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Abstract. Global sensitivity analysis (GSA) is a method to quantify the
effect of the input parameters on outputs of physics-based systems. Per-
forming GSA can be challenging due to the combined effect of the high
computational cost of each individual physics-based model, a large num-
ber of input parameters, and the need to perform repetitive model evalu-
ations. To reduce this cost, neural networks (NNs) are used to replace the
expensive physics-based model in this work. This introduces the addi-
tional challenge of finding the minimum number of training data sam-
ples required to train the NNs accurately. In this work, a new method
is introduced to accurately quantify the GSA values by iterating over
both the number of samples required to train the NNs, terminated using
an outer-loop sensitivity convergence criteria, and the number of model
responses required to calculate the GSA, terminated with an inner-loop
sensitivity convergence criteria. The iterative surrogate-based GSA guar-
antees converged values for the Sobol’ indices and, at the same time,
alleviates the specification of arbitrary accuracy metrics for the surro-
gate model. The proposed method is demonstrated in two cases, namely,
an eight-variable borehole function and a three-variable nondestructive
testing (NDT) case. For the borehole function, both the first- and total-
order Sobol’ indices required 200 and 10° data points to terminate on
the outer- and inner-loop sensitivity convergence criteria, respectively.
For the NDT case, these values were 100 for both first- and total-order
indices for the outer-loop sensitivity convergence, and 10 and 10 for the
inner-loop sensitivity convergence, respectively, for the first- and total-
order indices, on the inner-loop sensitivity convergence. The differences
of the proposed method with GSA on the true functions are less than
3% in the analytical case and less than 10% in the physics-based case
(where the large error comes from small Sobol’ indices).
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1 Introduction

Sensitivity analysis (SA) [1,2] plays an important role in engineering, design,
and analysis. SA quantifies the effects of individual input parameters, as well as
combinations of input parameters, on the output model response [3,4]. Engineers
and scientists can use SA in deciding which parameters are important while
performing experimental or computational studies. SA can be classified as either
local [5] or global [6] SA. In local SA, small perturbations in the inputs are used
to quantify its effects on the output model response. In global SA, the variance
of output model response due to the input variability is quantified. This work
focuses on global variance-based SA with Sobol’ indices [3,4].

Model-based SA often relies on using high-fidelity physics-based models. The
use of such model-based SA can be challenging due to a variety of reasons,
including (1) the physics-based models can be computationally costly to solve,
(2) engineering problems can require a large number of variability parameters,
and (3) SA requires multiple and repetitive physics-based model evaluations.
The combination of these challenges may result in problems that are difficult to
solve in a reasonable amount of time.

To reduce this computational burden, surrogate modeling methods [7] can
be used. Surrogate models replace the high-fidelity physics-based models with a
computationally efficient ones. Surrogate models (also called metamodels) can be
broadly classified as either data-fit methods [7] or multifidelity methods [8]. In
data-fit methods, a response surface is fitted through the responses of evaluated
high-fidelity models. Examples include Kriging [9], neural networks (NN) [10], and
support vector machines [11]. In multifidelity methods, data from multiple levels
of fidelity are fused together to make predictions on the level of the high-fidelity
model. Examples of multifidelity modeling methods include Cokriging [12] and
manifold mapping [13]. This work utilizes data-fit surrogate modeling, namely
NNs, in lieu of the high-fidelity physics-based models within a GSA framework.

In this paper, a new approach for surrogate-based GSA with Sobol’ indices
[3] is proposed. Specifically, in the proposed surrogate framework, the number of
samples used to train the NNs is iteratively increased. The goal of the proposed
algorithm is twofold: to minimize the training cost of the NNs while still yielding
converged Sobol’ indices and alleviating the specification of arbitrary surrogate
modeling accuracy metrics. The latter is important because accuracy metrics for
surrogate models do not guarantee that converged Sobol’ indices are obtained.

The remainder of the paper is organized as follows. Next section gives the
details of the proposed method, including the GSA framework with surrogate
modeling, the procedure of iteratively improving sensitivity results, and the con-
vergence criteria for termination. The following section describes the results of
two numerical examples benchmarking the sensitivity results of the proposed
method against the actual sensitivity. The last section concludes the paper and
discusses potential future work.
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2 Methods

This section describes a general SA problem and the proposed algorithm, includ-
ing the iterative approach, the surrogate modeling, the Sobol” analysis, and the
convergence of the algorithm.

2.1 Problem Statement

Quantifying the effects of the inputs on the output response of a system or model
is essential for making design and engineering decisions. Global SA using Sobol’
indices [3] is one such method of quantifying the variance of the model output
due to variability in the inputs to the model. In this work, the physics-based
models are considered as black box functions described as

Y= f(X)7 (1)

where x € R” is a set of D-dimensional input parameters and a single output
y. The model output is perturbed due to probabilistically distributed random
inputs, which imitate the uncertainties from different sources. This work pro-
poses a method to determine the sensitivity of each input variability parameter
on the model output. The following sections give a detailed explanation of the
methodology used in this work.

2.2 Iterative Global Sensitivity Analysis Workflow

Figure1 demonstrates the proposed method. The process starts by taking a
small population of samples from the uncertainty input parameters. Samples
are selected randomly from each probability distribution of the inputs via the
Latin hypercube sampling (LHS) [14] method. The simulation model then gen-
erates the corresponding outputs and uses them as training data to construct
a surrogate model that mimics the same input-output behavior of the simula-
tion model. The surrogate modeling method used in this work is discussed in
the next section. GSA is then performed with this surrogate model using Sobol’
indices, and the local and global convergence of these indices are checked. In the
inner-loop, the current surrogate model is used to calculate the Sobol’ indices,
and the number of samples is increased by one order of magnitude during each
iteration until local convergence is achieved. The precision of the GSA is affected
by the predicted outputs from the surrogate model, which is usually related to
the number of physics-based model training samples. Therefore, to estimate the
global convergence of the Sobol’ indices, the above process is resampled with an
increasing number of training data samples from the physics-based model in the
outer-loop until convergence criteria are met. The outcome yields the converged
Sobol’ indices and the corresponding surrogate model.
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Fig. 1. flowchart of the surrogate-based iterative global sensitivity analysis algorithm.

2.3 Surrogate Modeling with Neural Networks

NN are a subclass of surrogate models where any function can be approximated
through a hierarchy of features [10]. Layers are steps in this hierarchy of features
[15]. The layers in-between the input and output layers are called hidden layers
[16]. An architecture of an NN is shown in Fig.2. This NN has two hidden
layers as well as an input and output layer. The input and output layers have
six inputs and three outputs, respectively. The choice of the number of inputs
and outputs is problem dependant, where this value is equal to the number of
independent (input) variables and dependant (output) variables of the problem
being solved. The output and hidden layers each consist of neurons. In a NN,
neurons are fundamental units of computation [10]. Neurons output nonlinear
transformations of a weighted sum of the outputs from a previous hidden or input
layer[10]. This nonlinear transformation is termed activation [15]. Changing the
number of hidden layers and the number of neurons in each hidden layer affects
the complexity of the function being approximated [10].
The activation function in each neuron of a given hidden layer, L, is given
by [10]
L) _ NETY ) (-1 | p(p-1)
z; —u(Z Wi % +0b ), (2)

i=1

where N(Z—1) refers to the number of neurons in the L — 1 hidden layer, while
zj(-Lfl) and zi(L) are the outputs of the j** and i*" neurons, respectively, in the
L and L —1 hidden layers, respectively. The activation function is denoted by a,
the weight between the i*” neuron in the L — 1 hidden layer and the j** neuron

in the L hidden layer is denoted by w§f), and the bias unit in the L — 1 hidden
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Fig. 2. A schematic of a neural network.

layer is denoted by X~V . These weight and biases are termed parameters of
the NN. To tune these parameters, an optimization problem is solved to reduce
the loss function (£) with respect to all the parameters of the NN. The Adaptive
Moments (ADAM) [17] gradient-based optimizer [10] is used to find the values
of these parameters, and the backpropagation algorithm [18] is used to find the
gradients.

The loss function is defined to capture the mismatch between the training
data observations, y, and the predicted, g, of the NN. In this work, the mean
squared error (MSE) along with a Lo regularization term, averaged over all the
training data, is used and is given by

o= S — ) | S (W)’

NN, Ny ®)

where the first half of the equation represents the MSE, and the second half is
the Lo regularization term. The Lo regularization term is an additional term
added to prevent the NN from overfitting the training data [10]. N, is the size of
the output layer, NV, is the number of training data sets, IV, is the total number
of parameters (W) in the NN, [ is the index of the training data-set, m is the
index of the neuron in the output layer, and ) is the regularization constant. In
practice, a subset of the training data, called mini-batch [10], is used to calculate
the loss function.

To tune the hyperparameters of the NN, a testing set of 1,000 samples is
used. These hyperparameters are varied till both the training and testing loss
values are of a similar order of magnitude and as low as possible. The com-
mon hyperparameter values for the cases selected in this study are the tangent
hyperbolic function, a learning rate of 0.001, 100 neurons in each hidden layer,
a mini-batch size of 16, and a maximum number of epochs of 2,000. For the
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borehole case, the number of hidden layers was set to two, and the A value was
set to 0.1. For the NDE case, these values were set to one and 0.01, respectively.
Definitions for these hyperparameters can be found in [10].

2.4 Sobol’ Indices

In this study, the global variance-based sensitivity analysis with Sobol’ indices
[3,4] is used. It is used to quantify the effect of each individual inputs as well
combination of inputs on the output model response. Given a model y = f(x),
where x is a set of D input parameters and y is the model output, it can be
decomposed into the following form [4]

D D
y=y0+ Y Ui+ Y Yij+t+yr2..0 (4)
i=1 i<j

where yg is a constant, y; is the model output from varying individual z;’s, y;;
is the model output from varying x; and x; simultaneously, and so on. The total
variance of y measures how far the uncertainties of the model inputs propagating
to the model output, and the right-hand side of (4) becomes

D D
Var(y) :ZVi—FZVij—Fm—FVlz...D, (5)
i=1 i<j
where
‘/i = Varxi (Ex~i (y|xl))7 (6)
Vij = Varﬁfi;‘ (Ex~ij (y|xi7 1‘3)) -Vi=Vj, (7)

and so on. x.; represents all the variables except ;. V; represents the variance
of the output due to individual x;, while V;; is the variance of the output due
to interaction between x; and x;. Dividing Eq. (5) by Var(y) results in

D D
1=ZS¢+ZS¢j+.-.+Sl2...D7 (8)
i=1

i<j

where the main effect indices, also known as first-order Sobol’s indices [4] are
given by
6= Vi _ Var(Bx, (o) o)
Var(y) Var(y)
where S; is the contribution of individual x; on the output model variance. The
total-effect Sobol’ indices [4] are given by

Vary _, (B, (y[x~:))
Sri=1-— i ,
T Var(y)

(10)

where St ; measures the contribution of both individual z; and the interaction
between x; and other model input parameters.
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2.5 Convergence Criterion

The proposed iterative method includes an outer-loop that samples the physics-
based model to train the surrogate NN models and an inner-loop that computes
the Sobol’” indices by sampling the trained NN surrogate model. Both the inner-
and outer-loop are terminated based on the convergence of the Sobol’ indices
between successive iterations.

The inner-loop convergence is measured by the absolute relative change of
Sobol’ indices defined as
(m) _ ((n-1)

54 [
dr[sl] = m 5 (11)
S

where n represents the current iteration index, ¢ represents the index of input
parameter, and s represents the value of the Sobol’ indices and is calculated
separately for first- and total-order indices. The inner-loop is terminated when
d,[s;] < €, for all s;. In this work, €, is set to 0.1.

Convergence of the outer-loop is measured by (11) and the absolute change
of Sobol’ indices, given by

da[si] = ng) _smD , (12)

where m represents the current iteration index. The outer-loop is terminated
when d,[s;] < €. or dy[s;] < €, for all s;. In this work, ¢, is set to 0.01.

3 Numerical Examples

This section presents two numerical problems; an analytical function and a
physics-based system solved using the proposed method for GSA. Both cases
involve multiple uncertainty input parameters in the computations, which usu-
ally require running numerous repetitive evaluations directly on the true function
for GSA calculations.

3.1 Case 1: Analytical Function

The analytical function used in this study is the eight variable borehole function
[19]. The borehole function is used to model the flow of water through a borehole
and is given by

2T, (H, — H))
In(r/rv) (1 + m(ﬁiﬁ%&l{w + %)

where r,, and r are the radius of the borehole and the radius of influence of the
borehole, respectively, T,, and T} are the transmissivity of the upper and lower
aquifer, respectively, H, and H; are the potentiometric head of upper and lower
aquifers, respectively, L is the length of the borehole, and K, is the hydraulic

far = (13)



Tterative Global Sensitivity Algorithm with NN Surrogate Modeling 305

conductivity of the borehole. Each of the variability parameters along with their
units and distributions are given in Table 1.

Performing GSA with the proposed method starts by drawing 10 LHS sam-
ples and producing borehole function outputs to train the NN. Once trained, this
NN model is then sampled to compute the Sobol’ indices within the inner-loop.
For this inner-loop, the NN is first sampled using 10?2 samples and these samples
are increased by one order of magnitude during each iteration of the inner-loop
until the convergence criterion of d, < ¢, is met. This is done separately for
both first- and total-order Sobol’ indices and an example of the convergence
plots are shown in Figs. 3(a) and 3(b), respectively. This process is continued by

Table 1. Variability parameters and their corresponding distribution of the borehole
function [19].

Variability parameters

Distribution

Radius of borehole, r,(m)

N(0.1, 0.01618122)

Radius of influence, r(m)

LogN(7.71, 1.00562)

Transmissivity of upper aquifer, T, (m?/yr) U (63070, 115600)
U(990, 1110)
Transmissivity of lower aquifer, T;(m?/yr) U(63.1, 116)

(

(
Potentiometric head of lower aquifer, H;(m) U (700, 820)

(

(

Potentiometric head of upper aquifer, H,(m)

Length of borehole, L(m) U (1120, 1680)
Hydraulic conductivity of borehole, K., (m/yr) | U(9855, 12045)

u !

Samples Samples

(a) (b)

Fig. 3. Case 1 inner-loop convergence of s; for the NN trained with 200 LHS samples:
(a) first-order indices, and (b) total-order indices.
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increasing the sample population to 50 in the global loop and by repeating
the previous steps. The outer-loop termination criteria are checked between the
converged Sobol’ indices of the NN models trained with 10 and 50 samples and
are shown in Figs.4(a) and 4(b) for the first- and total-order Sobol’ indices,
respectively. The entire process is repeated by increasing the number of sam-
ples required to train the NN, until the outer-loop convergence criteria of either
d, < ¢, ord, <€, is met.

For the borehole function, the NN needs to be trained with 200 samples until
these criteria are met for both the first- and total-order indices. The converged
Sobol’ indices are displayed in Fig. 5. The GSA results from the proposed method
are compared to the Sobol’” indices computed by directly sampling the borehole
function and is shown in Table 2. The radius of influence of the borehole, as well
as the transmissivity of the upper and lower aquifers have negligible influence on

10 50 100 200 10 50 100 200
NN models NN models

(a) (b)

Fig. 4. Case 1 outer-loop convergences of s; terminated on d, < €, criteria: (a) first-
order indices, and (b) total-order indices.

Table 2. Case 1 comparison of Sobol’ index values calculated by sampling the borehole
function directly and by sampling the converged NN model.

x |S; St
True function | NN model | % error | True function | NN model | % error

rv | 0.6638 0.6621 0.3% 0.6941 0.6910 0.4%

r |0 0 - 0 0.0002 -

T, 0 0 - 0 0.0002 -

H, |0.0949 0.0966 1.7% 0.1061 0.1088 2.5%
T, |0 0 - 0 0 -

H; 10.0948 0.0945 0.3% 0.1061 0.1051 0.9%

L |0.0907 0.0918 1.2% 0.1028 0.1041 1.3%
K, 10.0219 0.0222 1.4% 0.0251 0.0256 2.0%
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the output response (flow rate) of the borehole, while the radius of the borehole
has the highest impact on the flow rate.

3.2 Case 2: Ultrasonic Nondestructive Testing

This study uses the spherically-void-defect under focused transducer ultrasonic
(UT) nondestructive testing (NDT) benchmark case. This case was developed
by the World Federal Nondestructive Evaluation Center [20]. The main goal of
this case is to find the minimum number of training data required to accurately
predict the Sobol’ Indices using NN as well as quantify the contribution of each
variability parameter on the output model response.

1 T .
s,

08| Ry
0.6
04F
021

0 IH 1 I‘H l|:|_-D_

r r T H T H L K

Fig. 5. Case 1 Sobol’ index values of input parameters computed by the converged NN
model.

Figure 6 shows the setup for the UT benchmark case used in this study. The
variability parameters considered for this case are the probe angle (), the x
location of the probe (z), and the F-number (F'). The distributions of each of
these parameters are shown in Table 3.

To predict the voltage waveforms at the receiver, the Thompson-Grey
model [21] is used, while the velocity diffraction coefficient is calculated using
the multi-Gaussian beam model [22]. Closed-form expressions of the scattering
amplitude can then be calculated using the separation of variables [23]. In this
study, a center frequency of 5 MHz is used for the transducer. The density of the
fused quartz block is set to 2,000 kg/m?, while the longitudinal and shear wave
speeds are set to 5,969.4m/s and 3,774.1m/s, respectively. More information
about this model can be found in Du et al. [24].
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AT
Spherical

void defect el

Fig. 6. Setup for the ultrasonic testing case.

Table 3. Variability parameters and their distribution for the ultrasonic testing case

Variability parameters | Distribution
0 (deg) N(0, 0.5%)
2 (mm) U(o, 1)

F U(13, 15)

Table 4. Case 2 comparison of Sobol’ index values between the true model and the
converged NN model.

x | S; St,i

True model | NN model | % error | True model | NN model | % error
0 |0.8269 0.8253 0.2% 0.8367 0.8266 1.2%
F|0.0011 0.0010 9.1% 0.0014 0.0013 7.1%
z | 0.1622 0.1616 0.4% 0.1732 0.1732 0%

A similar approach to the previous case is used for this case. The same
convergence criteria were used in this case as in the previous case. The outer-
loop iterated from 10 to 100 LHS samples, and the convergence plots for the
first- and total-order indices are shown in Figs. 8(a) and 8(b), respectively. The
convergence plots for the inner-loop of the first- and total-order indices of the
trained 100 NN model are shown in Figs. 7(a) and 7(b), respectively. Both the
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first- and total-order indices require 100 samples each to terminate the outer-
loop. The first-order indices require 10 samples to terminate the inner-loop,
while the total-order indices require 103. Figure 9 shows that the F-number has
a negligible effect on the output response, while the probe angle has the highest
effect. Table4 compares the Sobol’” indices values from the proposed method to
those from the true function, showing a good match.

——(——F ——x ——3 ] ——¢§ ——F —o—yx ——3IS,
10 2 ‘z ‘4 5 10 2 3
10 10° 10 10° 10° 10 10°
Samples Samples

(a) (b)

Fig. 7. Case 2 inner-loop convergence of s; for the NN trained with 100 LHS samples:
(a) first-order indices, and (b) total-order indices.

102F-§g-~"~------ 3@:‘
_ e =0.01
&
e
S
=
10*
—.—g—o—p—o—x—o—ZST‘ —o—,9—o—F—o—y—o—2ST‘
10° 10°
10 50 100 10 50 100
NN models NN models

(a) (b)

Fig. 8. Case 2 outer-loop convergence of s; terminated on d, < €, criteria: (a) first-
order indices, and (b) total-order indices.
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1 T : :
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0.8 [ ] St 1
0.6 1
04r 1
02r 1
0 . l’_‘
14 F X

Fig. 9. Case 2 Sobol’ index values of input parameters computed by the converged NN
model.

4 Conclusion

This work has presented an algorithm for global sensitivity analysis (GSA) by
evaluating Sobol” indices iteratively with surrogate modeling. The goal of the
proposed approach is to obtain accurate GSA results while using few evalua-
tions for the true model. Furthermore, the proposed method avoids the spec-
ification of arbitrary surrogate modeling accuracy metrics. The efficacy of the
proposed algorithm is demonstrated using an analytical function and a physics-
based model and comparing against the Sobol’ indices obtained with the true
functions. The results show that accurate and fully converged Sobol’ indices can
be achieved at a low computational cost. Future research will benchmark the
computational cost and the accuracy of the proposed algorithm against other
GSA and surrogate modeling techniques.
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National Science Foundation under grants no. 1739551 and 1846862, as well as by
the Icelandic Centre for Research (RANNIS) grant no. 174573053.
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