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Abstract

The dynamic stall phenomenon is characterized by the formation of a leading-edge vortex,

which is responsible for adverse aerodynamic forces and moments adversely impacting the struc-

tural strength and life of a system. Aerodynamic shape optimization (ASO) provides a cost-effective

approach to delay or mitigate the dynamic stall characteristics. Unfortunately, ASO requires multi-

ple evaluations of accurate but time-consuming computational fluid dynamics (CFD) simulations

to produce optimum designs rendering the optimization process computationally costly. The cur-

rent work proposes a surrogate-based optimization (SBO) technique to alleviate the computational

burden of ASO to delay and mitigate the deep dynamic stall characteristics of airfoils. In particular,

the Kriging regression surrogate model is used for approximating the objective and constraint

functions. The airfoil geometry is parametrized using six PARSEC parameters. The objective and

constraint functions are evaluated with the unsteady Reynolds-averaged Navier-Stokes equations

with a C-grid mesh topology and Menter’s shear stress transport turbulence model. The approach

is demonstrated on a vertical axis wind turbine airfoil at a Reynolds number of 135,000 and a

Mach number of 0.1 undergoing a sinusoidal oscillation with a reduced frequency of 0.05. The

surrogate model is constructed with 60 initial samples and further refined with 20 infill samples

using expected improvement. The generated surrogate model is validated with the normalized

root mean square error based on 20 test data samples. The refined surrogate model is utilized

for finding the optimal design using multi-start gradient-based search. The optimal airfoil has a

higher thickness, larger leading-edge radius, and an aft camber compared to the baseline. These

geometric shape changes delay the dynamic stall angle by over 3◦ and reduces the severity of

the pitching moment coefficient fluctuation. Finally, global sensitivity analysis is conducted on

the optimal design using Sobol’ indices revealing the most influential shape variables and their

interaction effects impacting the airfoil dynamic stall characteristics.
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Nomenclature

f̃ Favre mean of the flow variable

α Angle of attack, (deg)

αd s Dynamic stall angle of attack, (deg)

αms Moment stall angle of attack, (deg)

βT E Airfoil trailing edge wedge angle, (deg)

θ Vector of Kriging hyperparameters, (-)

∆α Delay in dynamic stall angle, (deg)

δi j Kronecker delta

x Vector of design variables

xl b Vector containing lower bounds on design variables

xub Vector containing upper bounds on design variables

µt Turbulent eddy viscosity , (Pa.s)

ω Rotational rate, ( r ad
s )

ρ∞ Free-stream density, (kg/m3)

τi j Viscous stress tensor component, (Pa)

θz Azimuth angle, (rad)

θT E Airfoil trailing edge directional angle, (deg)

A Amplitude of oscillations, (deg)

as PARSEC surface coefficient

c Chord length, (-)
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cd Sectional drag coefficient, (-)

d
1
2 ρ∞U 2∞S

cl Sectional lift coefficient, (-)

l
1
2 ρ∞U 2∞S

cm Sectional pitching moment coefficient, (-)

m
1
2 ρ∞U 2∞Sc

cder r Estimated error in average drag coefficient, (d.c.)

cdRE Richardson extrapolation estimate of average drag coefficient per cycle, (d.c.)

d Drag force, (N)

d t Timestep, (sec)

f Scalar objective function

f " Favre fluctuating component of the flow variable

fv Favre average of flow variable

g Inequality constraint function

H Total enthalpy per unit mass, (J/kg)

h Equality constraint function

J Scalar function

k Turbulent kinetic energy, (m2/s2)

kr Reduced frequency, (-)

ωc
2U∞

l Lift force, (N)

L Airfoil lower surface

m Pitching moment, (Nm)

M∞ Free-stream Mach number
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mmax Airfoil maximum camber, (-)

n Number of design variables

ns Number of design samples

nt Number of test data samples

p Static pressure, (Pa)

RLE Airfoil leading edge radius

Re Reynolds number

S Reference area, (m2)

tmax Airfoil maximum thickness, (-)

to f f Airfoil trailing edge offset

tT E Airfoil trailing edge thickness

T SR Tip-speed ratio, (-)

u Velocity component in Cartesian system, (m/s)

U Airfoil upper surface

U∞ Free-stream velocity, (m/s)

X Airfoil surface crest x-coordinate

xc Non-dimensional chordwise location

xmmax Non-dimensional chordwise location of mmax

xtmax Non-dimensional chordwise location of tmax

y Function of interest

y+ Non-dimensionalized first layer cell thickness

Z Airfoil surface crest z-coordinate

z z-coordinate of airfoil section, (-)
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Zxx Second-order derivative of airfoil surface

d.c. Drag counts, ∆cd = 0.0001

1 Introduction

Wind energy is a sustainable energy resource and is proving to be one of the most economical methods

of unsubsidized energy generation [1]. The wind energy industry has been driven by horizontal axis

wind turbines (HAWTs) due to their high efficiency in steady winds. In recent years, vertical axis wind

turbines (VAWTs) have acquired growing interest with its suitability to urban and offshore applications

[2]. VAWTs have several advantages over HAWTs. For example, VAWTs are simple in design, self-starting,

omnidirectional, less noisy, inexpensive to construct and have lower operational and maintenance

costs [3]. VAWTs, however, suffer from an inherent complex unsteady aerodynamic phenomenon

known as dynamic stall when operating at a low tip-speed ratio (T SR ≤ 5). In VAWTs, dynamic stall

arises from rapid changes in the angle of attack perceived by each blade in every rotational cycle [4, 5],

generating adverse loading which significantly impacts the blades, hub, tower structure, power output,

and the turbine life. An accurate understanding and consideration of dynamic stall is a major priority

in the design process of VAWTs to improve their performance and structural life. Recently, the wind

turbine industry has directed significant efforts towards modeling the dynamic stall and dynamic

loading to improve turbine life [6, 7].

In the case of dynamic stall, aerodynamic shape optimization (ASO) can be used to passively miti-

gate adverse dynamic loading over aerodynamic surfaces using accurate computational fluid dynamics

(CFD) models. Surrogate-based optimization (SBO) [8] provides an efficient approach to alleviate the

computational cost of ASO. In this paper, SBO is used to efficiently find optimum shapes for delaying

dynamic stall occurrence over VAWT airfoils. In particular, the Kriging regression surrogate [9] with the

expected improvement (EI) [9, 10] infill criteria is used to represent the design objective function and

constraints with respect to the airfoil design parameters. The airfoil shapes are parameterized with the

PARSEC method [11]. The accuracy of the surrogate model is adaptively enhanced with the EI infill

criteria and validated with the normalized root mean square error (NRMSE) metric. Optimum airfoil

shapes are found by optimizing the surrogate model with the multi-start gradient-based optimization

(GBO) method [12]. Additionally, global sensitivity analysis of the design objective with respect to

the design variables is performed with Sobol’ indices [13] to provide information on how the airfoil

design parameters affect the dynamic stall characteristics. The proposed approach is applied to a
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VAWT airfoil, however, it can be applied to other aerospace systems undergoing dynamic stall.

The remainder of this paper is structured as follows. The next section presents a literature review

on ASO, SBO and their applications to the dynamic stall problem. The subsequent section describes

the SBO approach used in this work, which includes the problem statement, problem formulation,

optimization algorithm and Sobol’ sensitivity analysis. The following section describes the test case

and the computational model setup used for evaluating airfoil dynamic stall. The next section presents

the results of the optimization and sensitivity analysis studies. Finally, conclusions and suggestions for

future work are given.

2 Background

Dynamic stall phenomenon frequently occurs on helicopter rotors [14], maneuvering aircraft [15],

wind turbines [16–18], and bio-inspired micro air vehicles (MAVs)/unmanned air vehicles (UAVs) [19–

23]. Thus, considerable research has been done experimentally and computationally to understand

dynamic stall physics and airfoil shape dependencies by studying a sinusoidally oscillating airfoil in

a uniform flow [14, 24–27]. Furthermore, significant research has been conducted on alternatives to

mitigate or control dynamic stall via active and passive control systems [28–33]. Application of these

approaches can increase the system mass and may require an auxiliary control system, which may

increase the complexity and cost of the wind turbine system. Therefore, these approaches may not be

economically viable for VAWT applications.

ASO is a method to design aerodynamic surfaces for optimum performance. ASO was first applied

by Hicks et al. [34] for airfoil drag minimization of nonlifting, transonic airfoils in inviscid flow. Since

then it has become an essential component of aerodynamic design to improve the performance of

various engineered systems, such as aircraft [35, 36], cars [37], wind turbines [38, 39], trains [40], and

compressors [41, 42]. In the case of dynamic stall, ASO can be used to mitigate adverse dynamic loading

thereby enhancing and optimizing the performance of aerodynamic surfaces. With the development of

computer technology, shape optimization studies can be performed using accurate CFD simulations,

although, there are several challenges to this task.

ASO is an iterative process that requires multiple model evaluations to produce an optimum

design. The GBO method is a widely used technique in ASO. A major bottleneck in this approach

is the large computational cost in evaluating the objective function and constraints using accurate

CFD models and determining their gradient information with respect to the design variables. This
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computational cost increases quickly with the number of design variables. In the adjoint-based method

[43], sensitivities of the objective and constraint functions with respect to the design variables are used

with GBO technique to efficiently find the optimum design. In particular, the adjoint-based design

approach is nearly independent of the number of design variables, which renders the approach highly

scalable to large design spaces [44]. The adjoint-based ASO method is currently widely considered the

state-of-the-art for solving aerodynamic design optimization problems.

Examples of applications of adjoint-based ASO include the following. Jameson et al. [43] applied

the continuous adjoint method for cruise drag reduction of the Boing 747-200 wing using a Reynolds-

averaged Navier-Stokes (RANS) based CFD model. Dhert et al. [39] used the adjoint method for

ASO of wind turbine blades with 240 shape variables for maximizing the torque of the NREL VI wind

turbine. Lei et al. [45] applied an adjoint approach for aerodynamic optimization of civil aircraft with a

wing-mounted engine, including 462 wing shape and three engine position variables for minimizing

the drag coefficient at the nominal cruise condition.

Most ASO applications are used for steady-state flow problems because of the high computational

cost associated with unsteady flow problems. ASO for the mitigation of dynamic stall adverse effects

have received limited attention due to the complex flow physics and high computational cost. Recent

efforts, however, have produced shape optimization strategies for two-dimensional (2d) [46–50] and

three-dimensional (3d) [2, 51] dynamic stall problems.

The adjoint method with the GBO approach has been frequently used for dynamic stall optimiza-

tion cases chiefly because of the inexpensive gradient calculation. Examples of such work follow.

Wong et al. [46] used a discrete adjoint method with a 2d steady state RANS solver for minimizing

the drag coefficient of the VR-7 airfoil in steady state condition and then tested the optimized shape

in unsteady sinusoidal pitching motion to see its effects under dynamic stall conditions. Nadarajah

et al. [47] developed time accurate discrete and continuous adjoint methods for time-averaged drag

minimization through shape optimization of the RAE 2822 airfoil operating at varied flow conditions.

Mani et al. [48] used the time dependent adjoint approach for reducing peak pitching moments of

the SC1095 helicopter airfoil during the pitching cycle. A sliding mesh strategy with time accurate

continuous adjoint method was implemented by Economon et al. [52] for airfoil shape optimization

in unsteady flow. Apart from adjoint method, Wang et al. [49, 50] used GBO approach with sequential

quadratic programming (SQP), unsteady RANS (URANS) and the class shape transformation method

for airfoil parameterization to alleviate drag and pitching moment divergence during dynamic stall

cycle on rotor airfoils.
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There is a possibility that the shape obtained from the GBO method is a local optimum [53]. For

instance, GBO starts with a design and moves towards an optimum by using local gradient information.

Since, the GBO search may only cover a part of the design space, the optimum solution obtained by

this approach can be a local optimum [54]. Genetic algorithms (GAs) [55] are more likely to find a

global optimum than GBO methods. In general, GA-based search requires multiple model evaluations

in the entire design space, which can be computationally time-consuming, and even prohibitive, if the

CFD model is called directly, especially for high-dimensional design problems. GA-based methods do

not use adjoint information.

Several works on GA-based ASO approaches have been reported. Anderson et al. [54] used GA for

high-efficiency missile geometry design for multiple-objective problems. Quagliarella et al. [56] and

Yamamoto et al. [57] applied GA for designing transonic airfoils. Ma et al. [2] used the multi-island GA

for airfoil shape optimization to improve the power performance of VAWT with 3d URANS simulations

at moderate tip-speed ratios.

The SBO method [8, 58] can be used to alleviate the computational cost of ASO problems. In this

approach, a surrogate model (also called a metamodel) is constructed of the objective function within

the design space using an approximation method. The surrogate model is fast to evaluate and can be

used in lieu of the physics-based simulation model within the optimization loop. Occasionally, the

simulation model is evaluated to gather new data to update or correct the surrogate model. Once the

surrogate model has been constructed, it can be searched using GBO or GA method.

Few works have presented the application of SBO to ASO of unsteady problems. Tang et al. [59]

used Kriging surrogate modeling technique for the shape optimization of cycloidal rotor airfoil in

unsteady flow. Wang et al. [51] successfully applied a Kriging-based SBO for finding optimal rotor

shapes for a helicopter application. The SBO method has been used successfully in turbomachinery

shape optimization problems [41, 42, 60], where the computational cost of each evaluation can be as

high as in dynamic stall CFD simulations.

3 Surrogate-based shape optimization

This section presents the methodology of the shape optimization using surrogate models for delaying

airfoil dynamic stall. In particular, the section describes the problem statement and optimum design

problem formulation providing details on the design variables and the objective and constraint func-

tion formulations. The optimization algorithm is described in detail, including the Kriging regression
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surrogate modeling, infill criteria, and the surrogate model validation as well as the sensitivity analysis

based on Sobol’ indices.

3.1 Problem statement

In this study, a straight-blade fixed-pitch VAWT (called the Darrieus-type wind turbine) is considered.

When the VAWT rotates, the relative velocity perceived by the airfoil section changes continuously with

respect to the azimuthal location of the blade. This type of motion is often referred to as the Darrieus

motion [61]. The magnitude of the angle of attack (α) variation in the Darrieus motion without velocity

induction from the rotor can be expressed, in terms of the tip-speed ratio (T SR) and the azimuthal

angle (θz ) as [61]

α(T SR,θz ) = arctan
( sin(θz )

T SR + cos(θz )

)
. (1)

The variation of the normalized angle of attack (α(T SR,θz )
αmax

) for several tip-speed ratios in Darrieus

motion is shown in Fig. 1a against the sine curve. In VAWTs, dynamic stall typically occurs at a low tip-

speed ratio (T SR ≤ 5). The variation of the normalized angle of attack in the Darrieus motion is similar

to the sine curve motion. Thus, the angle of attack variation in VAWTs can be approximated as an airfoil

in a sinusoidal pitching motion in a stationary frame of reference. Considering the similarity of these

types of motions it is likely that there is a similarity with regards to the dynamic stall mechanics [5].

Moreover, the dynamic stall phenomenon has traditionally been studied with a sinusoidal oscillating

motion, hence, a large number of experimental data sets are available for comparison and validation.

Therefore, this study considers the simple sinusoidal pitching motion instead of the realistic but

(a) (b)

Figure 1: Parameters for describing the airfoil oscillating motion and response: (a) normalized blade angle of
attack variation (α(T SR,θz )

αmax
) with varying tip-speed ratios T SR in Darrieus motion, and (b) the force and moment

coefficients at the quarter chord of an airfoil in uniform flow
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complicated Darrieus motion of the VAWT blade.

Airfoil sinusoidal oscillating motion in a freestream flow is shown in Fig. 1b. The pitching motion

of the airfoil is described using the angle of attack as a function of time (t ) as

α(t ) =αm + Asi n(ωt ), (2)

where αm , A, and ω represent the mean angle of attack, the amplitude of oscillation, and the rotational

rate, respectively. The reduced frequency, kr , is another important parameter relating time unit, t , of

rotation to the time scale of the flow passing over airfoil section. The reduced frequency is defined as

kr = ωc

2U∞
, (3)

where c is the chord length and U∞ is the freestream speed.

Dynamic stall can be categorized as a light stall and a deep stall [14] based on the angle of attack

variation beyond the static stall angle (αss) of the airfoil during pitching oscillation [62]. The VAWT

airfoils undergo deep dynamic stall at lower T SR values, causing a severe variation in the aerodynamic

loads. Accordingly, in this study the deep dynamic stall case from Lee et al. [63] is considered. The

details of the airfoil motion parameters and flow conditions are given in Table 1.

3.2 Optimum design problem formulation

The current design problem of mitigating the dynamic stall occurrence through airfoil shape opti-

mization can be transcribed to a general mathematical optimization problem which will include an

objective function to maximize the performance of an airfoil subjected to design constraints. The

Table 1: Dynamic stall motion and flow parameters [63]

Parameters Values Units
αm 10◦ deg

A 15◦ deg
ω 3.403 rad/s
kr 0.05 -
Re 135,000 -
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standard optimum design model is written as

min
x

f (x)

s.t . h j (x) = 0; j = 1,2, ...,m (4)

gi (x) ≤ 0; i = 1,2, ..., p

xl b ≤ x ≤ xub

where f (x) is a scalar objective function, x = [x1, x2, ..., xn]T ∈ D ⊂ Rn is the design variable vector

and D is the design space. The airfoil design is subjected to m equality constraints h j (x) = 0 and p

inequality constraints gi (x) ≤ 0. The inequality constraints also include bounds on the design variable

vector as xlb ≤ x ≤ xub , where xlb and xub are the lower and upper bounds, respectively.

One of the objectives of the current study is to improve the understanding of how the airfoil

parameters affect the dynamic stall mitigation. The PARSEC airfoil parameterization [64] offers a set

of design variables that directly control the airfoil characteristics, such as the leading edge radius,

thickness, and trailing edge wedge angle [11]. Unlike other parameterization techniques, like bump

functions [65], B-spline [66] or free-form deformation [67], the PARSEC parameters have a specific

meaning which can be appealing to airfoil designers.

In PARSEC, the upper and lower surface of an airfoil are described as [64]

zs =
6∑

i=0
as

i x
i− 1

2
c , s =U ,L (5)

where zs is the z coordinate of the upper or the lower curves, xc is the non-dimensional chordwise

location (0 ≤ xc ≤ 1), and aS
i are the undetermined coefficients. The letter s denotes calculation for

the upper (U ) or the lower (L) surface of the airfoil. The PARSEC airfoil geometry parameters are

shown in Fig. 2. Table 2 shows the design variables used in the PARSEC parameterization. A total

of 12 parameters define an airfoil with a unit chord length. The first four parameters in Table 2 are

separate for the upper and the lower surfaces whereas the last four parameters are common between

both of them. In this work, the trailing-edge offset (to f f ) and the trailing-edge thickness (tT E ) are

considered to be zero for both surfaces. Since the dynamic stall characteristics are strongly affected by

airfoil upper surface. In the current study, the lower surface parameters are kept constant and based

on the baseline airfoil (NACA0012) aside from the lower surface leading edge radius RL . The upper

and lower surface leading edge radiuses are designated by one variable (RLE = RU = RL) to get a better
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Figure 2: The PARSEC airfoil geometry parameters.

understanding of the effect of the leading-edge radius on the dynamic stall.

Table 2: PARSEC design variables

Design Description Units
Variables

X Surface crest x coordinate -
Z Surface crest z coordinate -

Zxx Second-order derivative at X , d 2z
d x2 |x=X -

RLE Leading edge radius -
θT E Trailing edge directional angle deg
βT E TE wedge angle deg
to f f Trailing edge offset -
tT E Trailing edge thickness -

The aforementioned conditions reduce the 12 design variables to only six variables and the design

variable vector is written as

x = [XU , ZU , ZxxU ,RLE ,θT EU ,βT EU ]T . (6)

The design variables and their respective bounds are presented in Table 3 where the variable bounds

are selected to allow a larger modification to the objective function magnitude without producing an

atypical shape of the airfoil.

The objective of this work is to find an airfoil shape which mitigates the risk of dynamic stall by

reducing sudden aerodynamic load variations, while at the same time delaying the occurrence of the

dynamic stall point. This objective can be achieved by delaying the formation of the dynamic stall

vortex on the airfoil surface which is the cause of sudden divergence observed in the drag and pitching
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Table 3: Design variables with their bounds for upper airfoil surface

Design Variables Upper bound Lower bound Units
XU 0.5011 0.2733 -
ZU 0.09 0.054 -

ZxxU -0.4036 -0.6726 -
RLE 0.0222 0.0104 -
θT EU -7.0294 -11.7156 deg
βT EU 5.8803 3.52818 deg

moment coefficients. Thus, the optimization problem formulation can be defined as

min
x

f (x) =
(∑N

i=1 cdi (x)

J (cd0)

)
+

(∑N
i=1 |cmi (x)|

J (cm0)

)
(7)

s.t . g =αd s0 +∆α−αd s(x) ≤ 0 (8)

xlb ≤ x ≤ xub (9)

where J(cd0) =∑N
i=1(cd0)i , J(cm0 ) =∑N

i=1 |(cm0)i | , cd (x), cm(x), and αd s(x) represent the time variant

drag coefficient, pitching moment coefficient and dynamic stall point of the airfoil shape during

dynamic stall cycle; subscript ‘0’ represents the base airfoil parameters; ∆α denotes the minimum

delay in the dynamic stall angle required for optimum design, and N denotes the number of physical

timesteps in each pitching cycle. The value of N is depends on simulation timestep and total cycle

time. In this study, only the upstroke part of the pitching cycle is considered where the formation of

the dynamic stall vortex causes a divergence in the drag and pitching moment coefficients.

3.3 Optimization algorithm

The different steps of optimization algorithm (shown in Fig. 3) are implemented with a python script

which calls different modules of the optimization algorithm to construct and sequentially refine the

Kriging regression surrogate model with expected improvement as the infill criteria. First, the initial

training sample database is generated with a Latin hypercube sampling (LHS) sampling plan [68]. Then,

the airfoil shape for each design sample is generated using the PARSEC parameterization technique (cf.

Sec. 3.2). The shape coordinates are then used to generate the computational mesh which is then used

with CFD solver for design evaluation. Note that in this study only the upstroke of the pitching cycle is

simulated where the dynamic stall vortex formation occurs. To avoid transients from affecting the CFD

results, the airfoil is initially started in a down-stroke and then in an upstroke. The results from the

upstroke are used for the computation of the objective and the constraint function. All initial samples

are evaluated similarly.
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Observations

Sampling plan 
(LHS)

Surrogate model construction 
(Kriging Regression)

Termination 
condition 

Optimization / GSA

Yes

Optimal design / Sobol' indices

Add the infill point to 
initial samples

 (Expected improvement )

No

Validation 

CFD model 
(URANS)

Figure 3: A flowchart of the surrogate-based optimal design and global sensitivity analysis (GSA).

The acquired observations are used to construct two separate surrogate models, one for the

objective and another for the constraint function. The global accuracy of constructed surrogate models

are validated using the NRMSE metric (cf. Sec. 3.3.4) over the entire design space using a testing data

set. If the surrogate models satisfy the accuracy criteria, then they are passed to the optimizer as well

as for the sensitivity analysis (cf. Sec. 3.4). In case the surrogate models do not satisfy the accuracy

criteria, an infill point is determined based on the EI infill criteria (cf. Sec. 3.3.3) to improve surrogate

model’s accuracy. The infill point is evaluated with the CFD module and added to the initial sample

database to construct new surrogate models. This process is iterated until the surrogate models satisfy

the accuracy criteria. The above optimization algorithm has some similarity with the efficient global

optimization (EGO) [10] algorithm. The EGO approach uses a stopping criteria based on percentage of

expected improvement whereas the proposed optimization algorithm uses surrogate model accuracy

as a stopping criteria. The details of each optimization module are discussed in following subsections.

3.3.1 Sampling plan

The LHS method [68] is used to generate the initial sampling plan in this study. LHS was first proposed

by McKay et al. [68] as an alternative to simple random sampling to improve convergence and accuracy

of the Monte Carlo simulation [68]. LHS is based on a latin square design where one sample is placed
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in each row and column. A latin hypercube is the multidimensional extension of the latin square to

sample points in multiple hyperplanes [69]. The basic idea in LHS is to separate a sampling point

distribution which is close to the probability density function (PDF)[68]. This is done by stratification,

which divides the cumulative probability distribution of 0 to 1 in equal intervals. Then, a sample

is taken from each interval randomly and the input probability distribution is recreated. The LHS

method provides a good distribution of sample points over the design domain ensuring that the entire

range of the design variables are represented in the sampling plan. In the present study, six design

variables are selected for representing airfoil shape (see Sec. 3.2). According to Gu et al.[70] and Shi

et al. [71] a number of samples equal to three times the number of design variables are needed at a

minimum for the construction of reasonably accurate surrogate models. However, it is desirable to

use a larger number of samples than the minimum for higher accuracy of the initially constructed

surrogate model. Thus, considering the long time required for each sample evaluation, the number of

initial sampling points is taken to be ten times the number of variables.

3.3.2 Surrogate modeling using Kriging regression

Kriging regression [9] is an extension of regular Kriging [72]. Kriging is an interpolation method widely

used in SBO for noise free data sets [72]. Kriging approximates the observed response as a combination

of a global trend function and a local variation from the global trend as [72]

y(x) =G(x)+Z (x), (10)

where y(x) is the function of interest, G(x) is a polynomial trend function, and Z (x) is a realization

of a normally distributed Gaussian random process with a zero mean, variance σ2, and non-zero

covariance [72].

The global trend function is a product of two vectors given as

G(x) = gT (x)β, (11)

where

gT (x) = [g0(x), g1(x), .., gn−1(x)], (12)

is the regression basis functions (n ≤ ns with number of samples as ns and number of design variables
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as n) and the regression coefficients

β= [β0,β1, ..,βn−1]T . (13)

In regular Kriging, the global trend function is typically taken as constant, which yields g = 1 and β a

scalar value. In this study G(x) is considered as constant.

The function Z (x) provides a localized variation to the global trend function for a set of sampled

data x1,x2, ...,xns over the design domain D where any given sample is xi ∈ D ⊂Rn . Sample points are

assumed to be correlated with each other using a Gaussian basis function as [72]

R(xi ,x j ) = exp
[
−

n∑
k=1

θk |xi
k −x j

k |2
]

, (14)

where xi
k and x j

k are the kth components of any two sample data xi and x j , and θk is the kth unknown

correlation parameter of θ = [θ1,θ2, ...,θn]T , allowing for a variation in width of the basis function.

Using the basis function, the covariance of the sampled points is [72]

Cov[ xi ,x j ) ] =σ2 R
( [

R(xi ,x j )
] )

, (15)

where R is a ns ×ns symmetric matrix with Ri j = R(xi ,x j ).

The Kriging predictor ŷ(xu) at an untried location xu in the design domain is given by [72]

ŷ(xu) = gT β̂+ rT (xu) R−1( y−Gβ̂ ), (16)

where y is the column vector of length ns containing the responses at the sample points, G is a

column vector of length ns filled with ones when G(x) is considered constant. The vector rT (xu) =
[R(xu ,x1),R(xu ,x2), ...,R(xu ,xns )] is the correlation vector between the known observed points (x1,x2, ...,xns )

and the new sample point xu . The vector β̂ in (16) is a maximum likelihood estimation (MLE) of β and

is evaluated as

β̂= GT R−1y

GT R−1G
. (17)

A Kriging model is fitted to the given sample data by optimizing correlation parameters θ using MLE

function. In this work, the concentrated ln-likelihood function is used for estimation of hyperparame-

ters given by [69]

l (θ) =−ns

2
ln(σ̂2)− 1

2
ln |R|, (18)
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where σ̂2 is a MLE of the Gaussian process variance and is given as

σ̂2 = (y−Gβ)T R−1 (y−Gβ)

ns
. (19)

The optimum value of θ can be found by maximizing the ln-likelihood function using a GA. The crucial

property of the Kriging model is its ability to provide an error estimate at unsampled points, which can

be used with various infill strategies [69] for improving the surrogate model.

The Kriging method is formulated based on the assumption that the objective function to be

approximated is accurate (with no errors), smooth and continuous in the design domain. Typical

engineering objective functions are noisy due to the errors involved in numerical modeling. The objec-

tive function encountered in a dynamic stall simulation can include errors from the computational

simulation when the airfoil oscillates in the separated flow region. This can cause an error in the

Kriging approximation when many design points are added closely to find the optimum design. In

such a situation, Kriging regression can be used to handle the noisy data [9].

For this study, a Kriging regression surrogate model is used for approximating the objective and

constraint functions. The noise filtration capability of Kriging regression is achieved by adding a

regression constant λ to the diagonal terms of the Kriging correlation matrix R which then becomes

R+λI, where I is the identity matrix. The Kriging regression predictor is now given as [9]

ŷr (xu) = gT β̂r + rT (xu) (R+λI)−1( y−Gβ̂r ), (20)

where

β̂r =
GT (R+λI)−1y

GT (R+λI)−1G
, (21)

and estimated variance of Gaussian process σ̂2
r is given as

σ̂2
r =

(y−Gβ̂r )T (R+λI)−1(y−Gβ̂r )

ns
, (22)

where the subscript ‘r ’ denotes regression. Similar to regular Kriging, Kriging regression can be fitted

to the sampled data by maximizing the ln-likelihood function given as

l (θ,λ) =−ns

2
ln(σ̂2)− 1

2
ln |(R+λI)|, (23)

where the hyperparameters λ and θ are determined using a global optimizer such as a GA. In this work,
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differential evolution (DE) [73], a stochastic population-based global optimization method, is used for

determining the hyperparameters. In particular, the DE algorithm offered by SciPy [74] is used for the

optimization task. Kriging regression is described in detail in Forrester et al. [9].

3.3.3 Infill criteria

The surrogate model developed by Kriging or Kriging regression is an approximation of the objective

function. The search for the minimum depends on the accuracy of the surrogate model. The surrogate

model’s accuracy can be improved by adding more points in design space in addition to the initial

sampling plan. For this study, the expected improvement (EI) [10, 69] is used as an infill criterion to

balance global exploration and local exploitation of the objective function. For Kriging, the expected

improvement can be calculated by using the mean ŷ and the mean square error ŝ2 as [69]

E[I (xu)] =


(ymin − ŷ) Φ

(
ymin−ŷ

ŝ

)
+ ŝ φ

(
ymin−ŷ

ŝ

)
when ŝ > 0

0 when ŝ = 0

(24)

where Φ and φ are the cumulative distribution function and the probability density function, respec-

tively. The new point will be added at the location of maximum E [I (x)]. The Kriging mean square error

[69] is

ŝ2(xu) = σ̂2
[

1− rT R−1r+ 1−GT R−1r

GT R−1 G

]
. (25)

The computation of the expected improvement in (24) with the mean square error in (25) can be

implemented as

E[I (xu)] = (ymin − ŷ)
[1

2
+ 1

2
erf

( ymin − ŷ

ŝ
p

2

)]
+ ŝ

1

2π
exp

[−(ymin − ŷ)2

ŝ

]
. (26)

Note that the error ŝ2 is zero at the sample points. The expected improvement should also be zero

at sampled points such that model does not revaluate at already sampled points. Hence, Φ() = 0

and E[I (X)] = 0 when ŝ = 0. The expected improvement function with no possibility of resampling

guarantees global convergence [69].

It should also be noted that Kriging regression can not be directly used with the expected improve-

ment infill criteria in (26). This is mainly because of the error associated with the noise in the sampled

data. The error ŝ2 is always present in the Kriging regression model at all the points and does not

reduce to zero as in the Kriging model. This gives rise to the possibility of resampling with non-zero

E[I (xu)], potentially stalling the search process with no guarantee of obtaining global optimum [9].
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This problem is solved by redefining the Kriging error, thereby eliminating error due to the noise in

the model [9, 69]. This method is known as re-interpolation and is covered in detail in Forrester et al.

[9]. The redefined Kriging mean squared error with re-interpolation is given as [9]

ŝ2
r i (x) = σ̂2

r i

[
1− rT R−1r+ 1−GT R−1r

GT R−1 G

]
, (27)

where the variance σ̂2
r i with re-interpolation is given by [9]

σ̂2
r i =

(y−Gβ̂r )T (R+λI)−1 R (R+λI)−1(y−Gβ̂r )

ns
. (28)

The subscript ‘r i ’ denotes re-interpolation. Now the Kriging error calculation (27) reduces to zero at

the known sample points allowing the expected improvement to find the global optimum of the model.

The error ŝr i is then used with (26) to calculate the EI magnitude in the design domain.

Finally, an infill point can be found by maximizing the function (26) with a global optimizer such

as a GA. In this work, DE [73], implemented in SciPy [74], is used for determining the infill point by

maximizing the EI function (26) with re-interpolation.

3.3.4 Surrogate model validation

The global accuracy of the surrogate model should be validated before using it in the optimization or

GSA process. For this study, the normalized root mean squared error (NRMSE) is used for the surrogate

model validation. The NRMSE is defined as

NRMSE =

√∑nt

i=1
(y i

t − ŷ i
t )2

nt

(ymax − ymin)I
, (29)

where y i
t and ŷ i

t represent the responses from the CFD model evaluation and surrogate model pre-

diction at the i th test sample, respectively. The response value y is either the objective function or

the constraint function value for their respective error estimations. The nt is the number of testing

data samples. The denominator of (ymax − ymin)I represents the difference of the maximum and the

minimum response values in the initial sample data set. In this work, NRMSE ≤ 10%, with a fixed

budget of 20 infill samples, is considered as acceptable criteria for the surrogate modeling.
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3.4 Global sensitivity analysis by Sobol’ indices

An important objective of this study is to determine the critical parameters that affect the dynamic

stall characteristics. Sensitivity analysis (SA) is the study of predicting uncertainty in a model output

due to the uncertainty in the model inputs [75]. SA of the dynamic stall objective function would

provide the quantification of the sensitivities of individual variables to the dynamic stall mitigation.

This information would be important to the designer for identifying critical regions in the design space

and simplifying the model by only considering the essential input design variables.

SA can be categorized as being either local or global. Local SA quantifies the rate of change of the

model output due to small changes in the model input. Local SA relies on the calculation of derivatives

which are specific to the current point and does not capture the interaction with other design variables

and are often not valid for nonlinear models [75]. Global sensitivity analysis (GSA) focuses on the

model output uncertainty over the entire ranges of the input variables providing information of how

variations in the input variables affect the model output. The Sobol’ analysis is a widely used GSA

method [13, 76] and yields the first-order and the total-effect of the input design variables. In this work,

Sobol’ indices [13] are used for the GSA.

Sobol’s method uses a variance decomposition to calculate the Sobol’ indices. Consider the

function Y = f (x) being the model response with x as the vector of n input variables. The model

response can be decomposed as [76]

f (x) = f0 +
n∑

i=1
fi (xi )+

n∑
1≤i≤ j≤n

fi j (xi , x j )+ ...+ f12...k (x1, x2, ..., xn) , (30)

where f0 is a constant, fi are first-order functions, fi j are second-order functions and so on. The above

decomposition has 2n finite number of terms. Sobol’ proved that all the terms of the decomposition

are orthogonal in pairs [76], i.e.,
∫

f (xi ) f (x j ) d xi d x j = 0 considering that each term in the above

expansion has a zero mean. Hence, these terms can be calculated using a conditional expectation of

the model output Y as

f0 =E(Y ), (31)

fi =E(Y |xi )−E(Y ), (32)

fi j =E(Y |xi , x j )− fi − f j −E(Y ). (33)

The conditional expectation E(Y |xi ) can be calculated empirically by separating xi from the domain
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and averaging the value of (Y |xi ). If E(Y |xi ) has a large variation across xi then the variable xi is

believed to be important. Therefore, the variance in E(Y |xi ) is a measure of sensitivity. Hence, with

further modifications the terms in the decomposition (30) can be written as [76]

V(Y ) =
n∑
i

Vi +
n∑
i

n∑
i< j

Vi j + ...+V12... n , (34)

where Vi is V[E(Y |xi )] and V(Y ) represents the total variance in the model response Y . The Sobol’

indices can be obtained by dividing (34) by V(Y ) to obtain

1 =
n∑
i

Si +
n∑
i

n∑
i< j

Si j + ...+S12... n , (35)

where Si represents the first-order Sobol’ index given by [76]

Si = Vi

V(Y )
. (36)

The total-effect Sobol’ index is given as [76]

STi = 1− V(E(Y |x∼i ))

V(Y )
, (37)

where x∼i represents the set of all variables except xi . The total-effect index STi accommodates the

total contribution of xi to the model output variation V(Y ). This includes the first-order effect plus

higher order effects due to interactions with other variables. With availability of the Sobol’ indices (Si

and STi ) the interaction effects of xi with other variables can be computed by STi −Si which provides

added information about the design variable interactions.

The Sobol’ indices can be computed with a Monte Carlo-based numerical procedure given by

Saltelli [77]:

(1) Generate a (N ,2n) matrix of random numbers in design variable bound where n is the number of

design variables and N represents the number of samples used for the SA. Get two matrices A and

B, each with size (N ,n). Sobol’ recommended a quasi-random sequence for the random number

generation [76]. LHS is an another technique which can be used for the sample generation [75].

Hence, LHS sampling with uniform distribution is utilized for sampling design variables.

(2) Build matrix Ci of size (N ,n), such that all the columns are from B except the i th column which

is from A.
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(3) Obtain three column vectors (YA, YB and YCi ) of size (N ,1) by evaluating the model at design

variables from matrices A, B and Ci where

YA = f (A), YB = f (B), YCi = f (Ci ). (38)

(4) Compute the first-order effect Si and the total-effect STi Sobol’ indices for the i th design variable

by using the following estimators given by Saltelli [76, 77] as

Si =
1
N

∑N
j=1 Y j

AY j
Ci
− f 2

0

1
N

∑N
j=1(Y j

A)2 − f 2
0

, (39)

where

f 2
o =

( 1

N

N∑
j=1

Y j
A

)2
, (40)

and

STi = 1−
1
N

∑N
j=1 Y j

BY j
Ci
− f 2

0

1
N

∑N
j=1(Y j

A)2 − f 2
0

. (41)

Following are some of the properties of Sobol’ indices which are useful for the interpretation of the

sensitivity results [76]:

(1) By definition STi ≥ Si . The case of STi = Si implies that the i th (xi ) variable has no interactions

with other design variables.

(2) STi −Si represents the degree of the xi variable involvement in interactions with other variables.

(3) STi = 0 indicates that xi does not have any influence on other variables and can be fixed without

affecting the variance of model output.

(4) The sum of all Si is equal to 1 for additive models and Si ≤ 1 for non-additive models. The

magnitude of 1−∑n
i=1 Si suggests the presence of interactions in the model.

(5)
∑n

i=1 STi is always greater than 1 and
∑n

i=1 STi is equal to 1 only for perfectly additive models.

4 Computational fluid dynamics modeling

This section describes the CFD model setup considered for the current study. First, the governing

equations used in the CFD model are described, followed by a description of flow solver and its setup.

Then, the computational grid is described, and the results of the grid and time-independence studies
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are presented. Lastly, the results of a validation study comparing the proposed CFD model against

experimental results are presented.

4.1 Governing equations

The current study is performed with URANS as the governing equations. The RANS equations are ob-

tained by the time-averaged Navier-Stokes equations. Averaging removes high-frequency fluctuations,

reducing the range of length scales presented in flow. The two types of averaging methods are the

classical Reynolds averaging and the mass-weighted averaging, also known as Favre average [78]. The

Favre average of any flow variable fv is given as

fv = f̃ + f ", (42)

where f̃ = ρ f
ρ̄ and f " are the Favre mean and the Favre fluctuating component, respectively. The Favre

average is preferred for a compact compressible flow treatment of the Navier-Stokes equations. The

application of the classical and the Favre averaging to the conservation of mass, momentum and

energy gives the URANS equations [78]:

∂ρ̄

∂t
+ ∂

∂xi
(ρ̄ũi ) = 0, (43)

∂

∂t
(ρ̄ũi )+ ∂

∂x j
(ρ̄ũi ũ j ) = ∂p̄

∂xi
+ ∂τ̃i j

∂x j
− ∂

∂x j
(ρu"

i u"
j ), (44)

∂

∂t
(ρ̄H̃)+ ∂

∂xi
(ρ̄ũ j H̃ +ρu"H"−k

∂T̄

∂x j
) = ∂p̄

∂t
+ ∂

∂x j
(ũi τ̄i j +u"

i τi j ), (45)

where ρ, p,ui ,T, H , and τi j are the density, pressure, velocity component, temperature, total enthalpy

and viscous stress tensor, respectively. The term −ρu"
i u"

j is referred to as the Reynolds stress, which

represents the effects of turbulent fluctuations in fluid flow given by

−ρu"
i u"

j =µt

(∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk
δi j

)
− 2

3
ρkδi j , (46)

where k is the turbulent kinetic energy, µt is the turbulent eddy viscosity, and δi j is the Kronecker

delta function. For the closure of the above URANS equations, Reynolds stress is modeled by one- or

two-equation turbulence models.

In this study, Menter shear stress transport (SST) [79] turbulence model is used. The SST model is a

two-equation eddy-viscosity turbulence model that blends k −ω and k −ε models. The SST model has
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shown acceptable performance for dynamic stall and complete VAWT simulation cases by multiple

researchers [5, 61, 80] to capture separated flow regions.

4.2 Flow Solver

The Stanford University Unstructured (SU2) [81] is utilized in this work as the numerical solver which

is capable of solving multi-disciplinary problems governed by partial differential equations (PDEs)

in general, unstructured meshes. SU2 has been validated extensively on a number of fluid problems

involving compressible, turbulent flows [81, 82]. For unsteady simulations, SU2 offers a dual time-

stepping strategy [81] to achieve high order accuracy in time where the unsteady problem is converted

to a steady problem at each physical time step and then solved using the steady-state convergence

acceleration techniques.

The dynamic stall simulations in this study are performed using the URANS solver with dual

time-stepping strategy, and rigid grid motion. The governing equations are discretized using the finite

volume method with the convective flux calculations done using the Jameson-Schmidt-Turkel (JST)

scheme [81]. The viscous flux evaluations are assisted by the calculation of the flow variable gradients

with the Green-Gauss method [81]. Time discretization is done by the Euler implicit scheme [81] with

maximum Courant-Friedrichs-Lewy (CFL) number selected as 4. The two-level Multigrid W-cycle

method [81] is also used for convergence acceleration. Finally, the Cauchy convergence criteria [83] is

implemented on the drag calculation with 100 elements and Cauchy-epsilon criteria set to 10−6.

4.3 Computational grid

In this study, the grid generation is conducted using the blockMesh utility in OpenFoam [84]. The

blockMesh utility generates a mesh of blocks of hexahedral cells. The domain geometry is divided

into one or multiple three-dimensional blocks. For the dynamic stall simulation, a C-grid mesh is

generated around the airfoil. The mesh is refined near the airfoil surface to capture the boundary

layer and the complex flow physics generated during the dynamic stall cycle. The first layer thickness

is selected so that y+ ≤ 0.8 with a growth ratio of around 1.05. A low y+ is necessary to capture the

onset of dynamic stall vortex accurately. An external boundary is set at 55 chord lengths away from the

airfoil to minimize boundary reflection effects. The airfoil surface is set with the no-slip adiabatic wall

boundary condition. Figure 4 shows two views of a coarse computational mesh used for the NACA

0012 airfoil. Finally, the mesh generated by the blockmesh utility is converted to a SU2 compatible file

format.

24



(a) (b)

Figure 4: A coarse c-mesh around the NACA 0012 airfoil: (a) the full computational domain and (b) the mesh
close to the airfoil

4.4 Grid and time independence studies

Variations in mesh density can alter the CFD model output which subsequently affects the objective

and constraint functions used in the optimization and GSA. Therefore, grid and time independence

studies are conducted to determine efficient spatial and temporal resolutions to capture the flow

physics accurately.

A converged computational model is obtained in the following way. Initially, the spatial resolution

is obtained with a grid study on a baseline airfoil, the NACA0012 airfoil, at steady-state flow conditions.

The selected flow conditions are the same as those considered by Lee et al. [63]. The resulting mesh is

used to conduct the time step independence study with an oscillating pitching cycle to determine a

physical time step for the URANS simulation. The grid independence study is conducted for a Reynolds

number of 135,000, angle of attack of 4◦, and turbulence intensity of 0.08% with a RANS solver. The

Cauchy convergence criteria on the drag values is set to a Cauchy-epsilon value of 10−6 over 100 flow

solver iterations. The maximum solver iterations are set to 150,000.

The results of the grid independence study are shown in Fig. 5. Five grids with ascending spatial

resolution are selected for the study with y+ ≤ 0.8. The three grids with the highest spatial resolution

show minimal change in the lift coefficient ∆cl ≤ 0.003 with a drag count variation within 4 d.c. The

simulation time requirement for the 387,000 cell mesh is almost three times less than the simulation

time of the highest resolution mesh. Therefore, the mesh with 387,000 cells is selected for this study.

After the selection of appropriate spatial resolution, a time study is executed on the selected mesh
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(a) (b)

Figure 5: Results of the grid independence study of the NACA 0012 airfoil at Re = 135,000 showing the variation
in (a) the lift coefficient, and (b) the drag coefficient.

Table 4: Time step independence study results.

d t cdav g Simulation Time* cder r =| cdav g − cdRE |
(sec) (d.c./cycle) (hrs/cycle) (d.c.)

0.008 1,813 39 295.6
0.004 2,019 51 88.4
0.002 2,093 65 14.9

0.0015 2,103 69 4.8
0.001 2,105 78 2.1

0.0005 2,107 99 0.52
*Computed on a high performance cluster with 112 processors. Wall-clock time.

to determine the physical time step required for unsteady simulation. The dynamic stall simulations

are conducted with the parameters and flow conditions the same as considered in the experimental

study done by Lee et al. [63] (see Table 1). The time step independence study is performed with

multiple time steps as shown in Table 4.

The selection of the time step is made by using the generalized Richardson extrapolation method

[85]. Richardson’s extrapolation method obtains a higher-order estimation of the value under consid-

eration from lower-order values. In this work the average drag coefficient per oscillating cycle, cdav g , is

used for this method. Richardson’s extrapolation estimate, cdRE , represents the average drag coefficient

per cycle at a zero time step (lowest possible), which was found to be 2,108 d.c. Figure 6 shows the

average drag coefficient per cycle versus the time step lengths and their estimated error cder r from the

Richardson extrapolation estimate cdRE at each time step. Based on these results, a time step of 0.0015

is selected.
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(a) (b)

Figure 6: Results of the time step independence study showing (a) the Richardson extrapolation estimate based
on the lower order values, and (b) the estimated error from the Richardson extrapolation.

4.5 CFD model validation

The aerodynamic performance of the selected computational mesh configuration is compared against

the experimental [63] and LES simulation [86] results using the deep dynamic stall case described

in Table 1. The computation is performed using the SU2 URANS solver over 1.5 cycles for validation

where the airfoil initially moves in the downstroke cycle from a mean angle (10◦) to the lowest angle

(−5◦) and data is collected for the next complete cycle. The addition of the downstroke part of the cycle

allows the flow to stabilize from the abrupt change in rotation rate from zero to a finite value at first

time step. The entire computation takes 69 hours (wall-clock time) using 7 nodes with 16 cores per

node on the high performance computing cluster.

Figure 7 shows the time dependent aerodynamic loads obtained from the URANS model for

the NACA0012 airfoil and compares it to the experimental and LES simulation data. The presented

experimental data is a hundred cycle average, whereas LES data is averaged over three cycles. The

dynamic stall angles are given in Table 5.

From Fig. 7 it is seen that the URANS model shows a reasonable agreement with the LES model

and a qualitative agreement with experimental data. The URANS model captures the moment and

dynamic stall locations early in the oscillation cycle. Additionally, the URANS model overpredicts the

maximum lift and pitching moment coefficients. The LES model results show a much closer agreement

to the experimental results when compared to URANS model. Considering the computational time

and resource requirement of the LES model, the URANS model is a practical option for the dynamic

stall evaluation of airfoils in the context of optimal design and GSA.
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Figure 7: A comparison of the time dependent aerodynamic coefficients: (a)lift, (b)drag, (c)pitching moment,
obtained from the URANS model (current work), LES model [86] and experiments [63] with oscillation cycle
parameters α= 10◦+15◦si n(ωt ), kr = 0.05

5 Results

This section presents the results of the proposed approach for delaying the dynamics stall over an

airfoil. First, the surrogate model construction details, infill process, and surrogate model accuracy are

presented. Then, the optimal design and its dynamic stall characteristics are described. Lastly, the

results of global sensitivity analysis on constructed surrogate models are presented.

Table 5: Comparison of the dynamic stall and moment stall locations for URANS, LES and experiments

Models Moment stall Dynamic stall
URANS [this work] 15.9◦ 18.7◦

LES [86] 17.8◦ 19.7◦

Experiments [63] 17.2◦ 20.6◦
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5.1 Surrogate modeling

The surrogate modeling algorithm uses 60 initial LHS samples to construct two separate surrogate

models, one for the objective function and the other for the constraint function. For this study ∆α= 3◦

is considered in constraint function (8) which denotes the minimum delay in the dynamic stall angle

required for optimum design. The surrogate models are validated against 20 test data points generated

using a different LHS plan and evaluated with the CFD model. In this study, NRMSE metric is used

for the validation. Furthermore, a termination criteria of NRMSE ≤ 10% and a fixed budget of 20 infill

points is used. The surrogate models are then sequentially improved by adding infill points using the

EI infill criteria based on the objective function.

Figure 8 shows a plot of the NRMSE for the objective and constraint functions change with the

number of samples. Both surrogate models satisfy the accuracy criteria well before infill points reach

the fixed budget criteria. The constraint function surrogate model shows a higher accuracy than the

objective function surrogate model reaching 2.4% and 8.8%, respectively, with 80 sample points (60

initial samples plus 20 infill points). The entire optimization algorithm needed approximately 376,320

CPU hours, considering negligible cost requirements for training surrogate models. Each evaluation

with the CFD module is done with 112 cores on a high-performance computing cluster that needs

around 4,704 CPU hours. The following sections describe the results of the optimal design and the

GSA.

Figure 8: Surrogate model construction of the objective ( f ) and constraint (g ) functions.
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5.2 Optimal design

Once the surrogate models satisfy the accuracy criteria, they are passed to the optimizer to find an

optimal design for problem formulation proposed in Sec. 3.2. In this work, the multi-start gradient-

based search algorithm is used to find the optimal design. In particular, the sequential least squares

programming (SLSQP) [87] algorithm provided in SciPy [74] is utilized in this work. A total of 240

starting points distributed over the entire design space are obtained using the LHS technique [68]. The

best obtained result is taken as the optimal design.

Figure 9a shows the progression of the optimal shapes obtained at every five infill points. It can

be observed that as the surrogate modeling converges, the optimal design converges as well since

consecutive optimal shapes show small variations. This can also be observed in Fig. 9b, which shows

the L2 norm magnitude between two consecutive optimal designs. For example, the magnitude of

the L2 norm at 65th sample is the difference between the optimum shapes with 65 and 60 samples.

Additional information of the optimum airfoil shapes is given in Table 6. The shape obtained with 80

sample points is considered as optimum design for this study.
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Figure 9: Evolution of the optimal airfoil shapes: (a) the optimum shapes at the initial surrogate model and at
every 5 infill points, and (b) change in z-coordinates of the consecutive optimum designs

Table 6: Properties of the baseline and the optimum airfoil design shapes.

Number of samples tmax∗ xtmax mmax∗ xmmax

Baseline 12 30 0 0
60 14.1 28.8 1.77 69.7
65 14.5 35.1 1.80 62.0
70 14.6 35.1 1.87 62.0
75 14.6 35.1 1.86 62.0

80 (optimum) 14.6 35.3 1.89 62.0
* Shape properties are represented as percentage of the chord length
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A grid and time independence study is done on the optimum design to ensure that the selected

grid and time step are still appropriate for the acquired shape. The same setup and step are utilized for

this grid and time study as that of the baseline shape (see Section 4.4). Figure 10 shows the results of

the grid study on the optimized airfoil. The three grids with the highest spatial resolution show minor

variation in lift coefficient within ∆cl < 0.003 with drag count variation within 4 d.c. Thus, considering

the simulation time requirement, the mesh with 387,000 cells is still an appropriate mesh. The time

study is conducted using the generalized Richardson extrapolation method using the selected mesh

with 387,000 cells. Richardson’s extrapolation estimate of average drag coefficient per cycle is noted to

be 1,805 d.c. The time step of 0.0015 sec show a reasonable agreement producing cder r = 6 d .c. This

analysis shows that the mesh with 387,000 cells and a time step of 0.0015 sec is still an appropriate

selection for producing accurate simulation results for optimized shape

Figure 12a shows the shapes of the baseline and the optimized airfoil (opt-80) along with the

region covered by possible airfoil shapes in the current design space. The small variation on the lower

surface is observed due to the variation in leading-edge radius with assumption (RLE = RU = RL) (see

Section 3.2). The optimized airfoil shape has a larger leading-edge radius, thickness, and camber

than the baseline airfoil (see Table 6). In particular, the optimized airfoil has a maximum thickness of

tmax = 14.6%, which is larger than the maximum thickness tmax = 12% of the baseline airfoil (see Table

6). Additionally, the location of maximum thickness moves downstream to xtmax = 35.3 compared to

the baseline airfoil which is xtmax = 30. The optimized airfoil has a maximum camber of mmax = 1.89 at

xmmax = 62.0 whereas the symmetric baseline airfoil has no camber. The pressure side of the optimized

airfoil is also different than the baseline. This difference is majorly due to the airfoil parameterization

(a) (b)

Figure 10: Results of the grid and time independence study of the optimized shape at Re = 135,000, α = 4◦
showing the variation in (a) the lift coefficient, and (b) the drag coefficient .
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(a) (b)

Figure 11: Results of the time step independence study of optimized design showing (a) the Richardson extrapo-
lation estimate based on the lower order values, and (b) the estimated error from the Richardson extrapolation
estimate (CdRE ).

process where upper and lower surface leading-edge radius are considered equal (RLE = RU = RL) to

get a better understanding at the effect of leading-edge radius on the dynamic stall.

The performance of the optimized shape is evaluated using the CFD model. The aerodynamic

characteristics of the baseline and the optimized airfoils in the upstroke pitching cycle are shown in Fig.

12. The lift, drag and pitching moment coefficients of the optimized design shows a delayed dynamic

stall when compared to the baseline airfoil. Table 7 gives the details of the dynamic stall cycle for the

optimized and the baseline designs.

Figures 13 and 14 provide Z-vorticity plots for the baseline and the optimized design at angles

mentioned in Table 7. As the airfoil undergoes upward pitching motion, lift polar increases for both

airfoils. For the baseline airfoil, the lift curve slope increases drastically around α = 16◦ (Fig. 12b),

which is due to an intensification of the DSV and an associated increase in lift. This follows by a

moment stall at α = 16.55◦ for the baseline airfoil (Fig. 12d), which produces a sharp increase in a

pitch-down moment due to the DSV propagation (Fig. 13). Additionally, the baseline drag polar shows

sudden divergence with the DSV growth and propagation (Fig. 12c). The optimized design shows no

signs of the DSV formation (Fig. 13b) at this angle, and lift continues to increase with the pitch-up

motion. However, the trailing edge of the optimized airfoil shows a flow separation moving towards a

leading edge. At α= 19.15◦, the baseline airfoil goes in a dynamic stall as DSV propagates downstream

close to the trailing edge and away from the airfoil (Fig. 13c). This causes the lift to drop abruptly, and

the baseline airfoil goes in a lift stall. The optimized airfoil shows a slight increase in the pitch-down

moment at this angle, with flow separation moving further towards the leading edge (Fig. 13d). As

the airfoil pitches further at α= 21.57◦, the optimized airfoil undergoes a moment stall with a sudden
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Figure 12: A comparison of the baseline and optimized designs: (a) airfoil shapes, (b) lift coefficient, (c) drag
coefficient, (d) pitching moment coefficient.

Table 7: Details of dynamic stall cycle

Airfoil αd s αms clmax

Baseline (NACA0012) 19.1◦ 16.5◦ 2.2
Optimized 22.5◦ 21.5◦ 1.8

increase in the pitch-down moment and DSV formation (Fig. 14b). It can also be observed that the flow

separation from the trailing edge of the optimized design has reached DSV. The baseline airfoil shows

a complete flow separation at this angle with strong anticlockwise vortex generating at the trailing

edge and a secondary DSV generation at the leading edge (Fig. 14a). The optimized airfoil goes into a

dynamic stall at α= 22.52◦ with DSV detached from the surface near the trailing edge (Fig. 14d).

Further analysis of the stall mechanism of these two airfoils are revealed by plotting the surface

flow properties over the suction side of airfoils. Figure 15 shows contour plots of −cp and c f on the

suction side of the airfoil as a function of the chord location and angle of attack. This representation is

similar to the chord location and time where the angle of attack is a function of time. The sequence
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(a) (b)

(c) (d)

Figure 13: Z-vorticity contour plot of (a) the baseline at α= 16.5◦, (b) the optimized shape at α= 16.5◦, (c) the
baseline at α= 19.1◦, and (d) the optimized shape at α= 19.1◦.

of events identified in Figs. 12,13, and 14 are clearly visible here. As the angle of attack increases, the

suction peak on both the airfoils increases near the leading edge, seen by hotspots in Figs. 15a and

15b. The baseline airfoil shows a higher suction peak at lower angle of attack, increasing the adverse

pressure gradient much earlier than the optimized airfoil. The higher pressure gradient gives rise

to the formation of a separation bubble near the leading edge of both airfoils, represented by the

blue-colored region in Figs. 15c and 15d near the leading edge. The increase in the adverse pressure

gradient and the formation of a separation bubble is delayed in the optimized airfoil. This could be due

to a larger leading edge curvature and thickness. Sharma et al. [88] have reported similar observations

for symmetric airfoils with variable thickness.

The formed separation bubble propagates upstream while growing in size with an increase in the

angle of attack (see Fig 15c and 15d). The suction peak suddenly drops, followed by a DSV formation,
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(a) (b)

(c) (d)

Figure 14: Z-vorticity contour plot of (a) the baseline at α= 21.5◦, (b) the optimized shape at α= 21.5◦, (c) the
baseline at α= 22.5◦, and (d) the optimized shape at α= 22.5◦.

which occurs at around 15◦ and 20◦ for the baseline and the optimized airfoil, respectively. The DSV

grows further in size and propagates downstream which is clearly visible in the −cp plots by the locus

of the hotspots or by the black streak running from left to right in the c f plots (Figs. 15c and 15d). The

angle of streak lines indicates the speed at which DSV convects downstream along the airfoil, whereas

the color intensity signifies additional suction induced by the DSV (see Fig 15c and 15d). It is observed

that the DSV convects much faster over the optimized airfoil compared to the baseline with a weak

suction trail, mainly due to the deflection of DSV away from the surface as it propagates downstream

(see Fig. 14d).

The flow reversal formation near the trailing edge of the airfoils are distinctly different in nature (

shown in Figs. 15c and 15d by a blue arrow). The optimized airfoil shows a reversed flow formation

from the trailing edge much earlier in the upstroke cycle compared to the baseline. This could be due
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to a higher thickness and aft camber on the optimized airfoil. Furthermore, this reversed flow moves

upstream towards the leading edge with an increase in the angle of attack and reaches the separation

bubble at the same time as the DSV is formed for the optimized airfoil. The presence of a flow reversal

could be the reason for the low-intensity suction trail left by the DSV for the optimized airfoil since a

reversed flow deflects DSV away from the surface as it moves downstream. This upstream flow reversal

movement occurs more gradually in the baseline where flow reversal reaches near mid chord when a

DSV is formed for the baseline airfoil.

In the baseline design, the DSV is generated from the disturbance in the separation bubble near

the leading edge, which is typically categorized as leading-edge stall [25, 88]. In contrast, the optimized

airfoil shows a trailing edge stall where reversed flow reaches the location of the separation bubble at

the same time as the DSV formation.

(a) Baseline (b) Optimized

(c) Baseline (d) Optimized

Figure 15: Contours of the pressure coefficient (−cp ) and the skin friction coefficient (c f ) on the suction side for
the baseline and optimized airfoils.
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5.3 Global sensitivity analysis

The surrogate modeling algorithm provides globally accurate models that can be used for the GSA of

the objective and constraint functions with respect to the design variables. GSA is performed on the

surrogate models using Sobol’ indices calculation with the Monte Carlo-based numerical procedure

(described in Sec. 3.4) and the LHS sampling technique. The number of samples required for accurate

Sobol’ indices estimation is selected based on a convergence study. Figure 16 shows the convergence

of Si and STi over the number of samples which indicates their convergence after 105 samples. The

Sobol’ index calculations are repeated 100 times to provide averaged Sobol’ index values and their

respective standard deviations. The negative signs on Sobol’ indices are due to a numerical error in the

estimates and are often encountered when the analytical sensitivity indices are close to zero [76].

Figure 17 shows the averaged GSA results of the objective function with respect to the design

variables. The most influential variables are XU , ZU , RLE , and ZxxU in descending order based on

their total indices. The variables αT EU and βT EU are non-influential to the objective function as their

total indices are negligible. These non-influential variables can be fixed in the future for optimization

studies as their variations do not affect the objective function. The design variables XU and ZU are the

most critical variables as their variation directly modifies the airfoil thickness and camber, resulting in

the variation of the dynamic stall characteristics.

The difference between the total and the first-order effect (STi − Si ) indicates the presence of

interaction effects with other design variables. The results indicate that the variables XU and ZU show

the highest interaction effects. The variables ZU and RLE have comparatively lower first-order effects,

but their interactions with other variables moderately affect objective function spread. Furthermore,
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Figure 16: Convergence of the Sobol’ indices of the objective function: (a) the first-order Sobol’ indices, and (b)
the total-effect Sobol’ indices.
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Figure 17: Results of global sensitivity analysis of the objective function

the magnitude of 1−∑n
i=1 Si = 0.51 suggests the interaction among the variables has a larger effect on

the objective function spread than their individual first-order effects.

The GSA of the constraint function surrogate model is conducted similarly to the objective function.

The constraint function (8) is a function of the dynamic stall angle (αd s(x)) of the airfoil shapes. Thus,

the SA of the constraint function surrogate model represents the sensitivity of the design variable to

the dynamic stall angle αd s of an airfoil shape. Figure 18 shows the averaged Sobol’ indices results of

the constraint function with respect to the design variables. It is observed that the variable ZU , which

changes the maximum airfoil thickness, prominently affects αd s (ST = 0.71) with minor interaction

effects. The variable XU , which is responsible for variation in the camber location, also substantially

affects the dynamic stall angle (ST = 0.21) with very minimal interaction effect. The variables ZxxU and

RLE show minor effects on the αd s spread while αT EU and βT EU show negligible effects on αd s and

can be fixed for future optimization studies. Overall, the magnitude of 1−∑n
i=1 Si = 0.04 indicates that

minimal interactions among design variables representing the dynamic stall angle are mostly affected

by the design variable individual first-order effects.

6 Conclusion

In this work, a surrogate-based optimization technique to accurately and efficiently delay the dynamic

stall adverse effects over an airfoil through aerodynamic shape optimization is proposed. Additionally,

global sensitivity analysis is used to reveal the most important shape variables to mitigate the dynamic

stall.

The optimal airfoil shape shows a significant delay in the dynamic stall angle and reduction in
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Figure 18: Results of global sensitivity analysis of the constraint function

peak pitching moments compared to the baseline airfoil (NACA 0012). The optimized airfoil has a

larger leading-edge radius, higher thickness, and an aft camber. Postoptimality analysis shows that the

DSV formation occurs much later for the optimized airfoil compared to the baseline. Moreover, the

DSV formed over the optimized airfoil propagates downstream much faster with a weak suction trail

producing a lower peak lift coefficient and a gradual moment stall.

The global sensitivity analysis reveals that the airfoil upper surface thickness and the location

of the maximum upper surface thickness are the most influential variables affecting the objective

and constraint functions. Moreover, these two variables affect the objective function with a higher

interaction effect than their respective first-order effects. The leading-edge radius and the upper

surface curvature show a moderate effect on the objective function, whereas the trailing-edge angles

showed a negligible effect. Additionally, it is observed that the interaction effects play a more critical

role in the objective function than the constraint function.

Although the proposed approach was applied to a wind turbine airfoil shape a similar strategy

can be efficiently applied to other aerospace systems, such as rotorcraft, civil transport aircraft, and

unmanned air vehicles, to delay or mitigate dynamic stall adverse effects. In future work, this approach

will be applied to a complete pitching cycle simulation of a three-dimensional aerodynamic surface

undergoing dynamic stall. This would reveal the effects of shape parameters on the aerodynamic coef-

ficients over the entire cycle and the effects on the three-dimensional dynamic stall vortex formation.

Additional knowledge on how to mitigate dynamic stall can be revealed by incorporating uncertainties,

such as surface tolerances and variation in the freestream speeds, in the optimal design and sensitivity

analysis. To further alleviate the computational cost, future work will consider multifidelity methods

and dimensionality reduction techniques.
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