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Abstract

The dynamic stall phenomenon is characterized by the formation of a leading-edge vortex,
which is responsible for adverse aerodynamic forces and moments adversely impacting the struc-
tural strength and life of a system. Aerodynamic shape optimization (ASO) provides a cost-effective
approach to delay or mitigate the dynamic stall characteristics. Unfortunately, ASO requires multi-
ple evaluations of accurate but time-consuming computational fluid dynamics (CFD) simulations
to produce optimum designs rendering the optimization process computationally costly. The cur-
rent work proposes a surrogate-based optimization (SBO) technique to alleviate the computational
burden of ASO to delay and mitigate the deep dynamic stall characteristics of airfoils. In particular,
the Kriging regression surrogate model is used for approximating the objective and constraint
functions. The airfoil geometry is parametrized using six PARSEC parameters. The objective and
constraint functions are evaluated with the unsteady Reynolds-averaged Navier-Stokes equations
with a C-grid mesh topology and Menter’s shear stress transport turbulence model. The approach
is demonstrated on a vertical axis wind turbine airfoil at a Reynolds number of 135,000 and a
Mach number of 0.1 undergoing a sinusoidal oscillation with a reduced frequency of 0.05. The
surrogate model is constructed with 60 initial samples and further refined with 20 infill samples
using expected improvement. The generated surrogate model is validated with the normalized
root mean square error based on 20 test data samples. The refined surrogate model is utilized
for finding the optimal design using multi-start gradient-based search. The optimal airfoil has a
higher thickness, larger leading-edge radius, and an aft camber compared to the baseline. These
geometric shape changes delay the dynamic stall angle by over 3° and reduces the severity of
the pitching moment coefficient fluctuation. Finally, global sensitivity analysis is conducted on
the optimal design using Sobol’ indices revealing the most influential shape variables and their

interaction effects impacting the airfoil dynamic stall characteristics.
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Nomenclature

f Favre mean of the flow variable

a Angle of attack, (deg)

ags  Dynamic stall angle of attack, (deg)

ams Moment stall angle of attack, (deg)

Bre Airfoil trailing edge wedge angle, (deg)

(3] Vector of Kriging hyperparameters, (-)

Aa  Delay in dynamic stall angle, (deg)

Oij Kronecker delta

X Vector of design variables

X;p  Vector containing lower bounds on design variables
Xup  Vector containing upper bounds on design variables
7y Turbulent eddy viscosity, (Pa.s)

w Rotational rate, (%)

Poo  Free-stream density, (kg/m?)

Tij Viscous stress tensor component, (Pa)

0, Azimuth angle, (rad)

Orr  Airfoil trailing edge directional angle, (deg)

A Amplitude of oscillations, (deg)

a’ PARSEC surface coefficient

c Chord length, (-)



Cd Sectional drag coefficient, (-)
d
3PeUZS
c Sectional lift coefficient, (-)
1
3PeUZS
Cm Sectional pitching moment coefficient, (-)
—m
3PocUZ,Sc
cq,, Estimated errorin average drag coefficient, (d.c.)
ca,; Richardson extrapolation estimate of average drag coefficient per cycle, (d.c.)

d Drag force, (N)

dat Timestep, (sec)

f Scalar objective function

f Favre fluctuating component of the flow variable
fo Favre average of flow variable

g Inequality constraint function

H Total enthalpy per unit mass, (J/kg)

h Equality constraint function
J Scalar function
k Turbulent kinetic energy, (m?/s?)

k; Reduced frequency, (-)

wc

20U
l Lift force, (N)
L Airfoil lower surface
m Pitching moment, (Nm)

My, Free-stream Mach number



Mmax Airfoil maximum camber, (-)
n Number of design variables
g Number of design samples
ng Number of test data samples
p Static pressure, (Pa)

R;r Airfoil leading edge radius
Re  Reynolds number
S Reference area, (m?)

tmax Airfoil maximum thickness, (-)

tors Airfoil trailing edge offset

trg  Airfoil trailing edge thickness

TSR Tip-speed ratio, (-)

u Velocity component in Cartesian system, (m/s)
U Airfoil upper surface

U  Free-stream velocity, (m/s)

X Airfoil surface crest x-coordinate

Xc Non-dimensional chordwise location

Xm,,,. Non-dimensional chordwise location of 11,y

Xt,,,. Non-dimensional chordwise location of #;,4x

¥ Function of interest

A Non-dimensionalized first layer cell thickness
Z Airfoil surface crest z-coordinate

z z-coordinate of airfoil section, (-)



Zyxx Second-order derivative of airfoil surface

d.c.  Dragcounts, Acy =0.0001

1 Introduction

Wind energy is a sustainable energy resource and is proving to be one of the most economical methods
of unsubsidized energy generation [1]. The wind energy industry has been driven by horizontal axis
wind turbines (HAWTS) due to their high efficiency in steady winds. In recent years, vertical axis wind
turbines (VAWTs) have acquired growing interest with its suitability to urban and offshore applications
[2]. VAWTs have several advantages over HAWTs. For example, VAWTs are simple in design, self-starting,
omnidirectional, less noisy, inexpensive to construct and have lower operational and maintenance
costs [3]. VAWTs, however, suffer from an inherent complex unsteady aerodynamic phenomenon
known as dynamic stall when operating at a low tip-speed ratio (TSR < 5). In VAWTSs, dynamic stall
arises from rapid changes in the angle of attack perceived by each blade in every rotational cycle [4, 5],
generating adverse loading which significantly impacts the blades, hub, tower structure, power output,
and the turbine life. An accurate understanding and consideration of dynamic stall is a major priority
in the design process of VAWTSs to improve their performance and structural life. Recently, the wind
turbine industry has directed significant efforts towards modeling the dynamic stall and dynamic
loading to improve turbine life [6, 7].

In the case of dynamic stall, aerodynamic shape optimization (ASO) can be used to passively miti-
gate adverse dynamic loading over aerodynamic surfaces using accurate computational fluid dynamics
(CFD) models. Surrogate-based optimization (SBO) [8] provides an efficient approach to alleviate the
computational cost of ASO. In this paper, SBO is used to efficiently find optimum shapes for delaying
dynamic stall occurrence over VAWT airfoils. In particular, the Kriging regression surrogate [9] with the
expected improvement (EI) [9, 10] infill criteria is used to represent the design objective function and
constraints with respect to the airfoil design parameters. The airfoil shapes are parameterized with the
PARSEC method [11]. The accuracy of the surrogate model is adaptively enhanced with the EI infill
criteria and validated with the normalized root mean square error (NRMSE) metric. Optimum airfoil
shapes are found by optimizing the surrogate model with the multi-start gradient-based optimization
(GBO) method [12]. Additionally, global sensitivity analysis of the design objective with respect to
the design variables is performed with Sobol’ indices [13] to provide information on how the airfoil

design parameters affect the dynamic stall characteristics. The proposed approach is applied to a



VAWT airfoil, however, it can be applied to other aerospace systems undergoing dynamic stall.

The remainder of this paper is structured as follows. The next section presents a literature review
on ASO, SBO and their applications to the dynamic stall problem. The subsequent section describes
the SBO approach used in this work, which includes the problem statement, problem formulation,
optimization algorithm and Sobol’ sensitivity analysis. The following section describes the test case
and the computational model setup used for evaluating airfoil dynamic stall. The next section presents
the results of the optimization and sensitivity analysis studies. Finally, conclusions and suggestions for

future work are given.

2 Background

Dynamic stall phenomenon frequently occurs on helicopter rotors [14], maneuvering aircraft [15],
wind turbines [16-18], and bio-inspired micro air vehicles (MAVs)/unmanned air vehicles (UAVs) [19-
23]. Thus, considerable research has been done experimentally and computationally to understand
dynamic stall physics and airfoil shape dependencies by studying a sinusoidally oscillating airfoil in
a uniform flow [14, 24-27]. Furthermore, significant research has been conducted on alternatives to
mitigate or control dynamic stall via active and passive control systems [28-33]. Application of these
approaches can increase the system mass and may require an auxiliary control system, which may
increase the complexity and cost of the wind turbine system. Therefore, these approaches may not be
economically viable for VAWT applications.

ASO is a method to design aerodynamic surfaces for optimum performance. ASO was first applied
by Hicks et al. [34] for airfoil drag minimization of nonlifting, transonic airfoils in inviscid flow. Since
then it has become an essential component of aerodynamic design to improve the performance of
various engineered systems, such as aircraft [35, 36], cars [37], wind turbines [38, 39], trains [40], and
compressors [41, 42]. In the case of dynamic stall, ASO can be used to mitigate adverse dynamic loading
thereby enhancing and optimizing the performance of aerodynamic surfaces. With the development of
computer technology, shape optimization studies can be performed using accurate CFD simulations,
although, there are several challenges to this task.

ASO is an iterative process that requires multiple model evaluations to produce an optimum
design. The GBO method is a widely used technique in ASO. A major bottleneck in this approach
is the large computational cost in evaluating the objective function and constraints using accurate

CFD models and determining their gradient information with respect to the design variables. This



computational cost increases quickly with the number of design variables. In the adjoint-based method
[43], sensitivities of the objective and constraint functions with respect to the design variables are used
with GBO technique to efficiently find the optimum design. In particular, the adjoint-based design
approach is nearly independent of the number of design variables, which renders the approach highly
scalable to large design spaces [44]. The adjoint-based ASO method is currently widely considered the
state-of-the-art for solving aerodynamic design optimization problems.

Examples of applications of adjoint-based ASO include the following. Jameson et al. [43] applied
the continuous adjoint method for cruise drag reduction of the Boing 747-200 wing using a Reynolds-
averaged Navier-Stokes (RANS) based CFD model. Dhert et al. [39] used the adjoint method for
ASO of wind turbine blades with 240 shape variables for maximizing the torque of the NREL VI wind
turbine. Lei et al. [45] applied an adjoint approach for aerodynamic optimization of civil aircraft with a
wing-mounted engine, including 462 wing shape and three engine position variables for minimizing
the drag coefficient at the nominal cruise condition.

Most ASO applications are used for steady-state flow problems because of the high computational
cost associated with unsteady flow problems. ASO for the mitigation of dynamic stall adverse effects
have received limited attention due to the complex flow physics and high computational cost. Recent
efforts, however, have produced shape optimization strategies for two-dimensional (2d) [46-50] and
three-dimensional (3d) [2, 51] dynamic stall problems.

The adjoint method with the GBO approach has been frequently used for dynamic stall optimiza-
tion cases chiefly because of the inexpensive gradient calculation. Examples of such work follow.
Wong et al. [46] used a discrete adjoint method with a 2d steady state RANS solver for minimizing
the drag coefficient of the VR-7 airfoil in steady state condition and then tested the optimized shape
in unsteady sinusoidal pitching motion to see its effects under dynamic stall conditions. Nadarajah
et al. [47] developed time accurate discrete and continuous adjoint methods for time-averaged drag
minimization through shape optimization of the RAE 2822 airfoil operating at varied flow conditions.
Mani et al. [48] used the time dependent adjoint approach for reducing peak pitching moments of
the SC1095 helicopter airfoil during the pitching cycle. A sliding mesh strategy with time accurate
continuous adjoint method was implemented by Economon et al. [52] for airfoil shape optimization
in unsteady flow. Apart from adjoint method, Wang et al. [49, 50] used GBO approach with sequential
quadratic programming (SQP), unsteady RANS (URANS) and the class shape transformation method
for airfoil parameterization to alleviate drag and pitching moment divergence during dynamic stall

cycle on rotor airfoils.



There is a possibility that the shape obtained from the GBO method is a local optimum [53]. For
instance, GBO starts with a design and moves towards an optimum by using local gradient information.
Since, the GBO search may only cover a part of the design space, the optimum solution obtained by
this approach can be a local optimum [54]. Genetic algorithms (GAs) [55] are more likely to find a
global optimum than GBO methods. In general, GA-based search requires multiple model evaluations
in the entire design space, which can be computationally time-consuming, and even prohibitive, if the
CFD model is called directly, especially for high-dimensional design problems. GA-based methods do
not use adjoint information.

Several works on GA-based ASO approaches have been reported. Anderson et al. [54] used GA for
high-efficiency missile geometry design for multiple-objective problems. Quagliarella et al. [56] and
Yamamoto et al. [57] applied GA for designing transonic airfoils. Ma et al. [2] used the multi-island GA
for airfoil shape optimization to improve the power performance of VAWT with 3d URANS simulations
at moderate tip-speed ratios.

The SBO method [8, 58] can be used to alleviate the computational cost of ASO problems. In this
approach, a surrogate model (also called a metamodel) is constructed of the objective function within
the design space using an approximation method. The surrogate model is fast to evaluate and can be
used in lieu of the physics-based simulation model within the optimization loop. Occasionally, the
simulation model is evaluated to gather new data to update or correct the surrogate model. Once the
surrogate model has been constructed, it can be searched using GBO or GA method.

Few works have presented the application of SBO to ASO of unsteady problems. Tang et al. [59]
used Kriging surrogate modeling technique for the shape optimization of cycloidal rotor airfoil in
unsteady flow. Wang et al. [51] successfully applied a Kriging-based SBO for finding optimal rotor
shapes for a helicopter application. The SBO method has been used successfully in turbomachinery
shape optimization problems [41, 42, 60], where the computational cost of each evaluation can be as

high as in dynamic stall CFD simulations.

3 Surrogate-based shape optimization

This section presents the methodology of the shape optimization using surrogate models for delaying
airfoil dynamic stall. In particular, the section describes the problem statement and optimum design
problem formulation providing details on the design variables and the objective and constraint func-

tion formulations. The optimization algorithm is described in detail, including the Kriging regression



surrogate modeling, infill criteria, and the surrogate model validation as well as the sensitivity analysis

based on Sobol’ indices.

3.1 Problem statement

In this study;, a straight-blade fixed-pitch VAWT (called the Darrieus-type wind turbine) is considered.
When the VAWT rotates, the relative velocity perceived by the airfoil section changes continuously with
respect to the azimuthal location of the blade. This type of motion is often referred to as the Darrieus
motion [61]. The magnitude of the angle of attack («) variation in the Darrieus motion without velocity
induction from the rotor can be expressed, in terms of the tip-speed ratio (T SR) and the azimuthal

angle (6;) as [61]
sin(8;) )

a(TSR,0;) = arctan (TSR+—cos(9)
4

(1

The variation of the normalized angle of attack (%sz)) for several tip-speed ratios in Darrieus
motion is shown in Fig. 1a against the sine curve. In VAWTs, dynamic stall typically occurs at a low tip-
speed ratio (TSR < 5). The variation of the normalized angle of attack in the Darrieus motion is similar
to the sine curve motion. Thus, the angle of attack variation in VAWTs can be approximated as an airfoil
in a sinusoidal pitching motion in a stationary frame of reference. Considering the similarity of these
types of motions it is likely that there is a similarity with regards to the dynamic stall mechanics [5].
Moreover, the dynamic stall phenomenon has traditionally been studied with a sinusoidal oscillating
motion, hence, a large number of experimental data sets are available for comparison and validation.

Therefore, this study considers the simple sinusoidal pitching motion instead of the realistic but

0 /2 T 3/2w 21
62 (rad)
(a) (b)

Figure 1: Parameters for describing the airfoil oscillating motion and response: (a) normalized blade angle of
attack variation (%ﬁf”) with varying tip-speed ratios TSR in Darrieus motion, and (b) the force and moment

coefficients at the quarter chord of an airfoil in uniform flow



complicated Darrieus motion of the VAWT blade.
Airfoil sinusoidal oscillating motion in a freestream flow is shown in Fig. 1b. The pitching motion

of the airfoil is described using the angle of attack as a function of time (¢) as

a(t) = a, + Asin(wt), (2)

where a,,, A, and w represent the mean angle of attack, the amplitude of oscillation, and the rotational
rate, respectively. The reduced frequency, k;, is another important parameter relating time unit, ¢, of

rotation to the time scale of the flow passing over airfoil section. The reduced frequency is defined as

k= ) 3)

where c is the chord length and U is the freestream speed.

Dynamic stall can be categorized as a light stall and a deep stall [14] based on the angle of attack
variation beyond the static stall angle (a;) of the airfoil during pitching oscillation [62]. The VAWT
airfoils undergo deep dynamic stall at lower TSR values, causing a severe variation in the aerodynamic
loads. Accordingly, in this study the deep dynamic stall case from Lee et al. [63] is considered. The

details of the airfoil motion parameters and flow conditions are given in Table 1.

3.2 Optimum design problem formulation

The current design problem of mitigating the dynamic stall occurrence through airfoil shape opti-
mization can be transcribed to a general mathematical optimization problem which will include an

objective function to maximize the performance of an airfoil subjected to design constraints. The

Table 1: Dynamic stall motion and flow parameters [63]

Parameters Values Units

am 10° deg
A 15° deg
w 3.403 rad/s
kr 0.05 -
Re 135,000 -

10



standard optimum design model is written as

min f®
s.t. hjx)=0; j=1,2,..,m 4)
g§ix)<0; i=12,..,p

Xjp =X= Xyp

where f(x) is a scalar objective function, x = [x1, X2, ..., x4]7 € D cR" is the design variable vector
and D is the design space. The airfoil design is subjected to m equality constraints k;(x) = 0 and p
inequality constraints g; (x) < 0. The inequality constraints also include bounds on the design variable
vector as X;p < X < X,,5, where X;; and X, are the lower and upper bounds, respectively.

One of the objectives of the current study is to improve the understanding of how the airfoil
parameters affect the dynamic stall mitigation. The PARSEC airfoil parameterization [64] offers a set
of design variables that directly control the airfoil characteristics, such as the leading edge radius,
thickness, and trailing edge wedge angle [11]. Unlike other parameterization techniques, like bump
functions [65], B-spline [66] or free-form deformation [67], the PARSEC parameters have a specific
meaning which can be appealing to airfoil designers.

In PARSEC, the upper and lower surface of an airfoil are described as [64]
6 i1
zs=)Y alx. *, s=U,L (5)
i=0

where z; is the z coordinate of the upper or the lower curves, x. is the non-dimensional chordwise
location (0 < x. < 1), and af are the undetermined coefficients. The letter s denotes calculation for
the upper (U) or the lower (L) surface of the airfoil. The PARSEC airfoil geometry parameters are
shown in Fig. 2. Table 2 shows the design variables used in the PARSEC parameterization. A total
of 12 parameters define an airfoil with a unit chord length. The first four parameters in Table 2 are
separate for the upper and the lower surfaces whereas the last four parameters are common between
both of them. In this work, the trailing-edge offset (#,rf) and the trailing-edge thickness (i7g) are
considered to be zero for both surfaces. Since the dynamic stall characteristics are strongly affected by
airfoil upper surface. In the current study, the lower surface parameters are kept constant and based
on the baseline airfoil (NACA0012) aside from the lower surface leading edge radius R;. The upper

and lower surface leading edge radiuses are designated by one variable (R;r = Ry = Ry) to get a better

11



Figure 2: The PARSEC airfoil geometry parameters.

understanding of the effect of the leading-edge radius on the dynamic stall.

Table 2: PARSEC design variables

Design  Description Units
Variables

X Surface crest x coordinate -

Z Surface crest z coordinate -
Zix Second-order derivative at X, % lx=x -
RiE Leading edge radius -
O7E Trailing edge directional angle deg
BrE TE wedge angle deg

Loff Trailing edge offset -
ITE Trailing edge thickness -

The aforementioned conditions reduce the 12 design variables to only six variables and the design

variable vector is written as

X= [XU’ZU)ZXX[]!RLE)QTE(])ﬁTEu]T- (6)

The design variables and their respective bounds are presented in Table 3 where the variable bounds
are selected to allow a larger modification to the objective function magnitude without producing an
atypical shape of the airfoil.

The objective of this work is to find an airfoil shape which mitigates the risk of dynamic stall by
reducing sudden aerodynamic load variations, while at the same time delaying the occurrence of the
dynamic stall point. This objective can be achieved by delaying the formation of the dynamic stall

vortex on the airfoil surface which is the cause of sudden divergence observed in the drag and pitching

12



Table 3: Design variables with their bounds for upper airfoil surface

Design Variables Upper bound Lower bound Units

Xy 0.5011 0.2733 -
Zy 0.09 0.054 -
Zxy -0.4036 -0.6726 .
RiE 0.0222 0.0104 -
01k, -7.0294 -11.7156 deg
Bre, 5.8803 3.52818 deg

moment coefficients. Thus, the optimization problem formulation can be defined as

N N
min f(X) _ (ZiZI Cdi (X)) + (ZiZI |Cm,- (X)|) (7)
X J(cao) J(emo)
s.t. g=agoo+tAa—aygx) <0 (8)
Xjp =SX= Xyp 9)

where J(cg9) = Zﬁl(cdo)i, J(cm,) = Zﬁ.\il [(cmo)il » caX), ¢ (X), and a 45(X) represent the time variant
drag coefficient, pitching moment coefficient and dynamic stall point of the airfoil shape during
dynamic stall cycle; subscript ‘0’ represents the base airfoil parameters; Aa denotes the minimum
delay in the dynamic stall angle required for optimum design, and N denotes the number of physical
timesteps in each pitching cycle. The value of N is depends on simulation timestep and total cycle
time. In this study, only the upstroke part of the pitching cycle is considered where the formation of

the dynamic stall vortex causes a divergence in the drag and pitching moment coefficients.

3.3 Optimization algorithm

The different steps of optimization algorithm (shown in Fig. 3) are implemented with a python script
which calls different modules of the optimization algorithm to construct and sequentially refine the
Kriging regression surrogate model with expected improvement as the infill criteria. First, the initial
training sample database is generated with a Latin hypercube sampling (LHS) sampling plan [68]. Then,
the airfoil shape for each design sample is generated using the PARSEC parameterization technique (cf.
Sec. 3.2). The shape coordinates are then used to generate the computational mesh which is then used
with CFD solver for design evaluation. Note that in this study only the upstroke of the pitching cycle is
simulated where the dynamic stall vortex formation occurs. To avoid transients from affecting the CFD
results, the airfoil is initially started in a down-stroke and then in an upstroke. The results from the
upstroke are used for the computation of the objective and the constraint function. All initial samples

are evaluated similarly.
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Sampling plan

(LHS)

CFD model '
(URANS) Observations

!

Surrogate model construction
(Kriging Regression)

* Add the infill point to
Validation initial samples
(Expected improvement )

Termination No

condition

Optimization / GSA

!

Optimal design / Sobol' indices

Figure 3: A flowchart of the surrogate-based optimal design and global sensitivity analysis (GSA).

The acquired observations are used to construct two separate surrogate models, one for the
objective and another for the constraint function. The global accuracy of constructed surrogate models
are validated using the NRMSE metric (cf. Sec. 3.3.4) over the entire design space using a testing data
set. If the surrogate models satisfy the accuracy criteria, then they are passed to the optimizer as well
as for the sensitivity analysis (cf. Sec. 3.4). In case the surrogate models do not satisfy the accuracy
criteria, an infill point is determined based on the EI infill criteria (cf. Sec. 3.3.3) to improve surrogate
model’s accuracy. The infill point is evaluated with the CFD module and added to the initial sample
database to construct new surrogate models. This process is iterated until the surrogate models satisfy
the accuracy criteria. The above optimization algorithm has some similarity with the efficient global
optimization (EGO) [10] algorithm. The EGO approach uses a stopping criteria based on percentage of
expected improvement whereas the proposed optimization algorithm uses surrogate model accuracy

as a stopping criteria. The details of each optimization module are discussed in following subsections.

3.3.1 Sampling plan

The LHS method [68] is used to generate the initial sampling plan in this study. LHS was first proposed
by McKay et al. [68] as an alternative to simple random sampling to improve convergence and accuracy

of the Monte Carlo simulation [68]. LHS is based on a latin square design where one sample is placed
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in each row and column. A latin hypercube is the multidimensional extension of the latin square to
sample points in multiple hyperplanes [69]. The basic idea in LHS is to separate a sampling point
distribution which is close to the probability density function (PDF)[68]. This is done by stratification,
which divides the cumulative probability distribution of 0 to 1 in equal intervals. Then, a sample
is taken from each interval randomly and the input probability distribution is recreated. The LHS
method provides a good distribution of sample points over the design domain ensuring that the entire
range of the design variables are represented in the sampling plan. In the present study, six design
variables are selected for representing airfoil shape (see Sec. 3.2). According to Gu et al.[70] and Shi
etal. [71] a number of samples equal to three times the number of design variables are needed at a
minimum for the construction of reasonably accurate surrogate models. However, it is desirable to
use a larger number of samples than the minimum for higher accuracy of the initially constructed
surrogate model. Thus, considering the long time required for each sample evaluation, the number of

initial sampling points is taken to be ten times the number of variables.

3.3.2 Surrogate modeling using Kriging regression

Kriging regression [9] is an extension of regular Kriging [72]. Kriging is an interpolation method widely
used in SBO for noise free data sets [72]. Kriging approximates the observed response as a combination

of a global trend function and a local variation from the global trend as [72]

yx) =G6x) +ZX), (10

where y(x) is the function of interest, G(x) is a polynomial trend function, and Z(x) is a realization
of a normally distributed Gaussian random process with a zero mean, variance ¢, and non-zero
covariance [72].

The global trend function is a product of two vectors given as

Gx) =g’ @B, (11)

where

g’ % = [gox), g1(X), .., gn_1 )], (12)

is the regression basis functions (n < ng with number of samples as ng and number of design variables
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as n) and the regression coefficients

B =(Bo, 1, Bn-1l". (13)

In regular Kriging, the global trend function is typically taken as constant, which yieldsg=1and 3 a
scalar value. In this study G(x) is considered as constant.

The function Z(x) provides a localized variation to the global trend function for a set of sampled
datax',x?,...,.x" over the design domain D where any given sample is X € D c R". Sample points are

assumed to be correlated with each other using a Gaussian basis function as [72]
R(x’,xf)=exp[— Zek Ix,’C—xil , (14)
k=1
where x,ic and xi are the k™ components of any two sample data x’ and x/, and 6y, is the k™ unknown

correlation parameter of © = [61,05,...,0,] r allowing for a variation in width of the basis function.

Using the basis function, the covariance of the sampled points is [72]
Cov[x',x))]1=0® R([ R&X',x)) ]), (15)

where Ris a n; x ng symmetric matrix with R;; = Rx!,x/).

The Kriging predictor j(x,) at an untried location x,, in the design domain is given by [72]
yx) =g B+ x) R (y-GB), (16)

where y is the column vector of length n; containing the responses at the sample points, G is a
column vector of length n; filled with ones when G(x) is considered constant. The vector rl(x,) =
[R(xy,x"), R(Xy,X%), ..., R(X,,X">)] is the correlation vector between the known observed points (x!,x?, ..., x")
and the new sample point x,,. The vector [3 in (16) is a maximum likelihood estimation (MLE) of 3 and

is evaluated as
G'Rly

B=GTRiG" 17

A Kriging model is fitted to the given sample data by optimizing correlation parameters © using MLE
function. In this work, the concentrated In-likelihood function is used for estimation of hyperparame-
ters given by [69]

1
1(0) = —% In(6?) - 5 In|R|, (18)
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where 62 is a MLE of the Gaussian process variance and is given as

52 O-GB)'R™ (y-Gp)
g '

(19)

The optimum value of © can be found by maximizing the In-likelihood function using a GA. The crucial
property of the Kriging model is its ability to provide an error estimate at unsampled points, which can
be used with various infill strategies [69] for improving the surrogate model.

The Kriging method is formulated based on the assumption that the objective function to be
approximated is accurate (with no errors), smooth and continuous in the design domain. Typical
engineering objective functions are noisy due to the errors involved in numerical modeling. The objec-
tive function encountered in a dynamic stall simulation can include errors from the computational
simulation when the airfoil oscillates in the separated flow region. This can cause an error in the
Kriging approximation when many design points are added closely to find the optimum design. In
such a situation, Kriging regression can be used to handle the noisy data [9].

For this study, a Kriging regression surrogate model is used for approximating the objective and
constraint functions. The noise filtration capability of Kriging regression is achieved by adding a
regression constant A to the diagonal terms of the Kriging correlation matrix R which then becomes

R+ AI, where I is the identity matrix. The Kriging regression predictor is now given as [9]

Prx) =g B, +rlx,) R+AD"Hy-GB,), (20)

where
_GTR+AD 'y

x> -7 7 21
" GTR+ADIG *D
and estimated variance of Gaussian process 62 is given as
~GB)TR+AD ' (y-Gp
52— W=GB) R+AD'y-GB,) )

ng

where the subscript ‘r’ denotes regression. Similar to regular Kriging, Kriging regression can be fitted

to the sampled data by maximizing the In-likelihood function given as
ng .2 1
1(9,/1)2—? In(é )—Elnl(R+7LI)|, (23)
where the hyperparameters A and 0 are determined using a global optimizer such as a GA. In this work,
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differential evolution (DE) [73], a stochastic population-based global optimization method, is used for
determining the hyperparameters. In particular, the DE algorithm offered by SciPy [74] is used for the

optimization task. Kriging regression is described in detail in Forrester et al. [9].

3.3.3 Infill criteria

The surrogate model developed by Kriging or Kriging regression is an approximation of the objective
function. The search for the minimum depends on the accuracy of the surrogate model. The surrogate
model’s accuracy can be improved by adding more points in design space in addition to the initial
sampling plan. For this study, the expected improvement (EI) [10, 69] is used as an infill criterion to
balance global exploration and local exploitation of the objective function. For Kriging, the expected

improvement can be calculated by using the mean j and the mean square error §> as [69]

(Ymin — J) q)(y“—‘;_y) + §</>(y““—;‘_y) when §>0

E[Ix,)] = (24)

0 when §=0
where ® and ¢ are the cumulative distribution function and the probability density function, respec-
tively. The new point will be added at the location of maximum E[I(x)]. The Kriging mean square error
[69] is
1-G'R'r

a2 _ a2 Tp-1
S (Xu)—O' 1-r'R r+m . (25)

The computation of the expected improvement in (24) with the mean square error in (25) can be

implemented as

(J/mln J7)2

L0 = Gimin = ) [+ 5 et (22225 exp [ (26)

Note that the error §2

is zero at the sample points. The expected improvement should also be zero
at sampled points such that model does not revaluate at already sampled points. Hence, ®() = 0
and E[/(X)] = 0 when § = 0. The expected improvement function with no possibility of resampling
guarantees global convergence [69].

It should also be noted that Kriging regression can not be directly used with the expected improve-
ment infill criteria in (26). This is mainly because of the error associated with the noise in the sampled
data. The error §? is always present in the Kriging regression model at all the points and does not

reduce to zero as in the Kriging model. This gives rise to the possibility of resampling with non-zero

E[I(x,)], potentially stalling the search process with no guarantee of obtaining global optimum [9].
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This problem is solved by redefining the Kriging error, thereby eliminating error due to the noise in
the model [9, 69]. This method is known as re-interpolation and is covered in detail in Forrester et al.

[9]. The redefined Kriging mean squared error with re-interpolation is given as [9]

1-G'R!r
A2 a2 Tp-1
S”-(X):U”- 1-r'R r+m , 27
where the variance 63 ; with re-interpolation is given by [9]
o y-GRTR+AD'RER+AD ' (y—Gp,)
.= . (28)

ns

The subscript ‘ri’ denotes re-interpolation. Now the Kriging error calculation (27) reduces to zero at
the known sample points allowing the expected improvement to find the global optimum of the model.
The error §;; is then used with (26) to calculate the EI magnitude in the design domain.

Finally, an infill point can be found by maximizing the function (26) with a global optimizer such
as a GA. In this work, DE [73], implemented in SciPy [74], is used for determining the infill point by

maximizing the EI function (26) with re-interpolation.

3.3.4 Surrogate model validation

The global accuracy of the surrogate model should be validated before using it in the optimization or
GSA process. For this study, the normalized root mean squared error (NRMSE) is used for the surrogate
model validation. The NRMSE is defined as
ne W=
il T

NRMSE= —————, (29)
(Ymax — Ymin) 1

where yf and j/;' represent the responses from the CFD model evaluation and surrogate model pre-
diction at the i’” test sample, respectively. The response value y is either the objective function or
the constraint function value for their respective error estimations. The n; is the number of testing
data samples. The denominator of (ymax — Ymin) 1 represents the difference of the maximum and the
minimum response values in the initial sample data set. In this work, NRMSE = 10%, with a fixed

budget of 20 infill samples, is considered as acceptable criteria for the surrogate modeling.
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3.4 Global sensitivity analysis by Sobol’ indices

An important objective of this study is to determine the critical parameters that affect the dynamic
stall characteristics. Sensitivity analysis (SA) is the study of predicting uncertainty in a model output
due to the uncertainty in the model inputs [75]. SA of the dynamic stall objective function would
provide the quantification of the sensitivities of individual variables to the dynamic stall mitigation.
This information would be important to the designer for identifying critical regions in the design space
and simplifying the model by only considering the essential input design variables.

SA can be categorized as being either local or global. Local SA quantifies the rate of change of the
model output due to small changes in the model input. Local SA relies on the calculation of derivatives
which are specific to the current point and does not capture the interaction with other design variables
and are often not valid for nonlinear models [75]. Global sensitivity analysis (GSA) focuses on the
model output uncertainty over the entire ranges of the input variables providing information of how
variations in the input variables affect the model output. The Sobol’ analysis is a widely used GSA
method [13, 76] and yields the first-order and the total-effect of the input design variables. In this work,
Sobol’ indices [13] are used for the GSA.

Sobol’s method uses a variance decomposition to calculate the Sobol’ indices. Consider the
function Y = f(x) being the model response with x as the vector of n input variables. The model

response can be decomposed as [76]

n

FR=fo+ ) fitkd+ D fij(xi, X))+ ¥ fio kX1, X2, .0, Xp) (30)
i=1

l<i<j<n

where fo is a constant, f; are first-order functions, f;; are second-order functions and so on. The above
decomposition has 2" finite number of terms. Sobol’ proved that all the terms of the decomposition
are orthogonal in pairs [76], i.e., ff(xi)f(xj) dx;dxj = 0 considering that each term in the above
expansion has a zero mean. Hence, these terms can be calculated using a conditional expectation of

the model output Y as

Jo=E(Y), (31)
fi =E(Y|x;) —E(Y), (32)
fij =E(Y|x;, xj) = fi — fj —E(Y). (33)

The conditional expectation E(Y|x;) can be calculated empirically by separating x; from the domain
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and averaging the value of (Y|x;). If E(Y|x;) has a large variation across x; then the variable x; is
believed to be important. Therefore, the variance in E(Y|x;) is a measure of sensitivity. Hence, with

further modifications the terms in the decomposition (30) can be written as [76]

n n n
V) =) Vi+) ) Vij+..+Viz n, (34)
i

i i<j

where V; is V[E(Y|x;)] and V(Y) represents the total variance in the model response Y. The Sobol’

indices can be obtained by dividing (34) by V(Y) to obtain

n n n
1=)Si+). ) Sij+..+S12.n (35)
i

i i<j

where S; represents the first-order Sobol’ index given by [76]

Si= Vi (36)
Y%
The total-effect Sobol’ index is given as [76]
V(E(Y]x~;
ST~ =1- M, (37
' V(Y)

where x; represents the set of all variables except x;. The total-effect index St, accommodates the
total contribution of x; to the model output variation V(Y). This includes the first-order effect plus
higher order effects due to interactions with other variables. With availability of the Sobol’ indices (S;
and Sr,) the interaction effects of x; with other variables can be computed by S, — S; which provides
added information about the design variable interactions.

The Sobol’ indices can be computed with a Monte Carlo-based numerical procedure given by

Saltelli [77]:

(1) Generate a (N,2n) matrix of random numbers in design variable bound where 7 is the number of
design variables and N represents the number of samples used for the SA. Get two matrices A and
B, each with size (IV, n). Sobol’ recommended a quasi-random sequence for the random number
generation [76]. LHS is an another technique which can be used for the sample generation [75].

Hence, LHS sampling with uniform distribution is utilized for sampling design variables.

(2) Build matrix C; of size (N, n), such that all the columns are from B except the i‘" column which

is from A.
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(3) Obtain three column vectors (Ya, Yg and Yc,) of size (IV, 1) by evaluating the model at design

variables from matrices A, B and C; where
Ya=f(A), Yg=f(B), Yc, = f(C)). (38)

(4) Compute the first-order effect S; and the total-effect St; Sobol’ indices for the jth design variable
by using the following estimators given by Saltelli [76, 77] as
1 vN iy 2
N Zj:IYAYCi - fo

Si= 1 vN iy g2’ (39)
szzl(YA) —Jo

where

1 N L N2
==Y, (40)
° (szl A)
and LeN iy

2
szzlYBYci_fo

St =l 2
sz:1(YA)2_f0

(41)
Following are some of the properties of Sobol’ indices which are useful for the interpretation of the
sensitivity results [76]:

(1) Bydefinition S7, = S;. The case of S7, = S; implies that the i th (x;) variable has no interactions

with other design variables.
(2) St, - S; represents the degree of the x; variable involvement in interactions with other variables.

(3) St, =0indicates that x; does not have any influence on other variables and can be fixed without

affecting the variance of model output.

(4) The sum of all S; is equal to 1 for additive models and S; < 1 for non-additive models. The

magnitude of 1 -}.7" | S; suggests the presence of interactions in the model.

(5) X, St, is always greater than 1 and }." | St; is equal to 1 only for perfectly additive models.

4 Computational fluid dynamics modeling

This section describes the CFD model setup considered for the current study. First, the governing
equations used in the CFD model are described, followed by a description of flow solver and its setup.

Then, the computational grid is described, and the results of the grid and time-independence studies
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are presented. Lastly, the results of a validation study comparing the proposed CFD model against

experimental results are presented.

4.1 Governing equations

The current study is performed with URANS as the governing equations. The RANS equations are ob-
tained by the time-averaged Navier-Stokes equations. Averaging removes high-frequency fluctuations,
reducing the range of length scales presented in flow. The two types of averaging methods are the
classical Reynolds averaging and the mass-weighted averaging, also known as Favre average [78]. The

Favre average of any flow variable f, is given as

fo=F+f" 42)

where f = 2L and f" are the Favre mean and the Favre fluctuating component, respectively. The Favre

of
[
average is preferred for a compact compressible flow treatment of the Navier-Stokes equations. The
application of the classical and the Favre averaging to the conservation of mass, momentum and

energy gives the URANS equations [78]:

9,9 pan=0 (43)
9,9 say=o
ot " ox;
0 i+ 2y = 2L+ U 0 Gy (44)
VAU T G A T TR P G A
6('H)+ 0 (pujH+pu"H" kaT) op, 9 (Wit +u,Tij) 45)
— —(pU; uWH"—k—)=—+—U;T;j + u.1ij),
ar P70 Gy PHITTP ox; ot ox; THTHT

where p, p,u;, T, H, and 7, are the density, pressure, velocity component, temperature, total enthalpy

and viscous stress tensor, respectively. The term —p ul u] is referred to as the Reynolds stress, which

represents the effects of turbulent fluctuations in fluid flow given by

— ou; Ouj 20duy 2

—pu. U, =l —+—=——=-—0;i|—=-pkd;j, 46

pUit,; “‘(axj ox; 30x; 1) 3P (46)

where k is the turbulent kinetic energy, u;, is the turbulent eddy viscosity, and §;; is the Kronecker

delta function. For the closure of the above URANS equations, Reynolds stress is modeled by one- or
two-equation turbulence models.

In this study, Menter shear stress transport (SST) [79] turbulence model is used. The SST model is a

two-equation eddy-viscosity turbulence model that blends k — w and k — e models. The SST model has
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shown acceptable performance for dynamic stall and complete VAWT simulation cases by multiple

researchers [5, 61, 80] to capture separated flow regions.

4.2 Flow Solver

The Stanford University Unstructured (SU?) [81] is utilized in this work as the numerical solver which
is capable of solving multi-disciplinary problems governed by partial differential equations (PDEs)
in general, unstructured meshes. SU? has been validated extensively on a number of fluid problems
involving compressible, turbulent flows [81, 82]. For unsteady simulations, SU? offers a dual time-
stepping strategy [81] to achieve high order accuracy in time where the unsteady problem is converted
to a steady problem at each physical time step and then solved using the steady-state convergence
acceleration techniques.

The dynamic stall simulations in this study are performed using the URANS solver with dual
time-stepping strategy, and rigid grid motion. The governing equations are discretized using the finite
volume method with the convective flux calculations done using the Jameson-Schmidt-Turkel (JST)
scheme [81]. The viscous flux evaluations are assisted by the calculation of the flow variable gradients
with the Green-Gauss method [81]. Time discretization is done by the Euler implicit scheme [81] with
maximum Courant-Friedrichs-Lewy (CFL) number selected as 4. The two-level Multigrid W-cycle
method [81] is also used for convergence acceleration. Finally, the Cauchy convergence criteria [83] is

implemented on the drag calculation with 100 elements and Cauchy-epsilon criteria set to 1075,

4.3 Computational grid

In this study, the grid generation is conducted using the blockMesh utility in OpenFoam [84]. The
blockMesh utility generates a mesh of blocks of hexahedral cells. The domain geometry is divided
into one or multiple three-dimensional blocks. For the dynamic stall simulation, a C-grid mesh is
generated around the airfoil. The mesh is refined near the airfoil surface to capture the boundary
layer and the complex flow physics generated during the dynamic stall cycle. The first layer thickness
is selected so that y* < 0.8 with a growth ratio of around 1.05. A low y* is necessary to capture the
onset of dynamic stall vortex accurately. An external boundary is set at 55 chord lengths away from the
airfoil to minimize boundary reflection effects. The airfoil surface is set with the no-slip adiabatic wall
boundary condition. Figure 4 shows two views of a coarse computational mesh used for the NACA
0012 airfoil. Finally, the mesh generated by the blockmesh utility is converted to a SU? compatible file

format.
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Figure 4: A coarse c-mesh around the NACA 0012 airfoil: (a) the full computational domain and (b) the mesh
close to the airfoil

4.4 Grid and time independence studies

Variations in mesh density can alter the CFD model output which subsequently affects the objective
and constraint functions used in the optimization and GSA. Therefore, grid and time independence
studies are conducted to determine efficient spatial and temporal resolutions to capture the flow
physics accurately.

A converged computational model is obtained in the following way. Initially, the spatial resolution
is obtained with a grid study on a baseline airfoil, the NACA0012 airfoil, at steady-state flow conditions.
The selected flow conditions are the same as those considered by Lee et al. [63]. The resulting mesh is
used to conduct the time step independence study with an oscillating pitching cycle to determine a
physical time step for the URANS simulation. The grid independence study is conducted for a Reynolds
number of 135,000, angle of attack of 4°, and turbulence intensity of 0.08% with a RANS solver. The
Cauchy convergence criteria on the drag values is set to a Cauchy-epsilon value of 106 over 100 flow
solver iterations. The maximum solver iterations are set to 150,000.

The results of the grid independence study are shown in Fig. 5. Five grids with ascending spatial
resolution are selected for the study with y* < 0.8. The three grids with the highest spatial resolution
show minimal change in the lift coefficient Ac; < 0.003 with a drag count variation within 4 d.c. The
simulation time requirement for the 387,000 cell mesh is almost three times less than the simulation
time of the highest resolution mesh. Therefore, the mesh with 387,000 cells is selected for this study.

After the selection of appropriate spatial resolution, a time study is executed on the selected mesh
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Figure 5: Results of the grid independence study of the NACA 0012 airfoil at Re = 135,000 showing the variation
in (a) the lift coefficient, and (b) the drag coefficient.

Table 4: Time step independence study results.

dt Cllgyg Simulation Time* ¢g4,,, =| Calgyg — Capg |
(sec) (d.c./cycle) (hrs/cycle) (d.c)
0.008 1,813 39 295.6
0.004 2,019 51 88.4
0.002 2,093 65 14.9
0.0015 2,103 69 4.8
0.001 2,105 78 2.1
0.0005 2,107 99 0.52

*Computed on a high performance cluster with 112 processors. Wall-clock time.

to determine the physical time step required for unsteady simulation. The dynamic stall simulations
are conducted with the parameters and flow conditions the same as considered in the experimental
study done by Lee et al. [63] (see Table 1). The time step independence study is performed with
multiple time steps as shown in Table 4.

The selection of the time step is made by using the generalized Richardson extrapolation method
[85]. Richardson’s extrapolation method obtains a higher-order estimation of the value under consid-
eration from lower-order values. In this work the average drag coefficient per oscillating cycle, cg,,,,, is
used for this method. Richardson’s extrapolation estimate, ¢, ., represents the average drag coefficient
per cycle at a zero time step (lowest possible), which was found to be 2,108 d.c. Figure 6 shows the
average drag coefficient per cycle versus the time step lengths and their estimated error ¢4, , from the

Richardson extrapolation estimate cg4,,, at each time step. Based on these results, a time step of 0.0015

is selected.
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Figure 6: Results of the time step independence study showing (a) the Richardson extrapolation estimate based
on the lower order values, and (b) the estimated error from the Richardson extrapolation.

4.5 CFD model validation

The aerodynamic performance of the selected computational mesh configuration is compared against
the experimental [63] and LES simulation [86] results using the deep dynamic stall case described
in Table 1. The computation is performed using the SU? URANS solver over 1.5 cycles for validation
where the airfoil initially moves in the downstroke cycle from a mean angle (10°) to the lowest angle
(—5°) and data is collected for the next complete cycle. The addition of the downstroke part of the cycle
allows the flow to stabilize from the abrupt change in rotation rate from zero to a finite value at first
time step. The entire computation takes 69 hours (wall-clock time) using 7 nodes with 16 cores per
node on the high performance computing cluster.

Figure 7 shows the time dependent aerodynamic loads obtained from the URANS model for
the NACAO0012 airfoil and compares it to the experimental and LES simulation data. The presented
experimental data is a hundred cycle average, whereas LES data is averaged over three cycles. The
dynamic stall angles are given in Table 5.

From Fig. 7 it is seen that the URANS model shows a reasonable agreement with the LES model
and a qualitative agreement with experimental data. The URANS model captures the moment and
dynamic stall locations early in the oscillation cycle. Additionally, the URANS model overpredicts the
maximum lift and pitching moment coefficients. The LES model results show a much closer agreement
to the experimental results when compared to URANS model. Considering the computational time
and resource requirement of the LES model, the URANS model is a practical option for the dynamic

stall evaluation of airfoils in the context of optimal design and GSA.

27



257 1r
——URANS (current work)
2l —-—-LES (Kim et al.)
--------- Exp (Lee et al.)

-5 0 5 10 15 20 25
a (deg)
(c)

Figure 7: A comparison of the time dependent aerodynamic coefficients: (a)lift, (b)drag, (c)pitching moment,
obtained from the URANS model (current work), LES model [86] and experiments [63] with oscillation cycle
parameters a = 10° + 15°sin(wt), kr =0.05

5 Results

This section presents the results of the proposed approach for delaying the dynamics stall over an
airfoil. First, the surrogate model construction details, infill process, and surrogate model accuracy are
presented. Then, the optimal design and its dynamic stall characteristics are described. Lastly, the

results of global sensitivity analysis on constructed surrogate models are presented.

Table 5: Comparison of the dynamic stall and moment stall locations for URANS, LES and experiments

Models Moment stall Dynamic stall
URANS [this work] 15.9° 18.7°
LES [86] 17.8° 19.7°
Experiments [63] 17.2° 20.6°
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5.1 Surrogate modeling

The surrogate modeling algorithm uses 60 initial LHS samples to construct two separate surrogate
models, one for the objective function and the other for the constraint function. For this study Aa = 3°
is considered in constraint function (8) which denotes the minimum delay in the dynamic stall angle
required for optimum design. The surrogate models are validated against 20 test data points generated
using a different LHS plan and evaluated with the CFD model. In this study, NRMSE metric is used
for the validation. Furthermore, a termination criteria of NRMSE < 10% and a fixed budget of 20 infill
points is used. The surrogate models are then sequentially improved by adding infill points using the
El infill criteria based on the objective function.

Figure 8 shows a plot of the NRMSE for the objective and constraint functions change with the
number of samples. Both surrogate models satisfy the accuracy criteria well before infill points reach
the fixed budget criteria. The constraint function surrogate model shows a higher accuracy than the
objective function surrogate model reaching 2.4% and 8.8%, respectively, with 80 sample points (60
initial samples plus 20 infill points). The entire optimization algorithm needed approximately 376,320
CPU hours, considering negligible cost requirements for training surrogate models. Each evaluation
with the CFD module is done with 112 cores on a high-performance computing cluster that needs
around 4,704 CPU hours. The following sections describe the results of the optimal design and the

GSA.

304
—— f

25+ =g i
- - - Accuracy criteria

-i\.\-

60 65 70 75 80
Number of design samples

Figure 8: Surrogate model construction of the objective (f) and constraint (g) functions.
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5.2 Optimal design

Once the surrogate models satisfy the accuracy criteria, they are passed to the optimizer to find an
optimal design for problem formulation proposed in Sec. 3.2. In this work, the multi-start gradient-
based search algorithm is used to find the optimal design. In particular, the sequential least squares
programming (SLSQP) [87] algorithm provided in SciPy [74] is utilized in this work. A total of 240
starting points distributed over the entire design space are obtained using the LHS technique [68]. The
best obtained result is taken as the optimal design.

Figure 9a shows the progression of the optimal shapes obtained at every five infill points. It can
be observed that as the surrogate modeling converges, the optimal design converges as well since
consecutive optimal shapes show small variations. This can also be observed in Fig. 9b, which shows
the L2 norm magnitude between two consecutive optimal designs. For example, the magnitude of
the L2 norm at 65 sample is the difference between the optimum shapes with 65 and 60 samples.
Additional information of the optimum airfoil shapes is given in Table 6. The shape obtained with 80

sample points is considered as optimum design for this study.

0.1
0.05
(&
N 0
opt-60
-0.05 opt-65
opt-70
opt-75
opt-80
-0.1 ‘ : : : 0 : ‘
0 0.2 0.4 0.6 0.8 1 65 70 75 80
x/c Number of samples

(@ (b)

Figure 9: Evolution of the optimal airfoil shapes: (a) the optimum shapes at the initial surrogate model and at
every 5 infill points, and (b) change in z-coordinates of the consecutive optimum designs

Table 6: Properties of the baseline and the optimum airfoil design shapes.

Number of samples  fax*  X1,,. Mmax*  Xmy,,,

Baseline 12 30 0 0
60 14.1 28.8 1.77 69.7
65 145 35.1 1.80 62.0
70 146  35.1 1.87 62.0
75 146  35.1 1.86 62.0
80 (optimum) 146  35.3 1.89 62.0

* Shape properties are represented as percentage of the chord length
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A grid and time independence study is done on the optimum design to ensure that the selected
grid and time step are still appropriate for the acquired shape. The same setup and step are utilized for
this grid and time study as that of the baseline shape (see Section 4.4). Figure 10 shows the results of
the grid study on the optimized airfoil. The three grids with the highest spatial resolution show minor
variation in lift coefficient within Ac; < 0.003 with drag count variation within 4 d.c. Thus, considering
the simulation time requirement, the mesh with 387,000 cells is still an appropriate mesh. The time
study is conducted using the generalized Richardson extrapolation method using the selected mesh
with 387,000 cells. Richardson’s extrapolation estimate of average drag coefficient per cycle is noted to
be 1,805 d.c. The time step of 0.0015 sec show a reasonable agreement producing c;,,, =6 d.c. This
analysis shows that the mesh with 387,000 cells and a time step of 0.0015 sec is still an appropriate
selection for producing accurate simulation results for optimized shape

Figure 12a shows the shapes of the baseline and the optimized airfoil (opt-80) along with the
region covered by possible airfoil shapes in the current design space. The small variation on the lower
surface is observed due to the variation in leading-edge radius with assumption (R g = Ry = Ry) (see
Section 3.2). The optimized airfoil shape has a larger leading-edge radius, thickness, and camber
than the baseline airfoil (see Table 6). In particular, the optimized airfoil has a maximum thickness of
tmax = 14.6%, which is larger than the maximum thickness t,,,x = 12% of the baseline airfoil (see Table
6). Additionally, the location of maximum thickness moves downstream to x;,, = 35.3 compared to
the baseline airfoil which is x;,, = 30. The optimized airfoil has a maximum camber of 71,4, = 1.89 at
Xm,,.. = 62.0 whereas the symmetric baseline airfoil has no camber. The pressure side of the optimized

airfoil is also different than the baseline. This difference is majorly due to the airfoil parameterization

0.51 ; ; ; ; T T 0.0205 [~
0.508 - ] 0.02 -
0.506 ¢ 0.0195 -
0.504 -
0.019 -
< 0.502 ¢ 1 o°
0.0185
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0.498 0.018
0.496 - J 0.0175 -
0.494 - : : : : : : 0.017 - : ‘ : : ' :
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number of Cells «x10° Number of Cells %10°

(a) (b)

Figure 10: Results of the grid and time independence study of the optimized shape at Re = 135,000, a = 4°
showing the variation in (a) the lift coefficient, and (b) the drag coefficient .
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Figure 11: Results of the time step independence study of optimized design showing (a) the Richardson extrapo-
lation estimate based on the lower order values, and (b) the estimated error from the Richardson extrapolation
estimate (Cgg,.)-

process where upper and lower surface leading-edge radius are considered equal (R.g = Ry = Ry) to
get a better understanding at the effect of leading-edge radius on the dynamic stall.

The performance of the optimized shape is evaluated using the CFD model. The aerodynamic
characteristics of the baseline and the optimized airfoils in the upstroke pitching cycle are shown in Fig.
12. The lift, drag and pitching moment coefficients of the optimized design shows a delayed dynamic
stall when compared to the baseline airfoil. Table 7 gives the details of the dynamic stall cycle for the
optimized and the baseline designs.

Figures 13 and 14 provide Z-vorticity plots for the baseline and the optimized design at angles
mentioned in Table 7. As the airfoil undergoes upward pitching motion, lift polar increases for both
airfoils. For the baseline airfoil, the lift curve slope increases drastically around @ = 16° (Fig. 12b),
which is due to an intensification of the DSV and an associated increase in lift. This follows by a
moment stall at @ = 16.55° for the baseline airfoil (Fig. 12d), which produces a sharp increase in a
pitch-down moment due to the DSV propagation (Fig. 13). Additionally, the baseline drag polar shows
sudden divergence with the DSV growth and propagation (Fig. 12c). The optimized design shows no
signs of the DSV formation (Fig. 13b) at this angle, and lift continues to increase with the pitch-up
motion. However, the trailing edge of the optimized airfoil shows a flow separation moving towards a
leading edge. At a = 19.15°, the baseline airfoil goes in a dynamic stall as DSV propagates downstream
close to the trailing edge and away from the airfoil (Fig. 13c). This causes the lift to drop abruptly, and
the baseline airfoil goes in a lift stall. The optimized airfoil shows a slight increase in the pitch-down
moment at this angle, with flow separation moving further towards the leading edge (Fig. 13d). As

the airfoil pitches further at @ = 21.57°, the optimized airfoil undergoes a moment stall with a sudden
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Figure 12: A comparison of the baseline and optimized designs: (a) airfoil shapes, (b) lift coefficient, (c) drag
coefficient, (d) pitching moment coefficient.

Table 7: Details of dynamic stall cycle

Airfoil Ads Ams  Cl,,.
Baseline (NACA0012) 19.1° 16.5° 2.2
Optimized 22.5° 215° 1.8

increase in the pitch-down moment and DSV formation (Fig. 14b). It can also be observed that the flow
separation from the trailing edge of the optimized design has reached DSV. The baseline airfoil shows
a complete flow separation at this angle with strong anticlockwise vortex generating at the trailing
edge and a secondary DSV generation at the leading edge (Fig. 14a). The optimized airfoil goes into a
dynamic stall at @ = 22.52° with DSV detached from the surface near the trailing edge (Fig. 14d).
Further analysis of the stall mechanism of these two airfoils are revealed by plotting the surface
flow properties over the suction side of airfoils. Figure 15 shows contour plots of —¢, and c¢¢ on the
suction side of the airfoil as a function of the chord location and angle of attack. This representation is

similar to the chord location and time where the angle of attack is a function of time. The sequence

33



(c) (d)

Figure 13: Z-vorticity contour plot of (a) the baseline at @ = 16.5°, (b) the optimized shape at & = 16.5°, (c) the
baseline at @ = 19.1°, and (d) the optimized shape at @ = 19.1°.

of events identified in Figs. 12,13, and 14 are clearly visible here. As the angle of attack increases, the
suction peak on both the airfoils increases near the leading edge, seen by hotspots in Figs. 15a and
15b. The baseline airfoil shows a higher suction peak at lower angle of attack, increasing the adverse
pressure gradient much earlier than the optimized airfoil. The higher pressure gradient gives rise
to the formation of a separation bubble near the leading edge of both airfoils, represented by the
blue-colored region in Figs. 15c and 15d near the leading edge. The increase in the adverse pressure
gradient and the formation of a separation bubble is delayed in the optimized airfoil. This could be due
to a larger leading edge curvature and thickness. Sharma et al. [88] have reported similar observations
for symmetric airfoils with variable thickness.

The formed separation bubble propagates upstream while growing in size with an increase in the

angle of attack (see Fig 15c and 15d). The suction peak suddenly drops, followed by a DSV formation,
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Figure 14: Z-vorticity contour plot of (a) the baseline at @ = 21.5°, (b) the optimized shape at & = 21.5°, (c) the
baseline at @ = 22.5°, and (d) the optimized shape at @ = 22.5°.

which occurs at around 15° and 20° for the baseline and the optimized airfoil, respectively. The DSV
grows further in size and propagates downstream which is clearly visible in the —c), plots by the locus
of the hotspots or by the black streak running from left to right in the ¢ plots (Figs. 15c and 15d). The
angle of streak lines indicates the speed at which DSV convects downstream along the airfoil, whereas
the color intensity signifies additional suction induced by the DSV (see Fig 15c and 15d). It is observed
that the DSV convects much faster over the optimized airfoil compared to the baseline with a weak
suction trail, mainly due to the deflection of DSV away from the surface as it propagates downstream
(see Fig. 14d).

The flow reversal formation near the trailing edge of the airfoils are distinctly different in nature (
shown in Figs. 15c and 15d by a blue arrow). The optimized airfoil shows a reversed flow formation

from the trailing edge much earlier in the upstroke cycle compared to the baseline. This could be due
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to a higher thickness and aft camber on the optimized airfoil. Furthermore, this reversed flow moves
upstream towards the leading edge with an increase in the angle of attack and reaches the separation
bubble at the same time as the DSV is formed for the optimized airfoil. The presence of a flow reversal
could be the reason for the low-intensity suction trail left by the DSV for the optimized airfoil since a
reversed flow deflects DSV away from the surface as it moves downstream. This upstream flow reversal
movement occurs more gradually in the baseline where flow reversal reaches near mid chord when a
DSV is formed for the baseline airfoil.

In the baseline design, the DSV is generated from the disturbance in the separation bubble near
the leading edge, which is typically categorized as leading-edge stall [25, 88]. In contrast, the optimized

airfoil shows a trailing edge stall where reversed flow reaches the location of the separation bubble at

the same time as the DSV formation.
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Figure 15: Contours of the pressure coefficient (—cp) and the skin friction coefficient (c) on the suction side for
the baseline and optimized airfoils.

36



5.3 Global sensitivity analysis

The surrogate modeling algorithm provides globally accurate models that can be used for the GSA of
the objective and constraint functions with respect to the design variables. GSA is performed on the
surrogate models using Sobol’ indices calculation with the Monte Carlo-based numerical procedure
(described in Sec. 3.4) and the LHS sampling technique. The number of samples required for accurate
Sobol’ indices estimation is selected based on a convergence study. Figure 16 shows the convergence
of S; and St, over the number of samples which indicates their convergence after 10° samples. The
Sobol’ index calculations are repeated 100 times to provide averaged Sobol” index values and their
respective standard deviations. The negative signs on Sobol’ indices are due to a numerical error in the
estimates and are often encountered when the analytical sensitivity indices are close to zero [76].

Figure 17 shows the averaged GSA results of the objective function with respect to the design
variables. The most influential variables are Xy, Zy, Rrg, and Zyy, in descending order based on
their total indices. The variables a g, and f7E, are non-influential to the objective function as their
total indices are negligible. These non-influential variables can be fixed in the future for optimization
studies as their variations do not affect the objective function. The design variables Xy and Z; are the
most critical variables as their variation directly modifies the airfoil thickness and camber, resulting in
the variation of the dynamic stall characteristics.

The difference between the total and the first-order effect (S7, — S;) indicates the presence of
interaction effects with other design variables. The results indicate that the variables Xy and Zy show
the highest interaction effects. The variables Zy; and Ry g have comparatively lower first-order effects,

but their interactions with other variables moderately affect objective function spread. Furthermore,

0.5

| | |
10° 10* 10° 10° 10° 10* 10° 108
Number of samples Number of samples

(@ (b)

Figure 16: Convergence of the Sobol’ indices of the objective function: (a) the first-order Sobol’ indices, and (b)
the total-effect Sobol’ indices.
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Figure 17: Results of global sensitivity analysis of the objective function

the magnitude of 1 -} | S; =0.51 suggests the interaction among the variables has a larger effect on
the objective function spread than their individual first-order effects.

The GSA of the constraint function surrogate model is conducted similarly to the objective function.
The constraint function (8) is a function of the dynamic stall angle (« 4,(x)) of the airfoil shapes. Thus,
the SA of the constraint function surrogate model represents the sensitivity of the design variable to
the dynamic stall angle a4, of an airfoil shape. Figure 18 shows the averaged Sobol’ indices results of
the constraint function with respect to the design variables. It is observed that the variable Z;;, which
changes the maximum airfoil thickness, prominently affects a5 (St = 0.71) with minor interaction
effects. The variable Xy, which is responsible for variation in the camber location, also substantially
affects the dynamic stall angle (St = 0.21) with very minimal interaction effect. The variables Z, and
R e show minor effects on the a;, spread while a7g, and frg, show negligible effects on a ;s and
can be fixed for future optimization studies. Overall, the magnitude of 1 — Z?Zl S; = 0.04 indicates that
minimal interactions among design variables representing the dynamic stall angle are mostly affected

by the design variable individual first-order effects.

6 Conclusion

In this work, a surrogate-based optimization technique to accurately and efficiently delay the dynamic
stall adverse effects over an airfoil through aerodynamic shape optimization is proposed. Additionally,
global sensitivity analysis is used to reveal the most important shape variables to mitigate the dynamic
stall.

The optimal airfoil shape shows a significant delay in the dynamic stall angle and reduction in
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Figure 18: Results of global sensitivity analysis of the constraint function

peak pitching moments compared to the baseline airfoil (NACA 0012). The optimized airfoil has a
larger leading-edge radius, higher thickness, and an aft camber. Postoptimality analysis shows that the
DSV formation occurs much later for the optimized airfoil compared to the baseline. Moreover, the
DSV formed over the optimized airfoil propagates downstream much faster with a weak suction trail
producing a lower peak lift coefficient and a gradual moment stall.

The global sensitivity analysis reveals that the airfoil upper surface thickness and the location
of the maximum upper surface thickness are the most influential variables affecting the objective
and constraint functions. Moreover, these two variables affect the objective function with a higher
interaction effect than their respective first-order effects. The leading-edge radius and the upper
surface curvature show a moderate effect on the objective function, whereas the trailing-edge angles
showed a negligible effect. Additionally, it is observed that the interaction effects play a more critical
role in the objective function than the constraint function.

Although the proposed approach was applied to a wind turbine airfoil shape a similar strategy
can be efficiently applied to other aerospace systems, such as rotorcraft, civil transport aircraft, and
unmanned air vehicles, to delay or mitigate dynamic stall adverse effects. In future work, this approach
will be applied to a complete pitching cycle simulation of a three-dimensional aerodynamic surface
undergoing dynamic stall. This would reveal the effects of shape parameters on the aerodynamic coef-
ficients over the entire cycle and the effects on the three-dimensional dynamic stall vortex formation.
Additional knowledge on how to mitigate dynamic stall can be revealed by incorporating uncertainties,
such as surface tolerances and variation in the freestream speeds, in the optimal design and sensitivity
analysis. To further alleviate the computational cost, future work will consider multifidelity methods

and dimensionality reduction techniques.
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