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Abstract

Multi-modal generative models represent an important
family of deep models, whose goal is to facilitate represen-
tation learning on data with multiple views or modalities.
However, current deep multi-modal models focus on the in-
ference of shared representations, while neglecting the im-
portant private aspects of data within individual modali-
ties. In this paper, we introduce a disentangled multi-modal
variational autoencoder (DMVAE) that utilizes disentan-
gled VAE strategy to separate the private and shared latent
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The geographical shapes of the
bright purple petals set off the
orange stamen and filament and
the cross shaped stigma is
beautiful.

(a) Image and Attribute modalities

Private Shared
Bright purple

Private

spaces of multiple modalities. We demonstrate the utility of Leaf Petal Geographical
. .. Back d -
DMVAE two image modalities of MNIST and Google Street o = Heeatiul

View House Number (SVHN) datasets as well as image and
text modalities from the Oxford-102 Flowers dataset. Our
experiments indicate the essence of retaining the private
representation as well as the private-shared disentangle-
ment to effectively direct the information across multiple
analysis-synthesis conduits.

1. Introduction

Representation learning is a key step in the process of
data understanding, where the goal is to distill interpretable
factors associated with the data. Representation learning
approaches typically focus on data observed in a single
modality, such as text, images, or video. Nevertheless, most
real world data comes from processes that manifest itself in
multiple views or modalities. In computer vision, image-
based data is typically accompanied with text description
to promote understanding of its latent factors. For exam-
ple, in Fig. la, an image of a flower is augmented with cap-
tions describing the detailed characteristics of the flower. To
study about the flower, the background of the image is un-
necessary but the additional information of text description
is helpful. Therefore, accurate modeling of the underlying
data representation has to consider both the private aspects
of individual modalities as well as what those modalities
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stamen

(b) Private and shared factors

Figure 1: (a) Example of bimodal data, where one modal-
ity, I, is an image of a flower and the other, T, represents
a textual caption describing the flower. (b) Only some of
the factors, here aligned with the caption for simplicity, are
shared by both modalities in Shared I N T. Other fac-
tors are private to individual modalities, grouped in sepa-
rate Private spaces. By definition, the three spaces are
disentangled from each other.

share, as illustrated in Fig. 1b.

In this paper, we propose a generative variational model
that can learn both the private and the shared latent space
of each modality, with each latent variable attributed to
a disentangled representational factor. The model ex-
tends the well-known family of Variational AutoEncoders
(VAEs) [10] by introducing separate shared and private
spaces, whose representations are induced using pairs of
individual modality encoders and decoders. To create the
shared representation, we impose consistency of represen-
tations using a product-of-experts (PoE) [6] inference net-
work.
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While the shared latent representation can be used to
model the compatibility of the two modalities, the represen-
tation can also enable cross-reconstruction of one modality
from another. We demonstrate that this essential task can
and has to be effectively combined in an end-to-end learn-
ing framework with the private-shared disentangled VAE,
resulting in our novel disentangled multi-modal variational
autoencoder (DMVAE).

We apply the DMVAE to two multi-modal representa-
tion learning problems. In the first setting, we consider the
problem of learning the shared/private generative represen-
tations of digit images from two datasets of different styles,
where the shared property becomes the digit class and the
private property becomes the style of each dataset. In the
second setting, we generalize the modality types further into
images and text, aiming to model the joint representation of
flower appearance and the corresponding captions, which
describe the visual characteristics of the flower. We show
that DMVAE excels both as an analysis tool as well as the
(cross) synthesis generative model.

Our main contributions are as follows.

* We segregate the latent representation space into the
union of the private and the shared spaces. We show
that the private latent space is critical for modeling the
disjoint properties of each modality while the shared
latents enable linking and cross-synthesis across do-
mains, as signified in the experiments in Sec. 5.1 and
Sec. 5.3.

We improve the compatibility between modalities by
introducing the cross-VAE task (loss), whose aim is the
cross-modal reconstruction through the shared latent
space. The impact of the cross-VAE direction, induced
by the properties of the linked datasets is examined in
the ablation study in Sec. 5.3.

By applying our model to (image, text) as well as
(image, image) representation modeling problems, we
demonstrate the universal applicability and effective-
ness of the the DMVAE framework, across different
data types.

2. Related Work

Several lines of related work can be linked to our pro-
posed DMVAE. Our modeling task is intimately related to
image-to-image translations problems, the task of translat-
ing between different representations of one image, such as
the sketch-photographic, summer-winter, efc., views of a vi-
sual object or a scene. We begin by reviewing relevant prior
work in this area, subsequently extending it to multi-modal
learning that can take any input data type.

Image-to-image translation. Multiple research efforts
have attempted to solve the image-to-image translation
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(a) Full-modality (b) Missing-modality
Figure 2: Unrolled graphical model representation of DM-
VAE. The gray circles illustrate observed variables. z,, zp,
denote the private latents of modalities z1,z3. 25 denotes
the shared latents between two modalities. Z1, 2o denote
reconstructed views, which should match the observed data
in this unrolled generative model. (b) illustrates the missing
modality instance network, which is critical for test-time in-
ference of x5 from x;. We elaborate on the inference in the
missing modality in Sec. 4.2.

problem by framing it as a two-modality matching setup.
[23] utilize GAN [5] framework, which takes the image
from one modality as the fake sample against another
modality. They combine VAE into GAN so that the latent
space encodes information about the ground truth outputs,
rectifying the mode collapse problem. The diversity of the
output that the latent factor can provide is enhanced with the
latent regressor GAN, which tries to generate output from
randomly drawn latent factors and then attempts to recover
the latent code again.

[4] disentangles the latent representation into two parts;
the shared between the two modalities and the exclusive
within each modality. Using only the shared part of the
representation in the image translation, the domain-specific
variation is reduced. Furthermore, adding noise with the
shared latent factors for generation improves the diversity
in translation between images. However, the paired input
images are necessary to train these models. [12, 8] show
that cross-domain mapping and cross-cycle consistency en-
able an effective style transfer using unpaired data. They
separate a domain-invariant content and a domain-specific
attribute (style) latent space using an adversarial loss. [2]
separates private and shared networks in each domain utiliz-
ing DANN [16] to make it possible for the unlabeled target
domain to learn the transferred information from the labeled
source more effectively with only the latent codes from the
shared network. Although these methods are able to achieve
realistic and diverse image translation, they make use of the
strong within-image-modality conditioning, which may fail
when the modalities exhibit vastly different properties (e.g.,
text and image).

Multi-modal Learning. Several prior works have consid-
ered the problem of modeling multi-modal data using gen-
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erative VAE-inspired models. JMVAE [19] exploits the
joint inference network ¢(z|z1,x2) to learn the interaction
of two modalities, 1 and z5. To address the missing modal-
ity problem, where some of the data samples are not paired
(i.e., do not have both views present), they train inference
networks ¢(z|z1), g(z|z2) in addition to the bimodal infer-
ence model ¢(z|z1, x2), and then minimize the distance be-
tween uni- and multi-modal based latent distribution. JVAE
[20] adopts a product-of-expert (PoE) [6] for the joint pos-
terior q(z|z1,x2) of multi modalities in the inference net-
work. The approach leverages the unimodal inference net-
works, whose predictions are constrained and made con-
sistent through the PoE. JVAE trains the model with two-
stage process to handle both paired and missing modality
data. Due to this fact, the number of required inference
networks increases exponentially for more than two modal-
ities. To alleviate the inefficiency of JVAE, MVAE [21]
considers only partial combination of observed modalities.
This helps reduce the number of parameters and increase the
computational efficiency of learning. [18] applies Mixture-
of-Expert (MoE) to jointly learn the shared factors across
multi-modalities. Though they introduces the concept of
the private and shared information of multi-modalities, it is
implicitly conceived. Moreover, the use IWAE for the ap-
proximation makes the contribution of MoE vague.

However, the aforementioned prior works based on VAE
use a single latent space to represent the multi-modal data.
Although [2] attempt to separate the private and shared
networks, their method uses deterministic latent features.
Moreover, they require target label information to train their
model. Within one common latent space under the VAE
framework, modality-specific factors could be entangled
with the shared factors across all moralities, reducing the
ability of these generative models to represent the data and
infer the “true” latent factors.

In this paper, we address these challenges by explicitly
separating the shared from the disjoint private spaces, using
individual inference networks to achieve this goal. This is
illustrated in Fig. 2. In subsequent sections, we review the
core VAE framework, followed by the details of our DM-
VAE modeling approach, and the experimental evaluation.

3. Background

Our DMVAE framework builds upon the VAE model of
[10]. We first highlight the relevant aspects of VAE-based
models, which we then leverage to construct the DMVAE
in Sec. 4.

Variational Autoencoder. A variational autoencoder
(VAE) [10] implements variational inference for the la-
tent variable via autoencoder structure.  The objec-
tive of the VAE is to maximize the marginal distribu-
tion p(z) = [pe(z|z)p(z)dz which is, however, in-
tractable.  Thus, VAE introduces the evidence lower
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bound (ELBO) which uses an approximated recognition
model ¢4(z|z) instead of the intractable true posterior.
It maximizes K, g, (z|¢) [logpe(z|2)] while minimizing
KL(gy(2|2), p(2)).

= Ep(a) [Eq, (s10) [l0g po(2]2)] — K L(gy(2|2)[Ip(2))] (D)

g¢(z|x) and py(x|2) are represented as encoder and decoder
in the network with the learning parameter ¢ and 6, respec-
tively. The first term of ELBO (Eq. (1)) is the reconstruc-
tion error and the second term plays a role of regularizer not
to be far from the prior distribution p(z). We next discuss
in more detail the effect of the second term on disentangle-
ment.

4. DMVAE Framework

In this section, we introduce the new DMVAE model.
Sec. 4.1 describes the architecture of private and shared
latent spaces within the disentangled representation. In
Sec. 4.2 and Sec. 4.3, we define the DMVAE inference mod-
els, accompanied with the learning objective in Sec. 4.4.

4.1. Private / Shared-Disentangled Multi-Modal
VAE

The assumption in this paper is that under the multi-
modal description of a concept, the latent space of the con-
cept is divided into a private space of each modality and
one shared space across all modalities'. Our goal is to ob-
tain well-separated private and shared spaces. This separa-
tion is critical; the shared latent space can only transfer the
information common across modalities, but it will fail to
model the individual aspects of the modalities. In a gener-
ative model, such as the VAE, modeling the private factors
is critical as those factors enable both the high fidelity of
the data reconstruction as well as the improved separation
(disentanglement) of the latent factors across modalities.

Our model is illustrated in Fig. 3 for the case of two
modalities. Given paired i.i.d. data {(x1,x2)}, we infer the
latents zy ~ gg, (2|21), 22 ~ gg,(2|22), where ¢1, ¢o are
the parameters of each individual modal inference network.
We assume the latents can be factorized into 21 = [z, , 2s, |
and zo = [zp,, 2s,], Where z,,, z,, represent the private la-
tents of modalities 1, xa, respectively, and z,, , 25, repre-
sent the shared latents, which are to model the commonality
between the two modalities.

For the desired shared representation in 2, , z5, We seek
to effectively make zg, We describe how to
accomplish this using a PoE-based consistency model in
Sec. 4.2, which approximates the shared inference network

p(zs|er, 2).

Zgy-

Other more intricate representations of private and shared spaces may
arise in the presence of more than two modalities. However, we do not
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Figure 3: Model architecture of DMVAE. Each modal-
ity is used to infer the shared latent representation of
that modality alone (subscripts s1 and s2) which are then
aligned by the product-of-expert (subscript s). Private
spaces (numeric-only/’p” subscripts) are left unaligned.
The dashed lines indicate sampling from respective distri-
butions.

4.2. Latent Space Inference

First, we define the latent space inference in our model.
Given N modalities * = (z1, ...,z ), each modality has
the posterior distribution p(z;|z;), approximated by infer-
ence networks ¢(z;|z;) = q(zp,, 2s,|2;). Since the shared
latent space should reflect the information shared across all
modalities, we require that the representation be consistent,
ie., zs;, = zs w.p.1,Vi. Consequently, we separate the
private inference q(zp,|z;) from the shared inference net-
work ¢(zs|x), defined using the product-of-experts (PoE)
model [6], adopted in [20, 21]:

N

q(zs|m) o p(za) [ [ a(zalas).

i=1

2

In the case where all inference networks and priors as-
sume conditional Gaussian forms, p(z) = N (z|0,1) and
q(z|z;) = N (z|pi, C;) of i-th Gaussian expert with the co-
variance C;, the PoE shared inference network will have the
closed form of ¢(z|z) as N (2|, C) where C~1 = 3. C;*
and = CY, O .

Missing-mode Inference. An important benefit of the PoE-
induced shared inference is that the individual modality
shared networks can also be used for inference in instances
when one (or more) of the modalities is missing. Specifi-
cally, as illustrated in the bi-modal case of Fig. 2b, under
the xo missing, the shared latent space would be simply in-
ferred using the remaining modality shared inference net-
work ¢(zs|x1); and vice-versa for missing z;.

consider this setting in our current work.
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4.3. Reconstruction Inference

In addition to inferring the latent factors, a key enabler in
VAE is the reconstruction inference, or encoding-decoding.
Specifically, we seek to infer p(Z|z) = [ p(Z, z|z)dz
fp(fc\z)p(z\m)dz = Ep(?:lx) [p(i‘|z)] ~ ]Eq(Z\z)[p(-ﬂz)]'

The reconstruction inference in multi-modal settings,
much like the latent space inference, has to consider the
cases of complete and missing modality data. We as-
sume bi-modality without loss of generality. The first
case is the self-reconstruction within a single modal-
ity, Eq(z,, z0)q(z0|20) [P(Til2p;, 25)] for @ = 1,2, The
second form is the joint multi-modal reconstruction,
Eq(zpi\xi)q(zs\wl,zz)[p('i‘i|zpi’ZS)] for i = 1,2. It is also
possible to consider the cross-modal reconstruction, e.g.,
p(@2021) = Ep(s,,)q(zalz) [P(T2]2ps, 25)], illustrated in
Fig. 2b. This instance, where x5 is missing, is facilitated
using the prior on the private space of 2, p(zp, ).

The different reconstruction inference modes are essen-
tial for model learning but also valuable for understanding
the model performance. For instance, one may seek to see
how successful the multi-modal DMVAE is in learning the
shared and private representations in the context of synthe-
sizing one modality from another. We highlight these cross-
synthesis experiments in Sec. 5.1 and Sec. 5.2.

4.4. Learning Objective

In general, for each data point = (x1, 22, ...,xx) and
N modalities, the learning objective assumes the form:

Y By {ME%(%,|mi>,q¢<zs,|m> (log po(wilzp;, 2s)]

— KL(qs (zp; i) Ip(2p;)) — K L(gg(25]2)[[p(25))

+> (ME%(ZM,‘xi),qws,m) [log po (wilzp,, 25)]
J

- KL(qu(ZPz‘

sl ) = KLaoCenbaple)) |
3

where \; balances the reconstruction across different
modalities. The first term models the accuracy of recon-
struction with the jointly learned shared latent factor, com-
pensated by the KL-divergence from the prior. The second
set of terms assesses the accuracy of the cross-modal re-
construction, x; < x; for i # j and the accuracy of self-
reconstruction for ¢ = j , again compensated by the diver-
gence.

5. Experiments

We demonstrate the effectiveness of our proposed DM-
VAE framework on two experimental setup. In Sec. 5.1, we
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Table 1: Classification accuracy for cross-synthesized
MNIST and SVHN and joint matching accuracy

Model Cross(M— S)  Cross(S— M)  Joint
MVAE [21] 9.5 9.3 12.7
MMVAE [18] 86.4 69.1 42.1
DMVAE 88.1 83.7 44.7

show how DMVAE can learn the common latent representa-
tion given two image modalities of MNIST and street-view
house number (SVHN) datasets. We evaluate our model
both quantitatively and qualitatively by cross-synthesizing
images from one to another modality. Sec. 5.2 further in-
vestigates DMVAE on the image and text modalities using
the Oxford-102 Flowers dataset. We examine how well the
flower image and its descriptions are retrieved between two
modalities. Sec. 5.3 evaluates the effectiveness of different
model components in an ablation study. The code for our
DMVAE model and the experiments in this section is avail-
able at https://github.com/seqam-1lab/DMVAE.

5.1. Image-Image Modality

As in MMVAE [ 18], we ground the bi-modal setup by
giving one modality as MNIST images and another modal-
ity as SVHN images. By assuming that the pair of (MNIST,
SVHN) images is constructed according to the digit iden-
tity {0,...,9}, we expect the shared information between
the MNIST and SVHN modalities to be the digit identity
and each private latent space includes styles of of the digits,
such as width, tilt, background etc. We follow MMVAE to
create the paired data >.

For MNIST, we assume one dimensional private space
while SVHN which has more diverse style requires four di-
mension for its private latent space. To model the ten class
factors as the shared latent representation, we set 10 dimen-
sional shared latent space. The details of the model (en-
coder/decoder) architectures and the optimization are de-
scribed in the Supplement.

Quantitative Evaluation. In order to assess whether the
desired shared latent representations are learned, we gen-
erate two kinds of images at test time. The first one is
prior-synthesized images. After sampling the shared latent
code from the prior distribution, we generate the MNIST
and SVHN images based on the same shared space sample.
Secondly, given an image of one modality, the shared latent
code is extracted and transferred to another modality in or-
der to synthesize an image. For both of the cases, we feed
the private latent factors sampled from the prior distribution
N(0,1), which promotes the diversity of the generated im-
age. We use the same protocol as in MMVAE to evaluate
the cross-synthesized images. To predict the digit class, the

2The code for paired data is available at

https://github.com/iffsid/mmvae.

generation
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Figure 4: Cross-synthesis images from the opposite modal-
ity. (a) and (b) are results with DMVAE, (c) and (d) are re-
sults with MVAE. In each image, the first row is the ground
truth images from which the share latent code comes. The
following rows are the cross-synthesized images.

separate CNN classifiers are trained for MNIST and SVHN
using the code from MMVAE for the fair comparison. For
the prior-synthesized images, we compute the joint match-
ing frequency which means how often the prior-synthesized
images of MNIST and SVHN generated from the same prior
distribution sample correspond to each other. For cross-
synthesized images, the predicted labels based on the cross-
synthesized images are compared to the ground-truth labels.
Thus, the cross-modal inference in our generative model be-
comes the process of classification. We compare our results
against MVAE [21] and MMVAE in Tab. 1. We outperform
baselines in both direction of cross-synthesis, suggesting
the desired common latent code, which is the digit class,
is learned and transferred through the shared latent space.
Moreover, when a random shared latent code is fed to each
of MNIST and SVHN decoders, our model is able to gener-
ate the same class images of MNIST and SVHN with higher
probability than baselines models. These results underline
the ability of DMVAE to disentangle latent factors and distil
them into the shared factor representing the digit label and
the private factors surmising the image style. We investigate
further why DMVAE can achieve significant improvement
from SVHN to MNIST generation in Sec. 5.3 through the
ablation study.

Qualitative Evaluation. Fig. 4 shows the cross-
synthesized images conditioned on the opposite modality
images. For one modality to be inferred by the generative
model, both its private and shared latent factors are neces-
sary. The shared factor is determined by the opposite condi-
tioning modality. The private image factor is sampled from
its prior distribution A/(0, 1). Fig. 4 shows the results of our
model and MMVAE. In each of Fig. 4a, Fig. 4b, Fig. 4c, and
Fig. 4d, the first row is the ground-truth conditioning image
to transfer its shared latent code to another modality and
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Figure 5: Visualization of 2-D embeddings of latent features of MNIST and SVHN, using tSNE. *+’ and ’0’ represent the

MNIST and SVHN test data points respectively and each color associates with one of ten digit classes, {0, 1, ...

DMVAE embedding result. (b) MMVAE embedding result.

the following rows are the cross-synthesized images. For
DMVAE results Fig. 4a and Fig. 4b, cross-synthesized im-
ages require private latent code for the style. We generate
5 different rows of the synthesized images with 5 differ-
ent private factors which are depicted from the second row.
Though the private latent values can be sampled from the
Gaussian prior distribution, we pick those latent values that
can express “extreme” styles to assess whether the visually
distinct style is kept. When SVHN image is synthesized
from MNIST image as in Fig. 4b, styles of SVHN such as
(dark / bright) (letter / background) color, or overall shadow,
or width of digit are reflected in the cross-synthesized im-
ages as well as the conditioning MNIST classes are kept. In
Fig. 4b, MNIST needs one dimensional private latent factor
to be generated using the SVHN shared latent factor. We
vary the private latent value from -1 to 3 to generate 5 dif-
ferent rows of the synthesized images. From top to bottom,
the synthesized MNIST images show the varied width and
slanted styles. Fig. 4c and Fig. 4d illustrate the results of
MMVAE with the same ground truth images as in those of
DMVAE. As well as the synthesized images cannot reflect
the digit identity from the ground truth images clearly, there
is no freedom of feeding diverse styles since MMVAE does
not separate private latent space aside from the shared latent
space.

In order to investigate how the shared latent space en-
codes each modality, we project the latent features inferred
by the encoders, on the test set, into a 2-D space with tSNE.
We use 400 randomly selected samples to plot the embed-
ded features. In Fig. 5a, even though our model is trained
without class label information, MNIST shared feature and
SVHN shared features are gathered nearby according to
the digit identity, which indicates DMVAE learns the digit
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identity only with the paired data. In contrast to DMVAE
where MNIST and SVHN data points with the same class
are heading for the same direction, MMVAE embeddings
are clustered separately per dataset. This represents that
DMVAE is able to amplify the role of the shared features
by placing the styles aside into the private space, compared
to MMVAE baseline.

5.2. Image-Text Modality

We further examine DMVAE on the Oxford-102 Flow-
ers dataset [15], where each flower image is paired with
ten captions that describe the visual characteristics of the
flower. This dataset consists of 102 classes of 8,189 flower
images, split into 62 training, 20 validation, and 20 test
classes. Since the categories of the test set are disjoint from
those of the training and validation sets, the problem falls
within the scope of zero-shot test-time tasks. For the fair
comparison with the prior works [1, 13, 22, 17], which uti-
lize the class label of the Flowers dataset during training,
we apply the following additional matching loss suggested

in [22, 17].
| BB mn
:Emz::,; monlog P )
where P, , = xp(siy, *sta) i the probability of

Y eXP(Z:er,,,L ZSTY, )
matching the m-th image shared feature to the normalized
n-th text shared feature for m, n € [1, B], with B the batch

size; zgy, 1s the m-th image shared features, and Zg, is

the normalized n-th text shared feature, Zg = STy

Ym'n.
Y Y,

Mesr T

Gmpn = is the normalized true matching proba-
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bility where Y;,, ,, = 1 if the pair is matched and O other-
wise. L;‘\Z, the matching loss from text shared feature to the
normalized image shared feature is computed in a similar
manner. These losses take the advantage of the class la-
bel information to construct matched and unmatched pairs
within a batch, in order to minimize the compatibility with
unmatched pairs.

Given a 224 x 224 x 3 dimensional input image, we first
apply pre-trained ResNet-101 to generate 7 x 7 x 2048 di-
mensional features. After global-average pooling layer, a
FC layer is used to extract 64d shared latent feature and
3d private latent feature. For the simplicity of the network,
our generative model decodes the 2048d feature, the recon-
struction of the feature produced from the global-average
pooling layer in the encoder, instead of the ambient image.

For the caption, we first extract the sequence of the word
embedding using the BERT [3] tokenizer and the BERT
base model, pre-trained on the uncased book corpus and En-
glish Wikipedia datasets, where the maximum length of the
sequence is 30. A sequence whose length is less than 30
is padded by zeros. Given the 768d caption embedding in
the BERT base model, we construct our text inference net-
work using a bidirectional LSTM [7] of hidden dimension
512, followed by a max pooling layer and a FC layer to cre-
ate the final 64d shared feature and the 3d private feature.
For the same reasons as the image modality, the text modal-
ity decoder produces 1024d features corresponding to the
output of max pooling in the text encoder. We use Adam
optimizer [9] with batch size 64.

Quantitative Evaluation. As suggested in [1, 13, 22, 17],
we evaluate the compatibility of image and text modalities
in terms of recognition and retrieval on the shared latent
space. The shared features of the text modality are aver-
aged per class for the evaluation in both directions. For
image-to-text cross generation, recognition is assessed with
the Rank1 score and for text-to-image cross generation, re-
trieval is measured with AP@50. To compute Rankl1, after
ranking the cosine similarity between a given query image
feature and all per-class-averaged text features, we assert
whether the closest text feature shares same label with the
query image. To compute AP@50, images are first ranked
according to their cosine similarity with a given query text
feature, averaged per class, assessing the fraction of the
closest 50 images with the same class label as the query text,
finally averaged over all classes. Tab. 2 shows the recogni-
tion and retrieval evaluation results. DMVAE outperforms
competition on the image-to-text cross-recognition while
achieving identical performance on text-to-image retrieval
task.

Qualitative Evaluation. In Fig. 6, each row depicts the
top3 retrieved captions given a query image according to the
cosine similarity in the shared latent space. All the retrieved
captions have the same class label as the query image except
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Table 2: Recognition and retrieval results on the Oxford-
102 Flowers dataset.

Model Img2Txt (Rank1) Txt2Img (AP@50)

Word2Vec [14] 54.2 52.1

GMM+HGLMM [11] 54.8 52.8

Word CNN [1] 60.7 56.3

‘Word CNN-RNN [1] 65.6 59.6

Triplet [13] 64.3 64.9

IATV [13] 68.9 69.7

CMPM+CMPC [22] 68.4 70.1

TIMAM [17] 70.6 73.7

DMVAE 73.3 73.6

Query Rank1 Rank2 Rank3

this  flower  has . .
smooth white petals, a flower with five this ﬂower[l};as E.‘;e
two  which are white petals and a very smooth white

petals with rounded

rounded and three
edges

which are oblong

yellow pistil

this flower has a
lightly multicolored
pedicel that holds
the upright sharply
pointed orange
petals

this flower has knife
like orange petals
that stick up verti-
cally

this flower has or-
ange upright petals
that have pointed
tips

the petals on this
flower are long and
droopy with an or-
ange color to them

a bird shaped flower
with shiny orange
petals that sprout out
of it’s pedicel

the petals are curled,
orange, and covered
with dark red spots

Figure 6: Given a query image, captions are retrieved. The
red colored caption represents the incorrect retrieval.

Rank2 Rank3

Query

Rank1
T

this unique flower has long
thin pink petals with a big
fussy stigma

this flower has five elon-
gated triangle shaped pur-
ple petals surrounding yel-
low stamen

this flower has white petals
with purple stripes and
long pink stamen

Figure 7: Given a query caption, images are retrieved. The
red bounding box on the image represents the incorrect re-
trieval.

for the red colored caption in the last row, where the class
is that of the image in the second row. In spite of the incor-
rectly retrieved caption, we can observe that the description
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this unique flower has long thin pink

Original query petals with a big fussy stigma.

Synthesized query Rank1 Rank2 Rank3

this unique flower has long
thin yellow petals with a
big fussy stigma

this unique flower has
short pink petals with a
long white stamen

this unique flower has
round blue petals with red
spots

Figure 8: Given an original caption, captions are synthe-
sized by swapping some words with the blue colored words
that can represent different visual characteristics. Images
are retrieved for each synthesized query. The retrieved im-
ages for the original query can be found in Fig. 7.

is closely related to the query image. Fig. 7 illustrates the
reverse retrieval. Given a query caption, top3 images are re-
trieved. We provide the incorrect retrieval case at the rank3
of the first row, indicated by the red bounding box. It has
the fussy stigma and the color similar with flowers of the
correct class (Rank1 and Rank?2 images), however it shows
a different petal shape and a larger center.

We further examine what images the synthesized text re-
trieves in Fig. 8. From the original text query at the first
row of the Fig. 7, we synthesize a new caption by swapping
some words that can represent different visual characteris-
tics. We mark those words with blue color in Fig. 8. In
the first row, we observe that the retrieved images are yel-
low colored and with the characteristic of a fussy stigma.
In the third row, no image exists in the test set that the
synthesized caption describes. Thus, the similar images
with round shaped and blue colored but no red spots are
retrieved. This suggests that DMVAE learns a sufficiently
meaningful shared latent space that allows retrieving be-
tween the image and text modalities.

5.3. Ablation Study

We examine the effectiveness of each component of DM-
VAE on MNIST and SVHN paired datasets in Tab. 3. pM
and pS represent the private space of MNIST and that of
SVHN respectively. Thus, pM and pS columns indicate the
absence (x) or presence (0) of the private space for MNIST
and SVHN, respectively. crVAE indicates the cross-VAE
loss where M2S means the cross-reconstruction is con-
ducted by transferring MNIST shared latent code to SVHN
shared latent code; and vice-versa for crVAE S2M. For ex-
ample, in the third row, the “x” of crVAE (M2S) implies no

1699

cross VAE loss in Eq. 3 for transfer from MNIST to SVHN.

In the second row of Tab. 3, without PoE, the align-
ment between two modalities becomes weaker, leading to
lower performance in both cross-generation tasks. In terms
of cross-VAE from the 3rd to the 5th rows, we can ob-
serve that the role of S2M cross-VAE is critical in order
to achieve meaningful accuracy on SVHN to MNIST cross
generation. SVHN alone is not able to learn the latent rep-
resentation sufficient enough to classify each digit identity
because the SVHN images are challenging for digit iden-
tity analysis. While trying to learn to generate MNIST, a
simpler domain to recognize the digit classes, the SVHN
shared latent space can obtain the knowledge about the digit
identity. On the other hand, the performance on MNIST-
to-SVHN cross-generation is improved significantly by the
presence of the private space. This is because the variety of
the SVHN styles cannot be expressed within the shared la-
tent code from MNIST. These results provide the evidence
of the ability of each component in DMVAE to disentangle
latent factors into the shared factor and the private factor
components.

Table 3: Ablation study on MNIST and SVHN modalities
to analyze each component of DMVAE. pM and pS repre-
sent private space of MNIST and private space of SVHN
respectively. crVAE indicates the cross-VAE loss.

Components Accuracy
pM  pS  crVAE(M2S) crVAE (S2M)  PoE ‘ M—S S—M
o o o o o 88.13 83.73
o o o o X 87.33 77.33
o o X o o 87.85 82.83
o o o X o 82.7 17.03
o o X X o 83.19 12.75
X X o o o 12.38 82.72

6. Conclusion

In this paper, we introduce a novel multi-modal VAE
model with separated private and shared spaces. We ver-
ify that having a private space per modality as well as the
common shared space can significantly impact the repre-
sentational performance of multimodal VAE models. We
also demonstrate that VAE with the cross-reconstruction is
important for separation of factors across the two sets of
spaces. Application to image-to-image and image-to-text
modeling tasks demonstrates the universal properties and
effectiveness of DMVAE across different data types.
Acknowledgement: This material is based upon work sup-
ported by the National Science Foundation under Grant No.
1955404.
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