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23 Purpose
The purpose of this work is to investigate the similarity requirements for the application of mul-
26 tifidelity modeling (MFM) for the prediction of airfoil dynamic stall using computational fluid

28 dynamics (CFD) simulations.

Design/methodology/approach

32 Dynamic stall is modeled using the unsteady Reynolds-averaged Navier-Stokes equations and
34 Menter’s shear stress transport turbulence model. Multifidelity models are created by varying
the spatial and temporal discretizations. The effectiveness of the MFM method depends on
37 the similarity between the high- (HF) and low-fidelity (LF) models. Their similarity is tested by
39 computing the prediction error with respect to the HF model evaluations. The proposed approach
40 is demonstrated on three airfoil shapes under deep dynamic stall at a Mach number 0.1 and

42 Reynolds number 135,000.

45 Findings

46 The results show that varying the trust-region (TR) radius (1) significantly affects the prediction
48 accuracy of the MFM. The HF and LF simulation models hold similarity within small (1 < 0.12) to
medium (0.12 < A < 0.23) TR radii producing a prediction error less than 5%, whereas for large TR
51 radii (0.23 < A < 0.41), the similarity is strongly affected by the time discretization and minimally

53 by the spatial discretization.

Originality/value
57 The findings of this work present new knowledge for the construction of accurate MFMs for

59 dynamic stall performance prediction using LF model spatial- and temporal discretization setup
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and the TR radius size. The approach used in this work is general and can be used for other

unsteady applications involving CFD-based MFM and optimization.

ping, multifidelity model similarity conditions.

Nomenclature

Am

Angle of attack, (deg)

Mean angle of attack, (deg)

Favre mean of the flow variable

Airfoil trailing-edge wedge angle, (deg)

Kronecker delta

Gain ratio

Trust-region radius

Low-fidelity model output

High-fidelity model output

Correction matrix

Multifidelity model

Vector of design variables

Vector containing lower bounds on design variables
Vector containing upper bounds on design variables
Turbulent eddy viscosity, (Pa-s)

Pitch rate, (rad/s)

Viscous stress tensor component, (Pa)

Airfoil trailing-edge directional angle, (deg)

2
http://mc.manuscriptcentral.com/engcom

Page 2 of 62



Page 3 of 62 Engineering Computations

1
2
2 A Amplitude of oscillations, (deg)
5
6 a’ PARSEC surface coefficient
7
8
9 c Chord length, (-)
10
1 Cd Sectional drag coefficient, (-)
12
d

13 =1 12<

L0 UZS
14 2P
12 c Sectional lift coefficient, (-)
17 _ 1
18 3P0U2,S
19
20 Cm Sectional pitching moment coefficient, (-)
21

— m
22 T 1pULSc
23
;g cq,, Estimated errorin average drag coefficient, (d.c.)
26
27 caz,, Richardson extrapolation estimate of average drag coefficient per cycle, (d.c.)
28
29
d Drag force, (N

30 g (N)
31
32 dat Time step, (sec)
33
34 .. .
35 f Scalar objective function
36
37 f Favre fluctuating component of the flow variable
38
39 . . .
40 g Inequality constraint function
41
jé H Total enthalpy per unit mass, (J/kg)
44
45 h Equality constraint function
46
2; k Turbulent kinetic energy, (m?/s?)
49
50 kr Reduced frequency
51
52 =50
53
34 l Lift force, (N)
55
56
57 L Airfoil lower surface
58
59 . .
60 m Pitching moment, (Nm)
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p Static pressure, (Pa)

Rrr  Airfoil leading edge radius

Re  Reynolds number

S Reference area, (m?)

t time, (sec)

tofr Airfoil trailing-edge offset

trg  Airfoil trailing-edge thickness

u Velocity component in Cartesian system, (m/s)
U Airfoil upper surface

U  Free-stream velocity, (m/s)

X Airfoil surface crest x-coordinate

X¢ Non-dimensional chordwise location

y* Non-dimensionalized first layer cell thickness
V4 Airfoil surface crest z-coordinate
z z-coordinate of airfoil section

Zyxx  Second order derivative of airfoil surface

d.c. Drag counts, Acg =0.0001

1 Introduction

The predominant features of dynamic stall on aerodynamic surfaces, such as airfoils, wings, and rotor
blades, are the formation, generation, and shedding of an energetic leading-edge vortex (LEV) or a
dynamic stall vortex (DSV) (McCroskey et al. 1976). These dynamic stall characteristics can induce a
nonlinear fluctuating pressure field that produces significant transient variations in the aerodynamic
forces and moments that are much larger than their corresponding static magnitudes (Gerontakos &

Lee 2006). The transient variations can adversely affect the structural strength, and fatigue life of the
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aerodynamic system (Carr 1988, Mani et al. 2012, Wang et al. 2015, Lee & Gerontakos 2004). Rotorcraft
and commercial-grade wind turbines (Butterfield 1988, Butterfield et al. 1991, Butterfield 1989) are
high Reynolds number applications where the dynamic stall effects are important. At low Reynolds
numbers, dynamic stall is observed in vertical axis wind turbines (VAWTs) (Buchner et al. 2015, Wang
et al. 2010), and bio-inspired micro air vehicles (MAVs)/unmanned air vehicles (UAVs) (Ellington 1999,
Ellington et al. 1996, Van Den Berg & Ellington 1997, Andro & Jacquin 2009, Hu et al. 2018).

Considering the wide field of applications, significant research has been conducted on how to
suppress, delay, or eliminate dynamic stall effects using active-passive systems (Yu et al. 1995, Zhao
& Zhao 2015, Lee & Gerontakos 2006, Miiller-Vahl et al. 2016, Gardner 2016). Aerodynamic shape
optimization (ASO) can be used for passive suppression of the dynamic stall effects but poses some
significant challenges (Mani et al. 2012, Raul & Leifsson 2021, Wang et al. 2015). In the past, ASO for
dynamic stall suppression or delay has received limited attention due to the significant computational
cost involved with the optimization process corresponding to costly and repetitive design evaluations,
the large number of design variables, and their respective gradient calculations. Nevertheless, there is a
growing interest among researchers to produce an ASO strategy to alleviate the dynamic stall problem.

Gradient-based optimization (GBO), a local search approach, is commonly used for ASO. Recently,
Wang et al. (Wang et al. 2015, Wang & Zhao 2018) alleviated the dynamic stall characteristics on rotor
airfoil by using sequential quadratic programming (SQP). A more efficient GBO approach using the
adjoint-based method (Jameson 2003) is also implemented for ASO-based dynamic stall mitigation
(Wong et al. 2006, Nadarajah & Jameson 2007, Mani et al. 2012, Economon et al. 2015), mainly due to the
efficient computation of gradients and its ability to handle high-dimensional optimization problems
(Laurenceau & Meaux 10th April 2008). However, this method has a one major drawback. In particular,
the objective function generated from computational simulations is often non-differentiable, discon-
tinuous, and inherently noisy, which makes sensitivity information often inaccessible (Koziel & Yang
2011). Additionally, the adjoint method is dependent on the high-fidelity (HF) simulation model and
can be computationally expensive to use for complex unsteady problems.

Surrogate-based optimization (SBO) (Koziel & Yang 2011, Ferndndez-Godino et al. 2016) has been
suggested to alleviate the computational cost of ASO by shifting the computational burden from
the time-consuming HF simulation to a fast surrogate model constructed by sparsely sampling the
design space. Surrogate models are typically constructed using data-fit methods, such as polynomial
regression (Zhou et al. 2005), kriging (Simpson et al. 2001), radial basis functions (RBF) (Forrester et al.

2008), and support vector regression (Forrester et al. 2008). Kriging (Kumar & Cesnik 2015, Tang et al.

5
http://mc.manuscriptcentral.com/engcom



oNOYTULT D WN =

Engineering Computations

2017, Vu & Lee 2015) has been used for performance improvement of rotors with ASO while RBF is
more preferred in turbomachinery design (Khalfallah et al. 2015) where the computational cost per
design evaluation is similar to dynamic stall cases. Additionally, Kriging regression model has been
used for delaying and mitigating dynamic stall characteristics over VAWT airfoil with ASO (Raul &
Leifsson 2021).

Construction of an accurate data-fit surrogate model usually requires multiple model evaluations
where the cost quickly grows with an increasing number of the design variables, rendering the data-
fit SBO approach computationally expensive (Ferndndez-Godino et al. 2016) and time-consuming.
Another way to reduce the computational cost is to use multifidelity modeling (MFM) (Peherstorfer
et al. 2018). MFM methods combine data from accurate HF simulations and fast low-fidelity (LF)
simulations providing better generalization capabilities than single-fidelity data-fit surrogates, leading
to an overall reduction in the computational cost. Some of the most widely used multifidelity tech-
niques are cokriging (Forrester et al. 2008), space mapping (Koziel et al. 2008), and manifold mapping
(MM) (Echeverria & Hemker 2008, Echeverria et al. 2007). In spite of its success in cost reduction in
CFD-based ASO, MFM has received limited attention for dynamic stall mitigation applications. The
generation of LF models are critical to MFM and can be generated using various methods such as
coarse discretization and simplified physics (Ferndndez-Godino et al. 2016).

The focus of this work is on the application of MM (Echeverria et al. 2007) to the performance
prediction of dynamic stall. In MM, the objective function is constructed from fast but inaccurate LF
model evaluations and corrected with HF evaluations over the entire optimization process to construct
a local surrogate model that produces fast and accurate HF approximations. In the past, the MM
method has been used in various research areas. For example, Hemker et al. (Hemker & Echeverria
2007) introduced the trust-region strategy for MM modeling and used it to optimize a die-press and
Thelen et al. (Thelen et al. 2020) used the MM technique for aeroelastic flutter prediction. Blom et
al. (Blom et al. 2015) used the MM technique to accelerate the convergence of coupling iterations in
fluid-structure interaction problems. MM has not been applied before to the prediction of dynamic
stall.

Strong similarity of the HF and LF simulation models is fundamental to the success of optimal
design with MFM methods. Similarity is defined here to be how well the multifidelity model outputs
follow each other with respect to changes in the input parameters. For example, if the HF model
predicts an increase in the output for a given change in the input, the LF model should also predict an

increase, although that change many not be of the same magnitude as for the HF model. Furthermore,
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if the HF and LF predict opposite changes in the output for a given parameter change the similarity
condition is violated. Currently, there are no rigorous methods available that provide guidance for
the selection of the LF model setup to maintain HF-LF model similarity. An improper selection of the
LF model and trust-region radius could make the optimization process inefficient resulting in longer
convergence with multiple HF evaluations and the possibility of acquiring spurious optimum designs
as well as the failure of the optimization process.

The objective of this work is to investigate the similarity conditions needed for the HF and LF simu-
lation models for accurate prediction of dynamic stall. In particular, a local MFM model is constructed
with the MM method to predict the performance metric of an aerodynamic surface under dynamic
stall. The approach is investigated using the unsteady Reynolds-averaged Navier-Stokes (URANS)
equations and Menter’s shear stress transport (SST) turbulence model (Menter 1994) with fine and
coarse discretizations as the HF and LF simulation models, respectively. Multiple local MM models
are generated using a combination of the HF model and different LF model configurations. Several
LF models are generated by selecting varying combinations of the spatial and temporal discretiza-
tions. The local MM models are then used to evaluate the dynamic stall of airfoil shapes with small
perturbations in several trust-region radii. The prediction accuracy of the MM model is measured by
computing prediction error against the HF model dynamic stall prediction and used to determine the
similarity between HF and LF models.

The remainder of the paper is organized as follows. In the next section, dynamic stall test case,
performance metric and the MFM technique used in this work are described. Following that, the
computational fluid dynamics (CFD) model setup, HF model validation, and LF model configuration
are described. Then, the results of measuring the performance of the MFM are presented. Finally, the

conclusions and suggestions for future work are presented.

2 Multifidelity modeling

This section describes the dynamic stall test case under consideration, dynamic stall performance

metric, and multifidelity modeling and optimization using manifold mapping.

2.1 Dynamic stall test case

The dynamic stall phenomenon is generally studied with a sinusoidally oscillating airfoil in a uniform

freestream flow (Fig. 1). The oscillating motion of the airfoil is described using the angle of attack as a
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Table 1: Dynamic stall motion and flow parameters (Lee & Gerontakos 2004)

Parameters Values Units

am 10° deg
A 15° deg
w 3.403 rad/s
kr 0.05 -
Re 135,000 -
function of time given as
a(t) =am+ Asin(wt), (1)

where a,,, A, and w represent the mean angle of attack, the amplitude of the oscillation and the
rotational rate, respectively. The reduced frequency, k, is another important parameter relating time

unit ¢ of rotation to the time scale of the flow passing over an airfoil section and is defined as

kr == (2)

where c is the chord length and U, is the freestream speed.

For this study, the deep dynamic stall case from the experimental work conducted by Lee and
Gerontakos (Lee & Gerontakos 2004) is considered for validation purposes. Lee and Gerontakos (Lee
& Gerontakos 2004) performed wind tunnel experiments to investigate the behavior of an unsteady
boundary layer and stall events on the NACA 0012 airfoil with various oscillating motion parameters
and reduced frequencies at a Reynolds number of 135,000. The test was conducted ina 0.9 m x1.2 m
x2.7 m low-speed, suction-type wind tunnel facility with a turbulence intensity of 0.08% at a freestream
speed of 35 m/s. The details of flow and motion parameter of the deep dynamic stall case considered

in this work are given in Table 1.

Figure 1: Forces and moments acting on airfoil undergoing a sinusoidal pitching motion about the quarter
chord point.
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2.2 Dynamic stall performance metric

One of the objective of this work is to build accurate MFM that could predict dynamics stall perfor-
mance metric of various airfoil shapes which can be in future utilized for ASO based dynamic stall
mitigation.

ASO for mitigating dynamic stall characteristics can be defined such that the design variable vector
x describes the airfoil shape and the objective function defines a performance metric that captures
the phenomenon to mitigate and delay the dynamic stall. Such an objective function can be achieved
by delaying the DSV development, which is responsible for the abrupt change in aerodynamic loads.
Drag and pitching moments are especially sensitive to the occurrence of a DSV on the airfoil surface,
which can lead to a sudden divergence in the drag and pitching moment coefficients (Raul & Leifsson
2021). The objective function used in the current study is developed to mitigate this divergence and is
written as

3)

o= (zﬁil ca; (x)) N (zﬁil |Cm; () )
f(cao) f(cmo)

where f(cz9) = Zé\il (cao)ir f(cm,) = Zﬁ.\il [(cmo)il, and c4(x), and ¢, (X) represent the time variant
drag coefficient and pitching moment coefficient during dynamic stall cycle, respectively. N is the
total number of physical time steps in the dynamic stall simulation. The subscript ‘0’ in the above
formulation denotes baseline airfoil parameters. The primary focus of this work is to delay and mitigate
the dynamic stall characteristics. Therefore, only the upstroke part of oscillation cycle is considered
where the predominant effects of DSV are observed.

As mentioned above, the design variable vector x describes the airfoil shape. This study uses the
PARSEC airfoil parameterization technique (Sobieczky 1999), which offers design variables that are
directly related to the airfoil shape, such as the thickness, leading-edge radius, and the trailing-edge

wedge angle. The PARSEC technique describes the upper and lower surface of an airfoil as a linear

combination of sixth-order shape function as
6 i1
zs=Y ajx. 2, s=U,L (4)
i=0

where z; is the z coordinate of airfoil surface, x. is the chordwise location (0 < x, < 1) and a; are
undetermined coefficients. The subscript s refers to the upper (U) or lower (L) surfaces of the airfoil.
The PARSEC technique defines the shape of an airfoil of a unit chord length using a total of 12 variables
(Fig. 2). The details of the variables are given in Table 2. These variables, along with the chordwise

locations and the shape function (4), results in a system of six equations that can be solved to determine
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o
ZL ZnL
Figure 2: PARSEC airfoil geometry parameters.
Table 2: The PARSEC design variables
Design  Description Units
Variables

X Surface crest x coordinate -

Z Surface crest z coordinate -
Zxx Second order derivative at X, <3 |x=x -
Rig Leading edge radius -
Otk Trailing-edge directional angle deg
BrE Trailing-edge wedge angle deg
loff Trailing-edge offset -
ITE Trailing-edge thickness -

the six a; coefficients for each airfoil surface (Leifsson & Koziel 2015). Since the formation of the DSV
is strongly affected by the leading-edge radius and the upper airfoil surface, only variables affecting
the upper surface are considered to reduce the dimensionality of the problem along with a common
variable Ry representing a leading-edge radius such that Ry g = Ry = Rr. The variables defining the
lower surface are set to be the same as for the baseline airfoil (the NACA 0012 in this work). Additionally,
the trailing-edge thickness (1) and trailing-edge offset (.5 ) are set to zero, which generates airfoil
shapes with sharp trailing-edges and with the trailing-edge point at (0,1). These changes reduce the

current problem dimensions from twelve to six with the design variable vector now written as

X= [XU) ZU) ZXXU) RLE! BTEU! ﬁTEU]T~ (5)

Table 2 defines the design variables and Table 3 gives their bounds. These bounds are selected to allow

for large perturbations of the shape without producing atypical airfoil shapes.
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Table 3: Design variable bounds representing airfoil upper surface

Design Variables Upper bound Lower bound Units

Xub X]p
Xy 0.5011 0.2733 -
Zy 0.09 0.054 -
Zxxy -0.4036 -0.6726 -
Rip 0.0222 0.0104 -
O1E, -7.0294 -11.7156 deg
BrE, 5.8803 3.52818 deg

2.3 Manifold mapping

Multifidelity modeling (Peherstorfer et al. 2018) is a method to construct a fast and accurate model
using data from high- and low-fidelity physics-based simulations. The high-fidelity (HF) model
evaluates the system under consideration at the desired accuracy, whereas the low-fidelity (LF) model
provides a fast evaluation of the same metric but at a lower accuracy than the high-fidelity one.

In this work, the manifold mapping (MM) (Echeverria et al. 2007, Echeverria & Hemker 2008)
technique is used to construct the multifidelity model, s(x), that corrects the misalignment between
high-fidelity, f(x), and low-fidelity, c(x), models. This correction is obtained by generating a mapping
s(x) where the response c(x}i) is mapped to f(x;), where x; is the optimum design point, and the

tangent plane for c(x) at x; is mapped to the tangent plane for f(x) at x;. The affine mapping s(x) is

defined as (Echeverria et al. 2007)

s(x) = f(x}) +$(c(x) —c(x})), (6)

where

$ =T (P TL(x}). (7)

Here, J ¢ (x;) is the Jacobian of the high-fidelity model at x; and ]c(x;) is Jacobian for the low-fidelity
model at x}, and the pseudo-inverse is indicated with the symbol .
The mapping s(x) is a local surrogate for the high-fidelity model and can be used with an optimizer

as

Xpm = argmin s(x), 8)

where x7 . is a local optimum of the high-fidelity model. The convergence to the local optimum
requires the generation of the multifidelity model at each iteration for which the correction matrix S

needs to be updated. The computation of the correction matrix S requires gradient information for the
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Jacobian matrix. Thus, the MM model is defined at each iteration i as
sV x) = fx'?) + 87 (c(x) — c(x')). 9)

In this work, the gradients are challenging to compute. Hence, an approximation to the correction

matrix is used. In particular, the correction matrix S at iteration i is computed as (Echeverria et al.

2007)
, AF-AC" wheni>0
s = (10)
I otherwise
where
AF:[f(x(”)—f(x("‘”) f(x(i))—f(xmax(i_”’o))], an
and
Acz[c(x(”)—c(x”‘”) ey — cmaxi-noy | 12)

where n denotes dimensionality of the design space. This correction ensures that s (x) is consistent
with f(x(”) at all high-fidelity samples. The matrix AC' is the pseudoinverse of the matrix AC and
written as

ACT =VycZ! UL, (13)

where Vac, Zac and Uac are obtained by single value decomposition (SVD) of the matrix AC. The ma-
trix ZZC is computed by inverting the nonzero entries in X5¢ and keeping the zero entries unchanged.

The MM method is typically employed within a trust-region (Du et al. 2019) based optimization
framework (Alexandrov et al. 1998), where in every iteration the objective function is optimized using
the MM model in the current trust-region. As the optimization continues to the HF optimum, the MM
model is corrected based on all the gathered data. It should be noted that the MM modeling technique
can be efficiently used without the availability of exact gradient information (Du et al. 2019), and still
has shown to converge to a local optimum (Echeverria et al. 2007, Echeverria & Hemker 2008, Siegler
etal. 2016).

The steps of the optimization algorithm used for the trust-region based local optimization problem

with utilization of the MM model are the following (Du et al. 2019):

1. Setup the initial trust-region radius, A.

2. Evaluate c(x) and f(x) at the current design location, x").
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3. Construct the MM multifidelity model, s(x).

4. Search for the optimal design x*V in the trust-region using the MM model and a gradient-free
optimizer.

_ (&) —fxD))
T ETD)—fxD)) *

5. Evaluate c(x) and f(x) at xX“*! and calculate the gain ratio y
6. Update the trust-region radius, 1, based on the gain ratio, y, using standard updating rules, i.e.,

ify>0.75,A=21andify <0.25,1 = A/3.
7. If y > 0, update the current design with the optimal design from Step 4 .

8. Evaluate the stopping criteria. Stop if |[[x*! —x?||, < 10™* and | f¥*V — fP] <106 and 1 < 1074,

otherwise update the iteration index, i = i + 1, and go to Step 2.

The critical parts of the above optimization framework is the accurate development of the local
surrogate s (x) that is consistent with the HF model locally and the selection of the trust-region radius
at each iteration. The accuracy of the MM surrogate model particularly depends on the assumption
that similarity between the HF and LF model holds (Echeverria & Hemker 2008). This assumption
means that the LF and HF models should exhibit similar local behavior in the region of interest and
the surrogate optimization does not introduce a spurious global optimum near the true minimizer x;
(Echeverria & Hemker 2008). In practice, such similarity conditions usually hold, however, it is not
necessarily true that every LF model can be successfully used within the MM framework (Echeverria &
Hemker 2008).

Additionally, the selection of the initial trust-region radius is important. The number of iterations
in the optimization framework could be reduced by searching a large trust-region radius, thereby
reducing overall optimization cost. The MM model, however, could be inaccurate which could lead to
larger step sizes and, thereby, increasing the number of iterations for the optimization. Therefore, it
necessary to select an appropriate LF model and an initial trust-region radius such that the cost of
optimization can be kept to a minimum. The focus of this work is to investigate whether the similarity
assumption holds when using MM and LF models based on coarse discretization for the multifidelity

prediction of airfoil dynamic stall.

3 Computational fluid dynamics modeling

This section presents the CFD model setup, the HF model validation, and the LF modeling considered

in this study. First, the governing equations and the flow solver used in this work are described. Next,
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the computational grid setup is described, followed by the grid and time-independence study results.

The results of the validation of the HF model against experimental data are given. Lastly, the LF model

used in this study for the generation of local surrogate models is presented.

3.1 Governing equations

In this work, a compressible URANS solver is used for the fluid flow simulation. The time-averaging
of Navier-Stokes equations gives the RANS formulation (Wilcox et al. 1998). In particular, for the
treatment of compressible flows of gases, mass-weighted averaging is convenient (Anderson et al.

2016). Such averaging is known as the Favre average where f = p of

and f" are the Favre mean and
Favre fluctuating components. The application of the classical Favre averaging to the conservation of

mass, momentum, and energy equations gives the URANS equations (Anderson et al. 2016):

9, 90 say=o (14)
ot Tox; PHTY
(u)+a(uu) 9p  OTij _ = (puju) (15)
P PUHTY = 5% " ox; a X Pt
0 — T ap o
(pH)+ (pu]H+pu H" - k_,)‘E+a ](u le+u T,]), (16)

where p, p, u;, T, H, and 7;; are the density, pressure, velocity component, temperature, total enthalpy,

and viscous stress tensor, respectively. The term —p ul u] is known as the Reynolds stress, which

represents the effects of turbulent fluctuations in the fluid flow and is given as

ou; au] _20ug 2
i|—=pkd;i, 17
! 6x] 0x; 36x ) PO .

3
where k; is turbulent kinetic energy, u, is the turbulent eddy viscosity, and §;; is the Kronecker delta
function. The Reynolds stress is modeled by one- or two-equation turbulence models to close the
URANS equations (14)-(16). In this study, the Navier-Stokes closure problem is solved by applying
Menter’s shear stress transport (SST) (Menter 1994) as the turbulence model. Menter’s SST model has
shown an acceptable level of performance in capturing the formation, convection and shedding of

DSV for dynamic stall cases (Wang et al. 2010, Hand et al. 2017, Dar6czy et al. 2015).

14
http://mc.manuscriptcentral.com/engcom

Page 14 of 62



Page 15 of 62

oNOYTULT D WN =

Engineering Computations

3.2 Flow solver

For this study, Stanford University Unstructured (SU?) is utilized as the numerical solver, which has
been extensively validated over a range of compressible turbulent fluid flow problems (Palacios et al.
Grapevine (Dallas/Ft. Worth Region,N). SU? provides a dual time stepping strategy (Palacios et al.
Grapevine (Dallas/Ft. Worth Region) for unsteady simulations to achieve high-order time accuracy.
This method transforms the unsteady problem into a steady problem at each physical time step,
which is then solved with well-known convergence acceleration techniques for steady-state problems.
Additionally, for dynamic stall simulation, SU? offers grid motion in which convective fluxes are
adjusted to take the grid motion into account.

In this study, the dynamic stall simulations are conducted using the URANS solver with the dual
time-stepping strategy and rigid grid motion. The governing equations are discretized using a finite
volume method with convective flux for the mean flow equations are computed using the Jameson-
Schmidt-Turkel (JST) (Palacios et al. Grapevine (Dallas/Ft. Worth Region) scheme. The turbulence
working variables for Menter’s SST model are convected using a first-order, scalar upwind method.
The viscous flux evaluations are assisted by the calculation of spatial gradients with the Green-Gauss
method (Palacios et al. Grapevine (Dallas/Ft. Worth Region). Time discretization is achieved by Euler
implicit scheme (Palacios et al. Grapevine (Dallas/Ft. Worth Region) with the maximum Courant-
Friedrichs-Lewy (CFL) number selected as 4. Furthermore, a two-level multigrid W-cycle method
(Palacios et al. Grapevine (Dallas/Ft. Worth Region) is used for convergence acceleration, and the
Cauchy convergence criteria (Abbott 2001) is employed on the drag calculation with 100 elements and

Cauchy-epsilon criteria of 1076,

3.3 Computational grid

The C-grid topology is used in this study is shown in Fig. 3a. The grid is generated using the
blockMesh utility available through an open-source CFD software — OpenFOAM (Chen et al. 2014).
The blockMesh decomposes the domain geometry into a set of one or multiple three-dimensional
hexahedral blocks. The C-type external domain is generated with a radius of 55 chord lengths from
the leading-edge of an airfoil and a downstream distance of 60 chord lengths. The mesh is highly
refined near the airfoil surface with grid points clustered towards the leading- and trailing-edges to
capture small vortices and large gradients, as shown in Fig. 3b. Additionally, a dense grid is used in
the boundary layer, which is gradually coarsened away from the airfoil surface to the external domain

boundary with a growth ratio of around 1.05. The first layer thickness is selected such that y* < 0.8
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Figure 3: A coarse C-mesh around the NACA 0012 airfoil: (a) the full computational domain, and (b) a view of
the mesh close to the airfoil

along the airfoil during the entire pitching cycle. A low y* is necessary to capture the onset of dynamic

stall vortex accurately. The airfoil surface is modeled as a no-slip adiabatic wall boundary condition,

whereas the domain boundary is set as a farfield boundary condition to eliminate boundary reflection.

With a similar grid topology, additional grids are generated to perform a grid independence study, as
discussed in the next section. Finally, the grid generated using the blockMesh utility is converted to a

SU? compatible file format to use with the SU? solver.

3.4 Grid and time independence studies

Grid and time independence studies are conducted to establish efficient spatial and temporal resolu-

tions for an accurate unsteady simulation. The spatial resolution is initially determined through a grid
sensitivity analysis at a steady-state simulation with a fixed angle. The resulting mesh is then used in
the URANS simulation with an oscillating pitching cycle to acquire a physical time step.

The grid independence study is executed at Re = 135,000, 4° angle of attack, and using the baseline
airfoil NACA 0012 with a steady-state RANS solver. A total of 5 grids are generated by subsequently
increasing the number of cells in stream-wise, normal and downstream direction by a factor of around
1.2, resulting in meshes in ascending spatial resolution with the finest grid of 720,000 cells and the
coarsest grid of 159,000 cells.

The results of the grid independence study are shown in Fig. 4. The grids with the three highest

spatial resolutions (cells sizes 387 x 103, 520 x 103 and 720 x 10%) show minimal variations in their
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Figure 4: Results of the grid independence study of the NACA 0012 airfoil at Re = 135,000 and an angle of attack
of 4° showing the variation in (a) the lift coefficient, and (b) the drag coefficient.

Table 4: Time step independence study results

dt Cllgg Simulation Time** ¢4, =| Calgyg — Caiy, |
(sec) (d.c./cycle) (hrs/cycle) (d.c)
0.008 1,813 39 294.5
0.004 2,019 51 88.4
0.002 2,093 65 14.9
0.0015 2,103 69 4.8
0.0010 2,105 78 2.1
0.0005 2,107 99 0.52

**Computed on a high-performance cluster with 112 processors. Wall-clock time.

respective lift coefficients (Ac; < 0.003) with the drag coefficient variations under 4 d.c. Consequently,
the simulation time required for convergence increases with the spatial resolution. The grid with
387 x 103 cells requires almost one third of the time required by the finest grid with 720 x 103 cell. Hence,
the grid with 387 x 103 cells is selected for future investigation considering the solution accuracy and
computational time requirement.

The selection of physical time-step is made by using the generalized Richardson extrapolation

method (REM) (Roy 2003) with the estimation of the average drag coefficient per oscillating cycle (¢, )

avg
at a zero time-step, represented as REM estimate, ¢4, ,. REM obtains a higher-order estimation of the
value under consideration from lower-order values. Table 4 summarizes the REM results. Multiple
simulations are conducted with time-steps shown in Table 4 based on which ¢4, , is estimated as 2,108
d.c. Table 4 also shows the trend of increasing simulation time corresponding to reducing time-step
length. Figure 5 shows the trend of ¢4,,, and estimated error cg4,,, against time-step sizes. A time step

0f 0.0015 sec is selected based on ¢, .. less than 5 d.c metric with a lowest possible simulation time.

err

Further, to ensure the convergence of the aerodynamic coefficients over the number of cycles, the
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Figure 5: Results of the time step independence study showing (a) the Richardson extrapolation estimate based
on the lower order values, and (b) the estimated error from Richardson extrapolation.

mean square error (M SE) between consecutive cycles is computed as

1 W 2
MSE=—> (Aj—Aj)5 (18)
Inio

where the parameters j and j + 1 represent consecutive cycles, T represents the total time steps per

cycle, and A; and A, represent the aerodynamic coefficients (c;, ¢4 or ¢y, ) in consecutive cycles.

Simulations are performed over 3.25 cycles using the selected mesh and time step, where the airfoil
starts at a mean angle of attack (10°) and undergoes a down-stroke cycle. The data used for the MSE
calculations are collected after the lowest angle (—5°) is reached. Table 5 shows the computed MSE
between consecutive cycles for aerodynamic coefficients. A minimal error is observed between the first
and second cycle aerodynamic coefficients, whereas the second and third cycle produces an almost
identical response with negligible MSE. The results ensure that the addition of the initial downstroke
part of the cycle is able to stabilize the flow from the abrupt change in rotation rate at the first time
step. Thus, it is appropriate to use data after the initial quarter downstroke cycle. In this study, all
dynamic stall simulations start with a quarter downstroke cycle, and data is gathered for the remaining

part of the pitching cycle.

Table 5: Comparison of mean square error (MSE) between consecutive cycles for lift, drag and pitching moment
coefficients with oscillation cycle parameters @ = 10° + 15°sin(wt), k = 0.05

MSE

Cycles c Caq Cm
(d.c)

1-2 4x107* 055 6x107°
2-3 [9.8x107% 0.001 5.5x1077
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3.5 High-fidelity model validation

The current CFD approach is compared against the experimental and LES results (Kim & Xie 2016)
obtained for deep dynamic stall test case described in Section 2.1. The computation is performed using
the selected grid and physical time-step as mentioned above with the URANS solver and Menter’s
SST turbulence model for over 1.25 times the cycle duration. The airfoil initially undergoes a down-
stroke cycle and data is gathered for the remaining complete cycle. The simulation is run on a high
performance computing cluster with 112 processors needing around 69 hours (wall-clock time).

Figure 6 shows the aerodynamic forces and moment response of the NACA 0012 airfoil over
the entire pitching cycle. It should be noted that the experimentally obtained aerodynamic forces
and moments are the ensemble-average over 100 cycles and computed using pressure signals from
pressure taps distributed over the airfoil surface. The LES model result by Kim et al. (Kim & Xie
2016) are ensemble-averaged over 3 cycles. The current CFD results, however, are the time dependent
aerodynamic response of over one cycle.

The URANS model shows a reasonable agreement with the LES model results, whereas a qualitative
agreement was observed with the experimental results. The essential details of aerodynamic responses
of different models are described in Table 6. In terms of the lift coefficient, the URANS model results
consistently match with LES model and experiments in the linear region during the upstroke cycle (a <
16.6°). A similar trend is observed in the pitching moments until a < 16.6°. The URANS prematurely
captures the moment stall at 16.6° compared to LES and experiments (Table 6). This is due to the
limitation of Menter’s SST turbulence model inaccurately identifying the onset of dynamic stall vortex
(DSV).

The experimental results in Fig. 6¢ show a gradual moment stall. In contrast, both computational
models observe drastic moment stall, which is affiliated to a sudden change in lift coefficient due to
DSV’s growth and translation. An abrupt increase in the drag coefficient can also recognize the growth
of DSV. The growth and detachment of DSV from the airfoil surface causes dynamic stall resulting in
peak lift, drag, and pitching moments (Fig. 6a). The URANS model underpredicts the dynamic stall

angle at 19.2° while overpredicting the peak lift, drag, and pitching moment coefficients. After the stall,

Table 6: Comparison of dynamic stall and moment stall location for URANS, LES and experimental data

Models Moment stall Dynamic stall
URANS [this work] 16.6° 19.2°
LES (Kim & Xie 2016) 17.8° 19.7°
Experiments (Lee & Gerontakos 2004) 17.3° 20.6°
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Figure 6: Comparison of time dependent aerodynamic coefficients (a) lift, (b) drag, (c) pitching moment, results
for URANS, LES (Kim & Xie 2016) and experiments (Lee & Gerontakos 2004) with oscillation cycle parameters
a=10°+15°sin(wt), k=0.05

both the URANS and LES models show the presence of a secondary leading-edge vortex (LEV), while
in the experiments such effects are not clear.

Furthermore, the URANS model shows multiple vortex shedding which is observed by the fluctua-
tions in the lift and pitching moment during the downstroke cycle (Figs. 6a and 6¢). Such oscillatory
behavior was absent from the LES and experimental results. The drag coefficient, in general, shows a
less satisfactory agreement with experiments at a higher angle of attack (a = 15°) mostly due to flow
separation resulting in an inaccurate modeling of the viscous effects over the airfoil surface (Geng et al.
2018). This compliance worsens, especially in the downstroke cycle, where massive flow separation is
present. After the flow reattachment (a < 5°), the URANS model starts to show a reasonable agreement
with the LES and experimental results.

Although the URANS model can identify the global features of dynamic stall, such as the formation
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and convection of the DSV and the dynamic stall progression, the LES model results agree relatively
better with the experiments than the URANS model. This is typically due to the deficiencies associated
with RANS turbulence models (Mani et al. 2012). The use of LES for ASO of deep dynamic stall cases
could produce more accurate results than using RANS models. However, the computational cost for
a single LES evaluation is significantly higher, rendering LES currently impractical for optimization
studies. The emergence of hybrid RANS-LES models (Rezaeiha et al. 2019, Sanchez-Rocha et al. 2006)
could provide a trade-off between LES and RANS by partially resolving the turbulence spectrum
(Rezaeiha et al. 2019), thereby alleviating the computational cost compared to LES while providing a
viable solution for predicting dynamic stall.

Typically, in optimization studies, multiple CFD evaluations are required within the design space.
Thus, using LES and hybrid RANS-LES models in such studies would involve a substantially higher
computational cost compared to using only a URANS model. Furthermore, using only the HF URANS
model in optimization could become expensive as the number of design evaluations increases quickly
with the number of design variables representing the airfoil shape. Therefore, there is a need for a
model that could provide a fast but an accurate evaluation within the design space. In this scenario,
multifidelity methods can be advantageous, providing an accurate estimation of objective function

while saving computational resources and time.

3.6 Low-fidelity modeling

The LF model is the critical ingredient of multifidelity methods as they estimate the output response of
the design at a much lower computational cost but generally with lower output accuracy than the HF
model (Peherstorfer et al. 2018). The LF model can be generated in various ways (Ferndndez-Godino
etal. 2016): (1) simplifying the mathematical model for representing the physics (e.g., using the Euler
inviscid equations as the LF model and the RANS equations for the HF model), (2) changing the
discretization of the model (e.g., coarse-grid approximation, early stopping criteria), and (3) using a
mathematical model as the LF model and experimental data as the HF model. In fluid-related problems,
one of the most popular ways of generating low-fidelity models is by changing the discretization of the
HF model (Ferndndez-Godino et al. 2016).

In this work, the LF models are generated by solving the same governing equations as the HF model
but at different combinations of spatial and temporal discretizations. The three mesh sizes and time
steps are chosen from Section 3.4, including the mesh size used for generating the HF model. In all the

LF models, the convergence criteria are kept the same as the HF model. The HF model and LF model
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Table 7: Low-fidelity (LF) and high-fidelity (HF) model configuration used in current study

Mesh size
387k 259k 157k
Model | Model | Model
dt (sec)
0.0015 HF LF1 LE2
0.008 LF3 LF4 LF5
0.015 LF6 LF7 LF8

Page 22 of 62

combinations used in this study are shown in Table 7.

Figure 7 shows the aerodynamic response of the selected LF models against the HF model used for
this study. The results are shown only for the upstroke cycle, where DSV formation primarily affects
the aerodynamic response. As observed in Fig. 7, the LF model response shows a moderate variation

from the HF model selected in our study. The aerodynamic responses of the LF models for a < 15° are

2571 Ir

5 0 5 10 15 20 25 -5 0 5 10 15 20 25
o (deg) o (deg)

(a) (b)
0.1r

-0.1¢

-0.2 ¢

-03 ¢

-5 0 5 10 15 20 25
a (deg)
(c)
Figure 7: Comparison of time dependent aerodynamic coefficients: (a) lift, (b) drag, (c) pitching moment, results

of NACA 0012 airfoil with HE LF4 and LF8 fidelities with oscillation cycle parameters a = 10° + 15°sin(w?), k =
0.05 (result are shown only for the upstroke cycle)
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consistent with the HF model, while the aerodynamic responses for a = 15° are significantly different

due to the lower resolution.

4 Results

This section presents the results of using the proposed MFM technique for the prediction of dynamic
stall. First, the description of the test cases is presented, and then, the individual case results are

described.

4.1 Description of test cases

In this study, 100 design samples are generated in the design space D < R” using Latin hypercube
sampling (McKay et al. 2000), where design samples are generated using the uniform distribution
between the upper x,,;, and lower x;;, bounds of design variable vector (see Table 3). Three pairs of
designs are selected from these design samples with increasing distance representing different trust-
region radius. The trust-regions are defined based on the Euclidean norm between two normalized
design variable vectors, where the design variable vector is normalized with upper bound of design
variable vector x,,;,. Figure 8 shows the three cases of design pairs selected in current work. Case 1 has
the smallest trust-region radius of A = 0.12, Case 2 has the trust-region radius of 1 = 0.23, and Case 3
has a trust-region radius of A = 0.41. In each case, the initial design (x”)) is represented by the solid
black line whereas the target design (x/?)) is represented by the blue dashed line (Fig. 8).

For this study, eight different LF models are employed with the HF model to construct eight
different MM models. All the LF models are obtained by simplifying the HF model with different
combinations of spatial and temporal discretizations (see Table 7). The LF models are generated using
combinations of three mesh sizes (387k, 259k and 157k) and three time step sizes (0.0015, 0.008 and
0.015 sec).

The performance of MM models is based on the MM model’s prediction accuracy of objective
function value at target design and the simulation time required for the LF model evaluation. The

prediction accuracy of MM model is judged with computation of percentage error given as

(Y _ (1)
error= XD =& oo 19)

where s(x'?) represents predicted objective function value by MM model at target design x” and

fx) represents objective function value at target design from HF model.
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Figure 8: Comparison of airfoil shapes considered in this study (a) Case 1, (b) Case 2, (c) Case 3

4.2 Casel

Case 1 represents the trust-region radius (1) of 0.12. In this case, initial design xW is used to construct
eight local MM models using an HF model and eight LF models. The HF objective function response at
target design x!? is then predicted using the respective MM models. Table 8 shows the performance
of the MM model for Case 1, which shows a marginal prediction errors with a maximum error of
2.0% and minimum error of 0.2% when LF6 and LF8 configurations are used for the construction of
the MM model, respectively. There is a possibility that the MM model developed from the HF and
coarser LF model (for example, LF8) could produce lower errors. The MM model developed with LF8
configuration shows the best performance with 0.2% prediction error and computational speed-up
of around 9. In general, the prediction errors in this trust-region are low (< 2%), suggesting that the
HF-LF model similarity holds that produces a locally accurate MM model.

Figure 9 shows the aerodynamic coefficients obtained by the HF model for Case 1 shapes. It is
observed that the aerodynamic coefficients of the initial ") and target x'? shapes are comparable,

and they show a similar trend. The dynamic stall and moment stall angles for these shapes are also
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Figure 9: A comparison of HF model response for designs x'") and x'? on the basis of (a) lift coefficient, (b) drag
coefficient, and (c) pitching moment coefficient.

in close proximity, as seen in Table 9, suggesting a DSV formation at a similar time. The similarity

between aerodynamic coefficients of initial x''’ and target x'? shapes indicates that in lower trust-

Table 8: Performance of MM model with designs xW and x19 (Case 1)

Mesh size
387k 259k 157k
Model error Time | Model error Time | Model error Time
(%) (hrs) (%) (hrs) (%) (hrs)
dt (sec)

0.0015 HF - 45.7 LF1 0.5 29.1 LEF2 1.7 15.9

0.008 LF3 0.6 19.5 LF4 1.0 12.6 LF5 0.2 8.4

0.015 LF6 2.0 11.7 LF7 1.8 7.9 LF8 0.2 5.1

Table 9: Dynamic stall and moment stall angles for Case 1 designs

xb 19.8°  17.1°
x40 20.6° 18.3°
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regions (A < 0.12), airfoil shapes would produce a similar aerodynamic trend, and the prediction of

performance metric by local surrogate would be accurate.

4.3 Case?2

Case 2 design shapes in trust-region radius of A = 0.23 are considered. In this case design x?) is used as
a initial design to construct local MM models and predictions are done at target design x®?. Table 10

shows the performance of the MM models for Case 2 designs. The maximum error of 6.9% is observed

when LF2 configuration is used for MM model where as minimum error of 0.1% is observed with LF1.

The MM model with LF8 configuration shows the lowest simulation time of 5.1 hours while LF7 and
LF5 configuration show similar simulation time of around 8 hrs with less than 2% prediction error. In

general for Case 2, the LF8 configuration with coarsest mesh and time step shows better performance

with prediction error of 1.4% and simulation time of 4.3 hours (computational speed-up of around 9.4.

Overall, It is observed that in Case 2 the average prediction errors are slightly higher to 2.5% compared
t0 1.0% in Case 1.

Figure 10 show the aerodynamic coefficients obtained by evaluating design x® and x?? with HF
model. Both shapes show a similar trend in aerodynamic coefficients, as seen in Fig. 10. Furthermore,
the dynamic stall and moment stall angles for both designs are similar (see Table 11), indicating that the
designs in trust-region A < 0.23 would produce similar dynamic stall characteristics. Thus, considering
the aerodynamic trends and the prediction performance of MM models, the trust-region with A < 0.23

could be used for the generation of an accurate local surrogate model.

Table 10: Performance of MM model with designs x? and x?” (Case 2)

Mesh size
387k 259k 157k
Model error Time | Model error Time | Model error Time
(%) (hrs) (%) (hrs) (%)  (hrs)
dt (sec)

0.0015 HF - 40.6 LF1 0.1 25.9 LF2 6.9 14.6

0.008 LF3 2.9 28.6 LF4 1.0 10.7 LF5 3.9 6.9

0.015 LF6 0.2 10.6 LF7 3.7 7.0 LF8 1.4 4.3

Table 11: Dynamic stall and moment stall angles for Case 2 designs

Airfoil  ay; Ams
x@ 19.2°  16.6°
x@D 18.8° 16.1°

26
http://mc.manuscriptcentral.com/engcom

Page 26 of 62



Page 27 of 62

oNOYTULT D WN =

Engineering Computations

"5 0 5 10 15 20 25 -5 0 5 10 15 20 25
a (deg) a (deg)

(a) (b)
0.1

Figure 10: A comparison of HF model response for designs x® and x?? on the basis of (a) lift coefficient, (b)
drag coefficient, and (c) pitching moment coefficient.

4.4 Case3

Case 3 represent the trust-region radius of A = 0.41 presented by designs x® and x®” as shown in
Fig. 8c. Table 12 shows the performance of the MM model for Case 3 with initial design x'® used for
construction of MM models and prediction of performance metric done at target design x®?. It is
observed that the average prediction error of (15.2%) in Case 3 is substantially higher than Case 1 and
Case 2. The MM model with LF7 configuration shows a maximum prediction error of 25.7%, whereas
the MM model with the LF1 configuration shows a minimum error of 1.5%. The higher errors are
observed in all three mesh sizes with coarsest time step configuration (LF6, LF7, LF8), while the finer
time step configuration shows lower prediction error (LF1, LF2). This could be due to a better similarity
between HF and LF models at a fine time discretization as compared to coarser time discretization.
Although, the MM models with the LF1 and LF2 configurations show a minimum error less than 3%,

they do not provide any significant computational cost-saving for ASO investigations. Additionally, it is
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observed that in the larger trust-region radius, the spatial discretization has a lower effect on prediction
accuracy than the time discretization suggesting that the HF-LF model similarity deteriorates with
coarser time discretization.

Figure 11 shows the time-varying aerodynamic coefficients for designs x® and x*” obtained by
HF model evaluation. It is observed that both designs show a very different trend in aerodynamic
coefficients, mainly generating from different shapes. This dissimilarity in shape largely affects the
dynamic stall characteristics of the design. Table 13 shows dynamic stall and moment stall angle
for designs x® and x®?. The higher difference between the moment stall angles represents DSV
formation at different time, producing much different trends in moment and drag coefficients between
the considered designs. Thus, considering the aerodynamic trends and the MM models’ prediction
accuracy, the trust-region radius A = 0.41 should be considered only with LF models using finer time
discretization.

Overall, in all the three cases (Case 1 to 3), by coarsening the mesh and time step (dt) size, greater
computational cost savings are observed. The prediction accuracy of the MM model largely depends
on the trust-region radius as seen from Tables 8, 10 and 12. In low to moderate sized trust-regions
A =0.12 and 0.23 all the generated MM models showed lower prediction error less than 5%. In general,
it is observed that in the smaller trust-region radius, the HF-LF model holds the similarity condition
very well, producing higher prediction accuracy. Thus, in smaller trust-regions, LF models generated
from coarser spatial and time discretization could be used for constructing MM models producing
higher computational savings. In the larger trust-region radius (A = 0.41), lower prediction accuracy
is observed for the MM models generated from the coarser time discretized LF models. The MM
model with fine time discretization showed high prediction accuracy indicating that the HF-LF model
similarity holds for LF models that are generated from finer time discretization and the effect of spatial
discretization are minimal.

Based on the results obtained from the three cases, Table 14 provides a broad-level recommen-

Table 12: Performance of MM model with designs x® and x®9 (Case 3)

Mesh size
387k 259k 157k
Model error Time | Model error Time | Model error Time
(%) (hrs) (%) (hrs) (%)  (hrs)
dt (sec)
0.0015 HF - 44.9 LF1 1.5 28.6 LEF2 24 16.1
0.008 LF3 15.2 19.9 LF4 14.8 13.1 LF5 15.0 8.9
0.015 LF6 22.8 11.6 LF7 25.7 8.0 LF8 24.8 5.1
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35 Figure 11: A comparison of HF model response for designs x® and x*? on the basis of (a) lift coefficient, (b)
36 drag coefficient, and (c) pitching moment coefficient.

39 dation for LF model configuration that could be used to construct an accurate MM model while
41 maintaining HF-LF model similarity for the current problem formulation. In the small to moderate
sized trust-regions (1 <0.12 or 0.12 < A < 0.23), all LF models can be used for an accurate construction
of MM models with a mean prediction error around 1.0% - 2.5%. However, the MM models using LF5,
46 LF7, or LF8 configurations is recommended based on lower LF model simulation time requirement.
48 The highest computational savings are expected from the MM model developed from the LF8 configu-
50 ration. For higher trust-region radius (0.23 < A1 <0.41) a fine time discretization is recommended. For
52 the current study, the LF2 model with a mean prediction error of around 2.0% and simulation time of

around 15 hrs is preferred.

56 Table 13: Dynamic stall and moment stall angles for Case 3 designs

58 Airfoil a4 Ams
59 x& 21.5°  20.0°
60 x30 20.0°  17.2°
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Table 14: Broad-level recommendation for selection of LF model configuration for different trust-region radii

Trust-region radius LF Model Recommended Meanerror Recommended LF model

A acceptable LF models (%) simulation time (hrs)
1<0.12 LF1-8 LF5, LF6, LF8 1.0 4-9
0.12=<1<0.23 LF1-8 LF5, LF6, LF8 1.0-2.5 4-9
0.23<1<041 LF1, LF2 LE2 2.0 15

5 Conclusion

In this work, the manifold mapping (MM) method is proposed for the prediction step within a surrogate-
based optimization framework utilized for aerodynamic shape optimization (ASO) to mitigate airfoil
dynamic stall. The success of MM for finding the optimal designs strongly depends on the similarity
between the high- (HF) and low-fidelity (LF) simulation models. This work investigates how to con-
struct accurate local multifidelity models to predict the performance of an aerodynamic surface under
dynamic stall and satisfy the similarity assumption at the same time. In the current investigation, the
MM technique is implemented for generating eight different local multifidelity models (MFM), based
on the HF and eight LF simulation models to predict the HF objective function values in multiple
trust-region radii.

It is observed that the trust-region radius significantly affects the prediction accuracy of the local
MM model. In a small to medium trust-region radii, all the generated MM models showed lower
prediction error less than 5% where HF and LF models hold the similarity condition. In a larger
trust-region radius, higher prediction error is observed for MM models constructed from coarser time
discretized LF models. This indicates that the time discretization has a more significant effect on the
HF-LF model similarity than the spatial discretization, and the HF-LF model similarity deteriorates
with coarser time discretization. It is suggested that for the ASO-based dynamic stall mitigation
approach, the MM model constructed from the coarser spatial and time discretized LF model in a low
to medium trust-region radius can be used efficiently with higher prediction accuracy for the dynamic
stall case under consideration.

The approaches used in this study are general and can be used to determine the selection of LF
model discretization based on the selected trust-region radius, or vice versa, such that the local MM
model will satisfy the similarity condition. In future work, the proposed multifidelity approach, along

with the findings from the current work, will be applied to ASO-based dynamic stall mitigation.
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