Proceedings of the 23rd Annual Conference on Research in Undergraduate Mathematics Education

Editors:

Shiv Smith Karunakaran Zackery Reed Abigail Higgins

Boston, Massachusetts February 27 - February 29, 2020

Presented by

The Special Interest Group of the Mathematical Association of America (SIGMAA) for Research in Undergraduate Mathematics Education

Preface

As part of its on-going activities to foster research in undergraduate mathematics education and the dissemination of such research, the Special Interest Group of the Mathematics Association of America on Research in Undergraduate Mathematics Education (SIGMAA on RUME) held its twenty-third annual Conference on Research in Undergraduate Mathematics Education in Boston, Massachusetts from February 27 - February 29, 2020.

The program included plenary addresses by Dr. Gregory Larnell, Dr. Eric Knuth, and Dr. Elise Lockwood, and the presentation of 148 contributed, preliminary, and theoretical research reports and 74 posters.

The conference was organized around the following themes: results of current research, contemporary theoretical perspectives and research paradigms, and innovative methodologies and analytic approaches as they pertain to the study of undergraduate mathematics education.

The proceedings include several types of papers that represent current work in the field of undergraduate mathematics education, each of which underwent a rigorous review by two or more reviewers:

- Contributed Research Reports describe completed research studies
- Preliminary Research Reports describe ongoing research projects in early stages of analysis
- Theoretical Research Reports describe new theoretical perspectives for research
- Posters are 1-page summaries of work that was presented in poster format

The conference was hosted by the Wheelock College at Boston University.

Many members of the RUME community volunteered to review submissions before the conference and during the review of the conference papers. We sincerely appreciate all of their hard work by the 165 reviewers.

We wish to acknowledge the conference program committee for their substantial contributions to RUME and our institutions. Without their support, the conference would not exist.

Finally, we wish to express our deep appreciation for Wheelock College and Boston University. Their support enabled us to have our conference and continually support our community.

Shiv Smith Karunakaran, RUME Organizational Director Sam Cook, RUME Conference Local Organizer

Program Committee

Chair person

Shiv Smith Karunakaran Michigan State University

 $Committee\ Members$

John Paul Cook
Paul Dawkins
Oklahoma State University
Allison Dorko
Oklahoma State University
William Hall
Washington State University
Shandy Hauk
San Francisco State University
Yvonne Lai
University of Nebraska-Lincoln

Kristen Lew Texas State University
Luis Leyva Vanderbilt University

Jason Martin University of Central Arkansas

Kevin Moore University of Georgia

Jason Samuels City University of New York Hortensia Soto Colorado State University Natasha Speer University of Maine

April Strom Scottsdale Community College

Nick Wasserman Columbia University

Megan Wawro Virginia Tech

Michelle Zandieh Arizona State University

Local Organizers

Boston University
Greg Benoit
Aaron Brakoniecki
Leslie Dietiker
Ellen Faszewski
Elyssa Miller
Hector Nievas
Andrew Richman
Meghan Riling
Rashmi Singh
Rae Starks

Rutgers University Brittany Marshall Christian Woods

Pine Manor College Rebecca Mitchell

Temple University
Sue Kelley

Tufts University
Eric Henry

University of New Hampshire
David Fifty
Cammie Gray

Reviewers

Allison Dorko

Aditya Adiredja William Hall Erica Miller Sara Ahrens Leigh Harrell-Williams Alison Mirin

James Alvarez Neil Hatfield Thembinkosi Mkhatshwa

Tenchita Alzaga Elizondo Shandy Hauk Kevin Moore

Naneh Apkarian Jia He Deborah Moore-Russo

Spencer Bagley Meredith Hegg Brooke Mullins Janessa Beach Mary Heid Eileen Murray Svbilla Beckmann Michael Hicks Kedar Nepal Ashley Berger Cody Hood Alan O'Bryan Anna Marie Bergman Jihve Hwang Lori Ogden Matthew Black Gary Olson Andrew Izsak Heather Bolles Teo Paoletti Haley Jeppson Stacy Brown Carolyn Johns Erika Parr Kelly Bubp Estrella Johnson Mary Pilgrim Orly Buchbinder Steven Jones Branwen Purdy Linda Burks Eun Jung Farzad Radmehr Zackery Reed Cameron Byerley Avijit Kar Gulden Karakok Gunhan Caglayan Paul Regier

Marilyn Carlson Karen Keene Jon-Marc Rodriguez Darryl Chamberlain Jr. Rachel Keller Kimberly Rogers Ahsan Chowdhury Aubrey Kemp Svitlana Rogovchenko John Paul Cook Andrew Kercher Yuriy Rogovchenko Samuel Cook Minsu Kim Kyeong Hah Roh Yi-Yin Ko Doug Corey Rachel Rupnow Jennifer Czocher Vladislav Kokushkin Megan Ryals Paul Dawkins Igor Kontorovich Jason Samuels Jessica Deshler George Kuster V. Rani Satvam

Gregory Downing Jessica Lajos Benjamin Schermerhorn

Milos Savic

Irene Duranczyk Inyoung Lee Vicki Sealey

Yvonne Lai

Amy Ellis Younhee Lee Megan Selbach-Allen Brittney Ellis Tamara Lefcourt Benjamin Sencindiver

Mariana Levin Kaitlyn Serbin Nicole Engelke Infante Ander Erickson Kristen Lew Ariel Setniker Sarah Erickson Luis Leyva Mollee Shultz Joshua Fagan Bivao Liang John Smith David Fifty Elise Lockwood Trevor Smith Kelly Findley Michael Loverude Hortensia Soto Rochy Flint Martha Makowski Natasha Speer Nicholas Fortune Ofer Marmur Julia St. Goar Tim Fukawa-Connelly Jason Martin Cynthia Stenger Edgar Fuller Antonio Martinez Sepideh Stewart Keith Gallagher Matthew Mauntel April Straum Jessica Gehrtz Kathleen Melhuish Jenna Tague Sayonita Ghosh Hajra Caroline Merighi Michael Tallman Simon Goodchild Vilma Mesa Gail Tang Jessica Hagman David Miller Halil Tasova

Michael Tepper Nicholas Wasserman Xiaoheng (Kitty) Yan Dawn Teuscher Laura Watkins Sean Yee John Thompson Megan Wawro Franklin Yu Karina Uhing Keith Weber Madhavi Vishnubhotla Aaron Weinberg Yusuf Zakariya Matthew Voigt Derek Williams Michelle Zandieh Kristen Vroom Molly Williams

Claire Wladis

Aaron Wangberg

vii

Charlotte Zimmerman

Table of Contents

Contributed Reports

Undergraduate students' perspectives on what makes problem contexts engaging	1
Undergraduates' perceptions of the benefits of working tasks focused on analyzing student thinking as an application for teaching in abstract algebra	10
James A. Mendoza Álvarez, Andrew Kercher, Kyle Turner	
Assessing the uptake of research based instructional strategies by postsecondary mathematics instructors	18
Naneh Apkarian, Estrella Johnson, Jeffrey R. Raker, Marilyne Stains, Charles Henderson, Melissa H. Dancy	
University calculus students' use and understanding of slope conceptualizations	28
A preservice teacher's Emerging concept image of function: The case of Sofia	37
A local instructional theory for the guided reinvention of a classification algorithm for chemically important symmetry groups	45
Changing the script: How teaching calculus using team-based learning misaligns with students' views of how learning mathematics occurs	53
Secondary prospective teachers' strategies to determine equivalence of conditional statements Orly Buchbinder, Sharon McCrone	62
Characteristics and evaluation of ten mathematics tutoring centers	70
Exploring the knowledge base for college mathematics teaching	79
Coordinating two meanings of variables in proofs that apply definitions repeatedly	87
Student verification practices for combinatorics problems in a computational environment	96
Teaching Statistics with a Critical Pedagogy	104
Influence of curriculum on college students' understanding and reasoning about limits	115
How do students engage with 'practice another version' in online homework	124

Investigating the effects of culturally relevant pedagogy on college algebra students' attitudes towards mathematics	133
Measuring the effectiveness of social justice pedagogy on K-8 preservice teachers	142
Departmental change in reaction to the threat of losing calculus: Three cases	151
Empirical re-conceptualization: Bridging from empirical patterns to insight and understanding $Amy\ Ellis,\ Elise\ Lockwood,\ Alison\ Lynch$	159
Every mathematics class is online: Students' use of internet resources for self-directed learning \dots $Ander\ Erickson$	168
Investigating combinatorial provers' cognitive models of multiplication	176
A model for assessing ITP students' ability to validate mathematical arguments	184
Characterizing student engagement in a post-secondary precalculus class	193
Chavrusa-style learning in mathematics classrooms: Instructor and student perspectives	201
What comes to mind? A case study of concept images in topology	210
An investigation of an effective mathematical reader and his interactions and beliefs about mathematics and mathematics textbooks: The case of Shawn	218
Investigating instructors' perceptions of IBL: A systemic functional linguistic approach	227
An analysis of opportunities for reasoning-and-proving in a university precalculus textbook	234
An investigation of a students' constructed meanings for animations in construction of a hypothetical learning trajectory	243
Ask me once, ask me twice: An initial psychometric analysis of pre-service mathematics teachers' responses on a retrospective pre-post format of the self-efficacy to teach statistics (SETS-HS) Instrument	252
Students' interpretations of the prompts for proving tasks: "Prove" and "Show"	260

Future teachers' use of multiplication and division to formulate linear equations	268
Exploring the genetic decomposition of interior and exterior angles of polygons with the use of computer programming and GeoGebra	277
A comprehensive hypothetical learning trajectory for the chain rule, implicit differentiation and related rates: Part II, a small-scale teaching experiment	285
Tutoring beyond show and tell: An existence proof	294
Student self-and simulated peer-evaluation of proof comprehension: Tina	303
A calculus student's thinking about the idea of constant rate of change	311
The role of gestures in teaching and learning proof by mathematical induction	320
One mathematician's epistemology of proof and its implications for her comments and marks on students' proof	329
Minding the gaps: Algebra skills of university students	338
Construction of a mathematics learning assistant's fragile mathematics identity $\dots Nancy\ Emerson\ Kress$	348
Framework for characterizing students' reorganization of school mathematics understandings in their collegiate mathematics learning	358
Math and moral reasoning in the age of the internet: Undergraduate students' perspectives on the line between acceptable use of resources and cheating	366
A conceptual analysis for optimizing two-variable functions in linear programming	374
Making sense of irrational exponents: University students explore	382
Promoting instructor growth and providing resources: Course coordinator orientations toward their work	390
Get that basket! Deciphering student strategies in the linear algebra game vector unknown	398

Caroline J. Merighi	407
A confirmatory factor analysis of EQIPM, a video coding protocol to assess the quality of community college algebra instruction	415
Analyzing collegiate mathematics observation protocols: Attending to the instructional triangle and inquiry-based mathematics education practices	422
Students' understanding of partial derivatives	430
Using RME to support PSTs' meanings for quadratic relationships	440
Quantitative reasoning and symbolization activity: Do individuals expect calculations and expressions to have quantitative significance?	449
Development of students' shared understanding in guided reinvention of a formal definition of the limit - from commognitive perspective	458
Students' interpretations of expressions from calculus statements in the graphical register	466
Folding back in the Arzelà-Ascoli theorem	475
How problem posing can impact student motivation: A case study	485
Varieties of sameness: Instructors' descriptions for themselves and students	494
Metacognition in college algebra: An analysis of "simple" mistakes	502
Affective pathways of undergraduate students while engaged in proof construction tasks $\dots V.$ Rani Satyam	511
A tale of two sides: Students' feedback preferences and professor's feedback provisions	520
Students' language about basis and change of basis in a quantum mechanics problem	529
The decision to use inquiry-oriented instruction: Why don't beliefs align with practice?	538
"What happened to the vector?" Felix's emerging conception of translations	547

Emear algebra thinking in the embodied, symbolic and formal worlds: Students' reasoning behind preferring certain worlds	555
Reasoning covariationally about constant rate of change: The case of Samantha	563
The role of lines and points in the construction of emergent shape thinking	571
You don't want to come into a broken system: Critical and dominant perspectives for increasing diversity in STEM among undergraduate mathematics program stakeholders	580
Tasks to foster mathematical creativity in calculus I	588
Factors that influence graduate student instructors' pedagogical empathy $\dots ext{}$ $Karina\ Uhing$	598
Dimensions of variations in group work within the "same" multi-section undergraduate course John P. Smith III, Valentin Küchle, Sarah Castle, Shiv S. Karunakaran, Younggon Bae, Jihye Hwang, Mariana Levin, Robert Elmore	606
Differentiating between quadratic and exponential change via covariational reasoning: A case study $Madhavi\ Vishnubhotla,\ Teo\ Paoletti$	614
A case of learning how to use and order quantified variables by way of defining	623
Student reasoning with graphs, contour maps, and rate of change for multivariable functions \dots $Aaron\ Wangberg$	631
Student meanings for eigenequations in mathematics and in quantum mechanics	638
In the driver's seat: course coordinators as change agents for active learning in university precalculus	
to calculus 2	646
Interactions between student engagement and collective mathematical activity	655
Calculus for teachers: Vision and considerations of mathematicians	664
Interpreting undergraduate student complaints about graduate student instructors through the lens of the instructional practices guide	673
Students' meanings for the derivative at a point	681

Theoretical Reports

A comprehensive hypothetical learning trajectory for the chain rule, implicit differentiation, and related rates: Part I, the development of the HLT	690
Mathematicians' proof repertoires: The case of proof by contradiction	699
The theory of quantitative systems: Deconstructing "symbolic algebra" to understand challenges in linear algebra courses	707
Working towards a unifying framework for knowledge for teaching mathematics	716
A meanings-based framework for textbook analysis	725
A potential foundation for trigonometry and calculus: The variable-parts perspective on proportional relationships and geometric similarity	734
Theorizing teachers' mathematical learning in the context of student-teacher interaction: A lens of decentering	742
A quantitative reasoning framing of concept construction	752
A proposed framework of student thinking around substitution equivalence: Structural versus operational views	762
The modeling space: An analytical tool for documenting students' modeling activities	769
What is encompassed by responsiveness to student thinking?	777
A theorization of learning environments to support the design of intellectual need-provoking tasks in introductory calculus	787
Knowledge for teaching at the undergraduate level: Insights from a STEM-wide literature review Natasha Speer, Ginger Shultz, Tessa C. Andrews	796
Operational meanings for the equals sign	805
Mathematical limitations as opportunities for creativity: An anti-deficit perspective	814
A tour of cognitive transformations of semiotic representations in advanced mathematical thinking Jessica E. Lajos, Sepideh Stewart	820

Metacognition: An overlooked dimension in connecting undergraduate mathematics to secondary teaching	829
Preliminary Reports	
How mathematicians attend to learning goals for teachers	837
Linking terms to physical significance as an evaluation strategy	843
Adapting the norm for instruction: How novice instructors of introductory mathematics courses align an active learning approach with the demands of teaching	850
Examining the qualities of schema in topology	857
A conceptual blend analysis of physics quantitative literacy reasoning inventory items	862
Would you take another inquiry-based learning mathematics course? Links to students' final exam grades and reported learning gains	868
Active learning approaches and student self-confidence in calculus: A preliminary report	874
Defining key developmental understandings in congruence proofs from a transformation approach \dots Julia St. Goar, Yvonne Lai	880
Attending mathematics conferences as a means for professional development: A preservice teacher's evolving identity	886
Multivariate functions, physical representations, and real world connections	892
Novice and expert evaluation of generic proofs	897
Proving activities of abstract algebra students in a group task-based interview	903
Student responses to an unfamiliar graphical representation of motion	909
Adapting K-12 teaching routines to the advanced mathematics classroom	915
When covariational reasoning does not "work": Applying coordination class theory to model students' reasoning related to the varied population schema and distribution graphs	922

Undergraduate learning assistants and mathematical discourse in an active-learning precalculus setting Milos Savic, Katherine Simmons, Deborah Moore-Russo, Candace Andrews	930
Exploring and supporting physics students' understanding of basis and projection	935
Getting back to our cognitive roots: Calculus students' understandings of graphical representation of functions	942
Physics students' implicit connections between mathematical ideas	949
Supporting underrepresented students in an undergraduate mathematics program	956
Comparison of a pre-requisite to co-requisite model of remedial mathematics	962
Shifting pedagogical beliefs into action through teaching for mathematical creativity	968
Students' understanding of infinite iterative processes	975
" $f(x)$ means y ": Students' meanings for function notation	981
Identifying covariational reasoning behaviors in expert physicists in graphing tasks	985
Self-efficacy in a flipped calculus II classroom	991
Implementing an open educational platform in blended learning	998
Singular and combined effects of learning approaches, self-efficacy and prior knowledge on university students' performance in mathematics	1003
Student mathematical activity during analogical reasoning in abstract algebra	1010
How different is different? Examining institutional differences prior to scaling up a graduate teacher training program to improve undergraduate mathematics outcomes	1016
An example of computational thinking in mathematics	1022
The motivations and perceived success of different calculus course variations	1028
Math outreach - A learning opportunity for university students	1034

Analyzing the beliefs and practices of graduate and undergraduate mathematics tutors	1039
University students' defining conceptions of linearity	1046
How mathematicians assign homework problems in advanced mathematics courses	1053
Relational interactions in inquiry-oriented undergraduate mathematics classes	1060
A prospective teacher's mathematical knowledge for teaching of inverse functions $\dots \dots \dots$	1066
Supporting students' construction of dynamic imagery: An analysis of the usage of animations in a calculus course	1072
Links between engagement in self-regulation and performance	1079
Developing a framework for the facilitation of online working groups to support instructional change Nicholas Fortune, Ralph E. Chikhany, William Hall, Karen Keene	1086
For women in lecture, how they feel matters – a lot	1093
Assessing the disciplinary perspectives of introductory statistics students	1099
Students' approaches to solving first law problems following calculation-intensive thermodynamics coursework	1105
Mathematical modeling competitions from the participants' perspective	1111
Communication and community: GTA perceptions on a professional development program	1117
$\label{lem:content-specific confidence in entry-level college mathematics courses: Relationships and patterns \dots \\ \textit{Martha Makowski}$	1123
Features of discourses regarding linear independence concept	1129
Exploring the relationship between textbook format and student outcomes in undergraduate mathematics courses	1135
The use of nonstandard problems in an ordinary differential equations course for engineering students reveals commognitive conflicts	1141

The role of mathematical meanings for teaching and decentering actions in productive student-teacher interactions	1146
Poster Reports	
I'm still confused in the most basic way: How responsibilities impact mathematics learning while video watching	1154
Comics as pedagogical tools in first-year linear algebra	1156
The implications of attitudes and beliefs on interactive learning in statistics education \dots Florian Berens, Sebastian Hobert	1158
Exploring mathematical connections between abstract algebra and secondary mathematics from the perspectives of mathematics faculty and practicing teachers	1160
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1162
Student engagement and gender identity in undergraduate Introduction to Proof	1164
Racial differences and the need for post-secondary mathematics remediation	1166
The Connection between Perception of Utility in Careers with Math and STEM Career Interest \hdots $Elizabeth\ Howell$	1168
Undergraduates' geometric reasoning of complex integration	1170
Investigating the influence of gender identity and sexual orientation in small group work \dots <i>Jeremy R. Bernier</i>	1173
Exploring student understanding of implicit differentiation	1175
Student interpretation of Cartesian points and trends of a chemical reaction coordinate diagram with abstracted physical dimensions	1177
Investigating student reasoning about the Cauchy-Riemann equations and the amplitwist $\dots \dots Jonathan\ D.\ Troup$	1179
"Meaning making with math": A mathematical modeling approach to supporting conceptual reasoning in undergraduate chemistry	1181
The mathematical inquiry project: Effecting widespread, sustainable instructional change Josiah G. Ireland, John Paul Cook, Allison Dorko, William Jaco, Michael Oerhrtman, April Bichardson Michael A Tallman	

Pre-service mathematics teachers' engagement with cognitive demand of mathematics tasks Zareen Rahman	1185
An overview of the Orchestrating Discussion Around Proof (ODAP) Project	1187
Informing the community about advancing students' proof practices in mathematics through inquiry, reinvention, and engagement	1189
Logical implication as an object and proficiency in proof by mathematical induction	1191
Multiplication by sunlight: How can a geometric definition be realized in a physical tool? Justin Dimmel, Eric Pandiscio, Adam Godet	1193
Calculus Students' Visualization of Volume	1195
Exploring the development of mathematical problem solving strategies in the transition from novice to experienced mathematicians	1197
A framework for meaning in mathematics	1199
Conflicts during mathematical modeling	1201
Aligning assessment with instruction in a creativity in mathematics course	1203
Student thinking about the graphs of functions of two variables via software visualization	1205
Myriad issues in teaching college geometry	1207
Building GTAs' knowledge & motivation to promote equity in undergraduate mathematics Jessica J. Webb, RaKissa Manzanares, Scotty Houston, Josias Gomez, Leigh M. Harrell-Williams	1209
How can regional RUME conferences support inclusion into the larger RUME community? Zareen Rahman, Erica R. Miller, V. Rani Satyam	1212
GTAs' conceptualization of active learning in undergraduate mathematical sciences courses	1214
Using successful affective measures among native poopulations in the U.S	1216
Using the learning cycle and mathematical models to engage students in sensemaking Involving metamodeling knowledge in chemistry	1218
Examining academic performance and student experiences in an emerging scholars program Jennifer R. McNeilly	1220

The ant farm task - The case of Ginny	1222
Group testing in calculus - How do students in groups work together equitably?	1224
Quantitative reasoning skills for successfully working with real-world data	1226
Reconceptualizing mathematics teacher knowledge in domain specific terms $\dots \dots \dots$	1228
Perspective outside and within spatial diagrams: Pre-service elementary teachers' investigations of shearing	1230
Characterizing undergraduate students' proving processes out of their "stuck points" $\dots \dots Yaomingxin \ Lu$	1232
Coordinating two levels of units in calculus: The story of Rick	1234
Using activity theory to understand tensions in an extra-curricular mathematical modeling project with biology undergraduates	1236
Investigation of affective factors which may influence women's performance in mathematics \dots $Judy\ I.\ Benjamin$	1238
Reforming introductory math courses to support success for underserved students who place in developmental math	1240
Analysis of collaborative curriculum adaptation	1242
Engaging students in reflective thinking in precalculus	1244
The interaction between instructor and students in community college algebra classrooms	1246
Justifying and reconstructing in the generalizing process: The case of Jolene	1248
College mathematics instructors learning to teach future elementary school teachers	1250
Replacing remedial algebra with a credit bearing math education course	1252
A comparison of students' quantitative reasoning skills in STEM and non-STEM math pathways Emily Elrod, Joo Young Park	1254
Using commognition to study student routines performed in the context of ring theory	1256

An analysis of racialized and gendered logics in black women's interpretations of instructional events in undergraduate pre-calculus and calculus classrooms	1258
Relationships between Lisa's units coordination and interpretations of integration \dots Steven Boyce, Jeffrey Grabhorn	1260
Chase that rabbit! Designing vector unknown: A linear algebra game	1262
Designing proof comprehension tests in real analysis	
Influence of university teachers' meanings on their interpretation of student meanings	1266
What meanings of concavity might students construct in a dynamic online environment?	1268
Prospective and in-service mathematics teachers' knowledge in the teaching of statistics	1270
A framework of covariational reasoning in introductory physics	1272
A tale of two approaches: Comparison of evaluation strategies in physics problem solving between first- and third-year students	1274
Student use of Dirac notation to express probability concepts in quantum mechanics \dots William Riihiluoma, John-Thompson	1276
Using morphemes to understand vocabulary in college algebra	1278
Defining and measuring sense-making and procedural flexibility in community college algebra classrooms	1279
Using didactical engineering to teach mathematical induction	1281
Using diagnostic testing to challenge barriers to access and inform instruction in calculus $1 \dots Kimberly\ Seashore,\ Alexandra\ Aguilar$	1283
Navigating college algebra in 2019: A case of internet resources as a guide	1285
Elementary school geometry to university level calculus: Building upon learning trajectories rooted in covariational reasoning with area contexts to support covariational reasoning related to implicit differentiation	1287

Is research in a lower-level mathematics class RUME?	1289
Geillan D. Aly	
Using primary sources to improve classroom climate and promote shared responsibility	1291
Anil Venkatesh, Spencer Bagley	

Tasks to Foster Mathematical Creativity in Calculus I

Houssein El Turkey Gülden Karakök Gail Tang University of New Haven University of Northern Colorado University of La Verne

Paul Regier Miloš Savić Emily Cilli-Turner University of Oklahoma University of Oklahoma University of La Verne

Fostering students' mathematical creativity necessitates certain instructional actions - one of which is designing and implementing tasks that foster creativity. Drawing on the literature on mathematical creativity, we describe existing research-based features of tasks for eliciting student creativity, or creativity-based tasks, and provide suggestions for implementation of such tasks. Based on these features, we analyzed two instructors' first experiences designing and implementing creativity-based tasks in Calculus I. Both instructors' frequent use of the multiple-solutions feature suggests that this feature could be an entry-point for designing and implementing creativity-based tasks for other instructors seeking to foster creativity.

Keywords: Calculus, creativity-based tasks, mathematical creativity, task design

The importance of mathematical creativity in mathematics and mathematics courses is documented in numerous research studies, policy and curriculum-standard documents (e.g., Borwein, Liljedahl, & Zhai, 2014; CUPM, 2015; Levenson, 2013; Moore-Russo & Demler, 2018; NSB, 2010; Silver, 1997; Sriraman, 2009; Tang et al., 2017; Zazkis, & Holton, 2009). Askew (2013) points out that "[c]alls for creativity within mathematics and science teaching and learning are not new, but having them enshrined in mandated curricula is relatively recent" (p. 169). For example, in its latest guidelines for majors in mathematical sciences, the Mathematical Association of America's Committee on the Undergraduate Program in Mathematics (CUPM) states that "these major programs should include activities designed to promote students' progress in learning to approach mathematical problems with curiosity and *creativity* [emphasis added] and persist in the face of difficulties" (Schumacher & Siegel, 2015, p. 10). In this paper, we focus on mathematical creativity in Calculus I, a course that is commonly offered for majors in these mathematical sciences programs.

Students' experiences in Calculus I play a critical role in their persistence in science, technology, engineering, and mathematics (STEM) programs (Rasmussen et al., 2019). The lack of or limited exposure to class materials (e.g., tasks, homework problems, exam questions) that promote conceptual discussions is one of the reasons reported by Calculus I students for switching out of a STEM major (Johnson, Ellis, & Rasmussen, 2014). In fact, a textbook analysis (Lithner, 2004) concluding that 70% of Calculus exercises at the end of the section were about mimicking previously done examples of the same section is one indication to students' limited exposure to conceptual ideas. Though there are Calculus reform projects that address this particular issue by advocating for new curriculum materials for more conceptual discussions (see Bressoud et al., n.d.), we believe it is still a priority to explicitly value and foster students' mathematical creativity in Calculus I classes. In particular, we argue for the creation and implementation of tasks that are designed not only for conceptual understanding but also for enhancing students' mathematical creativity. In this paper, we discuss research-based features of tasks that promote mathematical creativity and their potential implementation. Additionally, we

share analysis of two instructors' uses of these features in the design and implementation of the tasks in their Calculus I classes.

Theoretical Perspective and Background Literature

In our work, we define mathematical creativity as a process of offering new solutions or insights that are unexpected for the student with respect to their mathematics background or the problems they have seen before (Liljedahl & Sriraman, 2006; Savic et al., 2017). This process-oriented definition (Pelczer & Rodriguez, 2011), in contrast to examining final products (Runco & Jaeger, 2012) of those processes, provides a dynamic view of creativity rather than a static one. We focus on valued mathematical actions (Cuoco, Goldenberg, & Mark, 1996; Schoenfeld, 1992) such as taking risks and making connections that can lead to creativity in mathematics (Karakok et al., 2015; Leikin, 2009). Our definition also encompasses creativity relative to the student versus creativity relative to the field of mathematics (Beghetto & Kaufman, 2013; Leikin, 2009). Finally, this particular definition identifies creativity specific to the domain of mathematics rather than domain-general creativity (Baer, 1998).

Fostering students' mathematical creativity, as we define it, necessitates certain instructional actions that are encapsulated by Sriraman's (2005) five theoretical principles. The *Gestalt principle* discusses the importance of giving time to allow incubation to occur (Hadamard, 1945). The *Aesthetic principle* highlights explicitly valuing the beauty and uniqueness of solutions or methods. The *Free-market* and *Scholarly principles* emphasize creating a safe environment where students can present and defend their work, and allowing students to build off one another's work, respectively. The fifth principle, *Uncertainty*, focuses on tolerating ambiguity and knowing that it is acceptable to not know a solution. Levenson (2011) provides empirical support for these principles and adds "choosing appropriate tasks" (Levenson, 2013, p. 273) as one of the roles of teachers for the promotion of creativity.

We conjecture that intentionally implemented tasks designed to align with Sriraman's principles have the potential to enhance mathematical creativity. For example, a task that is aligned with the Gestalt principle needs to be challenging enough for students that they would need time to incubate. An intentional implementation of such a task that demonstrates the Scholarly principle would include an instructor giving students the opportunities to discuss their approaches and build off of one another's work; all the while, students' mathematical creativity is at the forefront of such discussions.

Task design

We adopt Henningsen and Stein's (1997) definition of a mathematical task as "a classroom activity, the purpose of which is to focus students" attention on a particular mathematical concept, idea, or skill" (p. 528). For a task to promote creativity, it needs to have additional features that provide students opportunities to push their mathematical processes toward new solutions or insights that are unexpected for them. For practical reasons, we use the term *creativity-based tasks* to describe such tasks.

We situate our discussion of creativity-based tasks and task design within two perspectives of creativity: *Developmental* and *Problem Solving and Expertise-Based* perspectives (Kozbelt, Beghetto, & Runco, 2010). The *Developmental* perspective posits that creativity develops over time (i.e., process-orientation) in an environment where students are provided authentic tasks and opportunities to interact with others. The *Problem Solving and Expertise-Based* perspective emphasizes problem-solving processes, heuristics, and tasks, underscoring the use of tasks to challenge students' thinking processes and provide opportunities to solve problems in various

ways. A key component of our work is developing tasks that would allow such processes. We base these tasks on Skemp's (1976) relational understanding framework and Lithner's (2008) creative mathematically-founded reasoning. As relational understanding relates to students' development of conceptual structures, a creativity-based task promotes both making connections between concepts and taking risks by students to become independent thinkers. Additionally, creative mathematically-founded reasoning involves novel (with respect to students) mathematical arguments. It is noted by Boesen, Lithner, and Plam (2010) that students use creative mathematically-founded reasoning to solve unfamiliar, nonroutine tasks. In this sense, creativity-based tasks can be viewed as unfamiliar and non-routine.

Features of Creativity-Based Tasks

"Recall and apply" tasks are important in developing procedural fluency in Calculus I, but to foster mathematical creativity, instructors need to design tasks that require "evaluating mathematical statements; example generation (constructing an instance); analyzing reasoning; conjecturing; generalizing; visualization; using definitions" (Breen & O'Shea, 2011, p.87). Tasks with these features can promote conceptual discussions and making connections between seemingly different ideas and concepts.

Silver (1997) discusses the importance of the interplay between problem posing and problem solving to creativity and states "[i]t is in this interplay of formulating, attempting to solve, reformulating, and eventually solving a problem that one sees creative activity" (p. 76). We believe it is important for tasks to engage students in problem posing and problem solving not only in order to promote creativity but also to enable "teachers and students to become subjects of the educational process by overcoming authoritarianism and an alienating intellectualism" (Freire, 1999, p. 8). The need for posing problems can be facilitated by assigning tasks that are ill-defined, ambiguous, or open-ended. Kwon et al. (2006) define an incomplete or an open-ended problem as "a problem which does not define clearly what the question asks for, therefore allowing many possible solutions" (p. 52). Thus, another feature of a creativity-based task is providing opportunities for students to pose problems and questions, then to seek answers to these problems and questions (Haylock, 1997; Silver 1997). Experts describe the ability to identify key research questions as part of their creative work (e.g., Hadamard, 1945; Mansfield & Busse, 1981).

Relating to many possible solutions, Leikin (2013) defines a multiple-solution_task as one that "explicitly requires students to solve a mathematical problem in different ways" (p. 388) where different solutions are determined by: "(a) different representations of some mathematical concepts involved in the task, (b) different properties (definitions or theorems) of mathematical objects within a particular field, or (c) different properties of a mathematical object in different fields" (Leikin, 2013, p. 388). Thus, multiple-solution tasks can also promote utilizing other representations (verbal, symbolic, gestures) as well as connecting certain aspects of different representations in a way that fosters deeper mathematical thinking. Multiple-solution tasks not only value students' individual approaches, but they also allow for originality and novelty in using certain standard or less standard tricks.

Examples

One of the tasks that we designed for Calculus I, the *Circle Task* poses the questions "Is there anything in real-life that is a perfect circle? How do you know if you have a perfect circle?" This task involves the mathematical concepts of infinitesimals, (possibly) limits, integrals, and arc length. As a creativity-based task, its open-ended nature provides opportunities for students to

take risks in exploring novel ideas and to make conceptual connections to fundamental aspects of Calculus.

As another example, we modified a typical "find the limit" question to "Consider the limit $\lim_{x\to 1} \frac{\sqrt{x}-1}{x-1}$. Evaluate the limit in as many ways as possible." We designed this *Limit Task* as a creativity-based task that involves the mathematical concepts of limits and derivatives. By asking students to evaluate the limit in more than one way, students are pushed to think of a solution beyond one that they are mathematically inclined to provide. As the question did not specify how students are to approach the problem (algebraically, graphically, using a table, etc), the task carries the open-ended feature. The task fosters making connections between various concepts as students could view this limit as a slope of the tangent line, which could be computed by the derivative at 1.

Task Implementation

Stein, Grover and Henningsen (1996) noticed that tasks that were designed to be cognitively demanding (e.g., involving conjecturing, justifying, generalizing) became less demanding because they "became routinized, either through students' pressing the teacher to reduce task ambiguity and complexity by specifying explicit procedures or steps to perform or by teachers' taking over the challenging aspects of the task" (p. 479). That is to say, the implementation of a task plays a crucial role in fostering creativity.

To mitigate the possibility of a reduction in cognitive demand, we suggest using Sriraman's (2005) five principles as guidelines for implementing creativity-based tasks. To bridge theory and practice, the authors (Cilli-Turner et al., 2019) investigated one teacher's actions with the five principles and suggested numerous teacher actions stemming from these principles to potentially foster students' mathematical creativity. Building on the results from (Cilli-Turner et al., 2019), we suggest that when implementing an open-ended task such as the Circle Task, instructors could assuage students' discomfort in task ambiguity (Uncertainty) by assuring students that multiple solutions exist. The instructors can also provide additional time for students to incubate (Gestalt) on what it means to have a perfect circle and a real-life circle. Following this incubation, instructors can give students opportunities to present their findings (Free Market and Scholarly). Similarly, the Limit Task affords different possible implementations because it has a "call-back" feature where instructors can use it progressively at various points throughout the semester as new material is covered, deepening students' incubation period (Gestalt). Aside from (re)using this task while covering graphs, limits, and derivatives, the task can be revisited after covering L'Hospital's Rule by asking students to find the limit in four different ways and giving students opportunities to share (Free Market and Scholarly) these different ways. Instructors can facilitate the Aesthetic principle by valuing the novelty of using the trick of factoring linear terms in this limit.

Research Methods

As part of a larger research study that explores mathematical creativity in Calculus I classes, our research team designed the two creativity-based tasks: the Circle Task and Limit Task. These two tasks and their features were shared with two instructors, Jo Parker and Juniper Travers (pseudonymous), at a South-Midwest regional university who participated in the larger study. Prior to the start of the 'research' semester, we had 2 two-hour online professional development (PD) sessions with a two-day break between the sessions. At these sessions, we introduced some goals of the research project, features of creativity-based tasks, and the Limit Task. The sessions

also included discussions on various ways to explicitly value and foster mathematical creativity and implement creativity-based tasks. The two instructors designed a task or modified an existing one to include some creativity-fostering features. To provide extended support, the online PD continued on a weekly basis throughout the semester for an hour to support participants' instructional practices that explicitly foster mathematical creativity and task design. We facilitated open-ended discussions concerning how to assess student work on creativity-based tasks. Both instructors were asked to implement the Limit and Circle tasks in their Calculus I classes and also to develop and implement at least four other creativity-based tasks.

In this paper, we share results from our preliminary analysis of collected data to address the research question: What features do instructors use in their creativity-based task design and implementation processes? We collected instructors' creativity-based tasks, their journal entries for the PD in which they reflected on their design and implementation processes, their classroom video-recording of the days on which these tasks were used in class, and their Calculus I material from previous teaching experiences. At the end of the semester, we conducted semi-structured interviews that included questions regarding their tasks and task design processes. Instructors' tasks, journal entries, and interview transcripts were analyzed with a deductive approach using task features as codes (Patton, 2002).

These codes or features (in *italic*) were: *open-ended*; allows *multiple solutions*, *multiple representations*, *different approaches leading to one answer*, *posing problems and questions*; promotes *making connections between different concepts*, *evaluation/justification*, *generalization making, incubation*; allows for *originality/novelty*, *conjecturing*, *use of a trick or a less standard algorithm*, and *uncertainty*.

Analysis

We analyzed the tasks that instructors used as creativity-based tasks in their courses. Some of these tasks were only one problem in a longer activity sheet or an assignment set. The implementation of these tasks varied from task to task and instructor to instructor. We observed that both instructors most frequently used the "multiple solutions" feature in their tasks. These multiple-solution tasks also afforded multiple representations (algebraic, symbolic, graphical). For example, Juniper developed this extrema task:

- (a) Sketch or write the equation of a function for which the 2^{nd} derivative test is inconclusive at x = 1. Provide justification as to how you know the 2^{nd} derivative test fails.
- (b) What would be a next step for finding extrema if the 2nd derivative fails?

We coded this task as a *multiple-solution* task that could afford *multiple representations* (algebraic and/or graphical). This task also included features such as requiring students' *originality* in creating such a function, promoting *uncertainty* as students might need to try few possibilities before they find a function that works. We coded the task as one that fosters students' *evaluation* skills as it required them to justify if the test fails. We coded Part (b) of the task as *an open-ended* question where the instructor did not provide specific directions to students.

Similarly, Jo's task on integration "Find a non-trigonometric function f and domain [a, b] such that $\int_a^b f(x)dx = 0$ " was coded as a task that has *multiple solutions* and *multiple representations* (algebraic and/or graphical). It was also coded as a task requiring students' originality in creating such a function and promoting *uncertainty* as students might need to try a few possibilities before they find a function that works. As a contrast to the extrema task, we did not code this task as an open-ended one because the question instructed students to find such a

function, and hence students knew, before tackling the task, that there will be at least one. If the task was phrased "Is there a non-trigonometric function...? If so, find at least one (or two)" then it would have carried the open-ended feature.

In many of Jo's creativity-based tasks, she asked for creation of a function that satisfies (or does not satisfy) certain criteria. With this structure, the most common feature Jo utilized was *multiple solutions* affording *multiple representations*. The *open-ended* feature was utilized on fewer occasions. The feature of *different approaches leading to one answer* was also utilized but minimally. Most of Jo's tasks fostered *making connections between different ideas and concepts* and promoted Sriraman's *uncertainty* principle.

One of the most noticeable changes between materials from her previous Calculus teaching to the 'research' semester was the adaptation of creativity-based tasks on her final exam review sheet. On the final review sheet in the previous semester, we coded 15 questions as "routine" exercises in Calculus I as they resembled the typical exercises. On the other hand, the final review sheet for the research semester had five "non-routine" creativity-based tasks with the following combination of features: multiple solutions and representations, open-ended, and different approaches. The tasks also fostered making connections between different concepts and aligned with the uncertainty principle. She also added a creativity-based task on her final exam.

Juniper's creativity-based tasks were developed for each of the following content areas: limits, continuity, relative extrema, absolute extrema, and integration. Many of these tasks asked to create a function that satisfies (or does not satisfy) certain criteria, which were similar to tasks developed by Jo. With this structure, we noticed that Juniper utilized *multiple-solution* tasks affording *multiple representations* most frequently. The *open-ended* feature was also used frequently. Juniper included tasks that required students to *pose problems and questions*. There were questions on tasks that explicitly asked students to *evaluate* or justify their answers or approaches. It was noticeable that her final exam did not include any of her creativity-based tasks and it was very similar to her final exams from previous semesters. However, she did use a creativity-based task on Exam 2.

Participants' journal entries were also coded for features of tasks. For example, Jo Parker implemented the Circle task as a writing assignment. In her teaching reflection journal, she stated that she wanted to "provide students with the opportunity to practice written communication skills while also gaining experience in answering a more open-ended mathematical question. I told the students that there was not a single correct answer to the prompt..." In this reflection, it seems that Jo Parker embraces the *open-ended* feature of this task to facilitate an additional mathematical process, written mathematical communication skill. Juniper's reflections hinted that she wanted to emphasize *incubation* in her implementation of tasks. She assigned students to work on some of the tasks outside of class and asked them to bring their work to the next class for discussion.

We also triangulated our coding of participants' tasks and journal entries with their interview transcripts. When asked "was there any particular feature that was most important to you when you were designing or thinking about these tasks," Jo referred to the features of *multiple solutions* and *posing questions*. In her implementation of her task in which she asked students to explore the conditions for which Rolle's theorem holds, she was happily surprised that even after students submitted their answers, they were posing questions and discussing ideas with each other in class. Referring to the Limit task, she said, "I love the fact that you can approach it in many different ways...I think the traditional way that students think of it is multiply by the

conjugate. But, I mean they can factor in it. I mean it's just a little trick...I think it's cute. It's a little bit outside the box but it's still within their realm of knowledge."

On the other hand, Juniper referred to the extrema task as a memorable task, stating that "[it] sticks out in my mind because that's where I actually saw [students] construct another concept that we haven't gotten to yet. So that it's like a huge leap where creativity had taken them further in mathematics content." The most common task feature she stated was justification because, "[it] is always important in my mind. They can come up with an answer, but they have to be able to explain... I think underlying all of it was 'do these questions really highlight the underlying mathematical concepts?" Although this was coded for *evaluation/justification* elsewhere in her tasks, the *multiple solutions* feature was coded most often in Juniper's tasks. It could be that in her implementation of these tasks, she provided additional questions during discussions that facilitated this feature of evaluating and justifying.

Discussion

Raising instructors' awareness of mathematical creativity and advocating for change in our pedagogies to promote creativity are the driving purposes of this project. This change can be initiated with small adjustments in task design. The results of our initial analysis of data demonstrate these adjustments made by two instructors. As noted in the analysis, the multiple solutions feature was most commonly used in tasks designed by the instructors. This result mirrors Levenson's (2013) findings that many of her participants advocated for the use of multisolution tasks. Levenson further noted that the collection of tasks that were chosen by five instructors who thought these tasks fostered mathematical creativity had fewer open-ended tasks and no problem-posing tasks. Our results indicate a similarity, which we believe is due to the fact that this project was the first time for our participants to set out to explicitly value creativity in their classroom; hence there seems to be a limited attempt to having open-ended and problem-posing tasks. Though Levenson (2013) highlights the importance of open-ended tasks and problem-posing tasks claiming that they "may afford additional opportunities for developing students' mathematical creativity and it is important to raise teachers' awareness to the variety of tasks which may serve this purpose" (p. 288).

An intentional selection or creation of tasks that have multiple solutions or that can be approached in different ways seem to be a feasible entry point into fostering mathematical creativity. Allowing students to pose problems, generate examples, make conjectures, and so forth, are other ways to direct students' thought processes towards creative mathematically-founded reasoning (Lithner, 2008). According to Beghetto (2017), instructors can alter their tasks slightly, such as asking students to come up with their own approaches, or substantially by asking students pose their own problems and ways of solving those problems.

According to Sriraman, teaching practices that are aligned with the five principles have the potential of fostering students' creativity. In our analysis of creativity-based tasks, we noticed that the Gestalt and Uncertainty principles can be viewed as features of such tasks. However, we claim that the Free Market, Scholarly, and Aesthetic principles are important aspects of the implementation of such tasks that can further promote students' creativity. In fact, these aspects of implementations differentiate creativity-based tasks from non-routine tasks. We plan to investigate this claim in future research to study potential implementations that complement creativity-based tasks in fostering students' creativity.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant Numbers 1836369/1836371.

References

- Cilli-Turner, E., Savic, M., El Turkey, H., & Karakok, G. (2019). An Initial Investigation into Teacher Actions that Specifically Foster Mathematical Creativity. In: M. Nolte, editor, Proceedings of the 11th International Conference on Mathematical Creativity and Giftedness, Hamburg, Germany, pp. 130-135.
- Askew, M. (2013). Issues in teaching for and assessment of creativity in mathematics and science. In D. Corrigan, R.F. Gunstone, & A. Jones (Eds.), Valuing assessment in science education: Pedagogy, curriculum, policy (pp. 169-182). Springer, Dordrecht.
- Baer, J. (1998). The case for domain specificity of creativity. Creativity Research Journal, 11 (2), 173-177.
- Becker, J. P., & Shimada, S. (1997). The Open-Ended Approach: A New Proposal for Teaching Mathematics. National Council of Teachers of Mathematics, 1906 Association Drive, Reston, VA 20191-1593.
- Beghetto, R. A. (2017). Lesson unplanning: toward transforming routine tasks into non-routine problems. ZDM, 49(7), 987-993.
- Beghetto, R. A., & Kaufman, J. C. (2013). Fundamentals of creativity. Educational Leadership, 70(5), 10-15.
- Boesen, J., Lithner, J, & Pahn, T. (2010). The relation between types of assessment tasks and the mathematical reasoning students use. Educational Studies in Mathematics, 75, 89-105.
- Borwein, P., Liljedahl, P., & Zhai, H. (Eds.). (2014). Mathematicians on creativity. The Mathematical Association of America.
- Breen, S. & O'Shea, A. (2011). The use of mathematical tasks to develop mathematical thinking skills in undergraduate calculus courses a pilot study. In Smith, C. (Ed) Proceedings of the British Society for Research into Learning Mathematics, 31(1), 43-48.
- Breen, S. & O'Shea, A. (2011). Designing rich sets of tasks for undergraduate calculus courses. In: Proceedings: Fourth Conference on Research in Mathematics Education MEI 4. St. Patrick's College, Drumcondra, pp. 82-92.
- Bressoud, D., Johnston, E., Murpy, C., Rhea, K., Williams, J., & Zorn, P. (n.d.). The Calculus Sequence [CUPM guide Calculus CASG report document]. Retrieved from https://www.maa.org/sites/default/files/CalculusCASGReportFinal.pdf
- Committee on the Undergraduate Programs in Mathematics. (2015). Curriculum guide to majors in the mathematical sciences. Washington DC: Mathematical Association of America.
- Cuoco, A., Goldenberg, E. P., & Mark, J. (1996). Habits of mind: An organizing principle for mathematics curricula. The Journal of Mathematical Behavior, 15(4), 375-402.
- El Turkey, H., Tang, G., Savic, M., Karakok, G., Cilli-Turner, E., & Plaxco, D. (2018). The Creativity-in-Progress Rubric on Proving: Two Teaching Implementations and Students' Reported Usage. Primus, 28(1), 57-79.
- Ervynck, G. 1991. Mathematical creativity. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 42-53). Dordrecht: Kluwer.
- Freire, P. (1999) The "banking" concept of education. In D. Bartholornae & A.Petrosky. (Eds.), Ways of Reading: An Anthology for Writers. Fifth Edition. New York: Bedford/St. Martin's.
- Hadamard, J. (1945). The mathematician's mind. Princeton: Princeton University Press.
- Haylock, D. W. (1987). A framework for assessing mathematical creativity in school children. Educational Studies in Mathematics, 18, 59-74.

- Henningsen, M., & Stein, M. K. (1997). Mathematical tasks and student cognition: Classroom-based factors that support and inhibit high-level mathematical thinking and reasoning. Journal for Research in Mathematics Education, 28(5), 524–549.
- Johnson, E., Ellis, J., & Rasmussen, C. (2014). How to make time: The relationships between concerns about coverage, material covered, instructional practices, and student success in college calculus. In T. Fukawa-Connelly, G. Karakok, K. Keene, and M. Zandieh (Eds.), Proceedings of the 18th Annual Conference on Research in Undergraduate Mathematics Education (pp. 722-729). Denver, Colorado.
- Karakok, G., Savic, M., Tang, G. & El Turkey, H. (2015). Mathematicians' views on undergraduate student creativity. In K. Krainer and N. Vondrová (Eds.), CERME 9-Ninth Congress of the European Society for Research in Mathematics Education (pp. 1003-1009). Prague, Czech Republic. Available online at http://www.mathematik.uni-dortmund.de/ieem/erme-temp/CERME9.pdf.
- Kozbelt, A., Beghetto, R. A., & Runco, M. A. (2010). Theories of creativity. In *The Cambridge Handbook of Creativity* (pp. 20-47). New York, NY, USA: Cambridge University Press.
- Kwon, O. N., Park, J. S., & Park, J. H. (2006). Cultivating divergent thinking in mathematics through an open-ended approach. Asia Pacific Education Review, 7(1), 51–61.
- Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 129-145). Haifa, Israel: Sense Publishers.
- Leikin, R. (2013). Evaluating mathematical creativity: The interplay between multiplicity and insight. Psychological Test and Assessment Modeling, 55(4), 385-400.
- Leikin, R. (2014). Challenging mathematics with multiple solution tasks and mathematical investigations in geometry. In Y. Li, E. A. Silver, & S. Li, Transforming mathematics instruction: Multiple approaches and practices (pp. 59-80). Dordrecht, the Netherlands: Springer.
- Levenson, E. (2011). Exploring collective mathematical creativity in elementary school. The Journal of Creative Behavior, 45(3), 215-234.
- Levenson, E. (2013). Tasks that may occasion mathematical creativity: teachers' choices. Journal of Mathematics Teacher Education, 16(4), 269-291.
- Lithner, J. (2004). Mathematical reasoning in calculus textbook exercises. *The Journal of Mathematical Behavior*, 23(4), 405-427.
- Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational Studies in Mathematics, 67, 255–276.
- Mann, E. (2006). Creativity: The essence of mathematics. Journal for the Education of the Gifted, 30(2), 236-260.
- Mansfield, R. S., & Busse, T. V. (1981). The psychology of creativity and discovery: Scientists and their work. Burnham.
- Moore-Russo, D. & Demler, E. L. (2018). Mathematical creativity: Views from the field. To appear in N. Amado, S. Carreira, & K. Jones (Eds.) Broadening the Scope of Research on Mathematical Problem Solving: A focus on technology, creativity and affect. New York: Springer.
- National Science Board. (2010). Preparing the next generation of STEM innovators: Identifying and developing our nation's human capital (NSB-10-33). Arlington, VA: National Science Foundation.

- Omar, M., Karakok, G., Savic, M., & El Turkey, H. (in press). "I felt like a mathematician": Homework problems to promote creative effort and metacognition. Problems, Resources, and Issues in Mathematics Undergraduate Studies (PRIMUS).
- Patton, M. Q. (2002). Qualitative research and evaluation methods. Thousand Oaks, CA: Sage Publications.
- Pelczer, I., & Rodríguez, F. G. (2011). Creativity assessment in school settings through problem posing tasks. The Mathematics Enthusiast, 8(1), 383-398.
- Rasmussen, C., Apkarian, N., Hagman, J. E., Johnson, E., Larsen, S., & Bressoud, D. (2019). Characteristics of Precalculus Through Calculus 2 Programs: Insights From a National Census Survey. Journal for Research in Mathematics Education, 50(1), 98-112.
- Runco, M. A., & Jaeger, G. G. (2012). The standard definition of creativity. Creativity Research Journal, 24 (1), 92-96.
- Savic, M., Karakok, G., Tang, G., El Turkey, H., & Naccarato, E. (2017). Formative assessment of creativity in undergraduate mathematics: using a creativity-in-progress rubric (CPR) on proving. In R. Leikin & B. Sriraman (Eds.), Creativity and Giftedness: Interdisciplinary perspectives from mathematics and beyond (pp. 23-46). New York, NY: Springer.
- Schoenfeld, A. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 334-370). New York: Macmillan.
- Schumacher, C. S., & Siegel, M. J. (2015). 2015 CUPM Curriculum Guide to Majors in the Mathematical Sciences. Washington, DC: Mathematical Association of America.
- Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. *ZDM*, *3*, 75–80.
- Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics teaching, 77(1), 20-26.
- Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics? Journal of Secondary Gifted Education, 17(1), 20-36.
- Sriraman, B. (2009). The characteristics of mathematical creativity. ZDM Mathematics Education, 41, 13-27.
- Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building student capacity for mathematical thinking and reasoning: An analysis of mathematical tasks used in reform classrooms. American educational research journal, 33(2), 455-488.
- Tang, G., El Turkey, H., Savic, M., & Karakok, G. (2015). Exploration of undergraduate students' and mathematicians' perspectives on creativity. In T. Fukawa-Connelly, N. Infante, K. Keene, & M. Zandieh (Eds.), Proceedings of the 18th Annual Conference on Research in Undergraduate Mathematics Education (pp. 993-1000). Pittsburgh, PA. Available online at http://sigmaa.maa.org/rume/RUME18v2.pdf.
- Tang, G., El Turkey, H., Cilli-Turner, E., Savic, M., Karakok, G., & Plaxco, D. (2017). Inquiry as an entry point to equity in the classroom. International Journal of Mathematical Education in Science and Technology, 48(sup1), S4-S15.
- Yoshinobu, S., & Jones, M. G. (2012). The coverage issue. *PRIMUS*, 22(4), 303-316.
- Zazkis, R., & Holton, D. (2009). Snapshots of creativity in undergraduate mathematics education. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 345-365). Haifa, Israel: Sense Publishers.