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The dynamic stall phenomenon produces adverse aerodynamic loading, which negatively af-
fects the structural strength and life of aerodynamic systems. Aerodynamic shape optimization
(ASO) provides a practical approach for delaying and mitigating dynamic stall characteristics
without the addition of an auxiliary system. A typical ASO investigation requires multiple
evaluations of accurate but time-consuming computational fluid dynamics (CFD) simulations.
In the case of dynamic stall, unsteady CFD simulations are required for airfoil shape evalu-
ation; combining it with high-dimensions of airfoil shape parameterization renders the ASO
investigation computationally costly. In this study, metamodel-based optimization (MBO) is
proposed using the multifidelity modeling (MFM) technique to efficiently conduct ASO in-
vestigation for computationally expensive dynamic stall cases. MFM methods combine data
from accurate high-fidelity (HF) simulations and fast low-fidelity (LF) simulations to provide
accurate and fast predictions. In particular, Cokriging regression is used for approximating
the objective and constraint functions. The airfoil shape is parameterized using six PARSEC
parameters. The objective and constraint functions are evaluated for a sinusoidally oscillating
airfoil with the unsteady Reynolds-averaged Navier-Stokes equations at a Reynolds number of
135,000, Mach number of 0.1, and reduced frequency of 0.05. The initial metamodel is gener-
ated using 220 LF and 20 HF samples. The metamodel is then sequentially refined using the
expected improvement infill criteria and validated with the normalized root mean square error.
The refined metamodel is utilized for finding the optimal design. The optimal airfoil shape
shows higher thickness, larger leading-edge radius, and an aft camber compared to baseline
(NACA 0012). The optimal shape delays the dynamic stall occurrence by 3° and reduces the
peak aerodynamic coefficients. The performance of the MFM method is also compared with
the single-fidelity metamodeling method using HF samples. Both the approaches produced
similar optimal shapes; however, the optimal shape from MFM achieved a minimum objective
function value while more closely satisfying the constraint at a computational cost saving of
around 41%.

Nomenclature

= Pitching amplitude, [deg]
c = Chord length, [-]
cd = Sectional drag coefficient, [-]
Cd,,, = Estimated error in average drag coefficient, [d.c.]
cl = Sectional lift coefficient, [-]
Cm = Sectional pitching moment coefficient, [-]
cdrrz = Richardson extrapolation estimate of average drag coeflicient per cycle, [d.c.]
d.c. = Drag counts, Acg = 0.0001
Ac = Change in sectional lift coefficient, [-]
f = Scalar objective function
g = Inequality constraint function
ky = Reduced frequency
M = Freestream Mach number
Mmax = Airfoil maximum camber as percentage of the chord length, [%]
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N = Number of time steps in each pitching cycle

ne = Number of low-fidelity design samples

Ne = Number of high-fidelity design samples

ng = Number of test data samples

ng = Number of design samples

Re = Reynolds number

tnax = Airfoil maximum thickness as percentage of the chord length, [%]
U = Freestream velocity, [%]

TI = Turbulence intensity, [-]

Xm,.. = Location of maximum camber as percentage of the chord length, [%c]
y* = Non-dimensionalized first layer cell thickness

z = z-coordinate of airfoil section, [-]

X = Design variable vector

Xip = Vector containing lower bounds on design variables
Xub = Vector containing upper bounds on design variables
o = Angle of attack, [deg]

w = Rotational rate, [”;d]

Aa = Delay in dynamic stall angle, [deg]

ags = Dynamic stall angle of attack, [deg]

0 = Vector of Kriging hyperparameters

A = Hyperparameter of Kriging regression

P = Hyperparameter of Cokriging regression

I. Introduction
THe phenomenon of dynamic stall is widely observed on the aerodynamic surfaces which are in relative motion to the

incoming flow velocity or when they are subjected to unsteady incoming flow with varying direction. Rotorcraft [1]
and commercial-grade wind turbines [2] are the two well known high Reynolds number applications where dynamic
stall effects are important. At low Reynolds number dynamic stall is observed in vertical axis wind turbines [3, 4] and
bio-inspired micro-air vehicles (MAVs)[S]/unmanned air vehicles (UAVs).

The predominant features of dynamic stall are the formation, generation, and shedding of an energetic leading-edge
vortex (LEV) or dynamic stall vortex (DSV) over the aerodynamic surface. These characteristics induce fluctuating
pressure fields producing a significant transient variation in aerodynamic forces and moments, considerably higher
than their static counterparts. The formation of such adverse loading negatively affects structural strength and fatigue
life of the system [6, 7], which has inspired designers to improve designs that can mitigate or delay dynamic stall
characteristics.

Aerodynamic shape optimization (ASO) provides an effective approach to passively delay and mitigate dynamic stall
characteristics without the addition of an auxiliary system. ASO has been widely used in solving steady-state [7], and to
some extent, in unsteady aerodynamic problems. ASO usually requires multiple evaluations using time-consuming
computational fluid dynamics (CFD) models, which makes it expensive for unsteady problems such as dynamic stall.
However, ASO has been steadily gaining interest from multiple researchers [7—11] for dynamic stall delay and mitigation.

ASO studies on dynamic stall delay and mitigation are typically done with adjoint-based CFD simulation [7-9, 12]
and have shown promising results. The adjoint-based approach is a modern approach to solve ASO problems [13]
providing accelerated optimization search with an efficient calculation of gradient information. Additionally, the
adjoint-based method is independent of design variables and could be advantageous for solving high dimensional
optimization problems [13]. However, the objective function constructed from computational simulations is often
non-differentiable, discontinuous, and inherently noisy, which makes sensitivity information often inaccessibly [14].
Further, the adjoint method is dependant on the high-fidelity (HF) simulation and could get computationally expensive
for complex unsteady problems such as dynamic stall.

Metamodel-based optimization (MBO) (also called surrogate-based optimization) [14, 15] is an approach to alleviate
the computational burden of costly simulation-based design problems. In MBO, a metamodel (also called a surrogate)
of the objective function is constructed using a limited number of the time-consuming simulations. The metamodel is
fast to evaluate and can be used with local or global search optimizers. Metamodeling methods consists of data-fit
methods and multifidelity methods. The data-fit methods fit a response surface through the evaluated objective function



values at sampled points in design space. Some of the widely used data-fit methods are Kriging [16], polynomial chaos
expansions (PCE) [17], and support vector regression [18].

Recently, Tang et al. [19] used Kriging metamodeling technique for shape optimization of cycloidal rotor airfoil in
unsteady flow. Wang et al. [20] also successfully applied Kriging method for finding optimal rotor shape for helicopter
application. In turbomachinery shape optimization [21-23] MOB approach has also been used successfully where the
computational cost of each evaluation can be as high as in dynamic stall CFD simulations.

Data-fit methods typically require large number of HF sample evaluations to obtain accurate metamodel which
increases computational cost [24]. Multifidelity modeling techniques [25] can alleviate the computational burden of
construction of accurate metamodels using information from multiple fidelities. Multifidelity models (MFM) combine
HF and low fidelity (LF) models in an effort to achieve accurate high-fidelity representation at a reasonable cost [24].
The LF models are generally approximations of the HF models and can be obtained using simplified governing equations,
changing the discretization of the HF model[24]. Cokriging [26] is a widely known multifidelity modeling technique
used in MBO.

In this work, MBO is used for ASO of a generic airfoil at low Reynolds number undergoing deep dynamic stall. In
particular, the approach is demonstrated on NACA 0012 airfoil in sinusoidal oscillation with a reduced frequency of
0.05 at Reynolds number of 135,000, and a Mach number of 0.1. The PARSEC airfoil parameterization technique [27]
with six design variables is used for generating the airfoil shapes. The airfoil shape evaluation is done using the unsteady
Reynolds-averaged Navier-Stokes equations with a C-grid mesh topology and Menter’s shear stress transport turbulence
model. The multifidelity metamodel is constructed using Cokriging regression [26, 28] and is sequentially refined using
the expected improvement [29] infill criteria. The metamodel is validated with the normalized root mean square error
(NRMSE) metric. In this work, a multi-start gradient-based search algorithm is used to find the optimum airfoil shapes.

This paper is structured as follows. The next section presents the problem statement for delaying dynamic stall and
the setup of the computational model. The following section describes the MBO approach. The result section then
follows with detailed results of numerical experiments for the current ASO study. Finally, conclusions and suggestions
of future work is described.

II. Problem Statement

This section describes the problem formulation and airfoil parameterization method used in the current study.
Further, the CFD modeling is described.

A. Problem formulation
The dynamic stall phenomenon is typically studied with sinusoidal oscillating airfoil in a uniform free-stream flow.
The pitching motion of the airfoil is described using the angle of attack as a function of time 7 given as

a(t) = a,, + A sin(wt), (1)

where a,,, A, and w represent the mean angle of attack, amplitude of oscillation, and rotational rate, respectively. The
reduced frequency, k,, is another important parameter and is defined as
wce

2U°

where c is the airfoil chord length, and U is the free-stream speed. In this work, a deep dynamic stall case from Lee
et al. [30] is used. The parameters defining the case are: a,, = 10°, A = 15°, k,, = 0.05, and a Reynolds number of
Re =135, 000.

The objective of the study is to produce an optimum airfoil shape, which delays the dynamic stall occurrence and
mitigate adverse loading over the airfoil. This objective is achieved by delaying the formation of DSV predominantly
responsible for sudden divergence in the drag and pitching moment coefficients. The optimization problem is formulated
as

ky = 2
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Fig.1 The PARSEC airfoil geometry parameters

where J(cq0) = Zf\il(cdo),-, J(cmo) = Zfll [(¢mo)il, X = [X1,X2, ..., x,]T is the design variable vector of n dimensions
with x;;, and x,,;, as the lower and upper bounds of x, respectively; the parameters c4(X), ¢,,,(X), and @45 (X) represent
time variant drag coefficient, pitching moment coefficient and dynamic stall point of the airfoil shape during pitching
cycle, and N denotes the number of timesteps in each pitching cycle. The value of N is depends on simulation timestep
and total cycle time. The subscript ‘0’ in (3) and (4) represents the baseline airfoil shape (NACA0012). Parameter Aa
in (4) denotes the minimum delay in the dynamic stall angle expected in the optimum design, which is set to Aa = 3° in
this work. For this study, only the upstroke part of the pitching cycle is considered, which is predominantly affected by
formation of dynamic stall vortex.

B. Design variables

In this work, the PARSEC [27] parameterization technique is used for describing the airfoil shapes. The PARSEC
method offers set of design variables that has a specific meaning and directly controls the airfoil shape characteristics
(for e.g. airfoil thickness, leading-edge radius) which could be appealing to designers for understanding effect of shape
variables on the dynamic stall characteristics.

PARSEC method involves 12 parameters (Fig. 1) defining the airfoil shape of unit chord. The parameters affecting
only the upper surface of the airfoil are considered in this study. Further, the leading edge radius for upper and lower
surface are represented by single variable R; g.The trailing edge offset (z,5) and thickness (t7 g) are set to zero, which
generates a sharp trailing edge airfoil (Fig. 1). The above mentioned conditions reduce the 12 design variables to only
six variables and the design variable vector is written as

x =Xy, Zu, Zyxy» RLES OTE, BrE]” . (6)

The six PARSEC parameters affecting upper surface of airfoil with their respective ranges are shown in Table 1. The
subscript ‘U’ denotes variables for the upper airfoil surface.

C. Computational fluid dynamics modeling

The current study is performed with the Stanford University Unstructured (SU2) unsteady compressible Navier-Stokes
(URANS) solver [31]. The dynamic stall simulations are performed using dual time stepping strategy, rigid grid motion
and Menter’s shear stress transport (SST) turbulence model [32]. The convective fluxes calculated using second-order
Jameson-Schmidt-Turkel (JST) scheme [31] and time discretization is done by the Euler implicit scheme [31] with
maximum Courant-Friedrichs-Lewy (CFL) number selected as 4 and internal iterations are set to 2,400. The two-level
multigrid W-cycle method [31] is also used for convergence acceleration. The Cauchy convergence criteria [33] on



Table 1 Design variables and their bounds for upper airfoil surface

Description Design variables Lower bounds Upper bounds  Units
Upper surface crest x coordinate Xu 0.2733 0.5011 -
Upper surface crest z coordinate Zy 0.054 0.09 -
Second order surface derivative Zyxy -0.6726 -0.4036 -
Leading edge radius RiE 0.0104 0.0222 -
Trailing edge directional angle OrE -11.7156 -7.0294 deg
Trailing edge wedge angle BrE 3.52818 5.8803 deg

the drag values is set with Cauchy epsilon as 10~ over last 100 iterations. No-slip boundary condition is used on
airfoil surface with farfield condition on external boundary with Reynolds number of 135,000 and Mach number of 0.1.
The c-grid mesh is set up an with outer boundary at 55¢ from airfoil is generated using blockmesh utility provided by
OpenFoam [34]. The mesh is refined near the airfoil surface with first layer thickness to obtain y* < 0.8 and growth
ratio of 1.05. A low y* is necessary to accurately capture the onset of the dynamic stall vortex. Figure 2 shows two
views of a coarse version of the mesh used for NACA0012.

The grid and time independence study is done in two steps. Initially, the spatial resolution of the mesh is obtained
by conducting grid study on baseline airfoil with steady-state flow condition. The resulting mesh is then used to
conduct time study to attain accurate physical timestep for the URANS simulation. The flow and motion parameters
are selected from study done by Lee et al. [30] as mentioned in Section II.A. The grid study is done on NACA0012
airfoil at fixed angle of attack @ = 4°, Re=135,000, and turbulence intensity 7/ = 0.08% with SU2 RANS solver.
The Cauchy convergence criteria on the drag values is set to a Cauchy-epsilon value of 107 over 100 flow solver
iterations. The maximum solver iterations are set to 150,000. The details of grid study are shown in Table 2. Meshes 2,
3 and 4 show minimal change in lift coefficient Ac; < 0.003 with the drag counts variation within approximately 4 d.c.
Considering the simulation time requirement and accuracy of the results, mesh 2 with 387,000 cells is selected for HF
CFD evaluation.

After the selection of appropriate spatial resolution, a time-independent study is conducted to determine the time
step required for accurate unsteady simulation of the airfoil pitching cycle. The dynamic stall simulations are conducted
with the parameters and flow conditions the same as considered in the experimental study done by Lee et al. [30] (Sec.
ILA).

The time step independence study is performed with multiple time steps, as shown in Table 3. The selection of
appropriate time step is executed using the generalized Richardson extrapolation method [35] on the average drag
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Fig.2 Coarse mesh with NACA0012 airfoil (a) computational domain, and (b) mesh around the airfoil surface



Table 2 Grid convergence study at Re=135000 and o = 4°

Mesh  Number of cells cy cq (d.c)  *Simulation time (min)
1 259k 0.395 174.3 75
2 387k 0.414 180.4 146
3 540k 0.416 184.7 220
4 720k 0.417 184.2 298

*Computed on high-performance cluster with 64 processors

Table 3 Time step independence study at @ = 10° + 15°sin(wt) with k, = 0.05 at Re = 135, 000

dt Cdgyg Simulation time*  cq,,, =| ca,,, = Cdrg |
(sec) (d.c./cycle) (hrs/cycle) (d.c.)
0.004 2,019 51 88.4
0.002 2,093 65 14.9
0.0015 2,103 69 4.8
0.001 2,105 78 2.1
0.0005 2,107 99 0.52

*Computed on a high performance cluster with 112 processors. Wall-clock time.

coeflicient per oscillation cycle cq4,, . Richardson’s extrapolation estimate ¢4, represents the average drag coefficient
per cycle at a lowest possible time step (zero), which is estimated to be cg4,, = 2,108 d.c. Table 3 summarizes the
results. The simulation time and estimated error c,,,, from Richardson extrapolation estimate cg4,, are considered to
select time step of 0.0015 sec for the accurate CFD evaluation of the dynamic stall case. In the current study, all HF
model evaluations are conducted with a mesh size of 387,000 cells and a time step of 0.0015 sec.

The LF models are an essential component of multifidelity models as they estimate output response at much lower
computational cost with lower accuracy compared to the HF models [25]. In this study, the LF model is generated
by simplifying the HF model spatial and temporal discretizations such that the trends in aerodynamic responses are
preserved with the least possible computational time requirement. In particular, the LF model is generated with a mesh
size of 287,000 cells, time step of 0.004 sec, internal iteration of 1,000, and setting Cauchy convergence criteria on the
drag to 107> over 100 iterations. The constructed LF model reduces simulation time to around 5 hours (wall-clock time)
for a complete cycle with the same computational resources used for the HF model.

The aerodynamic response of HF and LF model selected for the current study is compared against the experimental
[30] and LES simulation [36] results for NACA0012 airfoil at the selected dynamic stall case and presented in Fig. 3. It
should be noted that the presented aerodynamic response from experimental results is the ensemble-average over a
hundred cycles [30]. The LES model results by Kim et al. [36] are ensemble-averaged over three cycles, whereas the
HF, LF model aerodynamic response are obtained over a single cycle.

From Fig. 3 it is observed that the HF-URANS model show a reasonable agreement with LES and experimental
results in upstroke part of cycle, however, the predictions after the dynamic stall occurrence are affected as airfoil moves
in the separated flow region. HF-URANS overpredicts peak lift and pitching moment coefficient while underpredicting
moment and dynamic stall point. The LES model show a closer agreement with experimental data while HF-URANS
show a qualitative agreement with experimental results. The LF-URANS follow a very similar trend as HF-URANS in
their aerodynamic responses satisfying similarity requirement of multifidelity modeling methods. Overall, considering
the computational time and resource requirement of LES model URANS is a practical option for the dynamic stall
evaluation of airfoils for optimization studies.
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Fig.3 A comparison of the time dependent aerodynamic coefficients: (a) lift coefficient, (b) drag coefficient, (c)
pitching moment coefficient obtained from the URANS model (current work), LES model [36] and experiments
[30] with oscillation cycle parameters a = 10° + 15°sin(wt) and k, = 0.05

II1. Methods
This section describes the MBO algorithm used to construct the Cokriging regression multifidelity metamodel. In
particular, the details of the workflow, sampling plan, Cokriging regression metamodel, infill criteria and validation are
described.

A. Workflow

A flowchart of the MBO algorithm is shown in Fig. 4. The algorithm presented in this study is an automated loop
that sequentially improves the multifidelity metamodel accuracy. The algorithm starts by sampling the design space with
an initial number of points. The LF model is then evaluated at all the design points, whereas the HF model is evaluated
at a subset of the initial samples. The design sample evaluation is conducted with the CFD model. The Cokriging
regression metamodel is then constructed by combining HF and LF observations. The constructed metamodel is then
validated against the test data set. If metamodel does not meet the required criteria, then the expected improvement [29]
infill strategy is used to find an infill point in design space, which could improve the accuracy of the model. The above
process is continued until the metamodel satisfies the termination criteria. Once the metamodel is sufficiently accurate,
the optimum design is found by the application of optimization methods on the constructed metamodel.
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Fig.4 Flowchart of the metamodel-based optimization algorithm using Cokriging regression

B. Sampling plan

The accurate construction of metamodel starts with an appropriate sampling plan. It is important to capture the
trend of the objective function over the entire design domain. The Latin hypercube sampling (LHS) [29, 37] method
provides a good distribution of sample points over the design domain, ensuring the entire range of design variables are
represented. In this study, the LHS method is used to generate training and testing data samples. The LF model is
evaluated on all the training samples, while the HF model is evaluated on a limited subset of training data. Additionally,
the HF model is evaluated at all the test data points for the metamodel validation.

C. Cokriging regression

Simulation-based objective functions can be noisy. The objective functions formulated from computational
simulations, such as CFD could exhibit noise from numerical modeling [38]. In the current study, the objective function
could involve a noise from the CFD evaluation of airfoil dynamic stall in a separated flow region. The Cokriging
regression offer a multifidelity approach to extract a smooth trend from the data by filtering noise.

In this study, Cokriging regression [29] is used for aerodynamic shape optimization to delay dynamic stall of an
airfoil. Cokriging regression [26, 29] is the two-fidelity version of Kriging regression [29, 38], constructed in a similar
manner as Cokriging [26]. The detailed theory behind Cokriging regression can be found in Forrester et al. [26], while
the implementation used in this study is based on an algorithm developed by Thelen et al. [39].

A Kriging regression predictor is given as

rx)=g'p, +r7 (R+aD)"'(y-GB,), (7
where

_GT(R+AD7y

T GT(R+ADIG’ ®



r=r(X,x) = R(X,x), 9

R=R(X,X) = R(X,X), (10)

and
G =g(X). (11
Ip the equations above, y is the column vector of observed response at known ng design samples X = [x1 X2, X"S]T,

B, is the maximum likelihood estimate (MLE) [38] of the regression coefficients, g is the regression basis functions, R
is the correlation matrix between known design samples X, I is the identity matrix, A is the scalar hyperparameter which
filters noise from the data, and r is the correlation vector between untried design sample x and known samples X. The
correlation function R used in R describes the correlation between any two design samples based on the distance using
Gaussian basis function given as [38]

n
R(x",xi):exp[—zek |x};—xi|2], (12)
=i

where 6y is the k™M unknown hyperparameter parameter of @ = [0, 65, ..., Hn]T, x}'{ and x{{ are the k™ components of
any two known samples X', x/ of n design variables from X. The hyperparameters @ and A are found by maximizing
concentrated In-likelihood function [29, 38] using numerical optimization. One of the important feature of Kriging
regression is the estimation of mean squared error (MSE) at unsampled point which could be used for refining metamodel
with infill strategies [29]. The Kriging regression MSE can be estimated as

1-GT(R+AD'r

020¢) — A2 T -1
Sex)y=07[1+A2-r (R+AD)"r+ GRIG , (13)
where the estimated Gaussian process variance is given as
-GB)T (R+AD) 7' (y - Gf
52 = (y-GB,)" ( ) y-GB,) (14)

ng

The Cokriging regression model used in this study is a two-fidelity model where the HF response y. at X, =
[x!,x2,...,x2¢]T points and the LF response y. at points X, = [x.,x2,...,x*]7, where X, c X_.. Subscript ‘c’ and
‘e’ represents cheap and expensive model respectively whereas parameter n, and n. represents number of HF and LF
samples respectively. The Cokriging regression predictor is created by combining the LF Kriging regression model,

$¢.r(X), and a difference Kriging regression model, $, - (x), and is written as

Ver (X) = pPer(X) + Ja,r (%), (15)

where p is the hyperparameter that scales the LF approximation to the HF response. Initially, the Kriging regression
model is fitted to the LF sample response y. (X, ) to obtain . . (x), where the hyperparameters 0. and A, are obtained by
maximizing the MLE function. Next, the difference Kriging regression model is fitted to y4(Xe) = ¥e (Xe) — pVe.r (Xe)
to obtain 9,4 ,(x), where the second set of hyperparameters 0,4, 14 and p are obtained, again by maximizing the MLE
function. The Cokriging regression predictor is now written as [39]

Per(®) =gl P+ C1(y-GP). (16)
where
52, (R0 Xo) + L o) p 2, [Re(Xe.Xo) + o(nc_nexml L)
(nexne)
C=\,02, {RC(XE,XC)+ [0<nexnc_ne>l<nexne>ﬂc” P2 &2, {Rc(xe,xenl(mxnewc} D
+05 {Rd(xe’xe) + I(nexne)/ld}
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g(Xc)
= _ 19
g(Xe) 19
y(Xe)
= , 20
Y y(Xe) 20
and o .
ﬁ = Bc,r + Bd,r' (21)

Here, C is the covariance matrix between the known LF (X.) and HF samples (X,), I is an identity matrix, 0 is a zero
matrix, c is the covariance vector between known samples and untried point X, y is the vector containing the LF and HF
observed response, G is a regression basis function at X, and X, and ﬁ is the regression coefficient given as the sum of
LF IASCJ and difference ﬁ .- model regression coefficients each obtained using (8). In the equations above, Gaussian
variances &f’r and 6’3” are obtained using (14). Similar to Kriging regression, the Cokriging regression estimated
MSE can be given as [39]

1-GIcle
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(22)

D. Infill criteria

The metamodels are the approximation of the true function response and based on the sample data available for the
training process. The optimum design depends on the accuracy of the model, thus it is advisable to improve accuracy of
the metamodel by addition of infill points to the initial samples. In this study, the expected improvement (EI) infill
criteria [29] is used for a balanced exploration and exploitation of the design space. The EI function for Gaussian
process models is written as

(vmin = 9) (22 ) 45 o222 ) wwhen § > 0

0 when § =0

E[I/(x)] = { (23)

where y and § are the metamodel predictor and the MSE estimate, respectively, ® is the normal cumulative distribution
function, ¢ is the normal probability density function, and y,,;, is the minimum observed response from the training
data. The EI function (23) can be implemented as

11 n—9\] .1 ~(Ymin — 9)?
BU(] = Omn = 9) |5+ 5 e (F2=2)[ 55 exp [Fomn =30, 24)
where ‘erf’ is the error function and is defined as
2 .
erf(z) = — / e dt. (25)
Vi Jo

The infill point from the trained metamodel is determined by maximizing the EI function (24) with a global optimizer.

It should be noted that Kriging regression or Cokriging regression should not be directly used with the EI approach
because of the possibility of resampling at already observed locations, thereby halting convergence [29]. Thus, to resolve
resampling at existing location Kriging regression MSE (5§2) in (13) is redefined using a re-interpolation approach
[26, 38] where the computation of 6’3 in (14) is replaced with 62 and given as

ri

52 2 0= GB»T(RMI)“HR (R+AD" (y - Gpy) 26)

The subscript ‘ri’ in (26) represents re-interpolation. The EI infill criteria accompanied by re-interpolation can be used

with Cokriging regression where computation of Gaussain process variance &2, and @'3 , in (22) are replaced with

6'2

2 and &2 . using (26).
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E. Validation
The global accuracy of the metamodel is measured using the normalized root mean squared error (NRMSE) and is

defined as
ne (=9
i=1 n;

NRMSE= ———,
(Ymax - ymin)t

27
where yi and $! represent response of from HF CFD evaluation and metamodel estimation at i”* test samples, respectively.
The response value y, denotes objective function f(x) or constraint function g(x) values for their respective error
estimation. The 7, indicates the number of test data samples. The denominator of (yyax — Ymin): represents the
difference of the maximum and minimum responses from the test data samples. For this study, a separate test dataset is
generated using a LHS sampling plan.

IV. Results

The proposed MBO algorithm discussed in this work is demonstrated initially on an analytical problem and then on
a deep dynamic stall case. The analytical problem is a one-dimensional multifidelity test case presented by Forrester et
al. [29], where different level of noise is added to the HF and LF functions. In the next section, the proposed algorithm
is applied for delaying the dynamic stall over an airfoil. First, the details of metamodel construction, infill process, and
metamodel accuracy are presented. Then, the optimal design and its dynamic stall characteristics are presented. The
optimum shape from the current approach is also compared against baseline design and the optimum shape obtained
from the author’s previous work [40] using Kriging regression.

A. Analytical function
The proposed optimization algorithm using Cokriging regression (CKR) with expected improvement infill criteria is
demonstrated on a one dimensional analytical function. The high- and low-fidelity analytical functions are [29]

fo(x) = (6x — 2)%sin(12x — 4) + N(0,0.5), (28)

and
fe(x) =Af,+B(x-0.5)—C+N(0,0.25), (29)

respectively, where x € [0, 1], and A, B, and C are 0.4, 10, and 10, respectively. A normally distributed random noise
with a mean zero is added to the functions f, and f. with a standard deviation of 0.5 and 0.1, respectively. The subscript
‘e’ and ‘c’ in (28) and (29) represent the HF and LF analytical functions. The goal of this case is to model the noisy HF
analytical function (f,) approximately and locate a global minimum near x* = 0.76.

20 20 20
fe fe fe
15 fe 15 fe 15 fe
—— CKR %30 —— CKR *30 —— CKR *30
10 @ Initial samples (HF) 10 @ Initial samples (HF) 10 @ Initial samples (HF)
LF samples /) ©  LF samples ©  LF samples
@ Infill (HF) e Infill (HF)

~10 o 0 0
[ v
[y L
_15 o
%0 02 04 0.6 08 1.0 2% 02 04 0.6 08 1.0 %% 02 04 06 0.8 1.0
X X X
(a) (b) (c)

Fig.5 Cokriging regression (CKR) with EI infill criteria on the one-dimensional analytical function (a) initial
metamodel, (b) with two infill points, and (c) with four infill points
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Fig. 6 Progression of NRMSE, EI, and the optimum of the one-dimensional analytical problem

Figure 5 shows the progression of the CKR model approximation with the addition of infill points using EI criteria
with re-interpolation. The initial sampling plan includes 4 HF samples (n.) and 11 LF samples (n.) (Fig. 5a). A new
infill point is determined in each iteration and added to the HF and LF initial sampling plan. It should be noted that the
error at already sample points goes to zero with re-interpolation while the CKR model regresses through available data
as seen in Fig. 5.

Figure 6 show the convergence history of the NRMSE error, maximum EI magnitude, and predicted optimum of
the metamodel. For the analytical problem a stopping criteria based on magnitude of maximum EI (max(EI) = 0) is
considered. From Figs. 5 and 6 it is seen that the trained CKR model provides an approximate representation of the HF
function.

B. Dynamic stall case

1. Metamodel construction

The proposed MBO algorithm is applied for delaying dynamic stall occurrence over an airfoil. The selection of HF
and LF model samples (n, and n;) in a one-dimensional case is much easier compared to the high dimensional dynamic
stall case (6 dimensions). The LF simulation model considered in this study is significantly cheaper than the HF one,
which takes around 3 hours to complete the upstroke cycle, while the HF simulation model takes around 40 hours. Thus,
the LF model is generously used to provide a global low-fidelity approximation. A conservative number of HF samples
are used to construct CKR metamodel. For this study, a total of 220 LF and 20 HF samples are used for the initial
construction of the CKR metamodel. Two separate CKR metamodels are constructed, one for the objective function and
the other for the constraint function. The constructed metamodels are validated against 20 test data points generated
using the LHS plan and evaluated using high- and low-fidelity CFD simulation model. In this study, the NRMSE metric
is used for the validation of CKR metamodels. Similarly, low-fidelity (LF) KR models (J. ) used for the construction
of the CKR model are also validated with NRMSE metric using LF test data evaluations. A termination criteria of
NRMSE < 10% on CKR model of the objective function or a fixed budget of 10 infills samples is used in this study.
The infill points are determined based on the CKR model of the objective function using EI criteria. Each infill point is
evaluated using HF and LF CFD simulation model and added to their respective initial samples to sequentially refine
metamodels.

Figure 7 shows the NRMSE metric for objective and constraint function metamodels. The CKR model of objective
and constraint function are shown in Fig. 7a. It is observed that after the addition of 10 infill points, the CKR model of
the constraint function shows higher accuracy than the CKR model of the objective function, reaching NRMSE of 7.7%
and 23.3%, respectively. The CKR model of objective function does not satisfy accuracy criteria (NRMSE < 10%),
indicating a need for additional high-fidelity infill points for improved global accuracy.

The CKR model is constructed using LF KR model (LF-KR), and its accuracy depends on the global accuracy of
the LF-KR model. Figure 7b shows the NRMSE metric of the KR model of objective and constraint functions. The
LF-KR and CKR model shows similar trend in NRMSE metric. The NRMSE metric of objective function LF-KR model
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Fig.7 Metamodel model construction of the objective ( /) and constraint (g) functions (a) CKR model validation
(b) LF-KR model validation.

does not show much variation, reaching NRMSE of 16.3% at the end of 10 infill points (i.e. with 230 LF samples).
Furthermore, the constraint function LF-KR model shows a higher accuracy than the objective function model reaching
NRMSE of 5% at the end of 10 infill points. More sampling is needed to improve the global accuracy of LF-KR
objective function model. A possible solution would be to add LF samples using exploration-based infill strategy until
an accurate LF-KR model is acquired [29].

2. Optimal design

Once the optimization algorithm satisfies the termination criteria the CKR metamodel is passed to the optimizer to
find an optimal design using the problem formulation proposed in Sec. II. In this work, a multi-start gradient-based
search algorithm is used to find the optimal design. The sequential least squares programming (SLSQP) [41] algorithm
offered by the SciPy [42] python package along with 200 starting points generated using LHS sampling are utilized for
the optimization process.The best obtained result is realized as the optimal design.

Figure 8a shows the evolution of the optimal shapes after every infill point. The optimum shapes are numbered
based on the number HF samples used for construction of CKR model. Only a small variation in consecutive shapes
is observed (Fig. 8a). Similar trend is seen from Fig. 8b, which shows the normalized Euclidean distance between
the consecutive optimum shapes. The normalized distance is calculated using the z coordinates of the consecutive
optimum shapes and normalized with the L2 norm between first two optimum shapes (‘opt-21’ and ‘opt-20’). The
normalized Euclidean distance converges from initial optimum. However, the small fluctuations in the normalized
Euclidean distance (Fig. 8b) indicate that the optimal design is not completely converged and additional infill points
may be required. Nonetheless, the optimal design obtained with 30 HF and 230 LF samples is taken as the optimum
airfoil shape for this study.

The optimum shape acquired using the CKR model is compared with the baseline design, as shown in Fig. 9a.
Additionally, the current optimum shape is compared with the optimum shape obtained from the study done by Raul
et al. [40] using Kriging regression with the high-fidelity data set for the same problem formulation and denoted as
‘HF-KR’ in this study. The HF-KR investigation used 60 HF samples with 20 infill points added using EI infill criteria
producing objective and constraint function metamodel each with less than or equal to 10% NRMSE.

Table 4 provides the airfoil shape details of baseline and optimized designs. The optimized designs show significant
variations in shape compared to the baseline. Both the optimized airfoil shapes have a larger leading-edge radius, higher
thickness, and camber than the baseline airfoil (Fig. 9a). The optimized shapes obtained from CKR and HF-KR produce
similar shapes; however, subtle variations in shapes are seen in Fig. 9a and Table 4. In particular, the optimized shape
obtained with the CKR model has a higher maximum thickness of #,,,x = 15%, whereas the higher maximum camber
of Myax = 1.89% is observed in an optimized shape obtained from HF-KR model. Interestingly, both the optimum
shapes show an aft camber with maximum camber located between 50% — 65% of the chord length.
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Fig. 8 Evolution of the optimal airfoil shapes: (a) the optimum shapes at the initial surrogate model and at
every infill points, and (b) change in z-coordinates of the consecutive optimum designs

The performance of optimum shapes are evaluated using high-fidelity CFD simulation model and their respective
aerodynamic characteristics are shown in Fig. 9 along with baseline results for the upstroke pitching cycle. The lift,
drag and pitching moment coefficients of the optimized designs shows a delayed dynamic stall when compared to the
baseline airfoil. Table 5 gives the details of the dynamic stall characteristics for the optimized and the baseline designs
along with their respective objective and constraint function values. Figures 9b and 9c show the delay in formation of
DSV, indicated by divergence in drag and pitching moment polar. Both the optimized design delays the dynamic stall to
around 22.4° (more than 3° delay) and moment stall to 21.5°. Additionally, the peak pitching moments are reduced in
both optimized designs.

Figures 10 and 11 show the vorticity plots of baseline and optimized airfoil obtained from CKR model near the
moment and dynamic stall angles presented in Table 5. It can be observed that near the moment stall (16.5°) and
dynamic stall (19.1°) point of the baseline airfoil, the optimized shape (optimum from CKR) does not show a formation
of DSV (Figs. 10a, 10b, 11a, and 11b). After the angle of attack of 19.1° the baseline airfoil goes in massive separation
and sheds secondary vortex (Figs. 10c and 10d). The DSV formation and shedding over the optimized airfoil can be
seen from Figs. 11c and 11d.

Overall, both the optimized designs produce a similar delay in dynamic and moment stall compared to the baseline.
However, when the objective f(x) and constraint function g (x) magnitudes are compared, the optimized shape produced

Table 4 Properties of the baseline and the optimum airfoil design shapes.

Airfoil shapes tmax  Mmax  Xmpax
Baseline 12 0 0

Optimum (HF-KR) [40] 14.7  1.89 62.0

Optimum (CKR) 150 1.56 52.4

Note: Shape properties are represented as percentage of the chord length

Table 5 Details of dynamic stall cycle

Airfoil Ays Qs Cl,,., S gx)
Baseline (NACA0012)  19.1° 16.5° 2.2 2 -3

Optimum (HF-KR) 22.5° 21.5° 1.8 1.78 -0.37
Optimum (CKR) 22.4°  21.5° 16 1.61 -024
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Fig. 9 A comparison of the baseline and optimized designs: (a) airfoil shapes, (b) lift coefficient, (c) drag
coefficient, and (d) pitching moment coefficient.

from the CKR model shows a better design for the current problem formulation with a minimum objective function
value of 1.61 and more closely satisfying the constraints (Table 5).

In the current study, each high-fidelity CFD evaluation takes around 4,480 CPU hours, whereas the low-fidelity
CFD evaluation takes around 336 CPU hours. The entire CKR-based optimization algorithm needs approximately
211,680 CPU hours, considering the negligible cost for training the metamodels. An optimization algorithm with
the HF-KR model takes around 358,400 CPU hours producing an accurate metamodel (NRMSE < 10%), which is
around 13% more accurate than with CKR. However, the current investigation shows that a less accurate multifidelity
metamodel could produce optimal design while saving around 41% in computational cost.

15



B
oL €

051 05 200156 -111 67 22 22 67 111 156 200 o5 200156 111 67 22 22 67 111 156 200

051 200156 111 67 22 22 67 111 156 200

200156 111 -67 22 22 67 111 156 200

| L | | | L | | L L I 1
0 05 1 0 05 1 0 05 1 0 05 1
xlc xle xle xlc

(a) (b) (0 (d)

Fig. 10 Vorticity contour plot of the baseline at (a) @ = 16.3°, (b) @ = 18.9°, (¢) @ = 21.2°, and (d) a = 22.6°.

200156 -111 -67 22 22 67 111 156 200 e 200156 111 -67 22 22 67 111 156 200

200156 111 -67 22 22 67 111 156 200

| L L | | L I L L | L 1
0 05 1 0 05 1 0 05 1 0 05 1
xlc xlc xlc xlc

@ (b) (© (@)
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V. Conclusion

In this work, the multifidelity modeling technique is proposed to efficiently delay dynamic stall over the airfoil
surface through aerodynamic shape optimization. In particular, the Cokriging regression technique is used to construct
a multifidelity metamodel capable of extracting a smooth trend from the data by filtering noise. A conservative number
of high-fidelity samples and a generous number of low-fidelity samples are utilized to construct the metamodel for
keeping the computational cost low.

The optimal airfoil shape obtained through the proposed approach shows a larger leading-edge radius, a higher
maximum thickness, and an increased aft camber when compared to the baseline. Post-optimality analysis shows that
the optimal shape significantly delays the dynamic stall and reduces peak lift, drag, and pitching moment coefficients.
Further, the formation of a dynamic stall vortex is delayed compared to the baseline design. The performance of
the optimized shape is compared with the optimal shape acquired using single-fidelity Kriging regression based on
high-fidelity samples. It is observed that Cokriging regression is able to find a better optimal design when compared
to Kriging regression by minimizing the objective function and more closely satisfying the constraint of the current
problem formulation while saving 41% in computational cost.

In future work, the Cokriging regression model will be further investigated for improving its global accuracy using
various exploration based infill strategies while employing the minimum number of high- and low-fidelity samples.
Additionally, multiple low-fidelity CFD simulation models will be tested using Cokriging regression to alleviate the
computational costs further.
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