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Abstract

Various combinations of characteristic temperatures, such as the glass transition temper-
ature, liquidus temperature, and crystallization temperature, have been proposed as predic-
tions of the glass forming ability of metal alloys. We have used statistical approaches from
machine learning to systematically explore a wide range of possible characteristic temper-
ature functions for predicting glass forming ability in the form of critical casting diameter,
Dmax. Both linear and non-linear models were used to learn on the largest database of Dmax

values to date consisting of 747 compositions. We find that no combination of temperatures
for features offers a better prediction of Dmax in a machine learning model than the tem-
peratures themselves, and that regression models suffer from poor performance on standard
machine learning metrics like root mean square error (minimum value of 3.3 ± 0.1 mm for
data with a standard deviation of 4.8 mm). Examination of the errors vs. database size
suggest that a larger database may improve results, although a database significantly larger
than that used here would likely be required. Shifting a focus from regression to catego-
rization models learning from characteristic temperatures can be used to weakly distinguish
glasses likely to be above vs. below our database’s median Dmax value of 4.0 mm, with a
mean F1 score of 0.77± 0.02 for this categorization. The overall weak results on predicting
Dmax suggests that critical cooling rate might be a better target for machine learning model
prediction.

1 Introduction

Physically motivated models built using powers and ratios of sums and differences of experimen-
tal measures of the glass transition Tg, onset to crystallization, Tx, and liquidus, Tl, temperatures
(so-called characteristic temperatures (CTs)) have been explored for decades to predict metallic
glass forming ability (GFA). We will call these powers and ratios of sums and differences PRSD
functions in this paper. There exist several quantitative measures of GFA. The critical cooling
rate, Rc, is the slowest a molten metal can be cooled to produce a glass. The smallest dimen-
sion of the largest glassy sample for a composition is defined to be Zmax whereas the maximum
rod diameter of a glassy specimen manufactured through suction casting is the critical casting
diameter, Dmax. Both Dmax and Zmax denote the maximum reachable thickness for a glass but
differ by geometry. Hence, predictions on either Dmax or Zmax denote the ability for a model to
quantify the maximum thickness for a glassy metal sample. Starting in 1969, the ratio between
Tg and Tl was introduced to quantify the ease of forming a bulk metallic glass [1]. This was the
original form of the reduced glass transition temperature, Trg = Tg/Tl. Attempts to use the
melting temperature instead of Tl were made but resulted in worse models for log10(Rc) [2].

More modern efforts to model GFA with CTs have only modestly increased in complexity and
still generally focus on correlating a metric of GFA with PRSD functions of CTs. For instance,
γ = Tx/(Tg+Tl) was introduced in 2002 and is a single term ratio between two quantities [3]. The
γ parameter was constructed by using the devitrification range, (Tx − Tg), and simplifications
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based on classical crystal growth and nucleation theory. Lu and Liu [3] showed that γ shows a
strong relationship with log10(Rc) (R2 = 0.91) but much weaker correlation with critical section
thickness Zmax, (R2 = 0.57).

In 2005, another parameter based on PRSD functions of CTs was introduced as α = Tx/Tl
[4]. The difference between this parameter and Trg was the substitution of Tx for Tg. In the
same work, β = Trg + Tx/Tg was also introduced. The R2 scores for α and β were 0.90 and
0.93 against log10(Rc) respectively. Similar to the parameter γ, both α and β degraded in R2

performance for prediction on Zmax, with R2 of 0.48 and 0.54, respectively.
Another PRSD function of CTs used as a feature for GFA is ω = Tg/Tx − 2Tg/(Tg + Tl)

introduced in 2008 [5]. This parameter takes into account the devitrification range and liquid
stability. With an R2 of 0.93 against log10(Rc) for 53 metallic alloys, ω provides the best
performing model for log10(Rc) of which we are aware to date. Since Dmax should increase with
a decreasing Rc, the comparison between 1/ω and Dmax was performed in the same work. The
R2 was 0.41 which follows previous performance trends of relatively poor R2 of PRSD functions
of CTs for Dmax even when good performance for Rc was obtained.

A common theme throughout attempts to model GFA from CTs is that they are based on
linear models of PRSD functions, and usually just a single PRSD function. They also have a
tendency to do well with learning on log10(Rc) but not on Dmax or Zmax. See Refs. [6, 7] for
more comparisons between these types of linear models and their correlations against Dmax.

Recently, there have been machine learning (ML) efforts to learn Dmax from CTs that go
beyond simple linear correlations with PRSD functions. Because of the availability of more
Dmax data compared to Rc measurements, more advanced ML techniques can be implemented
and reliably assessed for learning on Dmax. Specifically, Xiong, et al. [7] used a Gaussian process
(GP) model to learn Dmax from CTs. The study predicted Dmax on 442 metallic glasses with
an R2 of 0.76 for the training set. Even more recently, Deng and Zhang [8] used the random
forest (RF) method to learn Dmax from CTs and some other features for the same dataset as
used by Xiong, et al. [7]. Deng and Zhang found an R2 of 0.64.

Thus far, the largest ML attempt to quantify Dmax as a function of CTs was done by
Xiong, et al. [9] with 674 compositions. RF models were trained on the three CTs mentioned
in this study. They used 100-fold cross-validation (CV) where an RF model was trained on
99 folds while its performance was measured by the leave out set. Their model had an R2 of
0.60 (R = 0.77) and a root mean squared error (RMSE) of 2.89 mm. However, this result
was attained by excluding six erroneous compositions which showed large residuals in Dmax

predictions for another one of their models. In the spirit of generating a PRSD function of CTs,
Xiong, et al. also used symbolic regression with CTs to generate a three-term model on their
dataset (Equation 1). The symbolic regression model scored an R2 of 0.45 (R = 0.67) and an
RMSE of 3.37 mm [9]. Whether PRSD functions of CTs can aid in quantifying Dmax through
other ML methods remains an open question.
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While the ML approaches to learning Dmax from CTs appear to be performing better than
linear PRSD functions of CTs, many ML studies to date suffer from several shortcomings.
First, model performances tend to be measured with R2. Other error metrics such as mean
average error (MAE) and RMSE are generally not provided. Second, and more importantly,
the reported R2 for some previous efforts are for predicting back on training data, rather than
assessment on test data not seen in the fitting process. Thus, there was no assessment of
the extent to which trained models have predictive power outside their training sets. Having
just training data results is common when modeling Dmax using simple linear models of PRSD
functions of CTs, and while this may lead to some overfitting and underestimation of errors, the
simplicity of these models may make these underestimations negligible. However, more complex
ML are particularly subject to overfitting and careful assessment with test data is essential for
robust assessment of predictive ability.
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Our work focuses on providing multiple metrics of assessment for ability to predict on Dmax

on carefully excluded validation data, avoiding data leakage through nested cross-validation.
Our approach generalizes previous use of select PRSD functions as features by generating a
comprehensive set of PRSD functions up to reasonable powers. We then explore the efficacy
of these features in multiple ML model types, including least absolute shrinkage and selection
operator (LASSO), Gaussian kernel ridge regression (GKRR), RF, and Gradient Boosting (GB).
The benefit of using ensemble models is the inherent feature selection that they provide. The
L1 norm for LASSO tends to penalize arbitrary feature weights to zero which is also a form of
feature selection. This approach can therefore assess whether features based on PRSD functions
of CTs yield effective predictive models of Dmax and to what extent the use of PRSD functions
provide better predictions than just using the CTs themselves. We also test whether learning
on the log10(Dmax) is more effective than learning on Dmax and if applying principal component
analysis (PCA) to transform our features had any added benefit. Our dataset is comprised of
747 compositions, which is the largest set to date used for building and assessing models to
predict Dmax.

2 Materials and Methods

Experimental data was provided by Ref. [10]. Measurements of Dmax are susceptible to differ-
ences in experimental setup which could impact cooling rate. The experiments in the database
were all melt quenched using similar rod like molds and melting processes that are standard
among experimentalists. Only integer Dmax values are reported which introduces small uncer-
tainties. The characteristic temperature Tl should be unaffected by heating and cooling rates
but Tg and Tx are heating and cooling rate dependent. In the database, entries were not con-
strained to certain heating and cooling rates, but the majority of the heating rates fall into
the range of 10-100 degrees per minute as this is fairly standard procedure for the differential
scanning calorimetry (DSC) used to measure these values. The impact of variation in heating
and cooling rates on the ML accuracy is difficult to asses and is an interesting topic for further
study but we have not attempted to explore it here.

A set of unique compositions provided by Ref. [10] with values of Tg, Tx, Tl, and Dmax were
used to generate features. First, differences and summations between pairs of temperatures
were taken (e.g., (Tg + Tx) and (Tl − Tg)). These features were then raised to the powers of -4
to 4 (e.g., (Tg +Tx)2 and (Tl−Tg)−3). Products between all aforementioned features were then
included to produce the feature set of PRSD functions of CTs (e.g. (Tg +Tx)2 ·(Tl−Tg)−3). Any
instance that resulted in a division by zero was eliminated from the analysis. For compositions
that appeared more than once in the database and had a full set of the three CT values, the
maximum value for Dmax and the mean values for CTs were used. However, if any one instance
of a CT was more than 50 K from the mean, then that value was excluded and the mean
was taken with the remaining points to minimize erroneous CTs values. This data processing
reduced the complete database of 6,914 entries to 747 unique compositions, each with a Dmax

value, three unique characteristic temperatures (Tg, Tx, Tl) and 2,628 features from PRSD
functions of CTs described above. The processed data can be found in Ref. [11] and Ref. [12].

Features were standardized to have a zero mean and unit variance. A separate feature
set was generated by applying principal component analysis (PCA) while keeping all principal
components to transform features. Some of the PRSD functions of CTs features are highly
correlated which means that they provide similar information. PCA can be used to transform
a feature set to a lower dimension or to an equivalent set with linearly independent features.
The principal components are orthogonal vectors and explain the maximum variance of data
along several directions. The larger a singular value for a corresponding principal component,
the more data that principal component represents from the original dataset. Therefore, data
sets with linearly dependent features can be transformed to a linearly independent data set with
PCA if all nonzero principal components are kept for the projection.

In ML, having more features (explanatory variables) than observations when building a
model can lead to overfitting. An overfit model generalizes poorly and is less likely to correctly
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predict a target variable for cases withheld from training. The degree of overfitting tends to
increase with the number of features included in training. Because the number of generated
features in the present study are much larger than the number of observations, we apply models
that reduce the number of contributing features via regularization (LASSO), shrinkage (GB),
and bagging (RF). We will show that a subset of features that number less than the number of
observations contribute to predictions by a GB model (Section 3) which is likely to hold true
for LASSO and RF model types as well.

All assessment done used a nested CV approach [13]. The nested CV used a 5-fold inner
and 5-fold outer loop. A grid search of hyperparameters was applied for the inner loop in the
nested CV (Table 1) to establish optimal hyperparameters for each outer loop fold. Fitting was
then done for each outer CV fold on the full training set not in the test fold (80% of the data).
Then, the model was applied to the outer CV test set fold. To test whether the generated
features provide improved prediction, we also applied nested CV with only Tg, Tx, and Tl. Data
were randomized every time nested CV was applied, meaning that the splits for the testing and
training sets may have differed for comparisons. All ML was performed with scikit-learn [14].

Table 1: The hyperparameter grid for each model type explored is tabulated below. Variable
names follow the convention of scikit-learn [14].

Model Parameter Values

LASSO alpha
100 values

from 0 to 5 in log10 space

GKRR
alpha

100 values
from -5 to 5 in log10 space

kernel rbf

gamma
100 values

from -3 to 3 in log10 space

RF
n estimators 30, 40, 50, 60, 100, 500
max features sqrt, log2, None
max depth 2, 3, 4, None

GB

learning rate 0.001, 0.01, 0.1, 0.2
n estimators 30, 40, 50, 60, 100, 500
max features sqrt, log2, None
max depth 2, 3, 4

For LASSO, GKRR, RF, and GB, the following set of four tests were performed: fit with
non-PCA features and Dmax, fit with PCA features and Dmax, fit with non-PCA features and
log10(Dmax), and fit with PCA features and log10(Dmax). RMSE, MAE, R2, and RMSE/σ
were calculated for each fold in the outer loop from the nested CV (where σ is the standard
deviation of the true target values in that fold). This gave five values for each metric for each
nested CV run, and we performed one nested CV run for each test, for a total of 5 values for
each metric (i.e., 5 values of RMSE, 5 values of MAE, etc.). These distributions of values for
each metric were used to find the mean value, standard deviation (STDEV), and standard error
in the mean (SEM), for each metric from each nested CV. All metrics with units are in units of
Dmax, which is in millimeters (mm). If fitting was done with log10(Dmax), then the predicted
output was transformed back to Dmax before calculating error metrics. All metrics are scores
from outer folds of nested CV runs unless explicitly stated otherwise.

Separate from assessing the accuracy of our models, we use nested CV, we would also like
to develop the most complete and accurate model possible using the whole database. To do
this a GB model was trained using all the data. The optimal hyperparameters were found by
applying a grid search using 5-fold CV on the whole data set and call this model GB 1. From
GB 1, we can assess which of the generated features provide the most utility for regression
prediction. We studied the impact of fitting GB models with the top n features by building
a learning curve with 5-fold CV and measuring RMSE/σ. The curve was averaged over the

4



leave out sets. The uncertainties are in SEM. The choice of hyperparameters were kept from
GB 1. The 50 highest ranking features were used to fit a final GB model, named GB 2, because
regression performance did not significantly change by including the remaining features. GB 2
can be found at the Materials Data Facility (MDF) online data and code sharing repository at
Ref. [11] and figshare at Ref. [12].

To test whether the generated features had a significant impact on learning, we performed
a two-sided T-test for the distribution of five scores for each metric obtained above using all
model types. One distribution of scores were from the generated features while the others were
from using just the three CTs as features. Both feature sets did not have a PCA transformation
and learned from Dmax directly. The aforementioned comparison choice was performed because
models tended to degrade in performance with PCA transformed features and with application
of a logarithm onto Dmax.

For LASSO models using PRSD functions of CTs, models had unusually poor regression
performance on some test folds for nested CV. Many generated LASSO models were not well
conditioned due to numerical problems and gave outlandish predictions. As a result, an outer
fold was removed if any of the regression metric values were outside of a multiple of 3 from the
optimal GB workflow metrics. This left three outer folds for any LASSO metric reported for all
combinations of logarithm application on Dmax and PCA application on the feature set. Due
to the low number of individual observations, LASSO models were excluded from the two-sided
T-tests. All LASSO models trained during hyperparameters grid searches showed acceptable
convergence.

A learning curve was generated to test if improved learning would result from more data.
Nested CV was performed for the best GB workflow for 10% up to 100% for the 747 compositions
by increments of 10%. Each subset of data was randomly sampled. Learning curves were built
from the predictive performance of the testing sets from nested CV.

To test if the generated features had predictive power for classification, nested CV was per-
formed using a GB classifier. No PCA was applied nor a logarithm onto Dmax. Any composition
with a Dmax less than 4.0 mm were assigned to be class 0 while all others were assigned class
1. The median Dmax value for the dataset was 4.0 mm which splits the classes evenly. Binary
classification scores for every test set in nested CV were gathered.

We mark our contribution to the field by comparing our best performing regression workflow
to the work done by Xiong, et al. in Ref. [9]. We make sure to match the number of folds used
in their CV and the same set of features. Additionally, we attempt to predict Dmax with our
dataset using their reported model shown in Equation 1. We use ordinary least squares with
three fitting coefficients and one intercept term to fit Equation 1 to all of our data. The least
squares model was then used to predict back on our full dataset.

3 Results and Discussion

The lowest RMSE/σ model types were GB and RF from learning on the generated feature
set without PCA and using Dmax (rather than log10(Dmax)) as the target feature. The mean
of MAE was slightly lower for the optimal GB workflow (Tables A2-A5). The lowest mean
RMSE/σ (MAE) for GB and RF were 0.70 (2.18 mm) and 0.70 (2.24 mm) respectively.
For all model types, it was found that fitting on Dmax instead of log10(Dmax) gave better
performance for mean RMSE/σ from nested CV. Application of PCA was better for GKRR
and LASSO, and even in that case the effect was small. All values are tabulated on Table 2.
Scores for using the just the three CTs as features are provided in Tables A6-A9.
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Table 2: The mean RMSE/σ scores for each test for each model type along with their standard
deviations (STDEV) and standard error in the mean (SEM).

Model Log10 PCA Mean STDEV SEM

GB False False 0.70 0.08 0.04
GB False True 0.86 0.10 0.05
GB True False 1.37 0.04 0.02
GB True True 1.38 0.06 0.03

GKRR False False 0.76 0.06 0.03
GKRR False True 0.75 0.09 0.04
GKRR True False 1.39 0.09 0.04
GKRR True True 1.38 0.05 0.02
LASSO False False 0.86 0.03 0.02
LASSO False True 0.81 0.04 0.02
LASSO True False 1.40 0.05 0.03
LASSO True True 1.36 0.03 0.02

RF False False 0.70 0.04 0.02
RF False True 0.92 0.14 0.06
RF True False 1.37 0.06 0.03
RF True True 1.38 0.05 0.02

GB 2, which was trained on the top 50 ranking PRSD functions of CTs, is shown in Figure 1.
GB 2 was attained by using the optimal hyperparameters from GB 1 and showed outstanding
performance on regression metrics RMSE/σ = 0.30 and R2 = 0.91 (not from nested CV).
While GB 2 is taken as the best overall model for predicting new data as it is fit and optimized
on all our present data, the 5-fold CV performance of GB 2 cannot be taken as predictive for
new data due to data leakage and overfitting. The error metrics from the nested CV are the
best predictor of the expected performance on new data for GB model types.
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Figure 1: The parity plot for training set prediction for GB 2 is shown.

GB 1 ranked 1,042 out of the 2,628 features to be of some nonzero significance. A subset
of those features with scores are tabulated in the Appendix. This is a very large number of
features, even more than the number of data points, and suggests that the model is very poorly
constrained. However, the actual number of significant parameters that impact the model is
likely far fewer. To asses the truly significant parameters, GB models were fit incrementally
with subsets of features, starting with the highest ranking, then the top two ranking, then the
top three ranking, and so on. The GB models used the GB 1 hyperparameters described in
the Methods section. RMSE/σ with respect to the number of included features, ordered by
their ranking, is shown in Figure 2. There is essentially no gain in in prediction performance
after about 50 features. Thus, a GB model represented with all the features can be equally
represented with just the first 50 features as these are all that really contribute to its accuracy.
In general, it is a concern when one has more fitting parameters than data points. Although
models mentioned in this work can formally provide fits when they have more fitting features
than cases, only a number much less than 747 are found in this work to contribute to predictions
when training on PRSD functions of CTs as shown by GB 2.
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Figure 2: The number of features included in GB models as a function of RMSE/σ.

The p-values for the two-sided T-test for comparing results from using features that are
PRSD functions of CTs and just the three CTs are reported in Table 3. None of the values for
all reported metrics fell below 0.32, far from the value of 0.05 typically used as a cutoff to claim
significant difference. Hence, there was no statistically significant difference between learning
from the generated features versus the original CTs.

Table 3: The p-values for comparing models based on generated features and just three CTs
for each ML scoring metric.

Model MAE RMSE RMSE/σ R2

GB 0.47 0.67 0.79 0.83
GKRR 0.78 0.52 0.58 0.60

RF 0.63 0.53 0.32 0.33

The optimal GB values of MAE = 2.18±0.09 mm, RMSE = 3.28±0.13 mm, RMSE/σ =
0.70± 0.04, and R2 = 0.50± 0.05 are generally quite poor. In particular, the RMSE/σ = 0.70
suggests only modest improvement over simply guessing the mean of the dataset (which gives
RMSE/σ = 1) and R2 = 0.50 is well below the qualitative guide of R2 ≈ 0.7 that is often used
to consider a result of significance. Therefore, these results suggest that it is unlikely that the
CTs studied here can be used to provide a quantitative regression model for Dmax with a data
set similar to that we have examined.

One way to potentially improve the models for Dmax relative to those presented in this work
is to add more data. To test the effect of the size of data on learning, a learning curve was
produced using the best GB workflow for regression on Dmax (Figure 3). After 50% of the data
are included, only minor improvements on RMSE/σ were found, with a reduction from 0.77 at
50% of the data to 0.70 at 100% of the data. Consequently, a modest increase in the amount
of data is unlikely to significantly improve learning Dmax using CTs. For example, assuming
a linear extrapolation of rate of decrease from 50% to 100%, the total database would have to
grow by 300% to get below a reasonable performance target of RMSE/σ = 0.3.
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Figure 3: RMSE/σ decreases with an increase in the amount of data considered. The error
bars are the standard error of the mean from all outer loop test sets in nested CV (see Sec. 2).

Another way to potentially improve the models is to explore a simpler classification in place
of the full regression model. Here we consider classification into glasses with Dmax < 4 mm
or Dmax ≥ 4 mm, where 4 mm is the median of the dataset. The binary classification metrics
for the GB classifier are shown in Table 4. Since the number of classes are near equal for the
outer folds from nested CV, the baseline for F1 and receiver operator characteristic (ROC)
area under the curve (AUC) scores is around 0.5. The scores for F1 above or equal to 4.0
mm, F1 below 4.0 mm, and ROC AUC are 0.77, 0.78, and 0.78 respectively, which represent
a significant, although not outstanding, predictive ability. Although the regression metrics for
predicting Dmax showed large uncertainties, we have shown that CTs are still potentially useful
for classifying glasses above or below the median Dmax. The success of classification can be
understood by examining the parity plot for the GB regression workflow. As seen in Figure 4,
predicted and actual Dmax values deviate significantly but show enough correlation that cases
below 4.0 mm tend to have predictions below 4.0 mm. Likewise, cases above or equal to 4.0
mm tend to be predicted above or equal to 4.0 mm.

We compared our workflow of GB regression to previous efforts by Xiong, et al. in Ref. [9]
because they have the next largest database for metallic glass Dmax. When applying 100-fold
nested CV, our aggregate RMSE = 3.4 mm and R2 = 0.50 which is comparable to their scores
of RMSE = 2.89 mm and R2 = 0.60 since no compositions with large residuals were excluded
from our assessment. When an ordinary least squares model was fit and used to predict back
Dmax from the terms in Equation 1 for our dataset of 747 compositions, R2 and RMSE become
0.07 and 4.6 mm respectively. Each term added a degree of freedom for fitting and we included
the fitting intercept. Through further private communication with the authors, the general
methodology to train the symbolic regression model may have suffered from data leakage.
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Table 4: The binary classification metrics for distinguishing metallic glasses above and below
the median Dmax from nested CV are tabulated below.

Metric Mean STDEV SEM

Cases for Dmax < 4 mm 74.40 6.15 2.75
Cases for Dmax ≥ 4 mm 75.00 6.56 2.93

Accuracy 0.78 0.04 0.02
F1 for Dmax < 4 mm 0.78 0.04 0.02
F1 for Dmax ≥ 4 mm 0.77 0.04 0.02

Precision for Dmax < 4 mm 0.76 0.07 0.03
Precision for Dmax ≥ 4 mm 0.80 0.06 0.03

ROC AUC 0.78 0.04 0.02
Recall for Dmax < 4 mm 0.81 0.06 0.03
Recall for Dmax ≥ 4 mm 0.74 0.08 0.03

Figure 4: The parity plot for test set prediction for the GB workflow is shown. The metrics in
the annotation have SEM as the uncertainty.

4 Conclusion

We have assessed the ability of features based on the characteristic temperatures (CTs) Tg,
Tx, and Tl, to predict the critical casting diameter, Dmax. We explored an extensive search of
features based on powers and ratios of sums and differences of CTs, multiple machine learning
models, and used nested cross validation to avoid data leakage when assessing the models. We
found only weak ability for the models to predict Dmax and found that to achieve significant
improvement from increasing the database size would likely require a few multiples of the present
database size. Given that we are already using the largest aggregated database to date, such an
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increase in amount of data would likely require a very large experimental effort or application
of new high-throughput approaches.

We also found that using just Tg, Tx, and Tl directly was not statistically different than using
features based on the powers and ratios of their sums and differences. These results suggest
that further efforts adding terms within the examined space of features will not yield better
predictive performance outside their training set compared to using the CTs directly. Some
success was found in predicting Dmax above or below its median value from the CTs, suggesting
that they can provide some valuable Dmax information. For example, models using these CTs
could be used to screen small glassy samples and determine if larger glasses might be produced.
Nevertheless, it appears that Dmax cannot be quantified with regression models built with the
set of CTs examined. Previous linear models using CTs appear to have had more success when
quantifying Rc than Dmax. This suggests that further exploration of Rc models might be more
fruitful than Dmax models. However, more complex models and more thorough assessment are
limited by the limited amount of Rc data, and more of such data would help in developing and
assessing optimal CTs models.

Data Availability

The raw data required to reproduce these findings are available to download from [https:
//petreldata.net/mdf/detail/voyles mdf dmref glasses v1.3/]. The processed data
required to reproduce these findings are available to download from [https://petreldata.n
et/mdf/detail/schultz gb model full fit v1.1/].

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal rela-
tionships that could have appeared to influence the work reported in this paper.

Acknowledgements

Lane E. Schultz is grateful for the financial support provided by the National Science Foundation
(NSF), award number HRD-1612530 and from the University of Wisconsin– Madison Graduate
Engineering Research Scholars (GERS) fellowship program. We gratefully acknowledge support
from the NSF Designing Materials to Revolutionize and Engineer our Future (DMREF) pro-
gram, Division of Materials Research (DMR), METAL & METALLIC NANOSTRUCTUREs,
award number #1728933. Computational support was provided by the Extreme Science and
Engineering Discovery Environment (XSEDE), which was supported by the National Science
Foundation Grant No. OCI-1053575.

Appendix A

Scikit-learn metrics were used to assess the performance of ML models with the exception
of RMSE/σ [14]. Relevant metrics that have functional forms are defined in this section.
Additional tables and a figure used in our work are presented here.
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Figure A1: The feature rankings for all PRSD functions of CTs for the GB model fit to all data.
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Table A1: The features scores for the full fit GB model. Higher score is better. Included are
the top 1-50 features.

Features Scores

[(tg-tx)ˆ4]*1/[(tg-tl)ˆ4] 0.05
(tg-tx)*1/(tg-tl) 0.04

[(tl-tx)ˆ4]*1/[(tg-tx)ˆ4] 0.03
[tgˆ4]*1/[(tg-tl)ˆ4] 0.02

(tl+tx)*1/[tlˆ2] 0.02
[(tg-tl)ˆ4]*1/[(tl-tx)ˆ2] 0.02
[(tg-tx)ˆ2]*1/[(tl-tx)ˆ2] 0.02

(tg-tl)*1/(tg-tx) 0.02
[(tl+tx)ˆ4]*1/[tgˆ3] 0.02

[(tg-tl)ˆ4]*1/[(tg-tx)ˆ4] 0.02
[(tg-tx)ˆ4]*1/[(tl-tx)ˆ4] 0.02
[(tl+tx)ˆ4]*1/[(tg-tx)ˆ3] 0.01

[tlˆ4]*[(tg-tx)ˆ2] 0.01
[(tg-tl)ˆ2]*1/[(tl-tx)ˆ3] 0.01

[(tl+tx)ˆ3]*1/[txˆ2] 0.01
[(tg-tx)ˆ2]*1/(tl+tx) 0.01
[tgˆ3]*1/[(tg+tx)ˆ3] 0.01

[(tg+tx)ˆ2]*1/[(tl-tx)ˆ4] 0.01
[(tg-tl)ˆ2]*1/[(tg-tx)ˆ2] 0.01

[tlˆ3]*1/[(tg+tl)ˆ3] 0.01
[(tg+tl)ˆ4]*1/[(tg-tl)ˆ4] 0.01

[(tl+tx)ˆ2]*1/[txˆ4] 0.01
[(tg+tx)ˆ3]*1/[(tg-tl)ˆ4] 0.01

tg*1/[(tg+tx)ˆ3] 0.01
[txˆ3]*[(tl+tx)ˆ4] 0.01

[(tl-tx)ˆ4]*1/[(tg-tx)ˆ2] 0.01
(tl-tx)*1/[(tg-tx)ˆ2] 0.01

1/tl*1/[tgˆ4] 0.01
tl*1/(tg-tx) 0.01

[(tg+tx)ˆ2]*1/[(tg-tx)ˆ2] 0.01
[(tg-tx)ˆ2]*1/[txˆ3] 0.01
[txˆ4]*1/[(tg-tx)ˆ3] 0.01
[(tg-tx)ˆ3]*1/[tlˆ2] 0.01
[(tg-tl)ˆ3]*1/[tgˆ2] 0.01

1/(tg-tx)*1/[(tg+tl)ˆ3] 0.01
1/[tgˆ3]*1/[(tg-tl)ˆ3] 0.00

[(tg+tx)ˆ3]*1/[(tg+tl)ˆ2] 0.00
1/[txˆ2]*1/[(tg-tx)ˆ3] 0.00
[tlˆ2]*1/[(tl+tx)ˆ4] 0.00
[(tg-tx)ˆ3]*1/[tgˆ4] 0.00

[(tg-tx)ˆ3]*1/tx 0.00
(tg+tl)*1/[(tl-tx)ˆ4] 0.00
[tlˆ3]*1/[(tg+tx)ˆ3] 0.00
[(tg-tl)ˆ3]*[(tl-tx)ˆ2] 0.00

1/[txˆ4]*1/[(tg+tx)ˆ4] 0.00
[(tl+tx)ˆ4]*1/[(tg+tx)ˆ2] 0.00

tx*1/tg 0.00
(tl-tx)*1/(tg-tl) 0.00

(tl-tx)*[(tl+tx)ˆ3] 0.00
[(tg-tl)ˆ4]*1/[(tl+tx)ˆ3] 0.00

13



R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(A1)

where:

• R2 is the coefficient of determination

• i is the sample number

• n is the number of samples

• yi is the true target value for a case i

• ŷi is the predicted target value for a case i

• ȳ is the mean of true target values

MAE =
1

n

n−1∑
i=0

|yi − ŷi| (A2)

where:

• MAE is the mean absolute error

• i is the sample number

• n is the number of samples

• yi is the true target value for a case i

• ŷi is the predicted target value for a case i

MSE =
1

n

n−1∑
i=0

(yi − ŷi)2 (A3)

where:

• MSE is the mean squared error

• i is the sample number

• n is the number of samples

• yi is the true target value for a case i

• ŷi is the predicted target value for a case i

RMSE =
√
MSE (A4)

where:

• RMSE is the root mean squared error

• MSE is the mean squared error
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RMSE/σ =
RMSE

σ
(A5)

where:

• RMSE/σ is the ratio between RMSE and σ

• RMSE is the root mean squared error

• σ is the standard deviation in the true target values

accuracy =
1

n

n−1∑
i=0

1(yi = ŷi) (A6)

where:

• accuracy is the accuracy

• i is the sample number

• n is the number of samples

• yi is the true target value for a case i

• ŷi is the predicted target value for a case i

precision =
tp

tp+ fp
(A7)

where:

• precision is the precision

• tp is the number of true positives

• fp is the number of false positives

recall =
tp

tp+ fn
(A8)

where:

• recall is the recall

• tp is the number of true positives

• fn is the number of false negatives

F1 = 2 · precision · recall
precision+ recall

(A9)

where:

• F1 is the harmonic mean between precision and recall

• precision is defined in Equation A7

• recall is defined in Equation A8
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Table A2: The mean and standard deviation for the outer loops in nested cross validation for
the generated set of features for GB models.

Metric Log10 PCA Mean STDEV SEM

MAE False False 2.18 0.21 0.09
MAE False True 2.89 0.32 0.14
MAE True False 4.61 0.16 0.07
MAE True True 4.63 0.32 0.14
RMSE False False 3.28 0.29 0.13
RMSE False True 4.06 0.48 0.22
RMSE True False 6.51 0.41 0.18
RMSE True True 6.53 0.54 0.24
RMSE/σ False False 0.70 0.08 0.04
RMSE/σ False True 0.86 0.10 0.05
RMSE/σ True False 1.37 0.04 0.02
RMSE/σ True True 1.38 0.06 0.03

R2 False False 0.50 0.11 0.05
R2 False True 0.26 0.18 0.08
R2 True False −0.87 0.10 0.05
R2 True True −0.91 0.17 0.08

Table A3: The mean and standard deviation for the outer loops in nested cross validation for
the generated set of features for GKRR models.

Metric Log10 PCA Mean STDEV SEM

MAE False False 2.36 0.14 0.06
MAE False True 2.40 0.24 0.11
MAE True False 4.63 0.23 0.10
MAE True True 4.63 0.44 0.20
RMSE False False 3.57 0.25 0.11
RMSE False True 3.58 0.37 0.16
RMSE True False 6.52 0.58 0.26
RMSE True True 6.52 0.61 0.27
RMSE/σ False False 0.76 0.06 0.03
RMSE/σ False True 0.75 0.09 0.04
RMSE/σ True False 1.39 0.09 0.04
RMSE/σ True True 1.38 0.05 0.02

R2 False False 0.43 0.09 0.04
R2 False True 0.43 0.13 0.06
R2 True False −0.93 0.25 0.11
R2 True True −0.90 0.14 0.06
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Table A4: The mean and standard deviation for the outer loops in nested cross validation for
the generated set of features for LASSO models.

Metric Log10 PCA Mean STDEV SEM

MAE False False 2.79 0.23 0.13
MAE False True 2.75 0.12 0.07
MAE True False 4.76 0.18 0.10
MAE True True 4.57 0.40 0.23
RMSE False False 3.96 0.50 0.29
RMSE False True 3.97 0.22 0.13
RMSE True False 6.81 0.32 0.19
RMSE True True 6.66 0.68 0.39
RMSE/σ False False 0.86 0.03 0.02
RMSE/σ False True 0.81 0.04 0.02
RMSE/σ True False 1.40 0.05 0.03
RMSE/σ True True 1.36 0.03 0.02

R2 False False 0.25 0.05 0.03
R2 False True 0.33 0.07 0.04
R2 True False −0.96 0.13 0.07
R2 True True −0.85 0.09 0.05

Table A5: The mean and standard deviation for the outer loops in nested cross validation for
the generated set of features for RF models.

Metric Log10 PCA Mean STDEV SEM

MAE False False 2.24 0.19 0.09
MAE False True 3.20 0.33 0.15
MAE True False 4.61 0.17 0.08
MAE True True 4.64 0.30 0.14
RMSE False False 3.30 0.33 0.15
RMSE False True 4.30 0.48 0.21
RMSE True False 6.51 0.42 0.19
RMSE True True 6.52 0.66 0.30
RMSE/σ False False 0.70 0.04 0.02
RMSE/σ False True 0.92 0.14 0.06
RMSE/σ True False 1.37 0.06 0.03
RMSE/σ True True 1.38 0.05 0.02

R2 False False 0.51 0.06 0.03
R2 False True 0.14 0.26 0.12
R2 True False −0.89 0.17 0.07
R2 True True −0.91 0.14 0.06
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Table A6: The mean and standard deviation for the outer loops in nested cross validation for
the three characteristic temperatures feature set for GB models.

Metric Log10 PCA Mean STDEV SEM

MAE False False 2.30 0.30 0.13
MAE False True 2.52 0.19 0.09
MAE True False 4.60 0.27 0.12
MAE True True 4.60 0.60 0.27
RMSE False False 3.38 0.43 0.19
RMSE False True 3.74 0.31 0.14
RMSE True False 6.51 0.46 0.20
RMSE True True 6.49 0.81 0.36
RMSE/σ False False 0.71 0.06 0.02
RMSE/σ False True 0.80 0.10 0.05
RMSE/σ True False 1.37 0.06 0.03
RMSE/σ True True 1.38 0.04 0.02

R2 False False 0.49 0.08 0.04
R2 False True 0.34 0.16 0.07
R2 True False −0.89 0.17 0.08
R2 True True −0.90 0.11 0.05

Table A7: The mean and standard deviation for the outer loops in nested cross validation for
the three characteristic temperatures feature set for GKRR models.

Metric Log10 PCA Mean STDEV SEM

MAE False False 2.33 0.16 0.07
MAE False True 2.29 0.37 0.17
MAE True False 4.61 0.39 0.18
MAE True True 4.62 0.24 0.11
RMSE False False 3.44 0.34 0.15
RMSE False True 3.51 0.77 0.34
RMSE True False 6.49 0.80 0.36
RMSE True True 6.51 0.50 0.22
RMSE/σ False False 0.73 0.08 0.04
RMSE/σ False True 0.75 0.06 0.03
RMSE/σ True False 1.38 0.05 0.02
RMSE/σ True True 1.38 0.05 0.02

R2 False False 0.46 0.12 0.05
R2 False True 0.44 0.09 0.04
R2 True False −0.91 0.13 0.06
R2 True True −0.89 0.15 0.07
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Table A8: The mean and standard deviation for the outer loops in nested cross validation for
the three characteristic temperatures feature set for LASSO models.

Metric Log10 PCA Mean STDEV SEM

MAE False False 3.37 0.23 0.10
MAE False True 3.37 0.23 0.10
MAE True False 4.62 0.59 0.26
MAE True True 4.62 0.37 0.16
RMSE False False 4.76 0.60 0.27
RMSE False True 4.75 0.59 0.27
RMSE True False 6.59 0.95 0.43
RMSE True True 6.61 0.72 0.32
RMSE/σ False False 1.01 0.01 0.00
RMSE/σ False True 1.00 0.00 0.00
RMSE/σ True False 1.41 0.05 0.02
RMSE/σ True True 1.40 0.07 0.03

R2 False False −0.01 0.01 0.01
R2 False True −0.00 0.00 0.00
R2 True False −0.98 0.14 0.06
R2 True True −0.98 0.20 0.09

Table A9: The mean and standard deviation for the outer loops in nested cross validation for
the three characteristic temperatures feature set for RF models.

Metric Log10 PCA Mean STDEV SEM

MAE False False 2.31 0.20 0.09
MAE False True 2.40 0.24 0.11
MAE True False 4.59 0.42 0.19
MAE True True 4.60 0.38 0.17
RMSE False False 3.43 0.28 0.13
RMSE False True 3.50 0.55 0.24
RMSE True False 6.48 0.63 0.28
RMSE True True 6.48 0.78 0.35
RMSE/σ False False 0.73 0.06 0.03
RMSE/σ False True 0.74 0.07 0.03
RMSE/σ True False 1.37 0.03 0.01
RMSE/σ True True 1.38 0.07 0.03

R2 False False 0.46 0.09 0.04
R2 False True 0.45 0.10 0.05
R2 True False −0.87 0.09 0.04
R2 True True −0.92 0.20 0.09
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