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Abstract

This study examines the spatial variability of the nocturnal wind field using eight networks
of surface observations ranging in horizontal width from 500 m to 65 km. The wind field is
partitioned into small-scale variability (submeso motions) and the spatially-averaged wind
vector. The vector-averaged wind is analogous to the wind resolved by a numerical model,
posed here in terms of the wind that is vector averaged over an observational network. The
small-scale variability represents the unresolved subgrid (sub-network) variation estimated
in terms of the spatial variation of the wind vector within the observational domain. The bulk
formula for the spatially-averaged heat flux is modified to account for the subgrid variation
of the wind field. Investigation of the spatial variability of the wind field is also motivated by
the need to estimate the representativeness of observations of the wind vector at an individual
measurement site with respect to the wind field over the surrounding landscape. The small-
scale variability of the observed wind field is contrasted between the networks as a function of
the spatially-averaged wind vector, stratification, size of the network, and the topography. A
strong dependence on topography emerges in spite of different instrumentation, deployment
strategy, and processing for each network. Even weak topography can be important. A better
design for future observational networks is briefly discussed.

Keywords Local spatial variation - Nocturnal boundary layer - Stratified turbulence -
Submeso - Topography

1 Introduction

Local spatial variations of the surface wind field directly affect dispersion in the statically
stable nocturnal boundary layer and indirectly influence the surface temperature and other
meteorological variables. Horizontal variation of the surface wind can be induced by topog-
raphy, surface heterogeneity, spatial variations of turbulence forced by downward mixing,
and numerous transient motions. The horizontal variation of the surface wind may not be
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resolved by numerical models nor spatially resolved by standard observations. The differ-
ent influences upon the surface wind may interact. For example, topography can generate
propagating transient modes that modify local katabatic flows, while katabatic flows can
themselves initiate local oscillations (Fedorovich and Shapiro 2009). Cuxart et al. (2007)
examined the convergence of katabatic flows into a valley cold pool, which then descended
down the valley and then subsequently over the sea as a land breeze. This regime corre-
sponds to substantial horizontal variation of the wind vector. Mortarini et al. (2018) detailed
the potential complexity of nocturnal boundary layers in terms of the interaction between the
turbulence, multiple circulations driven by surface heterogeneity, and low-level jets.

Abraham and Monahan (2020) found that the spatial variability of the wind field generates
spatial transitions between weakly stable and very stable regimes. They found that weakly
stable regimes are coherent over larger spatial scales compared to very stable regimes where
mixing is weak and generally fine scale. Grachev et al. (2013) provide a detailed illustration of
the very stable case. Downward bursting associated with shear instability that develops from
a perturbed cold pool can lead to significant horizontal variations of the surface wind (Zhou
and Chow 2014). Turbulence bursting downward associated with low-level jets can induce
significant variability of the flow near the surface (Cava et al. 2019b). The horizontal variation
of the low-level jet and boundary-layer turbulence can be two-way coupled (Banta et al. 2003)
and impose length scales on the underlying boundary layer (Grisogono et al. 2007; Grisogono
and Rajak 2009), or the low-level jet and the underlying boundary layer can be decoupled
(Grisogono and Axelsen 2012). Low-level jets are often generated by baroclinity over sloped
terrain and Coriolis effects. Coriolis effects are associated with an inertial oscillation that
is triggered by rapid decay of the turbulence during the evening boundary-layer transition.
The spatial variation of inertial oscillations is generally resolved by numerical models. The
effects of baroclinity and the inertial oscillation on low-level jets are unified in the relatively
simple approach of Shapiro et al. (2016). Low-level jets confined to basins (Cuxart 2008;
Cuxart et al. 2012) can lead to spatial variations of the surface wind that are not resolved by
large-scale numerical models.

Finnigan et al. (2020) partitioned topographical influences on the spatial variation of the
wind field into katabatic flows and mechanical modification of the airflow over hills. They
extensively surveyed both subjects including the impact of vegetation. Finnigan et al. (2020)
summarized how the wind field can vary in the downwind direction due to acceleration at the
hill crest and downwind recirculation (separation bubble), and lee or wake turbulence. They
also surveyed observational strategies and reviewed modelling approaches ranging from ide-
alized flows based on scaling arguments to flows based on eddy-resolving numerical models.
The potential complexity of flows in complex terrain within the Perdigdo network, examined
in our study, is illustrated in Fig. 3 of Fernando et al. (2017). Lehner and Rotach (2018) sys-
tematically surveyed studies of flows over steeper mountainous terrain. Rotach et al. (2017)
discuss the observational and analysis strategies for steeper terrain. More isolated hills and
mountains can lead to flow separation due to low-level flow around the topographical feature
and over the topographical feature at higher levels (Leo et al. 2016). Topographically-induced
circulations sometimes transport quantities vertically that become important compared to the
vertical transport by the turbulence (Rotach and Zardi 2007).

Local katabatic flows or their spatial variability down the slope are often unresolved in
numerical models and unresolved by the usual observational networks. A wind maximum
develops, commonly below 10 m, and its spatial variability leads to spatial variability of the
surface wind. Oldroyd et al. (2014) examined katabatic flows on steeper slopes where a low-
level wind maximum was particularly well defined during the evening transition (Nadeau et al.
2013). Acceleration of katabatic flow down the slope sometimes corresponds to significant
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spatial variation of the surface wind speed (Grachev et al. 2016). The analysis of observed
fluxes over sloped terrain is more complicated than over a flat surface. With steeper slopes,
the analysis of the data and the interpretation of buoyancy becomes more complex, which
requires modification of the coordinate system (Oldroyd et al. 2016a) and reinterpretation of
buoyancy fluxes (Oldroyd et al. 2016b). Even over weaker slopes, such as typical down-valley
slopes, Stiperski and Rotach (2016) find that the choice of analysis procedures, including
coordinate rotation, can be important. Pfister et al. (2017) showed that the surface drainage
flow might be dominated by larger-scale slopes rather than the local slope. Because of the
complexity of observed katabatic flows, simple models offer insight into some aspects of
drainage flows (Cuxart et al. 2020). Fedorovich and Shapiro (2009, 2017) have modified
simple models to provide improved solutions that predict oscillations generated by katabatic
flows. The frequency is approximately N sin(«) where « is the slope and N is the Brunt—
Viisild frequency. Fedorovich and Shapiro (2017) examine this problem in detail including
interpretation of the important citations. This locally generated oscillation may occur in
addition to submeso modes (Vercauteren et al. 2019) that propagate from outside the domain
of the katabatic flow.

Bou-Zeid et al. (2020) provide a comprehensive survey of the impact of surface hetero-
geneity on the boundary layer, which directly generates horizontal variation of the surface
wind field. The surface heterogeneity includes variability of land use (Pfister et al. 2017),
sheltering by nearby higher vegetation and buildings, and local topography such as small
depressions (Acevedo and Fitzjarrald 2003; Bodine et al. 2009; Medeiros and Fitzjarrald
2015; Guerra et al. 2018). Horizontal variations of soil and vegetation characteristics often
induce significant horizontal variations in the nocturnal boundary layer, particularly in con-
ditions of low wind speeds and clear skies (Van de Wiel et al. 2003; Stoll and Porté-Agel
2009). Chow et al. (2006) found that, in complex terrain, increasing model resolution was
beneficial only if supported by high-resolution input for soil moisture. Acevedo et al. (2014)
have emphasized that the nature of the submeso motions varies between sites partly due to
surface heterogeneity and terrain.

Transient motions are often characterized by a horizontal length scale that is smaller than
the observational network or grid area and thus can correspond to important horizontal varia-
tions of the observed wind field. Transient variations of the wind field include a wide variety
of propagating submeso motions (Acevedo et al. 2014; Vercauteren et al. 2019). Such motions
include microfronts and wind-direction shifts (Lang et al. 2018), internal gravity waves (Viana
etal. 2010; Sun et al. 2015b), nearly horizontal two-dimensional modes (Anfossi et al. 2005;
Mortarini et al. 2016; Cava et al. 2017; Stefanello et al. 2020), locally generated large-scale
structures (Ansorge and Mellado 2014), longitudinal modes (Urbancic et al. 2020), and more
complex modes. These motions may occur simultaneously and collectively perturb the local
air flow and in thus induce turbulence that is intermittent and in non-equilibrium (e.g. Sun
et al. 2015a; Vercauteren et al. 2016; Cava et al. 2019a; Mahrt 2020; Boyko and Vercauteren
2021). Kang et al. (2015) found that submeso motions can be classified into smooth struc-
tures, including wave-like motions that occur in less stable environments, sharper structures
in more stable conditions, and step-like microfronts that occur in the most stable conditions.
The vertical structure and transient inflection points in the wind profile partly determine
the class of these motions. Vercauteren et al. (2019) found that wind-direction variability
becomes large when the speed of the submeso motions become generally higher than the
mean wind speed. The collective impact of coexisting different types of transient motions on
the spatial variability of the wind field is not well understood and is site specific (Belusi¢ and
Mahrt 2008). Vercauteren et al. (2019) found strong site dependence for stable conditions
when there was a scale separation between the submeso motions and the turbulence. Boyko
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and Vercauteren (2021) examined the generation of intermittent turbulence by the submeso
shear on time scales of 1 min to 1 hr in contrast to more stationary generation of turbulence
by shear on larger time scales of 1-3 hrs. The submeso generation of intermittent turbulence
depends on both height above ground and stability.

Compared to time variability, less is known about spatial variations of turbulence and
submeso motions, the subject of this study. Investigation of the spatial variability of the wind
field is partly motivated by the need to estimate the representativeness of observations of
the wind vector at an individual measurement site towards the goal of inferring the wind
vector for the surrounding area. Conversely, for an arbitrary point without observations,
how representative is the nearest observation? Van den Bossche and De Wekker (2018)
applied different methods for assessing the representativeness of one site with respect to a
surrounding network of stations. Belusi¢ and Mahrt (2008) evaluated a correlation length
scale that describes the decrease of the correlation between two stations with increasing
separation distance between them, using three networks over relatively flat terrain. For cases
where the length scale is comparable to or less than the station spacing, the network does
not function as a true network because the wind components between adjacent stations
are weakly correlated (Staebler and Fitzjarrald 2004). Rigorous examination of interaction
between submeso motions and surface heterogeneity/terrain is complex and benefits from
detailed observations in the space—time domain (Pfister et al. 2019).

As additional motivation for the examination of local spatial variability of the wind field,
numerical models partially resolve only those motions on horizontal scales greater than the
width of the grid box and fully resolve only those motions on scales significantly larger than
the grid box size. Motions on scales that are not large compared to the grid resolution are not
resolved but may account for a significant fraction of the observed variability (Zagar et al.
2006). Statistical downscaling uses physically motivated corrections to map information from
the resolved scale to smaller scales (Sheridan et al. 2018).

The unresolved subgrid motions generate turbulence and surface fluxes. Because such
generation is not captured, the numerical model underestimates surface fluxes. Surface fluxes
are often indirectly augmented by modifying the stability function, such as the long-tail
distribution that allows significant turbulence for very large stability (Louis 1979). To predict
non-vanishing scalar fluxes with vanishing resolved flow, Beljaars (1995), Fairall et al. (1996),
Williams (2001), Edwards et al. (2020), and others considered a generalized velocity scale
that includes a gustiness factor, which in convective conditions is related to w, such that

Veen = \/V2 + pul. 1

This velocity scale replaces the resolved wind speed V in the bulk relation (Eq. 5 below).
From a more general point of view, the convective velocity scale w, can be replaced by a
more general velocity scale, which represents all motions that are not resolved (Vickers and
Esbensen 1998; Levy and Vickers 1999; Mahrt 2008). This generalization will form the basis
for our analysis of the bulk formula, which concentrates on the stable nocturnal boundary
layer.

We systematically examine the spatial variation of the nocturnal surface wind field on
spatial scales of tens of metres to tens of kilometres by analyzing observations from eight
different networks of surface observations. The goal is to identify a general measure of the
small-scale variation of the wind field and its potential dependence on the wind speed and
direction, stratification, topography, and network size and geometry.
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2 Networks

We now summarize the basic characteristics of the networks. Additional details are listed in
Table 1. The Shallow Cold Pool Experiment (SCP) is the primary dataset (Mahrt et al. 2014).
The SCP experiment was conducted over semi-arid grasslands in north-east Colorado, USA,
from 1 October to 1 December 2012. The main valley is relatively small, roughly 12 m deep
and 270 m across. The width of the valley floor averages about 5 m with an average down-
valley slope of about 2%, increasing to about 3% at the upper end of the valley. The side
slopes of the valley are on the order of 10% or less. We analyze the 1-m sonic anemometer
(CSAT3, Campbell Scientific) observations from 20 stations and from the main 30-m tower.
The near-surface stratification is estimated from the NCAR hygrothermometers deployed at
the 0.5- and 2-m levels at 19 of the stations.

The Dumosa dataset includes data from three short towers that form a triangle (Lang et al.
2018). Each station is 580 m from the centre (1160 m across the domain) and instrumented
with Gill 2D sonic anemometers at 3 m. The site is flat (slope less than 0.03%) and is
embedded within a larger region that is primarily flat. The dataset contains almost 2 years of
data. The Pedras Altas network is embedded within a single slope with a typical slope value
of 7.5%; the network elevation change is about 35 m, while the elevation change for the entire
slope is about 70 m. The slope on the opposite side of the valley is significantly shorter with
an elevation change of about 30 m. The network includes six stations with 034B Met-One
cup anemometers and three stations with Viisdld WXT520 All-in-One at 2.5 m. Station 2 is
eliminated because of missing data. Station 6 is the highest station and has the highest wind
speeds. Some of the highest wind speeds were considered to be unlikely, and this station was
also eliminated. Station 1 was located in a low-lying area with some surrounding bushes and
characterized by the lowest wind speeds. This station is retained.

Results from CASES-19 (The Cooperative Atmospheric Surface Exchange Study) are
reported because CASES-19 is historically an important dataset. However, CASES-19
includes only 4 weeks of data where all stations are reporting. The slope within the network
was small. The CASES-19 network consisted of six short towers with Campbell Scientific
CSAT3 anemometers deployed at 5 m. Station 3 was eliminated because of erratic behaviour.
The lowa network is characterized by field-scale heterogeneity, which is shown from remotely
sensed information in Fig. 1 of Kustas et al. (2004). The surface elevation increases gradually
to the west with a slope of less than 1% with embedded smaller scale variations of surface
elevation. Three stations were deployed for a shorter duration over a small sub-area and are
not used in this study, leaving nine stations with Campbell CSAT sonic anemometers at 2
m. The spacing between adjacent stations was highly variable because the station locations
were chosen based on crop type.

The Perdigao network (Fernando et al. 2017) covers a deep valley defined by two relatively
steep side slopes with variable surface vegetation. The network width is a little less than 2
km in the cross-valley direction, and the valley depth is about 175 m. Side slopes average
about 20%. The network consists of 19 stations with CSAT sonic anemometers at 10 m. The
variation of vegetation is substantial and complex. Because the Perdigdo field program is
dominated by ridge-top stations, we average measurements from the five ridge-top stations
closest to the transect on the slope to form a single ridge-top measurement. We combine this
ridge-top average with two valley stations and five stations on a side slope transect to form
a subset of eight stations.

The Hudson Valley Ambient Meteorology Study (HVAMS) consisted of nine stations in
a broad valley (Freedman and Fitzjarrald 2017). Station 7 was in a different topographi-

@ Springer



L. Mahrt et al.

Table 1 Description of the networks

Site sfc wk N 0Zsfec

I
8]

Lp Citations

SCP Grass 8 21 4.7
CASES-99 Grass 4 7 3.0
DUMOSA Grass 95 3 1.3

1 0.8 Mahrt et al. (2014)
5 0.5 Poulos et al. (2001)
3 1.0 Lang et al. (2018)
2
2

—_ N = N e e

Towa Crops 3 12 3 15 Kustas et al. (2004)

Pedras Altas  Mixed 8 10 10.0 S 0.95 Guerra et al. (2018)

Perdigdo Mixed 13 19 49 10 2 Fernando et al. (2017)

HVAMS Mixed 9 7 14.2 7 65 Freedman and Fitzjarrald (2017)
FOG-82 Mixed 9 26 8 4 23 Acevedo and Fitzjarrald (2003)

Listed for each network are the surface type, the data duration (weeks), the number of stations (), the standard
deviation of the surface elevation that spans scales between 33 m and 1 km, oz f. (m), the averaging time
7 (min) used to remove turbulence fluctuations (Eq. 2), the height of the sensors above ground, z (m), the
domain width, L p (km), and a citation with more information on the network

cal regime and was removed. Station 9 was removed because of significant missing data.
Sheltering was important for some of the stations (Medeiros and Fitzjarrald 2015). FOG-82
(Acevedo and Fitzjarrald 2003) consisted of 26 stations with cup anemometers at 4 m. The
network topography is complex, with multiple valleys and significant three-dimensionality
of the topography.

We eliminated stations that are missing significant data or contain periods of erratic
behaviour detected by quality control. For times when one or more stations are missing,
we eliminated all station measurements for that time because some of the spatial quantities
in our analyses are compromised with one or more stations missing. The station spacing must
be suitably small so that correlations between adjacent stations are significant even for low
wind speeds (Staebler and Fitzjarrald 2004). The networks in this study generally satisfy this
criterion except for the very weakest winds. The networks capture motions on scales smaller
than the domain width L (Table 1) and larger than the station spacing. The station spacing
is inversely related to the number of stations (N, Table 1). Determination of L p is somewhat
ambiguous, particularly with networks that have irregular shapes; here, L p is computed in
terms of the length of the major (longest) axis of the domain.

2.1 Defining Nocturnal

We define the nocturnal period to be from 2100 to 0600 local standard time (LST = UTC
+ 6) in an effort to exclude the complex transition periods (Angevine et al. 2020). We have
examined the sensitivity to the choice of these selection times. The results were at least
qualitatively similar, and the conservative fixed times independent of season are used here
to make the results more easily reproducible by others. We have previously used time limits
that varied daily based on the local sunset and sunrise times, and results were qualitatively
the same except that the fixed times unnecessarily lose some data during the longer nocturnal
periods in the winter season.

2.2 Quantification of Network Topography

The variability of the terrain is represented by the standard deviation of the digitized sur-
face elevation, oz,y., based on the Global Multi-Resolution Terrain Elevation Data 2010
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(GMTED2010) documented in Danielson and Gesch (2011). To estimate the effect of res-
olution, we analyze data at the highest available resolution (7.5 arc-seconds, approximately
250-m pixel size) and the lowest resolution (30 arc-seconds, approximately 1-km pixel size).
Because these GMTED2010 data were produced using 1-arc-second input data (33-m res-
olution), it offers statistical measures characterizing the terrain at each output pixel, such
as mean, median, and standard deviation. The value of o7,z for the network is calculated
as the within-pixel standard deviation averaged over all the pixels in the network. This is
done separately for both the 250-m and 1-km GMTED2010 pixel resolutions, resulting in
network-averaged standard deviations for spatial scales between 33 and 250 m and between
33 mand 1 km.

The network boundaries are defined by the outermost stations. This results in a rectangular
domain, which is appropriate for calculating ozsr. for the majority of networks but could
include unrelated terrain for diagonally elongated networks. Additionally, standard deviation
of the GMTED2010-resolved terrain can be calculated using the mean terrain height at each
pixel of the network, which estimates the terrain variation on scales between the pixel scale
(250 m or 1 km) and the scale of the network. This standard deviation can be added to the
within-pixel oz, to estimate the total terrain standard deviation of the network, which is
briefly discussed in Sect. 5.3.

2.3 Partitioning

Space—time decompositions and averaging can be carried out in a number of different ways.
Here, we begin with the time decomposition at a fixed point and then incorporate spatial
averaging. We pursue a relatively simple approach. The local time averaging is written as

p=9¢"+¢. (@)

where ¢ is the potential temperature or one of the velocity components and ¢ is the average

over the time interval t. ¢’ is the deviation from a local time average and is ideally dominated

by turbulent fluctuations. The averaging time t for each field program is listed in Table 1.
The wind speed is then calculated as

U=Vu?+7v2, 3

where the wind components # and v are the eastward and northward components (no rotation
has been applied). Submeso motions in the stable boundary layer on scales just larger than
the turbulence are normally defined in the time domain, and more information is needed in
terms of spatial scales. The spatial domain can be posed in terms of an observational network
or grid area of a numerical model. For submeso motions, there is not a known relationship
between the space and time scales.

The spatial average is written as (¢) where the angle brackets indicate spatial averaging.
The above quantities will sometimes also be averaged over intervals (bin averaging) of the
wind speed. This bin averaging is indicated by square brackets, such as [¢]. Only bins that
include 20 or more samples are retained. The standard error bars are often small because
of the large sample size. However, the standard error probably seriously underestimates the
actual sampling error because the samples are not independent due to the non-stationarity.
Bin averages based on spatially-averaged variables are written as [(¢)].
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2.4 Spatial Averaging of the Wind Vector

Consider two versions of the spatially-averaged wind. The speed of the vector average wind
is written as

(V) = () + )H*, 4

The wind speed predicted by a numerical model for a grid area can be identified with (V).
The area-averaged wind speed will be written as (U). The speed of the vector average, (V),
is smaller than the scalar spatial average (U). We define Vj,, such that

(U = (V)2 + V2, Q)

where Vj;,, accounts for the spatial variability of the wind speed that is not resolved by the
calculation of (V') based on the vector-averaged wind. In the limit where the spatial variability
of the wind vector vanishes, V,, vanishes. In the other limit of random wind direction, the
speed of the resolved vector-averaged wind is zero.

An alternative measure of variation of the wind vector within a network can be defined as
(Mahrt 2007; Van den Bossche and De Wekker 2018)

oy =./02+ 02, 6)

where 0, and o, are the standard deviations of the spatial variation of the wind components
u and v. Here, oy is well correlated to Vj,, and shows similar dependence on (V). It can be
shown that in the limit of small Vj,,, Vi, numerically approaches oy . We arbitrarily proceed
using only V.

3 An Example: The Transfer Coefficient for Heat

The next two sections concentrate on the measurements from the SCP network, which is
the most complete dataset and includes quality measurements of the stratification at the flux
stations. The SCP network is over simple terrain dominated by a single shallow valley and
provides an opportunity to understand the impact of the terrain. Beginning in Sect. 5, we
compare all of the networks.

We now introduce a bulk relation for the heat flux at a fixed point and then extend this to
spatially-averaged flow. For a fixed point,

w0’ = —CrUS.0, (7

where Cy is a transfer coefficient and §,0 is the vertical difference of potential temperature
between two observational levels. Note that Cx in Eq. 7 approximates the eddy transfer
coefficient for heat. For our analysis of the observations,

5.0 =0(z2) —0(z1), 8

where z1 and z2 identify two observational levels near the surface, 0.5 m and 2 m for the
SCP measurements.

The area-averaged fluxes require information of the spatial variability of the local wind
speed to compute the area-averaged wind speed (U ). We assume that the turbulence maintains
equilibrium with the local wind. The bulk relation for the spatially-averaged heat flux is then
written as

(W) = —(Cu){U)(5:0). (C))
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Fig. 1 For the SCP network, [(Cj,)], based on the magnitude of the spatially-averaged wind vector [(V')] and
the spatially-averaged heat flux (Eq. 12), is plotted as a function of [(U)]] (dashed curve). [(Cy)] (Eq. 11)
based on the magnitude of the spatially-averaged wind speed [(U)]] and the spatially-averaged heat flux is
plotted as a function of [(U)]] (solid curve)

N
[&)]

(Cy) is not a spatial average of Cy, but rather computed from the spatial averages on the
right-hand side of Eq. 9.

Recall that bin-averaged products and ratios are computed by first bin averaging individual
variables. For example, the transfer coefficient for heat is written as

 [we]
[Cul= [U16.61 (10)
or starting with spatial averages, we define
W
[Cuy = L (1n

[U)][(8:0)]

This definition of the transfer coefficient includes the effect of the spatial variation of the
wind speed.

Using winds that are vector-averaged over an area, we also define

g’
(Cn)] = M 12)
[(V)[(8:6)]

Because the speed of the vector-averaged wind for low wind speeds is often much less than
the spatially-averaged wind speed, [(Cj)] may require very large values for low wind speeds
in order to the predict the correct heat flux.

For the SCP measurements, [(Cj,)] based on the observed (V) becomes large for small
(V) (dashed curve, Fig. 1) because of the omission of flux generation by the sub-domain vari-
ability of wind speed. Then, [(Cy)] based on the spatially-averaged wind speed (U) (solid,
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1.2

[Vsm} (SOhda m 541)7 [Rsm] (da’Shed)

(V)] (ms7h)

Fig.2 a[Vysy] (Eq. 5) as a function of the speed of the vector-averaged wind [(V)] (black curve) for the SCP
network and for 5 stations in the valley (magenta curve with X’s). Individual values of Vg, are shown with
cyan dots. The ratio of [V, ] to [(V)] (Rsm, Eq. 13) is shown as a function of the speed of the vector-averaged
wind [(V)] (red dashed)

Fig. 1) does not increase for small (U), because it includes the sub-domain generation of the
turbulence and associated heat flux. A formulation of Vj,, (Eq. 5) based on the observational
analyses can be used to predict [(U)] from the model-produced [(V')], an eventual goal of
this work.

The transfer coefficient for heat is expected to be related to stability, not included in Fig. 1.
However, the stratification cannot be confidently evaluated in a systematic way for most of the
networks. Often the stratification is not available or the measurements of the stratification are
difficult to interpret because of complex vegetation. In general, the stratification is inversely
related to the wind speed so that the wind speed serves as a reasonable overall forcing
variable. However, the relationship between the stratification and the wind speed can be
influenced by even weak topography (Lapworth and Osborne 2020). The transfer coefficient
for the heat flux could be examined as a function of z/L where L is the Obukhov length,
which requires only information on the turbulent fluxes. However, self-correlation is most
important for very stable conditions, the emphasis of our study. The HOckey-Stick Transition
(HOST) formulation (Sun et al. 2020; Grisogono et al. 2020) avoids this self-correlation and
better describes a commonly observed fundamental transition between low-wind-speed and
high-wind-speed conditions, although this approach has been explored primarily for the
momentum flux and is outside the scope of this study.
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4 Dependence on Wind Speed

For the SCP network, [V,,] reaches a peak of 0.6 m sTlforIms™! <[(V)] <2ms~!
(Fig. 2, black solid). This peak is partly associated with local katabatic flows and cold pools.
Also, [V, ] reaches a minimum at about [(V)] ~ 4 m s~! and then increases very slowly
with further increases of [(V)]. The latter is partly related to greater impact of the topography
and lee turbulence when the northerly flow component (cross valley) becomes significant.
The scatter is large, as visualized by the individual 1-min observations of Vj,, (cyan dots).
For five stations on the valley floor (magenta curve), [Vj,,] is smaller for low wind speeds
when the valley floor is often within a cold pool. For higher wind speeds, Vj,, for the valley
stations becomes similar to that for the entire network.
The ratio

_ [Vin]
V)

represents the relative importance of spatial variations of the wind within the network. When
Ry approaches values small compared to unity, an individual station is representative of the
entire network. The area of representativeness of an individual station generally decreases
with increasing Rg,,. As Ry;; becomes large compared to unity, even adjacent stations may
be poorly correlated. Rj,, decreases rapidly with increasing [(V)] from Ry, > 2 (offscale)
for [(V)] <0.5ms ! to Ryy < 0.2 for [(V)] >2ms™! (Fig. 2a, red dashed). Our primary
interest is in low-wind conditions.

13)

4.1 Bivariate Distribution

Using bivariate analysis (Williams et al. 2013), we briefly examine the simultaneous
dependence of Vi, on (V) and (§,6) for the SCP network (Fig. 3) where accurate mea-
surements of the stratification are available for each station. The wind speed Vj,, reaches
maximum values for (V) of 1-2 m s~! for 8.0 > 0.7 K, where V,,, is above 0.55 m s~
For significant stratification, Vj,, does not depend on the exact value of stratification. This
regime corresponds to well-defined cold pools, down-valley flow, and side-slope katabatic
flows. These features lead to large variation of the wind vector across the observational
network. The increase of Vj;, with increasing stratification is opposite to the decrease of tur-
bulence with increasing stratification. Reduced turbulence and corresponding reduced vertical
coupling is more conducive to development of horizontal gradients of the wind speed.

For low wind speeds and 8,0 < 0.5 K, Vj,, averages less than 0.5 m s~!. These conditions
include numerous cloudy or partly cloudy cases. With clear skies, katabatic flows down the
side slopes and down the valley increase Vj,, and contribute to (V') such that (V') generally
becomes > 1 m s~!. For small .0 along the bottom of the graph, Vi, increases gradually
with increasing (V). Significant winds over the topography with small stratification induce
substantial spatial variation of the wind vector. This is partly due to lee turbulence in spite
of the low amplitude of the topography (Mahrt 2017). For higher wind speeds, the greater
mixing generally reduces the stratification. The exact details shown in Fig. 3 are influenced
by the interpolation scheme.
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Fig.3 The dependence of Vs, on (V) and (§;6) for the SCP site. Red dashed curves correspond to constant
values of the surface-layer Richardson number (Eq. 14)

4.2 Stability

The red curves in Fig. 3 represent constant values of the surface-layer Richardson number

(14)

which is computed from the spatially-averaged 1-m wind speed and from the spatially-
averaged potential temperature at the 0.5- and 2-m levels.

The dotted red curve corresponding to Rb = 0.1 passes through the region of maximum
Vsem (Fig. 3). Notice that this line is approximately perpendicular to the curves of constant
Vsm, indicating that Rb is a poor predictor of V,,. The quantity V,, generally increases
with increasing stratification, but Vi, is either relatively independent of (V') or increases
with (V'), depending on the network (Fig. 4, Sect. 5). That is, the dependence of Vj,, on
Rb through variations of (V) opposes the dependence of Vi, on Rb through variations
of stratification. The poor relationship between Vs, on Rb may also be due to generation
of propagating submeso motions at a distant location far from the observational site. In
the statically unstable case, the dependence of V,, on (V) and the stratification is more
complex (not shown), perhaps due to the influence of the boundary-layer depth and frequent
occurrence of a number of different regimes of very large eddies/mesoscale motions (Salesky
and Anderson 2018, 2020; Katul 2019).
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Fig.4 [Vsm] (Eq. 5) as a function of the speed of the vector-averaged wind [(V)] for a the small networks
and b the large networks. The one-to-one relationship is shown by the blue dashed line

5 Comparison Between Networks

We now examine the dependence of [V, ] on [(V})] for the other networks. The CASES-19
and Iowa networks are excluded from this analysis because the sample sizes are too small
to confidently capture the dependence of [Vj,,] on wind speed. The CASES-19 and Iowa
networks are restored in the subsequent analysis, which does not require a large sample size.
The dependence of [V, ] on [(V')] for the SCP network (Fig. 4a, black x) is discussed above
based on Fig. 2. The wind speed [V, ] is quite small for the Dumosa site (Fig. 4a, blue O),
averaging only about 0.2 m s~ !. The Dumosa site is flat and embedded within a larger region
of relatively flat homogeneous terrain. [V, ] increases with increasing [(V)] for the Pedras
Altas network (Fig. 4a, magenta +). The Pedras Altas network is located entirely on a single
slope (approximately 7.5%), and the wind speeds at the upper part of the network increase
more rapidly with increasing [{V)] compared to wind speeds on the lower part of the slope,
which in turn increases [ Vi, 1.

The wind speed [Vj,,] is large for the Perdigdo network (Fig. 4b, red circle) where the
weak flow on the valley floor remains decoupled from the ridge top flow even for the more

@ Springer



L. Mahrt et al.

1.2 , :
1 |- -
-~ 08 b
‘U’)
£
~ o06f ,
5 X+
= 04f 1
04D ]
O
0 ‘ ‘
10° 10" 102

LD (km)

Fig.5 The values of [V, (0)] as a function of the network size, L p, for the SCP (black x), CASES99 (black
0), Pedras Altas (black +), Dumosa (black square), Iowa (cyan O), Perdigdo (cyan asterisk), HVAMS (cyan
+), and FOG-82 (cyan x) networks. Networks with domain size L p < 1 km are indicated with black symbols
and Lp > 1 km with cyan symbols

significant wind speeds. As [(V)] increases, the ridge-top wind speeds increase while the
wind speed on the valley floor does not appreciably increase. Recirculation in the lee of the
ridge (Menke et al. 2019) also contributes to the wind speed [V, ]. Finally, the similarity of
the dependence of [V,,] on [(V)] for the HVAMS network (Fig. 4b, black +) compared to
that for the SCP site (Fig. 4a, black x) is probably fortuitous.

5.1 Low Wind Speeds

In general, [V, ] is significant compared to [(V)] when [(V)] < 2 m s—L Theoretically,
we define [V, (0)] as the expected value of [V, ] as [(V)] vanishes. We can pragmatically
estimate [V, (0)] from measurements for low wind speeds. Some networks include cup
anemometers, which do not capture the wind field when the wind speed is less than an
instrumental threshold value. We can estimate [V, (0)], for example, in terms of 1 m sl <
[(V)] <2 ms~!. This procedure relies on the fact that [Vy,,] for low wind speeds usually
varies only slowly with increasing wind speed so that 1 m s~ < [(V)] <2 ms~! generally
serves as a useful estimate of [V, (0)]. The dependence of [V, (0)] on terrain (Sect. 5.3) is
more predictable when based on 1 m s71 < [(V)] <2 m s, than when based on [(V)] <

Ims~!.

5.2 Dependence on Network Size
By definition, [V, (0)] must vanish as the network size, L p, vanishes. Larger networks

capture a larger range of submeso variations. Nonetheless, the dependence of [V, (0)] on
network size is generally weak (Fig. 5). The wind speed [V, (0)] increases approximately
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linearly with Lp for the three largest networks although it is not known if this result is
significant or spurious. The values of [V, ](0) are quite large for the Perdigdo site in spite of
the modest size (Fig. 5, cyan asterisk). The Perdigdo network covers a relatively deep valley
with steep side slopes (approximately 20%). The wind speed [V, (0)] for the lowa network
(cyan circle) is small considering the larger domain size, and is quite small for the flat Dumosa
network (black square). Amongst the different networks, the influence of minimum station
spacing within the network was of little predictive value, the average station spacing was of
modest value, and the maximum station spacing was closely related to the domain size.

The relative insensitivity to the domain size contrasts with studies over the sea based
on aircraft measurements (Vickers and Esbensen 1998) or incorporated satellite data (Levy
and Vickers 1999) where a version of [V, ] was evaluated. Over the sea, [V,,] was clearly
proportional to the size of the spatial domain, although the sample size was relatively small.
It is not known if the dependence on size of the spatial domain would emerge as the leading
factor for networks over a flat homogeneous land surface. The failure of L p to explain much
of the variation of [Vj,,(0)] for the current datasets motivates exploring the influence of
topography on [V, (0)].

5.3 Dependence on Topography

We now examine the dependence of [V, (0)] on the topography as represented by the stan-
dard deviation of the digitized terrain, ozsr. (Sect. 2.2). [V, (0)] is shown as a function of
ozsfc based on horizontal scales between 33 m and 250 m (Fig. 6a) and based on scales
between 33 m and 1 km (Fig. 6b). For a given value of ozs7¢, [V, (0)] for network sizes
< 1 km tends to be a little smaller than [V, (0)] for network sizes > 1 km, although the
significance of this difference is unknown. The wind speed [V, (0)] for the Perdigdo net-
work deviates significantly from the trend for the 250-m pixel size (cyan asterisk, Fig. 6a),
but more closely follows the trend for the 1-km pixel size (cyan asterisk, Fig. 6b), indicating
that variability of terrain on scales between 250 m and 1 km is important. However, includ-
ing the terrain variation on scales between 1 km and the domain size (when Lp > 1 km)
slightly degrades the relationship between [V, (0)] and o7,z (not shown), indicating that
the larger-scale terrain for these particular networks does not effectively generate sub-domain
motions. Representation of the terrain with a single quantity is difficult because the terrain is
characterized not only by the horizontal scale, but also by the geometry of the terrain (ridges,
valleys, basins, and smaller three-dimensional features).

As an example, a subjective fit for [V, (0)] based on the 1-km pixels can be written as
(Fig. 6b, solid curve)

[Vam (0)] = 1.5(0757¢/50)°. (15)

Because of the sensitivity of oz, 7. to the range of scales included in the calculation of o7,
a more formal regression analysis with goodness of fit is not justified. Equation 15 can be
used to predict the ratio Rg;, = [Vsn]/[(V)] (Eq. 13). As the terrain increases, the stations
become less representative of their surrounding area.

These results indicate that [V, (0)] depends significantly on the terrain (Fig. 6b). However,
we also find that combining information on oz, ¢ and L p improves the prediction of [ Vy;, (0)]
in spite of the weak dependence of [V, (0)] on L p alone (Fig. 5). Consider the following short
exercise, which could serve as a motivation for future analyses with more networks. Figure 6¢
shows [V, (0)] as a function of ozsr. and L p by replacing oz,s. with the expression

G(GZsta Lp) = O0Zsfc + LD/C» (16)
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Fig. 6 The values of [Vs;, (0)] as a function of ozy 7. based on digitized terrain for scales a between 33 m
and 250 m and b between 33 m and 1 km where the red solid curve is Eq. 15. ¢ The values of [V, (0)] as
a function of G(ozsf., L p) defined by Eq. 16 where oz,¢. is based on scales between 33 m and 1 km. The
networks are SCP (black x), CASES-99 (black O), Pedras Altas (black +), Dumosa (black square), Iowa (cyan
0), Perdigdo (cyan asterisk), HVAMS (cyan +), and FOG-82 (cyan x). Networks with domain size Lp < 1
km are indicated with black symbols and L p > 1 km with cyan symbols

where ozs7. and Lp are in metres and C = 5000 is chosen as a subjective fit. This relation
appears to improve the representation of [Vj,, (0)]. Because the number of points is limited
and the values of [Vj,, (0)] for each network are influenced by details of the instrumentation
deployment, formal fitting of Fig. 6¢ seems not justified. Inclusion of the limiting case where
[Vsm (0)] should vanish when L p vanishes requires additional complexity.

We summarize the above results in terms of the bulk relation by combining Eqs. 5 and 9
to obtain

(W0 = —(Cy)v (V)2 + Vim(0)% (5,0). a7

Recall that as (V) exceeds roughly 2 m s™L, Ve (0) quickly becomes unimportant. An

estimate of Vj,, (0) can be made using Eq. 15, for example, or simply specified as a constant,
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such as 0.5 m s~ !, which improves upon completely neglecting [ Vs, (0)] in the bulk relation.
With vanishing resolved wind speed, the heat flux becomes (Cg )V, (0)(5,60). Application
of Eq. 17 must recognize the complexity of the problem and the unknown compatibility of
Eq. 17 with other components of a potential host model and historical adjustment of the
associated model coefficients. As a sensitivity study, does the incorporation of Eq. 17 into
the host model significantly change the prediction of the heat flux by the host model?

6 Conclusions

We examined the spatial variability of the nocturnal wind field using eight networks of
surface observations and focused on analysis of Vszm = (U)? — (V)2. The spatially-averaged
wind speed (U) is larger than the speed of the vector-averaged wind (V') due to the spatial
variability of the wind field within the network (V,,). The spatially-averaged heat flux is
directly related to (U), not the smaller (V). However, the bulk relation in a numerical model
must relate the grid-averaged heat flux to the speed of the grid-resolved flow (V) and thus
can significantly underestimate the heat flux at low wind speeds. Here, the bulk relation has
been modified through a generalized velocity scale that includes Vj,, to estimate the needed
(U).

Additional applications of V,, include assessment of the potential uncertainty of estimat-
ing the wind at an arbitrary fixed point from nearby wind observations. Wind observations at
a fixed point are representative of a greater surrounding area when the wind speed increases.

The small-scale variability of the wind (V,,) was contrasted between the networks in
terms of the wind speed, the wind direction, and the topography. The standard deviation of
the surface elevation accounts for much of the between-network variation of Vg, (Sect. 5.3).
The size of the network seems to be of secondary importance for the current datasets. Local
topography on scales smaller than the network can be important through local generation
of katabatic flows, cold pools, and lee turbulence. Significant spatial variability of the wind
field can also be generated by transient submeso motions such as propagating wave-like
modes, which are often related to distant topography. Submeso motions, and thus Vj,,, tend
to increase with increasing stratification in contrast to the turbulence, which decreases with
increasing stratification. Section 5.3 uses information from the eight networks to predict Vs,
although the generality of this prediction is unknown and more work is required.

Future networks should use only sonic anemometers and not cup anemometers to avoid
threshold problems at low wind speeds where Vi, is most important. Accurate temperature
measurements at two or more levels would be required to estimate the stratification. A network
over a flat homogeneous surface could serve as a useful baseline.
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