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Abstract—Despite the rich literature on scheduling algorithms
for wireless networks, algorithms that can provide deadline
guarantees on packet delivery for general traffic and interference
models are very limited. In this paper, we study the problem of
scheduling real-time traffic under a conflict-graph interference
model with unreliable links due to channel fading. Packets that
are not successfully delivered within their deadlines are of no
value. We consider traffic (packet arrival and deadline) and
fading (link reliability) processes that evolve as an unknown
finite-state Markov chain. The performance metric is efficiency
ratio which is the fraction of packets of each link which are
delivered within their deadlines compared to that under the
optimal (unknown) policy. We first show a conversion result
that shows classical non-real-time scheduling algorithms can be
ported to the real-time setting and yield a constant efficiency
ratio, in particular, Max-Weight Scheduling (MWS) yields an
efficiency ratio of 1/2. We then propose randomized algorithms
that achieve efficiency ratios strictly higher than 1/2, by carefully
randomizing over the maximal schedules. We further propose
low-complexity and myopic distributed randomized algorithms,
and characterize their efficiency ratio. Simulation results are
presented that verify that randomized algorithms outperform
classical algorithms such as MWS and GMS.

Index Terms—Scheduling, Real-Time Traffic, Markov Pro-
cesses, Stability, Wireless Networks

I. INTRODUCTION

There has been vast research on scheduling algorithms in
wireless networks which mostly focus on maximizing long-
term throughput when packets have no strict delay constraints.
Max-Weight Scheduling (MWS) policy has been shown to
be throughput optimal in such settings, attaining any desired
throughput vector in the feasible throughput region [1]. Fur-
ther, greedy scheduling policies such as LQF [2], [3], or
distributed policies such as CSMA [4]-[6] have been proposed
that alleviate the computational complexity of MWS and
achieve a certain fraction of the throughout region. However, in
many emerging applications, such as Internet of Things (IoT),
vehicular networks, and edge computing, delays and deadline
guarantees on packet delivery play an important role [7]-
[9], as packets that are not received within specific deadlines
are of little or no value, and are typically discarded. This
discontinuity in the packet value as a function of latency makes
the problem significantly more challenging than traditional
scheduling where packets do not have strict deadlines.
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There is an increasing body of work attempting to address
the above challenge, however they either assume a frame-
based traffic model [10]-[14], relax the interference graph
constraints [15], or use greedy scheduling approaches like
LDF [16], [17]. In the frame-based traffic model, time is
divided into frames, and packet arrivals and their deadlines
during a frame are assumed to be known at the beginning
of the frame, and deadlines are constrained by the frame’s
length [10]-[14]. Under such assumptions, the optimal solu-
tion in each frame is a Max-Weight schedule. Note that unless
the traffic is restricted to be synchronized across the users,
such solutions are non-causal. A more general cyclic traffic
is considered in [18] for the collocated case, however the
proposed solutions are either computationally prohibitive or
they provide no performance guarantees. The optimal schedul-
ing policy (and the real-time throughout region) for general
traffic patterns and interference graphs is unknown and very
difficult to characterize. Largest-Deficit-First (LDF) is a causal
policy which extends the well-studied Largest-Queue-First
(LQF) from traditional scheduling to real-time scheduling. The
performance of LDF has been studied in terms of efficiency
ratio, which is the fraction of the real-time throughput region
guaranteed by LDF. Under i.i.d. packet arrivals and deadlines,
with no fading, LDF was shown to achieve an efficiency ratio
of at least ﬁ [16], where (3 is the interference degree of
the network (which is the maximum number of links that can
be scheduled simultaneously out of a link and its neighboring
links). Recently, the work [19] has shown that through random-
ization it is possible to design algorithms that can significantly
improve the prior algorithms, in terms of both efficiency
ratio and traffic assumptions. Specifically, [19] proposed two
randomized scheduling policies: AMIX-ND for collocated
networks with an efficiency ratio of at least % ~ 0.63, and
AMIX-MS for general interference graphs with an efficiency
ratio of at least % > 3 (|Z] is the number of maximal
independent sets of the graph). However, the complexity of
AMIX-MS can be prohibitive for implementation in large
networks. Moreover, intrinsic wireless channel fading has not
been considered in [19], and packet transmission over a link
is assumed to be always reliable.

In this work, we consider an interference graph model of
wireless network subject to fading, where packet transmissions
over links are unreliable. We consider a joint traffic (packet
arrival and deadline) and fading (link’s success probability)
process that evolves as an unknown Markov chain over a
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Fig. 1: An example of a Markovian traffic-and-fading process
that alternates between two patterns. Each rectangle indicates a
packet for a link. The left side of the rectangle corresponds to
its arrival time, and its length corresponds to its deadline. The
numbers in circles indicate the channel success probability of
each link in each time slot.

finite state space. Can the existing traditional scheduling algo-
rithms (which focus on long-term throughput with no deadline
constraints) be used to provide guarantees for scheduling in
this setting, without making frame-based traffic assumptions?
We show that interestingly the answer is yes, but fading and
deadlines might significantly degrade their performance.

Introducing fading in deadline-constrained scheduling
makes the problem very complicated. For example, consider
the initial two time slots in Pattern B in traffic-fading process
of Figure 1 with two interfering links: link 1 has a packet
with deadline 2 and link 2 has a packet with deadline 1. Link
1’s success probability is 1 in the first two slots, and link 2’s
success probability is 0.5 in the first time slot. Not knowing
the future traffic and fading, an opportunistic scheduler would
prioritize link 1 in the first time slot and subsequently in
the second time slot, but the optimal policy would always
schedule link 2 in the first time slot and packet of link 1 in
the second time slot. A key insight of our work is that careful
randomization in decision is crucial to hedge against the risk
of poor decision due to lack of the knowledge of future traffic
and fading.

A. Contributions

Our main contributions can be summarized as follows.

« Application of Traditional Scheduling Algorithms to
Real-Time Scheduling. Each non-empty link (i.e., with
unexpired packets for transmission) is associated with a
weight which is the product of its deficit counter and channel
fading probability at that time, otherwise if the link is empty,
the weight is zero. We show that any algorithm that provides
a Y-approximation to Max-Weight Schedule (MW S) under
such weights, achieves an efficiency ratio of at least wa
for real-time scheduling under any Markov traffic-fading
process. As a consequence, MWS policy achieves an effi-
ciency ratio of %, and GMS (Greedy Maximal Scheduling)
provides an efficiency ratio of at least ﬁ

« Randomized Scheduling of Real-Time Traffic Over Fad-
ing Channels. We extend [19] to show the power of
randomization for scheduling real-traffic traffic over fading
channels in general and collocated networks. By carefully
randomizing over the maximal schedules, the algorithms
can achieve an efficiency ratio of ar least I L

I-1 ~ 2

in any general graph under any unknown Markov traffic-
fading process. In the special case of a collocated network
with i.i.d. channel success probability ¢, the algorithm can
achieve an efficiency ratio of at least (== +1 —¢)~",
which ranges from 0.5 to 0.63.

o Low-Complexity and Distributed Randomized Algo-
rithms. To address the high complexity of the randomized
algorithm in general graphs, we propose a low-complexity
covering-based randomization and a myopic distributed ran-
domization. Given a coloring of the graph using x colors,
we can achieve an efficiency ratio of at least 5, by
randomizing over X schedules. Moreover, we show that
a myopic distributed randomization, which is simple and
easily implementable, can achieve an efficiency ratio of ﬁ
in any graph with maximum degree A.

B. Notations

Some of the basic notations used in this paper are as follows.
Given y € R", |ly]| = Y, |ys|.- We use int(A) to denote
the interior of set A. [z]* = max{x,0}. 1(E) is the indicator
function of event E. |A| is the cardinality of set A. EY [
is used to indicate that expectation is taken with respect to
random variable Y.

II. MODEL AND DEFINITIONS

Wireless Network and Interference Model. Consider a set
of K links, denoted by the set IC. We assume time is divided
into slots, and in every slot ¢, each link [ € K can attempt to
transmit at most one packet. To model interference between
links, we use the standard interference graph Gy = (K, Ey):
Each vertex of Gy is a link, and there is an edge (I1,02) € E;
if links [q, s interfere with each other. Hence, no two links
that transmit packets can share an edge in G;. Let Z be the
set of all maximal independent sets of graph G;. Also let
B(t) C K denote the set of nonempty links (i.e., links that
have packets available to transmit) at time t. We use M (¢)
to denote the set of links scheduled at time ¢. By definition,
M (t) is a valid schedule if links in M (t) are nonempty and
form an independent set of G, i.e.,

M(t) C (B(t)n D), for some D € 7. (1)

A schedule is said to be maximal if no nonempty link can
be added to the schedule without violating the interference
constraints. In this case, ‘C’ in (1) holds with ‘=’.

Fading Model. Transmission over a link is unreliable due
to wireless channel fading. To capture the channel fading over
link I, we use an ON-OFF model where link [ at time ¢ is
ON (Ci(t) = 1) with probability ¢;(t), otherwise it is OFF
(Cy(t) = 0). If scheduled, transmission over link [ at time
t is successful only if link / is ON. Let q(¢t) = (¢ (¢),l €
KC) be the vector of success probabilities of the links. We
assume that at any time slot ¢, the link’s success probability
is known to the scheduler before making a decision. At the
end of time slot ¢, link’s transmitter receives a feedback from
its receiver indicating whether transmission was successful or
not. A special case of this model is when ¢;(t) € {0,1}, VI €



KC, in which case the channel state C;(t) is deterministically
known to the scheduler, which requires periodic channel state
estimation. Another special case is when Cj(¢) is i.i.d. with
some probability ¢; which eliminates the need for periodic
estimation. Similar models have been used in [15], [20].

Overall, we define I(t) = ([;(t),l € K) to denote the
successful packet transmissions over the links at time ¢. Note
that by definition, I,(¢t) = 1(l € M (t))Ci(t), where M(¢) is
the valid schedule at time ¢, and C;(t) is the channel state of
link .

Traffic Model. We assume a single-hop real-time traffic. We
use a;(t) < amax to denote the number of packet arrivals at link
[ at time ¢, where am,x < 0o is a constant. Each arriving packet
has a deadline which indicates the maximum delay that the
packet can tolerate before successful transmission. A packet
with deadline d at time ¢ has to be successfully transmitted
before the end of time slot ¢ + d — 1, otherwise it will be
discarded. We define the traffic process 7(t) = (7,4(t),d =
1,--+ ,dmax,! € K), where 7; 4(t) is the number of packets
with deadline d arriving to link [ at time ¢, and d,,x < oc.

Traffic and Fading Process. In general, we assume that the
joint traffic and fading process z(t) = (q(t), T(t)) evolves
as an “unknown” irreducible Markov chain over a finite state
space Z. See Figure 1 for an example of a Markovian traffic-
fading process.

Without loss of generality, we make the following assump-
tion to make this Markov chain non-trivial: For every link [,
there are two states z',z’' € Z such that z!' has a packet
arrival with deadline d, and z’ ! has q > 0, and there is
a positive probability that z(¢) can go from z' to z’ "in at
most d time slots. This assumption simply states that it is
possible to successfully transmit some packets of every link [
within their deadlines. If a link does not satisfy this condition,
we can simply remove it from the system. Note that z(¢) is
an irreducible finite-state Markov chain, hence it is positive
recurrent [21], and time-average of any bounded function of
z(t) is well defined, in particular the packet arrival rate for
link I:

limy—eo 130 ai(s) = @ 2)

Buffer Dynamics. The buffer of link [ at time ¢, denoted by
WU, (t), contains the existing packets at link [ which have not
expired yet and also the newly arrived packets at time ¢. The
remaining deadline of each packet in W;(¢) decreases by one
at every time slot, until the packet is successfully transmitted
or reaches the deadline 0, which in either case the packet is
removed from W;(¢). We also define ¥ (¢) = (U;(¢);1 € K).

Delivery Requirement and Deficit. As in [10]-[13], [16], we
assume that there is a minimum delivery ratio requirement p;
(QoS requirement) for each link [ € K. This means we must
successfully deliver at least p; fraction of the incoming packets
on each link [ within their deadlines. Formally,

S = ®

We define a deficit w;(¢) which measures the number of
successful packet transmissions owed to link [ up to time ¢ to

liminf; o

fulfill its minimum delivery ratio. As in [13], [16], [19], the
deficit evolves as

.
wi(t+1) = [w(®) + @) - u(0)] @

where @;(t) indicates the amount of deficit increase due to
packet arrivals. For each packet arrival, we should increase
the deficit by p; on average. For example, we can increase the
deficit by exactly p; for each packet arrival to link [, or use a
coin tossing process as in [13], [16], i.e., each packet arrival at
link [ increases the deficit by one with the probability p;, and
zero otherwise. We refer to a;(t) as the deficit arrival process
for link /. Note that it holds that

lim; oo % Zi:l Zil(s) =ap =X, l €K. &)

We refer to \; as the deficit arrival rate of link [. Note that an
arriving packet is always added to the link’s buffer, regardless
of whether and how much deficit is added for that packet. Also
note that in (4) each time a packet is transmitted successfully
from link [, i.e., I;(¢) = 1, the deficit is reduced by one. The
dynamics in (4) define a deficit queueing system, with bounded
increments/decrements, whose stability, e.g., in the sense

lim SUP; 00 %Zi:l E[U}l(S)] < 00, (6)

implies (3) holds [22]. Define the vector of deficits as w(t) =
(wi(t),l € K). The system state at time ¢ is then defined as

S(t) = (a(t), 7(t), ¥ (1), w(t))- ()

Objective. Define P¢ to be the set of all causal policies, i.e.,
policies that do not know the information of future arrivals,
deadlines, and channel success probabilities in order to make
scheduling decisions. For a given traffic-fading process z(t),
with fixed a;, defined in (2), we are interested in causal policies
that can stabilize the deficit queues for the largest set of
delivery rate vectors p = (p;,! € K), or equivalently largest
set of A = (\; := @p;,l € K) possible. For a given traffic
process, we say the rate vector A = (A, € K) is supportable
under some policy . € P if all the deficit queues remain
stable for that policy. Then one can define the supportable
real-time rate region of the policy p as

A, ={X>0: X is supportable by p}. (8)

The supportable real-time rate region under all the causal poli-
cies is defined as A = {J,cp., Ay The overall performance
of a policy w is evaluated by the efficiency ratio defined as

75 =sup{y: YA C A} )

For a casual policy p, we aim to provide a universal lower
bound on the efficiency ratio that holds for “all” Markovian
traffic-fading processes, without knowing the Markov chain.

For clarity, we will use EF [] to denote expectation with re-
spect to the random outcomes of the fading channel, and ER[]
to denote expectation with respect to the random decisions of
a randomized algorithm ALG, whenever applicable.



III. SCHEDULING ALGORITHMS AND MAIN RESULTS

Recall that 7 is the set of all maximal independent sets of
interference graph Gy, and B(t) is the set of links that have
packets to transmit at time ¢. At any time ¢, we define the set
of maximal schedules M(t) = {DNB(t),D € I}.

Define the gain of maximal schedule M € M(t) to be the
total deficit of packets transmitted successfully at time ¢, i.e.,
Gu (t) =D 1ep Cr(t)wi(t). We define the weight of maximal
schedule M to be its expected gain, conditional on S(t), i.e.,

War(t) := EF [Ga (DIS(#)] = Y wi(t)au().

leM

(10)

We use M*(t) := arg maxpse aq(¢) W (t) to denote the Max-
Weight Schedule (MWS) at time ¢, and W*(t) := Wy 4 (1)
to denote its weight.

Given a Markov policy ALG, let 7/(t) be the probability
that ALG selects maximal schedule M at time ¢. Hence, the
probability that link [ is scheduled at time ¢ is

Gu(t) = X prepaqry T ()L € M).
Further, the expected gain of ALG is given by
ERF[Garc(IS@)] = Y mu(OWar(t) (12)
MeM(t)

= Y aalw).

lex

(1)

13)

Without loss of generality, we consider natural policies that
transmit the earliest-deadline packet from every selected link
in the schedule. This is because, similar to [19], if a policy
transmits a packet that is not the earliest-deadline, that packet
can be replaced with the earliest-deadline packet of that link,
and this only improves the state. Similarly, the optimal policy
always selects a maximal schedule at any time.

A. Converting Classical Non-Real-Time Algorithms for Real-
Time Scheduling

The following theorem allows us to convert non-real-time
scheduling policies to real-time scheduling policies, hence
enabling the use of numerous policies from the literature of
traditional non-real-time scheduling. More specifically, poli-
cies whose expected gain at any time t is v-fraction of the
gain of MWS (i.e. W*(¢)) yield an efficiency ratio of at least
/(¢ + 1). The result is stated formally in Theorem 1,

Theorem 1. Consider any policy ALG such that, at every time
t, ERF[Garc(t)|S(t)] > v Was«(t), whenever ||w(t)|| > W',
for some finite W'. Then

’Y;ZL-
v+1

Note that this conversion results in deadline-oblivious poli-
cies which can be preferred in cases where information about
the deadlines of packets is either not accurate or not available.
We remark that for certain policies the result of Theorem 1 is
tight as seen in Corollary 1.1 below, whereas for other policies
the bound can be loose.

Corollary 1.1. MWS policy provides efficiency ratio pws =
% for real-time scheduling under Markov traffic-fading pro-
cesses.

Proof. Using Theorem 1 for MWS with ¢ = 1, we directly
obtain Yws > 1/2. We can get the the opposite inequality
through an adversarial example. If we consider a simple
network with two interfering links without fading, then MWS
reduces to LDF, which has been shown to have v* < 1/2
for Markovian traffic with deterministic deficit admission [16],
[19] (recall that efficiency ratio v* is defined as a universal
bound for all traffic-fading processes for any given graph). [

Consider a Greedy Maximal Scheduling (GMS) policy
defined as follows: Order the nonempty links B(t) in the
decreasing order of the product w;(t)q;(t). Then construct a
schedule recursively by including the nonempty link with the
largest w; (t)q;(t), removing the interfering links, and repeating
the same procedure over the remaining links.

The following corollary extends the result of [16] which
was shown for i.i.d. traffic without fading for LDF.

Corollary 1.2. GMS provides an efficiency ratio Ysys =
ﬁ for real-time scheduling under any Markov traffic-fading
process, where (3 is the interference degree of the graph.

Proof. Tt is straightforward to show that GMS provides a
1/ approximation to MWS, through standard arguments. The
result then follows by applying Theorem 1 with ¢ = 1/4. De-
tailed derivation can be found in the technical report [23]. [

Note that many other results from traditional scheduling
literature can be converted using Theorem 1. For example, the
DI1STGREEDY policy [24] would also obtain V3cigreepy =

ﬁ but has a lower complexity than GMS.

B. Randomized Scheduling Algorithms

In this section, we extend AMIX policies for collocated
networks and general networks introduced in [19] to incorpo-
rate fading. We refer to the generalized policies as FAMIX
(Fading-based Adaptive MIX). We describe these generalized
policies below.

1) FAMIX-MS: Randomized Scheduling in General Graphs:
Let R := |[M(t)| be the number of maximal schedules at
time . We index and order the maximal schedules such that

M@ € M(t) has the i-th largest weight (based on (10)), i.e.,
W () > Wape (t) -+ > Wy (8). (14)

Define the subharmonic average of weight of the first n
maximal schedules, n < R, to be

n—1

Cn(t) = = —. (15)
Zi:l (WMU) (t)) !
Then select schedule M () with probability
n(l L
- - 1- 07(), 1<i<n
T () = m(t) = Wi (1) (16)
0, n<i<R



R}
and

where 7 is the largest n such that {7}'(t),1 < 3
defines a valid probability distribution, i.e., 7" (t) >

S TR(t) = 1.

Remark 1. It has been shown in [19] that # in such a
distribution can be found through a binary search. Essentially
the difference between FAMIX-MS and AMIX-MS in [19] lies
in different definitions for the weight of a schedule.

<
09

Theorem 2. In a general interference graph G with maximal
independent sets L, the efficiency ratio of FAMIX-MS is

x |Z] 1
YEAMIX-MS = 27 -1 Z g

Remark 2. Theorem 2 shows that with randomization we can
do strictly better than MWS (Corollary 1.1). For example,
in the case of a complete bipartite interference graph (where
there are two maximal independent sets), FAMIX-MS yields
an efficiency ratio of at least 2/3, while MWS yields 1/2.

2) FAMIX-ND: Randomized Scheduling in Collocated
Graphs: Extending AMIX-ND [19] to fading channels is more
challenging. In particular, the derivation in [19] relied on two
main ideas: (1) it is sufficient to consider only a restricted set
of “non-dominated” links for transmission, and (2) there is
an ordering among the non-dominated links such that given
two non-dominated links, having packet in buffer from one
of the links is always preferred to that from the other link.
Finding such domination relationship for a general Markov
fading process is difficult. Here, we describe an extension
under a simplified fading process, where ¢;(t) = ¢ = q,
i.e., the links’ success probabilities are fixed and equal. We
allow the channel state across links to be either independent
or positively correlated, i.e., Pr[Cy, (¢) = 1|C, (t) = 1] > qi,.
The above setting could be a reasonable approximation in
collocated networks where links have similar reliabilities, and
an active channel for one link implies a better condition for
the overall shared wireless medium.

Let ¢;(t) denote the deadline of the earliest-deadline packet
of link [ at time ¢. We say that link /; dominates link [, at
time ¢ if e;, (t) < e, (t), wy, (t) > wy, (¢), i.e., link {1 is more
urgent and has a higher deficit. Based on this definition, the
set of non-dominated links at any time can be found though
a simple recursive procedure as in [19], i.e., by adding the
largest-deficit nonempty link, removing all the links dominated
by it from consideration and repeating the process for the
remaining links. The following theorem describes FAMIX-
ND and its efficiency ratio for a collocated network with a
channel success probability gq.

Theorem 3. Consider a collocated network, where q; = q,
Vvl € K, and channels of links are independent or positively
correlated. Order and re-index the non-dominated links such
that

w1(t) > wg(t) > ... > wn(t)

Starting from i = 1, assign probability m;(t) to the i-th non-
dominated link,

m‘(t)Zmin{1<l—wi+l(;)>71—z77j(t)}. (17)

q w; (t

FAMIX-ND selects the i-th non-dominated link with proba-
bility m;(t) and transmits its earliest-deadline packet. Then

q 1
VEAMIX-ND = (1 “eo—a (1- Q)) = h(q). (18)
Remark 3. Note that due to channel uncertainty, FAMIX-ND
boosts the probability of larger-weight links. Intuitively, as ¢
becomes small, deadlines of packets are “effectively” reduced,
as each packet will need to be transmitted several times before

SUCCess.

Remark 4. The lower bound h(q) on efficiency ratio in (18)
is a monotone function of ¢, which increases from 0.5 and to

egl , as q goes from O to 1. For ¢ = 1, this recovers the result
of [19] for non-fading channels, i.e., Yiyxnp = <3

In the case of unequal ¢; € (Gmin,4max), using (17) by
replacing ¢ with gnin, Will give an efficiency ratio of at least
(% +1-— Qmax)71 = h(Qmina qmax)- Depending on

Gmax, Gmin, IX, we can choose either FAMIX-ND or FAMIX-
MS and achieve v* > max{h(¢min, ¢max), %}

C. Low-Complexity and Distributed Randomized Variants

The general algorithm FAMIX-MS in Section III-B poten-
tially randomizes over all the maximal schedules. This can be
computationally expensive in large networks that may have
many maximal schedules. In this section, we design variants
that only need to consider a subset of the maximal schedules,
or are distributed.

1) Covering-Based Randomized Algorithms: We propose
variants that only need to consider a subset of the maximal
schedules. Proposition 1 below states a sufficient condition
under which randomization over a subset of the maximal
schedules can provide a related approximation on the effi-
ciency ratio.

Proposition 1. Consider policy ALG = FAMIX-MS| a4, 1)
which, at any time t, selects a schedule from a subset M (t) C
M(t), according to probabilities of FAMIX-MS computed
for Mq(t). Suppose that for every M € M(t) \ Mo(t),
() wia®)di(t) < max > qt)wi(t)di(t)

leM a MeMo(®) 37,
+(1 = p(t)ERF [Gara(®)|S@)], (19)

for some (t) € (0,1], where ¢;(t) was defined in (11) and
¢, (t) =1 — ¢(t). Then

YiLG = mingsg {Tﬁ(t)#@g\)‘—l} '

Note that we are interested in satisfying Condition (19) with
the highest value of the parameter (t) to obtain a better
efficiency ratio.

Next, by focusing on a special case in which Condition (19)
holds, we can design provably efficient policies by considering

(20)



a small set of schedules such that any other maximal schedule
can be covered by them.

Lemma 4. Suppose every M € M(t) \ My(t) is covered by
at most ¢ maximal schedules from My(t), i.e.,

M C Upnpes,, M, for some Sy C Mo(t) = |Su| < ¢ (21)
Then Condition (19) holds with fixed 1(t) = %

Proof. Using the covering definition (21), we have

ST a®wt)di(t) < > D aywit)di(t)

leM M’eSy leM’
< w ()i (t), (22
< CM'?/?A)E@) > atyw()d(t), 22)
leMm’
and hence condition (19) trivially holds for ¥ = % O

In general, M (t) can be adaptive and constructed based
on the link deficits and fading probabilities. Here, we apply
Proposition 1 and Lemma 4 for a constant 1(t) = ¢ and a
family M (t) induced by fixed subset of the independent sets
Io CZ,ie., Mo(t) ={DnNB(t), D € Zp}. With minor abuse
of notation, we refer to such algorithms as FAMIX-MS|z,.
Below, we present a covering-based algorithm.

Corollary 4.1 (Coloring-based Randomization). Consider a
coloring of graph Gy with x colors, which partitions the
vertices of Gy into x independent sets {Dj,...,D| }. Ex-

tend these independent sets arbitrarily so they are maximal
1

{Dl, ""DX} = IO. Then 7;AMIX—MS|IU 2 ﬁ
Proof. Any maximal schedule in M\ M, can be covered by at
most x maximal schedules in My, thus ¢ = % by Lemma 4.

Further, Q‘mzit” > 2XX_1. Thus applying Proposition 1, we

=1
get the stated egﬁciency ratio. O

Remark 5. In general, finding an efficient coloring might be
computationally demanding, but it needs to be done only once
for a given G;. There are many interesting families of graphs
for which coloring can be solved efficiently. For example, for a
(not necessarily complete) bipartite graph (e.g. a tree) where
X = 2, we obtain v* > % This performs much better than
LDF whose efficiency ratio in a tree with maximum degree /3
isy* > W%Jrl in the case without fading (which is a special
case of our setting). Another family that admits an efficient
coloring are planar graphs where, by the four-color theorem,
always have a 4-coloring which can be found in polynomial
time [25]. Further, we remark that the independent sets D)
could be extended adaptively at every time ¢, e.g., using GMS.

2) Myopic Distributed Randomized Algorithm: We present
a simple distributed algorithm that has constant complexity.

Assume each slot is divided in two parts, a control part
of duration 7T, and a packet transmission part with duration
normalized to 1. At the beginning of the control phase, every
non-empty link | € B(t) starts a timer 1} ~ Exp(v;), where
Exp(v) denotes an exponential distribution with rate v. Once
the timer of a link ! runs down to zero, it broadcasts an

announcement informing its neighbors that it will participate in
data transmission, unless it has heard an earlier announcement
from its neighboring links, or the control phase ends.

Given any § € (0,1), let T¢ = maxul{%‘?(é)}. The next
corollary states the efficiency ratio for the uniform timer rates.

Corollary 4.2. Consider the myopic randomized algorithm

where every link | has the same timer rate v = v. If the
maximum degree of Gy is A, then
x > Lt (23)
Ymyopric = ?:g; 1

Note that theoretically we can scale up the timer rate v, so
that the control phase 7- becomes very small.

Remark 6. We note that direct application of Theorem 1
yields an efficiency ratio ~ ﬁ as the myopic algorithm
obtains ~ ﬁ approximation of the MWS (to see this note
that every link has probabibility ~ 1/(A + 1) of getting
service. Thus all the links of the MWS are included with this
probability). Therefore Corollary 4.2 also serves as an example
in which a careful analysis can improve the bound of direct
application of Theorem 1.

IV. ANALYSIS TECHNIQUES AND PROOFS

We provide an overview of the techniques in our proofs.

Frame Construction. A key step in the analysis of our
scheduling algorithms is a frame construction similar to the
one in [19], but based on the joint traffic-fading process. The
definition of frame is as follows

Definition 1 (Frames and Cycles). Starting from an initial
traffic and fading state tuple (7(0),q(0)) = z € Z, let t;
denote the i-th return time of traffic-fading Markov chain z(t)
toz, i=1,---. By convention, define ty = 0. The i-th cycle C;
is defined from the beginning of time slot t; 1+ 1 until the end
of time slot t;, with cycle length C; = t; —t;_1. Given a fixed
k € N, we define the i-th frame .E(k) as k consecutive cycles
Cli—1)k+1>" " ,Cik, i.e., from the beginning of slot t(;_1), + 1
until the end of slot t;i. The length of the i-th frame is denoted
by Fi(k) = E;‘i(pl)kﬂ Cj. Define J(F*)) to be the space
of all possible (T(t),q(t)) patterns during a frame F*). Note
that these patterns start after z and end with z.

By the strong Markov property and the positive recurrence
of traffic-fading Markov chain z(t), frame lengths Fi(k) are
i.i.d with mean E[F(®)] = EKE[C], where E[C] is the mean
cycle length which is a bounded constant [21]. In fact, since
state space Z is finite, all the moments of C' (and F(*)) are
finite. We choose a fixed k, and, when the context is clear,
drop the dependence on k in the notation.

Define the class of non-causal F-framed policies Pnc (F)
to be the policies that, at the beginning of each frame F;,
have complete information about the traffic-fading pattern in
that frame, but have a restriction that they drop the packets
that are still in the buffer at the end of the frame. Note that
the number of such packets is at most dy,axGmaq K, Which is



negligible compared to the average number of packets in the
frame, @;E[F] = @;kE[C], as k — oco. Define the rate region

Axc(F) = Upepre ) M- (24)

Given a policy 1 € Pnc(F), the time-average real-time
service rate I; of link [ is well defined. By the renewal reward
theorem (e.g. [26], Theorem 5.10), and boundedness of E[F],

: ZZ=1 Li(s) E [Zte]—‘ Il(t)} 7
tliI?o n = E[F] = I. (25)
Similarly for the deficit arrival rate )\;, defined in (5),
E a (t

E[F]

In Definition 1, each frame consists of k cycles. Using similar
arguments as in [16], [19], it is easy to see that

lim inf Axc(F*®)) D int(A),
k—o00

Hence, if we prove that for a causal policy ALG, there exists
a constant p, and a large kg, such that for all k& > ko,

pint(Anc (f(k))) C AaLg, 27)

then it follows that Aarg 2 pint(A). For our algorithms, we
find a p such that (27) holds for any traffic-fading process
under our model. Then it follows that v;; 5 > p.

Lyapunov Argument. To prove (27), we rely on comparing
the expected gain of ALG with that of the non-causal policy
that maximizes the expected gain over the frame (max-gain
policy). The following proposition, which is similar to that in
[19], will be used to prove the main results. We omit its proof,
as it is similar to the proof in [19] with minor modifications
to account for channel uncertainty.

Proposition 2. Consider a frame F = F®), for a fixed k
based on the returns of the traffic-fading process z(t) to a
state z. Define the norm of initial deficits at the beginning
of a frame ||w(to)l| = > ,ccwilto). Suppose for a causal
policy ALG, given any € > 0, there is a W' such that when
w(to)| > W,

E[SuerOuc®iSto)] |
E[Y erGu 0ISt)] —5 7
where S(tg) = (q(to), 7(to), Y(to), w(to)), and p* is the
non-causal policy that maximizes the gain over the frame.

Then for any A € pint(Anc(F)), the deficit queues are
bounded in the sense of (6).

(28)

Amortized Gain Analysis. To use Proposition 2, we need to
analyze the achievable gain of ALG and the non-causal policy
w* over a frame. Since comparing the gains of the two policies
directly is difficult, we adapt an amortized analysis technique
from [19], initially extended from [27]—-[30]. The general idea
is as follows. Let (q(¢), 7(t), U(t),w(t)) be the state under
our algorithm at time ¢ € F, and (U*" (t), q(t), 7(t), w" " (t))
be the state under the optimal policy p*. The traffic-fading
process z(t) = (q(t), 7(t)) is identical for both algorithms as

it is independent of the actions of the scheduling policy. We
change the state of u* (by modifying its buffers and deficits) to
make it identical to (q(t), 7(¢), ¥(¢),w(t)), but also give p*
an additional gain that ensures the change is advantageous for
p* considering the rest of the frame. Let G, (t) denote the
amortized gain of p* at time ¢ with any compensated gain,
which has the property that

E[Y G (1, S(to)] = E[ DGy (9)1: S(t0)]

teF teF

(29)

given any traffic-fading pattern J € J(F) and initial frame
state S(to). Then, the following proposition will be useful in
bounding the gain and thus the efficiency ratio of our policies.

Proposition 3. Consider a Markov policy ALG that for any
traffic-fading pattern J € J(F), at any time t € F, satisfies

B G (D1 S(B)] <EGara (I, SO) + Er

for some Ep which is a measurable function of the frame
length F, with E[FEr] < co. Then yx g > p.

(30)

Proof. We mention a sketch of the proof but more detailed
analysis can be found in the technical report [23]. First, using
the Markov property of ALG, the fact that the amortized gain
of u* does not depend on the past state given the current state
and future traffic-fading pattern, and summing over the frame,
we can show

PE[ 3Gy ()1, S(to)] < B[S Gara(t)l),S(to)] + Fér.

teF teF

Second, using definition (29), and taking expectation w.r.t.
traffic-fading pattern, we have

PE[S G 01S(t0)] <E[S Gara(®)S(to)] +E[Fr].
teF teF

Third, E[FEF] < oo, and by the the non-trivial traffic-

fading Markov chain assumption (Section II), we can show

| yw (0) |00 E [Dye 7Gur (£)[S(to)] = oo. Then, we can

apply Proposition 2 to get yx; g > p- O

The following lemma describes a generic amortized gain
computation for general networks that allows us to modify the
state of the max-gain policy during a frame to match the state
of the considered policy ALG. Recall from (11) that ¢;(¢) is
the probability that link [ is scheduled under ALG, and 7/ (t)
is the probability that schedule M is selected. Below we drop
their dependence on time to simplify the notation.

Lemma 5. For any pattern J € J(F) in a frame F, given
a Markov policy ALG, the amortized gain of the max-gain
policy p* (w.r.t. ALG) if it selects maximal schedule M € M
at time t in the frame, is given by

ERF (G W1, S(0)] = W () + D wit)dua(t) + €
IgM
< War(H)(1 = 7o) + EXNF [Gara (D)ISH)] + Em,

where ., i = K(F 4 mazdmax)-



Proof. The main idea is similar to the one in [19], but we have
to account for fading. Suppose p* attempts to transmit the
earliest-deadline packets of links from schedule A whereas
ALG attempts the earliest-deadline packets from schedule
M’'. We need to modify the state of u*, i.e., the buffers
and deficits, so it is identical with the state of ALG. To
achieve this, we allow p* to additionally transmit the packets
of links successfully transmitted by ALG but not u*, i.e
S1 =M@ \M@)Nn{l € K:C(t) = 1}. Transmitting
such packets for p* might not be advantageous for its total
gain as the weight of these packets can increase by @4 @max
before they could be transmitted. Thus giving an additional
reward K a,,q.dmax to p* guarantees that the modification is
advantageous. Further, we insert the packets transmitted suc-
cessfully by p* but not ALG, i.e., So = (M (t)\M'(t))n{l €
K : Ci(t) = 1}, back to its buffers (which is advantageous for
w*). Further to make the deficits identical, we increase the
deficit counters of p* for links in S5, which is advantageous
for the total-gain within the frame. Additionally, we decrease
the deficit counters of p* for the links in S;. This change
might not be advantageous for the total gain of p*, thus we
give it extra reward for every possible subsequent transmission
over links, which is at most K F'. Hence the total additional
compensation is &, = K(F + amazdmax)

Following the above argument, the expected amortized gain
of p*, when it selects M, is bounded as

B G20 (011,80 = 3 atywi(t
leM
)

me(®) Y altw(t) + En
M'e M\{M }

leM'\M
W)+ S wit)diat) + €
1gM

€2y

where (a) follows from definitions of ¢; and Wy, (t). The
inequality in the lemma’s statement follows by noting that

B < W (t) + Z W ()7 + Em,
M’e M\{M}
since 37 ar @(t)wi(t) < Wiy (¢), and by using (12). O
A. Proof of Theorem 1: Conversion Result
In the rest of proofs, for notional compactness, we define

E. s [] :=E[-|S(t),J] and E, [-] := E[-|S(¢)]. Now consider
a pattern J € J(F). When ||w(t)|| > W', the amortized gain
of u*, if it selects schedule M, is bounded as

R (a)
ERy (G50 0] < War 0 = ma) + EFF [Gara(6)] + En

S WM* (t) + Eva [gALG(t)] + gm

[Garc(t)] (I%

EXF [Gare)(1/¢ + 1) + En,

where in (a) we used Lemma 5, and in (b) we used the main
assumption that ALG obtains % fraction of the maximum

=EM" +1)+En

(v)
<

weight schedule. This inequality does not depend on the
particular choice M. Similarly in the case that ||w(t)| < W',

it can be seen from (13) and Lemma 5 that JE?; QA/S]Y[)( )| <

g(]\f)( ) S

n*
OW' +Ep+ERT [Gara(t)] (1/9+1). Applying Proposition 3
with p = (1/1 + 1)~1, we obtain the result.

B. Analysis of FAMIX-MS: Proof of Theorem 2.

We use Lemma 5 and using probabilities of FAMIX-MS
(16) we can show (30) and apply Proposition 3. Detailed
derivation can be found in the technical report [23].

C. Analysis of FAMIX-ND: Proof of Theorem 3

We first state the following Lemma that allows us to focus
on policies that transmit from non-dominated links.

Lemma 6. Given J € J(F), let i* be the maximum-
gain policy that transmits only from non-dominated links at
any time (we refer to [i* as max-gain ND-policy) and the
maximum-gain policy p* that can transmit any packet, then

E [31e G (0[S (to), ] ZE [Y1e G, (1) S (t0), J]
- (amax + 1)F2

Proof. The proof has two parts: (i) Consider the earliest-
deadline packets P,,P, of links u,v, with v dominating v.
Assuming deficits are fixed, we can show through a cou-
pling [31] that transmitting P, yields a higher expected gain
than that of P, over the rest of the frame. (ii) The change
of deficits over the frame is bounded by a multiple of the
frame length F, which adds a correction term (a@,qp + 1) F>
to the expected gain. More details can be found in the technical
report [23]. [

2W' + &,,. Consequently in either case, t J

Proof of Theorem 3. In view of Lemma 6, we perform
amortized analysis for FAMIX-ND in comparison with ND-
policies. Suppose FAMIX-ND decides to schedule earliest-
deadline packet Py = (wy,es) of link f and ND-policy i*
transmits packet P, = (w,, e,) from link z. Depending on the
outcome of the channels and the selected z, f, similarly to the
arguments in the proof of Lemma 5, we modify the state of
1 and give appropriate compensation. We need to analyze a
total of 4 cases. The difference from Lemma 5 lies in the case
that ef < e,,wy < w,, and Cy(t) = 1,C.(t) = 1. In this
case, replacing Py in link f with P in link z suffices to make
the buffers of &* identical to FAMIX-ND. The details of all
the cases can be found in the technical report [23]. As a result
of this analysis, we can show

]Et 7 [g( } < qw; + ZTFJ qij)wj + Zwﬂrjqij + &
J<i
(1—gq ijwj Jquwﬂr] 1+ &o
71<1
where ¢;; = Pr (C;(t) = 1,C;(t) = 1), and & = F+(amaz+

1)dmax- Note that since 7; < %(1 — ww—tl), the right-hand-side
of the above inequality is maximized for ¢ = 1. Hence,

Evs [Gp (0] < qui + (1= QB [Gara(®)] + &0 (32)



Let n be the number of links with positive probability in (17).
For the gain of FAMIX-ND, we can obtain

E, [Garc(t

Q (1 (”‘ q) )= wn(1-e79),

where in (a), by Definition of m; in (17) the sum telescopes
and we have: wy, = wy [[/=] (1 — miq), and (b) follows from
the geometric-arithmetic inequality. Using the above relation
and (32) we get

Ev.s |G (0)] < B [Gara ()] ( +(1-0) +&.

q
1—e4
Summing over the entire frame using similar arguments as in
proof of Proposition 3, as well as using Lemma 6, it follows:

E [ 1erGu )], 8(t0)] — F*(amaz + 1) <
E [Y1er9arc(t)|],S(to)] (=L= + 1 —q) + F&.

The proof is concluded similarly as in the proof of Proposition
3, applying Proposition 2 with p = (=4 +1—¢)~".

D. Proof of Proposition 1: Low-Complexity Variants
Suppose that under ALG we have

(t) max E; [Q}ﬁ“(t)}

max < max E”[ij?)(t)]. (33)

MeMo(t)
Since ALG randomizes according to the probabilities of
FAMIX-MS over the maximal schedules in M, (t), we have

&) max {Ey [607(0)]} <E(Garc] +& (4

MeMo(t)

where £(t) := %, by using the same arguments as in

the proof of Theorem 2 applied to My (t). By (33) and (34),
min (€Y} Ers |G ()] < Ee [Gara(t)] +E.

t>0

Then by Proposition 3, it follows that v > min,>o {¢(¢)€(¢)} .
Hence to conclude the proof, we simply need to argue that (19)
implies (33) Using Lemma 5, and (13), it can be shown that

BN [g(M } Zwl )i ()b + EXT [Garc(t)] + Em

leM

Plugging the above expression in (33), it can be seen that (19)
is a sufficient condition for (33) to hold.

E. Proof of Corollary 4.2: Myopic Distributed Algorithm

First, we can show that under the myopic randomized
algorithm, ¢; > 1 - A for every nonempty link. Using this
result, we can do the gain analysis based on Lemma 5, and
(13), and show that Proposition 3 holds for p = (% + 1)_1
For more details refer to the technical report [23].

le3 le3
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Fig. 2: Performance comparison of various algorithms.

V. SIMULATION RESULTS

We performed simulations under several networks and
traffic-fading scenarios. Our algorithms FAMIX-ND and
FAMIX-MS can considerably outperform GMS and MWS.
We present two of the simulations here, but more simulations
can be found in the technical report [23].

First, we consider the traffic of Pattern B of Figure 1, but
with i.i.d. channel success probability q. The results are shown
in Figure 2a for ¢ = 0.6 and equal target delivery ratio p for
links. Note that the optimal cannot achieve p > 0.6, hence
FAMIX-ND is near optimal. We observed a similar behavior
for other values of ¢ and different number of links.

Next, consider a network with 5 links and G; with edges
{(l1,12), (I2,13), (I2,14), (l4,15)}. The traffic-fading process
for {l1,13,14} is as in link 2 of Pattern B in Figure 1, and for
links {l2,l5} is as in link 1. We set an equal target delivery
ratio p for all the links. Figure 2b shows the results. We see
FAMIX-MS can support a significantly higher delivery ratio
than other algorithms. In this case, optimal cannot achieve
p > 0.75.

Next, consider a simple network with links K = {ly,12,13}
and edges {(I1,12), (I1,13)} in the interference graph G with
Pattern A from Figure 1. Then GMS becomes unstable for
p = (3+€ 3 +¢€ 5 +¢), whereas the optimal can satisfy p =
(. 2, 5). This example illustrates the existence of simple
cases with non-equal delivery ratio requirements between users
where GMS performs poorly. More details can be found in
the technical report [23]. Similar behavior was observed for
examples with more than three links.

VI. CONCLUSION

We considered scheduling of real-time traffic over fading
channels, where traffic (arrival and deadline) and links’ re-
liability evolves as an unknown finite-state Markov chain.
We provided a conversion result that shows classical non-
real-time scheduling algorithms like MWS and GMS can be
ported to this setting and characterized their efficiency ratio.
We then extended the randomized algorithms from [19] to
fading channels. We further proposed low-complexity and my-
opic distributed randomized algorithms and characterized their
efficiency ratio. Investigating more efficient low-complexity
and distributed randomized algorithms could be an interesting
future research.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” in 29th IEEE Conference on Decision and
Control, 1990, pp. 2130-2132.

C. Joo, X. Lin, and N. B. Shroff, “Understanding the capacity region
of the greedy maximal scheduling algorithm in multihop wireless
networks,” IEEE/ACM Transactions on Networking (TON), vol. 17,
no. 4, pp. 1132-1145, 2009.

A. Dimakis and J. Walrand, “Sufficient conditions for stability of
longest-queue-first scheduling: Second-order properties using fluid lim-
its,” Advances in Applied probability, vol. 38, no. 2, pp. 505-521, 2006.
J. Ghaderi and R. Srikant, “On the design of efficient CSMA algorithms
for wireless networks,” in 49th IEEE Conference on Decision and
Control (CDC). 1EEE, 2010, pp. 954-959.

J. Ni, B. Tan, and R. Srikant, “Q-CSMA: Queue-length-based
CSMA/CA algorithms for achieving maximum throughput and low delay
in wireless networks,” IEEE/ACM Transactions on Networking (ToN),
vol. 20, no. 3, pp. 825-836, 2012.

D. Shah and J. Shin, “Delay optimal queue-based CSMA,” in ACM
SIGMETRICS Performance Evaluation Review, vol. 38, no. 1. ACM,
2010, pp. 373-374.

C. Lu, A. Saifullah, B. Li, M. Sha, H. Gonzalez, D. Gunatilaka, C. Wu,
L. Nie, and Y. Chen, “Real-time wireless sensor-actuator networks for
industrial cyber-physical systems,” Proceedings of the IEEE, vol. 104,
no. 5, pp. 1013-1024, 2015.

J. Song, S. Han, A. Mok, D. Chen, M. Lucas, M. Nixon, and W. Pratt,
“Wirelesshart: Applying wireless technology in real-time industrial
process control,” in 2008 IEEE Real-Time and Embedded Technology
and Applications Symposium. 1EEE, 2008, pp. 377-386.

J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645-1660, 2013.

I. Hou, V. Borkar, and P. R. Kumar, “A theory of QoS for wireless,”
in Proc. IEEE International Conference on Computer Communications
(INFOCOM), Rio de Janeiro, Brazil, April 2009.

I. Hou and P. R. Kumar, “Admission control and scheduling for QoS
guarantees for variable-bit-rate applications on wireless channels,” in
Proc. ACM international symposium on Mobile ad hoc networking and
computing (MOBIHOC), New Orleans, Louisiana, May 2009.

——, “Scheduling heterogeneous real-time traffic over fading wireless
channels,” in Proc. IEEE International Conference on Computer Com-
munications (INFOCOM), San Diego, California, March 2010.

J. Jaramillo and R. Srikant, “Optimal scheduling for fair resource
allocation in ad hoc networks with elastic and inelastic traffic,” in
Proc. IEEE International Conference on Computer Communications
(INFOCOM), San Diego, California, March 2010.

B. Li and A. Eryilmaz, “Optimal distributed scheduling under time-
varying conditions: A fast-csma algorithm with applications,” IEEE
Transactions on Wireless Communications, vol. 12, no. 7, pp. 3278—
3288, 2013.

R. Singh and P. Kumar, “Throughput optimal decentralized scheduling
of multihop networks with end-to-end deadline constraints: Unreliable
links,” IEEE Transactions on Automatic Control, vol. 64, no. 1, pp.
127-142, 2018.

X. Kang, W. Wang, J. J. Jaramillo, and L. Ying, “On the performance of
largest-deficit-first for scheduling real-time traffic in wireless networks,”
IEEE/ACM Transactions on Networking, vol. 24, no. 1, pp. 72-84, 2014.
X. Kang, I.-H. Hou, L. Ying et al., “On the capacity requirement of
largest-deficit-first for scheduling real-time traffic in wireless networks,”
in Proceedings of the 16th ACM International Symposium on Mobile Ad
Hoc Networking and Computing. ACM, 2015, pp. 217-226.

L. Deng, C.-C. Wang, M. Chen, and S. Zhao, “Timely wireless flows
with general traffic patterns: Capacity region and scheduling algorithms,”
IEEE/ACM Transactions on Networking, vol. 25, no. 6, pp. 3473-3486,
2017.

C. Tsanikidis and J. Ghaderi, “On the power of randomization for
scheduling real-time traffic in wireless networks,” in /IEEE INFOCOM
2020 - IEEE Conference on Computer Communications, 2020, pp. 59—
68.

I.-H. Hou, “Scheduling heterogeneous real-time traffic over fading
wireless channels,” IEEE/ACM Transactions on Networking, vol. 22,
no. 5, pp. 1631-1644, 2013.

(21]
[22]
(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

E. B. Dynkin, Theory of Markov processes. Courier Corporation, 2012.
M. J. Neely, “Queue stability and probability 1 convergence via lyapunov
optimization,” arXiv preprint arXiv:1008.3519, 2010.

C. Tsanikidis and J. Ghaderi, “Randomized scheduling of real-time
traffic in wireless networks over fading channels,” arXiv preprint
arXiv:2101.04815, 2021.

C. Joo, X. Lin, J. Ryu, and N. B. Shroff, “Distributed greedy approxima-
tion to maximum weighted independent set for scheduling with fading
channels,” IEEE/ACM Transactions on Networking, vol. 24, no. 3, pp.
14761488, 2015.

N. Robertson, D. Sanders, P. Seymour, and R. Thomas, “A new proof
of the four-colour theorem,” Electronic Research Announcements of the
American Mathematical Society, vol. 2, no. 1, pp. 17-25, 1996.

S. M. Ross, Applied probability models with optimization applications.
Courier Corporation, 2013.

F. Y. Chin, M. Chrobak, S. P. Fung, W. Jawor, J. Sgall, and T. Tichy,
“Online competitive algorithms for maximizing weighted throughput of
unit jobs,” Journal of Discrete Algorithms, vol. 4, no. 2, pp. 255-276,
2006.

L. Jez, “One to rule them all: A general randomized algorithm for
buffer management with bounded delay,” in European Symposium on
Algorithms.  Springer, 2011, pp. 239-250.

M. Bienkowski, M. Chrobak, and L. Jez, “Randomized competitive
algorithms for online buffer management in the adaptive adversary
model,” Theoretical Computer Science, vol. 412, no. 39, pp. 5121-5131,
2011.

L. Jez, F. Li, J. Sethuraman, and C. Stein, “Online scheduling of packets
with agreeable deadlines,” ACM Transactions on Algorithms (TALG),
vol. 9, no. 1, p. 5, 2012.

T. Lindvall, Lectures on the coupling method.
2002.

Courier Corporation,



