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Abstract—The proliferation in amounts of generated data has
propelled the rise of scalable machine learning solutions to
efficiently analyze and extract useful insights from such data.
Meanwhile, spatial data has become ubiquitous, e.g., GPS data,
with increasingly sheer sizes in recent years. The applications
of big spatial data span a wide spectrum of interests including
tracking infectious disease, climate change simulation, drug
addiction, among others. Consequently, major research efforts
are exerted to support efficient analysis and intelligence inside
these applications by either providing spatial extensions to ex-
isting machine learning solutions or building new solutions from
scratch. In this 90-minutes tutorial, we comprehensively review
the state-of-the-art work in the intersection of machine learning
and big spatial data. We cover existing research efforts and
challenges in three major areas of machine learning, namely, data
analysis, deep learning and statistical inference. We also discuss
the existing end-to-end systems, and highlight open problems and
challenges for future research in this area.

I. INTRODUCTION

There has been a recent wide deployment of machine

learning (ML) solutions, with their different areas (e.g., data

analysis, deep learning), in various big data applications,

including public health [20], information extraction [51], data

cleaning [40], among others. Meanwhile, spatial applications

have witnessed unprecedented explosion in the amounts of

generated and collected data. For example, space telescopes

generate up to 150 GB weekly spatial data, medical devices

produce spatial images (X-rays) at a rate of 50 PB per year,

while a NASA archive of satellite earth images has more

than 500 TB. To efficiently process such tremendous amounts

of spatial data, researchers and developers worldwide have

proposed either spatial extensions to existing machine learning

systems (e.g., Azure Geo AI [2]) or new end-to-end solutions

(e.g., ESRI ArcGIS [11]). Such extensions and new solutions

have motivated a wide variety of applications in biology [55],

environmental science [56], climatology [14], among others.

In this tutorial, we aim to provide a comprehensive re-

view of existing machine learning systems and approaches

that efficiently support big spatial data. Figure 1 depicts the

landscape of the intersection between machine learning and

big spatial data worlds that will be covered in this tutorial. The

horizontal axis in Figure 1 represents the type of each machine

learning solution, whether it takes the distinguishing spatial

data properties into account or not, while the vertical axis
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Fig. 1. Landscape of Machine Learning for Big Spatial Data.

represents the type of application employing such machine

learning solution, whether the application is spatial or not.

We mainly focus on the three quarters Q1, Q2, and Q3 in

Figure 1 because they cover the spatial dimension in the

machine learning solutions and/or the big data applications.

We skip the quarter Q0 as it is already covered by previous

SIGMOD tutorials about the techniques and challenges in

machine learning for big data in general [6], [28]. Also note

that another previous VLDB tutorial focused on big spatial

data management [10]. Unlike this tutorial, our tutorial aims to

combine the two worlds of scalable machine learning and big
spatial data together, which is beyond just applying techniques

from one area to another.

In each of the three quarters Q1, Q2, and Q3, we explain the

main ideas, architectures, strengths and weaknesses of existing

machine learning solutions. We also highlight the strong bond

between spatial data management and spatial machine learning

workflows, discuss the related technical challenges, and outline

the open research opportunities.

II. TUTORIAL OUTLINE

Figure 2 gives the 90-minutes tutorial outline, composed

of five parts. The first part motivates the need for machine

learning systems to support big spatial data, and provides the

basic background on these two worlds (Section II-A). The

second, third, and fourth parts delve into the ongoing machine
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• Part 1: Spatial Data and ML Synergy (10 mins)
– Importance of ML with big spatial data

– Quick review of spatial ML landscape

• Part 2: Spatial ML Solutions for Non-spatial Apps (20 mins)
– Spatial-aware deep learning solutions

– Spatial-aware statistical ML models

• Part 3: Non-spatial ML Solutions for Spatial Apps (25 mins)
– Deep learning and data analysis for routing apps

– Deep and reinforcement learning for traffic prediction apps

– Deep learning for localization and spatial object detection

• Part 4: Spatial ML Solutions for Spatial Apps (20 mins)
– Scalable spatial data mining techniques

– Scalable spatial statistical inference techniques

– Scalable spatial sampling techniques

• Part 5: End-to-end Spatial Data Analysis Systems (15 mins)
– Spatial support in existing big data analysis systems

– Full-fledged big spatial data analysis systems

Fig. 2. Tutorial Outline (90 minutes)

learning efforts and challenges in the quarters Q1, Q2, and Q3

from Figure 1, respectively (Sections II-B to II-D). The fifth

part reviews the existing end-to-end systems for big spatial

data analysis (Section II-E).

A. Part 1: Spatial Data and ML Synergy

This part advocates for the need to develop machine learning

systems and techniques for big spatial data that go beyond

simple extensions of existing work for general data. We start

by describing some motivating applications, introducing the

world of big spatial data, and discussing its machine learning

related concepts. We then quickly review the landscape of

spatial machine learning systems, algorithms, applications, and

needs, which will be heavily discussed in the next parts.

B. Part 2: Spatial ML Solutions for Non-spatial Apps

This part covers the role of injecting the spatial awareness

inside the underlying machine learning algorithms used in non-

spatial applications (e.g., knowledge base construction [43],

recommendation systems [32], computer vision [23]) to im-

prove the performance of these applications. We start by high-

lighting how the spatial data management techniques improve

the performance of various deep learning tasks when applying

on big spatial data. For example, Quad-tree partitioning [15]

is used for: (a) balancing the convolution computation in

Convolutional Neural Networks (CNN) for object detection

applications [23] and (b) efficient automatic features extrac-

tion and matrix factorization operations inside deep learning

models [62]. Meanwhile, k-nearest neighbor operations are

used to efficiently build specific neural network architectures

from big spatial datasets [5], [37]. Then, we discuss the im-

proved spatial variations of other statistical machine learning

techniques (i.e., not deep learning) used inside knowledge

base construction [43], [45] and recommendation [32] models,

while assuring their impact in obtaining more accurate outputs.

C. Part 3: Non-spatial ML Solutions for Spatial Apps

This part covers the usage of existing machine learning

techniques, without spatial variations, as ”black boxes” in

improving the performance of spatial applications. We start by

discussing the recent machine learning techniques used inside

two specific core applications; routing and traffic prediction.

For routing, we show the deep learning [21] and regression

analysis [53] techniques used to prepare the routing meta-

data (e.g., finding weights of routes). We also present the

incremental learning [3] and clustering [18] approaches that

are used to make routing maps and perform the routing itself,

respectively. For traffic prediction, we discuss its existing

deep learning (e.g., convolution-based residual networks [64],

diffusion convolutional recurrent neural networks [30], graph

convolutional neural networks [33]), as well as reinforcement

learning [59] approaches in details. Finally, we give a brief

about the machine learning approaches used in other spatial

applications including outdoors localization [52], forecasting

queries [31], and geospatial object detection [61].

D. Part 4: Spatial ML Solutions for Spatial Apps

This part covers the research efforts for scaling up the per-

formance of three main categories of spatial machine learning

and analysis techniques: (1) Spatial data mining: common op-

erations in this category include spatial outlier detection [50],

[66], spatial classification [7], [16], [24], [25], [49], spatial

regression [44], spatial clustering [13], [36], [58], [65], hotspot

detection [4], and trajectory analysis [8]. (2) Spatial statistical
inference: existing spatial inference approaches are categorized

into: (a) in-memory solutions, where the input dataset of the

inference model is first spatially partitioned into a grid. Then,

each partition is analyzed using a Bayesian spatial process

model (e.g., [17]). Finally, an approximate posterior inference

for the entire dataset is obtained by optimally combining the

individual posterior distributions from each partition [17], [47],

[54]. (b) RDBMS-based solutions, where the assumption of

fitting the whole model data in memory is no longer valid.

Hence, RDBMSs are exploited to support scalable spatial

inference computation (e.g., TurboReg [44] and Flash [42],

[46]). (3) Spatial sampling: due to the massive amounts of

spatial data that are available for training any spatial machine

learning algorithm, spatial sampling becomes a critical task

to efficiently select a set of representative data objects while

taking the spatial distribution into account. Existing sampling

techniques over big spatial data can be either incremental (i.e.,

samples are refined over many iterations) [9], [57] or satisfying

certain locality constraints (e.g., zooming level) [19], [48].

E. Part 5: End-to-end Spatial Data Analysis Systems

This part covers the big spatial data analysis systems from

two aspects: (1) The research efforts of adding spatial support

in existing big data analysis systems, which are either: (a) in

the form of add-ons libraries and tools that enable process-

ing spatial data with classical operations (e.g., clustering,

classification). Examples include spatial extensions to Spark

1783

Authorized licensed use limited to: University of Minnesota. Downloaded on October 01,2021 at 14:02:17 UTC from IEEE Xplore.  Restrictions apply. 



core (e.g., Simba [60], Magellan [34], GeoSpark [63], Ge-

oMesa [22], UlTraMan [8]) to enable using Spark MLib [35]

with spatial data, ESRI spatial data analysis extensions for

Hive [12], and PostGIS [38] that can be used along with

MADLib [20] to support spatial analytics for PostgreSQL [39],

or (b) in the form of built-in native support of spatial anal-

ysis operations (e.g., hot spot detection, spatial co-location)

inside existing data analysis engines. (2) The research efforts

of providing full-fledged big spatial data analysis systems

and tools. In such systems, all execution steps in any data

analysis operation are optimized for efficient and scalable

processing of spatial data. We will classify existing work

based on the underlying architecture, which could be either

(a) in-memory systems (e.g., CrimeStat [29], GeoDa [1],

PySAL [41]), (b) RDBMS-based systems (e.g., ESRI Ar-

cGIS [11], Flash [46]), or (c) cloud-based services (e.g., IBM

PAIRS [26]). For all these systems and services, we will give

motivational case studies, and a brief on their supported spatial

analysis operations and running time efficiency.

III. TARGET AUDIENCE

This tutorial targets researchers, developers, and practition-

ers, who are interested in large-scale machine learning and

big spatial data. No prior knowledge is required to understand

the systems and approaches in the tutorial. The tutorial will

also be very beneficial for graduate students as it will help

in identifying various topics and challenges for PhD topics.

Practitioners will get to know the state-of-the-art systems

for enriching their machine learning systems and tools with

spatial data support. This tutorial will act as an invitation

to the database community to join arms for satisfying the

emerging needs of big spatial data analysis and machine

learning applications.

IV. RELEVANCE TO ICDE

Research in the areas of spatial data and scalable machine

learning has been always active in the database community

in general, and in the ICDE community in particular. With

the proliferation of proposed systems and approaches in

these areas, it becomes inevitable to present a tutorial that

surveys the current state-of-the-art techniques and suggests

future research directions for the community. Many of the

research efforts covered in this tutorial were recently published

in major database conferences including ICDE, VLDB, and

SIGMOD [4], [8], [18]–[21], [27], [36], [42], [43], [45], [46],

[48], [51], [57], [58], [60], [65].

V. PRIOR OFFERINGS

Mohamed Mokbel and Ibrahim Sabek have recently pre-

sented a 90-minutes tutorial about the same topic in the Very

Large Data Bases (VLDB) conference 20192, which focused

more on the individual machine learning algorithms that are

used to extract useful insights and patterns from big spatial

data. In contrast, this tutorial probes the whole landscape of the

machine learning and big spatial data while equally focusing

2http://www.cs.umn.edu/∼sabek/vldb-2019-tutorial/

on both algorithmic and application sides. In addition, the

tutorial delves into the internals of the existing end-to-end

systems of big spatial data analysis.
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