Trimetrica interdependent smart city infrastructure system	144

Fig. 5.33	Service net for service “Deliver Electric Vehicle” in the Trimetrica interdependent smart city infrastructure system	145
Fig. 5.34	Service graph for the service “Deliver Potable Water” in the Trimetrica interdependent smart city infrastructure system	146
Fig. 5.35	Service graph for the service “Deliver Electric Power” in the Trimetrica interdependent smart city infrastructure system..	147
Fig. 5.36	Service graph for the service “Deliver Electric Vehicle” in the Trimetrica interdependent smart city infrastructure system..	147
Fig. 5.37	Trimetrica’s service graphs and the service feasibility matrix: the service graphs are represented in the bottom-right corner of the figure and are drawn from Figures 5.34, 5.35, and 5.36. The service feasibility matrix is the interface shown in yellow between the service graphs and the degrees of freedom	151
Fig. 5.38	The system adjacency matrix for the Trimetrica interdependent smart city infrastructure system presented as a hetero-functional graph	155
Fig. 6.1	A SysML Block Diagram: The meta-architecture of the system form of an LFES with cyber-resources and the service model	164
Fig. A.1	A Hypothetical Four-Layer Network: It represents transportation, electric power, and water distribution infrastructure with a superimposed cyber-control layer. *: The foot path is part of the Transportation System, but differs in modality from the other edges in the system and is represented with a thinner edge. Its two-dimensional representation is presented in Figure A.2	176
Fig. A.2	2D Presentation of a Hypothetical Four-Layer Network: It represents transportation, electric power, and water distribution infrastructure from Figure A.1	177
Fig. A.3	SysML Block Definition Diagram of the Four-Layer Network as a specialization of the LFES meta-architecture	178
Fig. A.4	Activity Diagram of the Four-Layer Network Reference Architecture: The four operands are water, electric power, EV, and pedestrians	179
Fig. A.5	SysML Representation of the System Concept for the Four-Layer Network: This figure contains the unique set of capabilities for each of the resource classes	180

Fig. A.6	Topological presentation of the Degrees of Freedom in the Four-Layer Network: The original network topology is presented on the left, and the structural degrees of freedom are presented on the right. The degrees of freedom are classified by their operand type, e.g. “exit EV at house” has operand Electric Vehicle, whereas “enter EV at house” has operand Pedestrian	181
Fig. A.7	Topological presentation of the Hetero-functional Adjacency Matrix: The original network topology is presented on the left, and the structural degrees of freedom and the hetero-functional adjacency matrix are presented on the right	183
Fig. A.8	Controller Agency Matrix for the Four-Layer Network	184
Fig. A.9	Controller Adjacency Matrix for the Four-Layer Network	185
Fig. A.10	Service Nets for the Four-Layer Network: The four-layer network delivers three services: (1) deliver potable water, (2) deliver electric power, and (3) deliver EV	185
Fig. A.11	Service Graphs for the Four-Layer Network	186
Fig. A.12	Service Feasibility Matrix as a Bipartite Graph for the Four-Layer Network	187
Fig. A.13	System Adjacency Matrix for the Four-Layer Network	188

List of Tables

Table 4.1	An overview of the mathematical models in hetero-functional graph theory: the shaded area maps mathematical elements to their associated models	39
Table 4.2	System processes and resources	46
Table 4.3	Types of sequence-dependent production degree of freedom measures [11, 14, 48]	57
Table 4.4	Examples of System Services in LFESs [12–14]	70
Table 4.5	Types of service selector matrices [10, 11, 14]	80
Table 4.6	Summary of hetero-functional graph theory	90
Table 5.1	Resources in Trimetrica with associated infrastructure system and controller type	99
Table 5.2	An overview of Trimetrica’s seven mathematical models of hetero-functional graph theory	157

Nomenclature

Ontological Symbols

\mathcal{A}	Abstraction, equals the mental conceptualization of the modeller.....	23
\mathcal{C}	Domain Conceptualization, equals the understanding of reality.....	23
\mathcal{D}	Real Domain, equals reality.....	23
\mathcal{L}	Language, equals the description of reality.....	23
\mathcal{M}	Model, equals the description of the abstraction.....	23

Sets

\bar{R}	Set of Aggregated Resources	49
\bar{R}_P	Set of Aggregated Physical Resources	63
B	Set of Independent Buffers	40
B_S	Set of Buffers	43
H	Set of Transportation Resources.....	40
L	Set of Services	70
M	Set of Transformation Resources	40
M_{l_i}	Set of arcs: (service states to service activities) and (service activities to service states)	71
P	Set of System Processes.....	43
P_η	Set of Transportation Processes	43
P_μ	Set of Transformation Processes	43
P_Q	Set of Decision Algorithms	61
$P_{\bar{\eta}}$	Set of Refined Transportation Processes	44
P_γ	Set of Holding Processes	44
Q	Set of Cyber-Resources	60
Q_D	Set of Dependent Cyber-Resources	61
Q_I	Set of Independent Cyber-Resources	61
R	Set of System Resources	40
R_P	Set of Physical Resources	60
S_{l_i}	Set of Places describing the service states for product l_i	71
W_{l_i}	Set of Weights on the arcs describing the probabilities.....	71
\mathcal{E}	Set of System Actions	48

\mathcal{E}_S	Set of Structural Degrees of Freedom	52
\mathcal{E}_{l_i}	Set of Service Activities in Service l_i	70
\mathcal{E}_{LH}	Set of Service Transportation Degrees of Freedom	79
\mathcal{E}_{LM}	Set of Service Transformation Degrees of Freedom	79
\mathcal{E}_{LS}	Set of Service Degrees of Freedom	79
\mathcal{Z}	Set of System Activity Strings	56

Set Elements

b	Independent buffer in set of independent buffers B	40
b_{sy_1}	Origin buffer y_1 in set of buffers B_S	44
b_{sy_2}	Destination buffer y_2 in set of buffers B_S	44
e_{wv}	System action w, v in set of system actions \mathcal{E}	48
e_{xl_i}	Service activity x in Service l_i	70
h	Transporter in set of transporters H	40
l_i	Service i in the set of services L	70
m	Machine in set of machines M	40
p_Q	Decision algorithm in the set of decision algorithms P_Q	61
$p_{\tilde{\eta}\varphi}$	Refined transportation process φ in set of refined transportation processes $P_{\tilde{\eta}}$	45
$p_{\eta u}$	Transportation process u in set of transportation processes P_η	44
$p_{\gamma g}$	Holding process g in set of holding processes P_γ	44
$p_{\mu j}$	Transformation process j in set of transformation processes P_μ	43
q	Cyber-resource in the set of cyber-resources Q	60
r	Resource in set of system resources R	40
z_{χ_1, χ_2}	String of two sequential activities χ_1 and χ_2 in set of strings \mathcal{Z}	56

Indices

χ	Index in $[1 \dots \sigma(R)\sigma(P)]$	56
ψ	Index of the elements in the set of structural degrees of freedom \mathcal{E}_S	58
φ	Index of refined transportation process $p_{\tilde{\eta}\varphi}$ in $P_{\tilde{\eta}}$	45
g	Index of holding process $p_{\gamma g}$ in set of holding processes P_γ	44
i	Index of Service l_i in the set of services L	70
j	Index of transformation process $p_{\mu j}$ in set of transformation processes P_μ	43
k	Index of time	71
u	Index of transportation process $p_{\eta u}$ in set of transportation processes P_η	44
v	Index of physical resource p_w in set of physical resources R	48
w	Index of system process p_w in set of system processes P	48
x	Index of service activity e_{xl_i} in the set of service activities \mathcal{E}_{l_i}	70
y_1	Index of origin buffer b_{sy_1} in set of buffers B_S	44
y_2	Index of destination buffer b_{sy_2} in set of buffers B_S	44

Mathematical Symbols

$\mathbb{1}^n$	Ones-vector of length n	49
\mathbb{A}	System Adjacency Matrix	82

\mathbb{A}_L	System Service Adjacency Matrix	82
$\mathbb{A}_{\rho C}$	System Controller Agency Matrix	82
$\mathbb{A}_{\rho L}$	Service System Feasibility Matrix	82
$\mathbb{A}_{C\rho}$	Controller System Agency Matrix	82
$\mathbb{A}_{L\rho}$	System Service Feasibility Matrix	82
\mathbb{P}_S	A (non-unique) projection matrix for the vectorized knowledge base ..	58
\mathbb{A}_Q	Independent Controller Agency Matrix that shows jurisdiction of Q_I over R_P	63
$\Lambda_{\gamma i}$	Service Transportation Feasibility Matrix for product l_i	76
$\Lambda_{\mu i}$	Service Transformation Feasibility Matrix for product l_i	76
Λ_{Hi}	Transportation service selector matrix	79
Λ_{HL}	Transportation service line selector matrix	79
Λ_{Hxi}	Transportation service activity selector matrix	79
Λ_i	Service Feasibility Matrix for product l_i	77
Λ_{Mi}	Transformation service selector matrix	79
Λ_{ML}	Transformation service line selector matrix	79
Λ_{Mxi}	Transformation service activity selector matrix	79
Λ_{SHi}	System Transportation Service selector matrix	79
Λ_{SHxi}	System Transportation service activity selector matrix	79
Λ_{Si}	System Transformation Service selector matrix	79
Λ_{SL}	System Service Line selector matrix	79
Λ_{SMxi}	System Transformation service activity selector matrix	79
Λ_{Sxi}	System Transformation and Transportation service activity selector matrix	79
Φ_T	State Transition Function for a timed Petri net	71
Ξ	Resource Aggregation Matrix	49
\tilde{A}_ρ	Hetero-functional Adjacency Matrix after elimination of row and column sparsity	58
A_C	Controller Adjacency Matrix	67
A_Q	Controller Agency Matrix	63
A_S	System Concept	52
A_ρ	Hetero-functional Adjacency Matrix	55
DOF_ρ	Sequence-Dependent Degrees of Freedom	58
DOF_H	Transportation Degrees of Freedom	52
DOF_M	Transformation Degrees of Freedom	52
DOF_S	Structural Degrees of Freedom	52
DOF_{HH_ρ}	Measure of Type IV Sequence-Dependent Production Degrees of Freedom	56
DOF_{HM_ρ}	Measure of Type III Sequence-Dependent Production Degrees of Freedom	56
DOF_{LH}	The number of transportation capabilities utilized by all services ..	80
DOF_{LM}	The number of transformation capabilities utilized by all services ..	80
DOF_{LS}	The number of capabilities utilized by all services ..	80
DOF_{MH_ρ}	Measure of Type II Sequence-Dependent Production Degrees of Freedom	56

$DOF_{MM\rho}$	Measure of Type I Sequence-Dependent Production Degrees of Freedom	56
I^n	Identity Matrix of size $n \times n$	63
J_Y	Holding Knowledge Base	49
J_H	Transportation Knowledge Base	49
J_M	Transformation Knowledge Base	49
J_S	System Knowledge Base	48
$J_{\bar{H}}$	Refined Transportation Knowledge Base	49
J_ρ	System Sequence Knowledge Base	55
$J_{HH\rho}$	Type IV Sequence-Dependent Knowledge Base	56
$J_{HM\rho}$	Type III Sequence-Dependent Knowledge Base	56
$J_{MH\rho}$	Type II Sequence-Dependent Knowledge Base	56
$J_{MM\rho}$	Type I Sequence-Dependent Knowledge Base	56
K_ρ	System Sequence Constraints Matrix	55
K_M	Transformation Constraints Matrix	51
K_S	System Constraints Matrix	51
$K_{\bar{H}}$	Refined Transportation Constraints Matrix	51
$K_{HH\rho}$	Type IV Sequence-Dependent Constraints Matrix	56
$K_{HM\rho}$	Type III Sequence-Dependent Constraints Matrix	56
$K_{MH\rho}$	Type II Sequence-Dependent Constraints Matrix	56
$K_{MM\rho}$	Type I Sequence-Dependent Constraints Matrix	56
N_{l_i}	Service Net for product l_i	71
$Q_{El_i}[k]$	Marking of Service Transitions for product l_i at time k	71
Q_{l_i}	Petri net marking representing the set of service states	71
$Q_{Sl_i}[k]$	Marking of Service States for product l_i at time k	71
$U_{l_i}^+[k]$	Binary Input Firing Vector for product l_i at time k	71
$U_{l_i}^-[k]$	Binary Output Firing Vector for product l_i at time k	71
z_{l_i}	Sequence of Service Activities $e_{xl_i} \forall x \in [1, \dots, \sigma(\mathcal{E}_{l_i})]$	71
\mathcal{F}_v	Resource Flexibility	49
\mathcal{R}_w	Process Redundancy	48
Mathematical Operators		
$(\cdot)^V$	Shorthand for vectorization (i.e. $\text{vec}(\cdot)$)	56
\circledast	Matrix Aggregation Operator	49
$\langle A, B \rangle_F$	Frobenius Product of matrices A and B	52
\odot	Matrix boolean multiplication	48
\otimes	Kronecker Product	49
$\sigma(\cdot)$	The size of the set (\cdot)	44
\times	Cartesian Product	45