1 Running head – Seasonality in mosquito thermal tolerances

2

3 Community-wide seasonal shifts in thermal tolerances of mosquitoes

4

- 5 Brunno F. Oliveira^{1,2,*,§} (ORCID: 0000-0002-2982-149X), Wendtwoin I. G. Yogo^{1,3,§}, Daniel A.
- 6 Hahn⁴, Jiang Yongxing⁵, Brett R. Scheffers^{1,*,§} (ORCID: 0000-0003-2423-3821)
- 7 Department of Wildlife Ecology and Conservation, University of Florida/IFAS, Gainesville,
- 8 FL.
- 9 ² Department of Biology and Environmental Sciences, Auburn University at Montgomery,
- 10 Montgomery, AL.
- ³ AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France.
- ⁴ Department of Entomology and Nematology, University of Florida/IFAS, Gainesville, FL.
- 13 Mosquito Control Services, City of Gainesville, 405 NW 39th Ave, Gainesville, FL, USA.
- 14 § Authors contributed equally to this work
- * Correspondence Brett R. Scheffers (<u>brett.scheffers@ufl.edu</u>)

16

- 17 Acknowledgements We are grateful to Andrew Rappe of Ordway Swisher Biological Station
- for his logistical support and to Joseph Eisinger for field research assistance.

- 20 Funding This research was funded by the 2016-2017 University of Florida Office of Research -
- Ordway Swisher Biological Station grant to B.R.S and D.A.H., as well as NSF-DEB 1639005,
- NSF-IOS 1257298, the Florida Agricultural Experiment Station, and IAEA/FAO CRP in

23 Dormancy Management to Enable Mass-rearing and Increase Efficacy of Sterile Insects and Natural Enemies to D.A.H. 24 25 26 Authors' contributions - BRS, BFO, and DH conceived the idea, planned the research and 27 obtained funding. WIGY and JY did field sampling and thermal experiments. BFO and WIGY 28 analyzed the data. BRS and DH funded the research, WIGY and BRS wrote the first draft of the 29 manuscript, and all authors contributed to revisions of the manuscript. 30 31 Competing interests - Authors declare no competing interests. 32 33 Data availability statement - Thermal tolerance data are available from the authors upon request. 34

Abstract

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

The broadening in species' thermal tolerance limits and breadth from tropical to temperate latitudes is proposed to reflect spatial gradients in temperature seasonality, but the importance of seasonal shifts in thermal tolerances within and across locations is much less appreciated. We performed thermal assays to examine the maximum and minimum critical temperatures (CT_{max} and CT_{min}, respectively) of a mosquito community across their active seasons. Mosquito CT_{min} tracked seasonal shifts in temperature, whereas CT_{max} tracked a counter-gradient pattern with lowest heat tolerances in summer. Mosquito thermal breadth decreased from spring to summer and then increased from summer to autumn. We show a temporal dichotomy in thermal tolerances with thermal breadths of temperate organisms in summer reflecting those of the tropics ('tropicalization') that is sandwiched between a spring and autumn 'temperatization'. Therefore, our tolerance patterns at a single temperate latitude recapitulate classical patterns across latitude. These findings highlight the need to better understand the temporal and spatial components of thermotolerance variation, including plasticity and rapid seasonal selection, and the potential for this variation to affect species responses to climate change. With summers becoming longer and increasing winter nighttime temperatures, we expect increasing tropicalization of species thermal tolerances in both space and time.

52

5354

55

Keywords

- Acclimation, hardening, physiological plasticity, climate change, vector-borne disease,
- 57 ecophysiology.

Introduction

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

Thermal tolerance limits reflect the environments in which species can persist, thus influencing species potential geographic distributions (Addo-Bediako et al. 2000, Gaston et al. 2009, Overgaard and MacMillan 2017). Environmental variability represents an important selection pressure that can influence species' thermal tolerance limits (Chevin et al. 2010, Hoffmann and Sgrò 2011, Seebacher et al. 2015), particularly for ectotherms. For instance, thermal tolerances broaden towards higher latitudes following greater seasonal variation in temperature, whereas there is a constriction in thermal tolerances towards the more thermally stable tropics (Ghalambor 2006, Sunday et al. 2011). The climate variability hypothesis states that broadened thermal limits in temperate zones result from exposure to wide ranging temperatures (Janzen 1967), including both increased basal thermal breadth and greater ability to adjust thermal traits to fluctuating environmental conditions via acclimation plasticity (Addo-Bediako et al. 2000, Overgaard et al. 2014, Phillips et al. 2016, Bacigalupe et al. 2018). Broad thermal limits might allow species to cope with increasing and more variable temperature regimes, dictating their vulnerability to current global climate change (Overgaard et al. 2011, Seebacher et al. 2015, Gunderson and Stillman 2015). Some species can quickly adjust their thermal traits to climatic exposure, especially small-bodied organisms with short life cycles (Rohr et al. 2018) as illustrated in many acclimation studies carried out under controlled laboratory conditions (Chown et al. 2009, Schulte et al. 2011). Similarly, there is a substantial literature on ectotherm overwintering biology that shows individuals sampled from the field during winter dormancy have substantially lower thermal limits than individuals sampled from the active season (Angilletta 2009, Denlinger and Lee 2010). However, many studies predicting organismal responses to climate change treat

high and low temperature tolerances as though they are locally adapted, but phenotypically fixed (Addo-Bediako et al. 2000). Furthermore, although some authors have suggested that phenotypic plasticity in high and low temperature tolerances may be able to buffer ectotherms from climate change (Sgrò, C. M. et al. 2016, Rohr et al. 2018), the data have not always been consistent with this view and the topic is currently under debate (Gunderson and Stillman 2015).

Environmental thermal variability is particularly evident in sub-tropical and temperate systems, where organisms experience a greater range of temperatures across seasons relative to tropical systems at similar elevations. If organismal thermal limits reflect climatic exposure, seasonal changes in temperature should yield predictable phenotypic responses—either plastic (i.e., acclimation) or rapid seasonal selection (Layne et al. 1987, Sanabria et al. 2012, Bergland et al. 2014, Sharma et al. 2015, Anderson et al. 2018). Latitudinal patterns of thermal tolerances have been observed across multiple taxonomic groups, with relatively narrow thermal breadths in the tropics and broadened thermal breadths towards higher latitudes (Addo-Bediako et al. 2000, Sunday et al. 2011). Whether this pattern broadly plays out in time as temperature changes from spring (cold-warm) to summer (warm-hot) to autumn (hot-cold) remains largely unexplored in the field (Figure 1 and 2a).

As a field, we are currently limited in our knowledge of the prevalence of shifts in both upper and lower thermal limits of organisms during their active season under ecologically realistic settings, as well as the magnitude of these phenotypic shifts in thermotolerances (Nussey et al. 2007, Valladares et al. 2007, Forsman 2015), particularly in response to seasonal variation in environmental temperature (Brown and Feldmeth 1971, Hu and Appel 2004, Arnan et al. 2015). For example, it is often assumed that upper thermal limits are fixed with little variance from tropical to temperate regions (Sunday et al. 2011) and thus this invariance in upper thermal

limits will limit the ability of ectotherms to respond to climate change. Yet, we know that both upper and lower thermal limits can change throughout the year either as a product of thermally dependent phenotypic plasticity (i.e., acclimation, Rohr et al. 2018) or, in ectotherms with short generation times, rapid seasonal selection (Bergland et al. 2014). For example, Bujan et al. (2020) recently showed that upper thermal limits were several degrees higher in late summer than in early spring in multiple species within a community of ants in a highly thermally seasonal site in Oklahoma, USA. Understanding the potential for organisms to adjust their thermotolerance distributions through space and time requires repeated measures of upper and lower thermal traits collected over a range of environmental conditions experienced by natural populations, species, and even whole communities across seasons.

Here, we test the extent to which the distribution of thermal tolerances change predictably across seasons in an entire mosquito community, akin to spatial patterns in thermal tolerance limits and breadth across latitude (Addo-Bediako et al. 2000, Sunday et al. 2011). Although some evidence exists showing that thermal parameters can change seasonally in the field (Brown and Feldmeth 1971, Houghton and Shoup 2014, Anderson et al. 2018), to our knowledge none of these studies have tracked shifts in both upper and lower thermal limits across time or taken a whole-community approach. We chose mosquitoes as our model system because they are a speciose group of insects with life cycles and activity that span across seasons, as well as providing an important cross-disciplinary opportunity to assess disease vector responses to climate change because they are responsible for a large number of diseases transmitted to humans and other animals. Furthermore, temperature is known to affect both population dynamics and vector competency of mosquito species (Paaijmans et al. 2009, Lambrechts et al. 2011, Sternberg and Thomas 2014, Mordecai et al. 2019). It is therefore crucial to understand

spatial and temporal dynamics of mosquito populations both within and across species (Li et al. 2014), and in response to changes in their environment (Sgrò et al. 2016).

We show clear shifts in upper and lower thermal tolerances and thermal breadth across the mosquito community over the timespan of one active season. Mosquitos shifted from more temperate-like thermal tolerance breadths in the spring, to more tropical patterns of narrow thermal breadth in summer, back to broader thermal patterns in the autumn. It is beyond the scope of this study to distinguish the extent to which these predictable shifts in thermal phenotypic distributions are due to selection on basal tolerances across time, due to plasticity (i.e., acclimation), or some combination of both. However, we suggest that explicitly incorporating predictable seasonal variation in thermotolerances nested within and among sites along latitudinal and altitudinal gradients should improve our ability to accurately predict how species ranges and other responses, like activity, may shift given future climate scenarios.

Methods

Study area

We sampled mosquitoes across a heterogeneous landscape in northern Florida, USA between April-October 2017. Our study area consisted of variable levels of forest cover, from low density, high solar radiation forests (e.g., *Pinus palustris, Pinus echinate, Pinus glabra*), to high density, low solar radiation forests (e.g., *Quercus virginia, Quercus alba, Quercus laevis*). The survey area spanned ~34 km from the city of Gainesville (29°39'N, 82°19'E) to the Ordway-Swisher Biological Station (OSBS) (29°41'N and 82°W), an National Ecological Observatory Network site.

We used John Hock New standard miniature light traps (Model 1012, 6VDC associated with an Insulated Dry-ice container; http://johnwhock.com/) to capture mosquitoes. Mosquitoes were attracted by a standardized release of CO₂ gas from melting dry ice and were collected by a mesh bag attached to a fan. Each trap was filled with approximately 2.5 kg of dry ice pellets. Once deployed, a light sensor on the trap triggered gas release at a standardized starting time of 18:00 and all traps continued to collect mosquitos until they were retrieved the following day at 08:00 (10 hours sampling effort per trap). We chose this sampling period because mosquitoes are most active during crepuscular and nocturnal hours (Lumsden 1952). All collected mosquitoes were immediately transported to an experimental facility for critical temperature measurements.

To account for diverse species-specific habitat preferences, we attempted to always place mosquito traps in two sites per day per location (i.e., location between Gainesville and OSBS). On each day of sampling, we attempted to always pair one survey site with limited vegetation (open, low canopy cover) with a second survey site with complex vegetation (closed, high canopy cover). In total, across 47 survey days, we sampled 71 sites (30 open and 41 closed sites) from which we placed a mosquito trap at ground height and a second trap in the canopy to sample different microhabitats (noting that not all open habitats contained a tree for canopy sampling) (Donoso et al. 2010). Each site was sampled one time. In total, we sampled 131 microhabitats (ground or canopy) over the course of this study (61 microhabitat samples in Gainesville and 70 microhabitat samples in OSBS). Ground traps were placed at < 1.5 m aboveground, whereas canopy traps heights ranged from 5 to 18 m above-ground. Each tree used to deploy a canopy trap was randomly selected, but we ensured it was within 20 m of the ground

trap and that each tree had a sufficiently strong branch to hold the weight of a light trap suspended by paracord.

Environmental data

We characterized microclimatic conditions at each site by monitoring air temperature every 15 minutes during sampling hours using a HOBO pendant data logger (model #U23-002). Each mosquito trap contained a logger and each logger was installed below a weather shield to block direct solar radiation and precipitation. We further characterized macroclimatic conditions using mean daily temperature extracted from nearby weather stations. For samples taken in and around the city of Gainesville, we used temperature data from a weather station located at Gainesville's regional airport. For samples taken at the OSBS, we used temperature data from a weather station located at OSBS. For simplicity, we refer to microclimatic conditions as microhabitat temperature and macroclimate conditions as environmental temperature.

Thermal tolerance trials

The critical thermal minimum and maximum of ectotherms are commonly used to infer organismal thermal constraints (Hutchison 1961). Here, we follow Hazell and Bale (Hazell and Bale 2011) and use the same response across individuals—the temperature at which coordination and response is lost during a ramped exposure to low or high temperatures to indicate CT_{min} and CT_{max} respectively (Scheffers et al. 2014, Overgaard and MacMillan 2017).

In total, our sampling across 71 sites yielded 28,406 total individual mosquitoes collected representing 18 species. From each trap, we haphazardly selected up to 10 individuals (not knowing species identity) and obtained their critical thermal limits (10 individuals for CT_{min} and

10 for CT_{max} respectively, for a total of 20 individuals phenotyped per trap). Mosquitoes were removed from mesh bag traps using an aspirator and each individual was placed into its own glass vial (3 cm diameter and 10 cm long). Each vial was sealed with a piece of cotton followed by a lid, placed in a temperature-controlled water bath (Lauda Eco Silver RE 1050) and floated on its side. We had a total of 10 vials in the water bath per experimental trial. Critical thermal limit trials consisted of exposing mosquitoes to a constant ramping rate of 0.5 °C/min and we frequently rotated each vial to elicit a response from mosquitoes. No response from an individual indicated that it reached its thermal limit. For all experiments, we held a starting temperature of 22°C for 15 min after which the ramping began. This step assured that all runs started at the exact same temperature and all mosquitoes were able to acclimate to that starting temperature. Our experimental design was the same for critical thermal minima and maxima. All experiments were completed within a four-hour period each morning.

We recorded within-vial air temperature for four of the ten vials in each heating or cooling trial using a copper-constantan thermocouple (data recorded by a Sable Systems TC-2000 and Expedata Software) and water bath temperature using a built-in water bath thermister (data recorded by LAUDA Wintherm Plus software). We then calculated the within-vial air temperatures across all 10 vials by modeling the relationship between vial and water bath temperature using linear regression. We used this analysis to convert water bath CT_{min} and CT_{max} temperatures to vial air temperatures (Y_{min} =0.804x+5.044 and Y_{max} =0.878x+3.380). Importantly, the CT_{min} and CT_{max} reported herein represent the relative hardiness to low and high temperatures of mosquito species, not the environmental temperature at which populations go extinct. We determined species thermal breadths as the difference between the mean CT_{min} and the mean CT_{max} measured from individuals of a species collected on the same day.

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

Statistical analyses

Organisms can acclimate to changes in their environment and short-lived organisms can also undergo rapid seasonal selection, thereby adjusting their physiology to maintain performance across a range of environmental conditions (Allen et al. 2016). However, acclimation (or rapid seasonal selection) can occur at a variety of timescales from days to weeks to months. Thus, a measure of organismal thermal tolerance may reflect environmental conditions experienced prior to their collection from the field. To more accurately assess the time scale of how quickly changes in thermal tolerances occurred in our study, we examined the relationship between a mosquito's environmental exposure in time prior to its capture and its thermal tolerance limits. To do this, we derived a mean temperature across a range of exposure intervals ranging from 1 to 30 days prior to each individual date of capture. Using ordinary least square models, we compared the fit of models that correlated mosquitoes' thermal tolerances against air temperatures derived from these exposure intervals. The number of days prior to capture that yielded the strongest fit between air temperature and thermal limits indicates a plausible period in the wild where thermal exposure best influences thermal tolerance limits. We used these air temperature values in subsequent analyses.

We used a linear mixed effect (LME) model framework to assess whether mosquitos' thermal phenotypes (CT_{min} , CT_{max} , and thermal breadth) track changes in temperature through time. The structure of our models included a random intercept and random slope term within species to account for differences in thermal phenotypes arising from different lineages (e.g., when phylogenetic information is lacking for fully considering species relatedness).

First, we assessed whether mosquito thermal tolerance limits and breadth change throughout time using Julian day as a predictor variable (fixed-effect). Given that temperature increases from spring to summer and decreases from summer to autumn (Fig. 2a), we added a quadratic term to Julian day using the model formula:

 $y \sim \text{poly}(Julian, 2)$, Random = $\sim \text{poly}(Julian, 2)|Species$

Next, we assessed whether mosquito thermal tolerance limits and breadth track changes in temperature. Here, we fitted two separate models based on two aspects of thermal exposure. The first model used environmental temperature (captured by macroclimate/regional air temperatures) as the predictor variable, whereas the second model used microclimatic temperature (representing exposure to air temperature at the site and time of collection) as the predictor variable. For each temperature type, we adopted the following model formula:

 $y \sim Temperature$, Random = $\sim Temperature | Species)$

We investigated species level differences in thermal tolerance limits and breadth across seasons by fitting species-specific linear models. These models include the same fixed terms as in the above-mentioned models but without the random effect term of species. We ran these linear models for each species with five or more observations as smaller sample sizes preclude the explanatory power of our models.

We performed additional analyses to assess the potential effect of body mass on mosquitos' thermal tolerances. Body mass may influence species thermal tolerances via its effect on acclimation potential (Rohr et al. 2018). As such, we included body mass as a fixed effect term to the above aforementioned CT_{min} and CT_{max} models. Adding this variable did not dramatically improve the fit of any model, and thus we excluded body mass from further consideration (Supporting Information Table S1).

Model performance was accessed using Akaike information criterion (AICc) and adjusted R² following Nagelkerke's formula (Nagelkerke 1991). Predictor variables were scaled by one standard deviation before analysis to produce standardized coefficients (slopes). All analyses were performed in R using the package 'nlme' (Pinheiro et al. 2018) and 'MuMIn' (Bartoń 2017).

We calculated thermal safety margins for each species by subtracting the thermal tolerance (CT_{min} or CT_{max}) from the minimum or maximum temperature of the previous 11 days (see above methods for details), respectively. A negative thermal-safety margin indicates that the environmental temperature has surpassed a species' thermal tolerance limit and should cause physiological failure and/or death. We fitted a linear model and a polynomial model to display and visualize general patterns of thermal-safety margins changing in response to the mean minimum and maximum temperature of prior 11 days and Julian day, respectively.

Results

Temperature tracked a hump-shaped path through time, increasing from spring to summer (slope = 0.81, P-value < 0.001) and decreasing from summer to autumn (slope = -2.13, P-value < 0.001) (Figure 2a and Supporting Information Figure S1). The minimum temperature recorded was 9.5°C, and the maximum temperature recorded was 36.1°C.

We measured thermal tolerance for 962 individuals ($CT_{min} = 520$, $CT_{max} = 442$) from 18 species (Figure 2b). We calculated thermal breadth for 13 out of 18 mosquito species, from which we had measures of both CT_{min} and CT_{max} from the same sampling day. The most abundant species were from the genus *Culex* (e.g., *C. erraticus*, *C. nigripapus*, and *C*.

quinquefasciatus) and Aedes (e.g., A. infirmatus and A. vexans) (Figure 2b). Most genera remained present over the entire sampling season, meaning that community composition did not vary considerably over the study period (Figure 2b).

Mosquito CT_{min} was best approximated by temperature in the last 11 days from when they were collected from the field (Supporting Information Figure S2). The correlation between CT_{max} and temperature was largely invariant to increments in days before sampling (R² always < 0.1). Qualitatively similar results were obtained using either micro-climate temperature or environmental temperature, but the strongest correlations were obtained using environmental temperature as a predictor of mosquitoes' CTs (Supporting Information Figure S2). For consistency, we adopted the same exposure interval of 11 days for CT_{min} and CT_{max}.

Mosquitoes' CT_{min} values were lower than the minimum environmental temperature recorded during our sampling period, and their CT_{max} values were higher than the maximum-recorded temperature (Figure 3). This indicates mosquitoes in our study area operate in a thermal safe zone relative to exposure to environmental temperature (Figure 3). The same pattern is evident at the microclimate scale, with most species showing CT_{min} values smaller than the minimum-recorded temperature (11 out of 15 species) and CT_{max} values higher than the maximum-recorded temperature (14 out of 15 species) (Supporting Information Figure S4). However, instances of thermal danger did occur during cool autumn (4 species) and warm summer conditions (1 species) (Supporting Information Figure S5).

Mosquito CT_{min} increased with time during the first period of our sampling season following the increase in environmental temperature from spring to summer and decreased towards the end of our sampling season following the decrease in environmental temperature from summer to autumn (Fig 4C, Supporting Information Table S2). The CT_{max} values for

mosquitoes decreased from spring to summer and then increased from summer to autumn (Fig 4A), although the slope and variance explained of the polynomial model for CT_{max} over time was nearly half of those observed for CT_{min} (Supporting Information Table S2). As a result, community-wide, mosquito thermal breadth decreased in the summer period, returning to spring levels in autumn (Fig 4E; Supporting Information Table S2).

Mosquito's CT_{min} followed seasonal changes in environmental temperature (Fig 4D, Fig 5). The effect of environmental temperature on mosquito's CT_{min} was positive, with 7 of the 9 modeled species showing a significant increase in their CT_{min} in response to temperature (Fig 4D, Fig 5). In contrast to expectations, mosquito's CT_{max} declined with increases in environmental temperature (Fig 4B). The effect of environmental temperature on CT_{max} was not as strong as its effect on CT_{min} (~2.45 times smaller, Fig 5), with only 2 of 10 modeled species showing a significant response between environmental temperature and CT_{max}. Thermal breadth of mosquitoes also decreased with increasing environmental temperature (Fig 4F, Fig 5). The reduction observed in mosquito's thermal breadth resulted primarily from increases in CT_{min}, as CT_{max} showed little change with temperature. Environmental temperature was a better predictor of thermal tolerance than microhabitat temperature, but similar trends hold for microhabitat climate data (Supporting Information Figure S6 and S7).

Discussion

An increase in thermal breadth with the spatial gradient of latitude from tropical to temperate locations is considered a macrophysiological rule (Gaston et al. 2009, Sunday et al. 2011, Franks et al. 2014, Rezende et al. 2014). Our study shows clear shifts in both high and low thermal tolerances, as well as in thermal breadth of an entire mosquito community across time at a single

latitude that recapitulates the vast majority of the larger-scale latitudinal pattern generalized across diverse taxa. Specifically, mosquito thermal breadth decreased from spring (cold) to summer (hot) and then increased towards the autumn (cold). This constriction of thermal breadth from spring to summer and re-expansion from summer to autumn at our single site suggests that latitudinal patterns in organismal thermal biology may result dynamically from seasonal shifts in thermal traits (e.g., compare Figures 1 and 4c).

Spatiotemporal patterns in thermal tolerances appear to be highly nested, whereby seasonal shifts in thermal breadth within a temperate latitude band reflect inter-latitudinal patterns in thermal biology. As noted by Sunday et al. (2011), considerable inter-specific variation in thermal tolerances exists at sub-tropical and temperate latitudes. Our study on mosquitos suggests that the thermal variation observed by macroecological studies within each latitudinal band may not simply be random variability, but rather predictably structured variation that may result from thermal traits shifting with seasons both within and across species, at least in some organisms (Figure 1).

We show thermal breadth waxes and wanes with seasonal changes in temperature at our single latitude rather than staying static in time (Figure 4). Although our study was not designed to distinguish the extent to which these shifts in thermal tolerances are due to rapid selection on basal tolerances across time (e.g., Bergland et al. (2014)) or due to acclimation plasticity, the response we observed is consistent with both mechanisms. We found that species' thermal tolerances during the summer resemble 'classical' tropical species whereas during spring and autumn thermal tolerances resemble 'classical' temperate species (Figure 1). This manifests in a community-wide summertime physiological *tropicalization* of animals (thermal breadths of temperate organisms that reflect those of the tropics) that is sandwiched between a spring and

autumn *temperatization* owing to overall greater climate variability. Under climate change, communities are becoming increasingly thermophilic (often referenced as *tropicalization* or *borealization*) whereby cold-adapted species are being replaced by warm-adapted species in non-tropical ecosystems (De Frenne et al. 2013). As such, with summers expected to become longer due to climate change and with nights on the seasonal shoulders expected to become warmer, we might expect an increasing *tropicalization* of temperate species with wide ranging implications from species persistence to activity times to whole community interactions.

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

Evidence for thermal acclimation via laboratory experiments (Hoffmann et al. 2005, Rohr et al. 2018), as well as spatial shifts in thermal traits (Sunday et al. 2014, Seebacher et al. 2015, Sgrò et al. 2016), are widespread. For example, thermal limits have been shown to shift across climate gradients formed by habitat (e.g., forest fragmentation; (Phillips et al. 2016), elevation (Sheldon and Tewksbury 2014, Slatyer et al. 2016) and latitude (Addo-Bediako et al. 2000, Sunday et al. 2014). Conversely, temporal shifts in thermal breadth are poorly documented in nature within species, much less across entire communities. Our study indicates that a diverse community of mosquitoes seasonally adjust their thermal tolerance parameters and do so relatively quickly (~11 days) in response to changes in temperature. The observed seasonal changes in tolerance occur mainly in lower thermal limits (Terblanche et al. 2007), agreeing with previous studies suggesting stronger physiological constraints on upper thermal limits (Vorhees et al. 2013, Gunderson and Stillman 2015). That said, we observed a counter-gradient pattern in CT_{max} as tolerances to heat were lowest in summer and highest during spring and autumn; with the most pronounced counter-gradient pattern occurring from summer to autumn. There is a growing literature showing support of counter-gradient patterns between CT_{max} and environmental temperatures in lizards (e.g., Llewelyn et al 2016 and Hodgson and Schwanz

2019) and our study extends this phenomenon to invertebrates. Counter-gradient patterns may be triggered by exhaustive exposure to high temperatures (e.g., during summer) that drives behavioral thermoregulatory shifts towards cooler microhabitats. Under such a scenario, behavioral avoidance of very warm temperatures when the risks of high-temperature stress are greatest, can then lead to lowering of CT_{max} through less exposure to warm temperatures and thus less high-temperature acclimation or less selection for high-temperature tolerance. While reports of counter-gradient patterns in CT_{max} are few at this point, to our knowledge our study is the first to show such a pattern in a seasonal context. Given the importance of CT_{max} for forecasting potential negative effects of climate change, and particularly impacts of extreme high temperature events, more consideration of this phenomenon in natural populations under seasonal cycles is warranted.

The lifespan of a mosquito can range from a few days up to two months or so, depending on weather conditions and food availability. Due to the short timescale involved in the response of CT_{min} and CT_{max} to recent environmental temperatures, 11 days, we expect that acclimation plasticity plays an important role in shaping the observed patterns of summer *tropicalization* and *temperatization* in spring and fall in our mosquito community. However, owing to the relatively short lifespan of many mosquito species, it is also possible that shifts in thermal tolerances are due to rapid seasonal selection, as has been shown to occur in field populations of the short-lived fly *Drosophila melanogaster* (Bergland et al. 2014). Partitioning the relative importance of selection, acclimation plasticity, and even selection for acclimation plasticity should be the focus of future work. Understanding the contributions of each of these mechanisms for shaping thermal tolerances would allow better prediction of the effects of exposure to thermal variation on species in a changing world.

One potential systematic bias in sampling that has not been well explored in previous studies on thermal limits or thermal breadth is how the timing of seasonal sampling may affect these parameters. By sampling across seasons in which mosquitos are active, our temporal span and resolution allowed us to capture a larger range of thermal responses present across the whole community, which is fundamental for multivoltine species with rapid generation times (Nadeau et al. 2017). Similarly, Bujan et al. (2020) recently showed that CT_{max} increased from spring to summer in several species within an ant community at a temperate site. Furthermore, both (Ragland and Kingsolver 2008) and Sheldon and Tewksbury (2014) show that temperature variation restricted to the months species are active was a better predictor of thermal tolerances in mosquitoes and beetles than was annual seasonality. Together, these studies suggest that consideration of time within a year when animals are sampled in the field is equally important as the latitude at which they are sampled to avoid methodological bias in tolerance estimates. For example, without a temporal consideration, macro-ecological studies exploring thermal tolerance limits at temperate latitudes within the bounds of summer, will likely observe a dampening of thermal breadth (i.e., thermal breadths of temperate species that are more equivalent to tropical species). This may not only lead to investigators missing important predictable variability in tolerance limits that exists within populations, but it may also explain some of the commonly observed overfilling of niche space in species distribution models (Sunday et al. 2014). Specifically, species frequently occur in areas that are colder than they are expected to given their cold tolerance limits. If the lower thermal tolerances for these species were estimated from locally tropicalized summer individuals rather than locally temperatized individuals from spring or fall, the estimates for lowered thermal tolerances may be systematically biased upwards indicating overfilling of the expected species range. Overall, we argue that more detailed

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

understanding of the scale of predictable seasonal variation in thermal tolerances can have widerranging implications for predicting a range of climate impacts from specific populations to community interactions and ecosystem functioning.

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

Mosquitoes are prominent disease vectors and species from the genera Aedes, Anopheles, Mansonia, and Culex, all of which we observed in our study, can carry viruses that can induce human and/or wildlife diseases such as St. Louis encephalitis, Eastern equine encephalitis, and West Nile virus. Our findings suggest that in the near-term, increases in temperature due to climate change will not surpass conditions for mosquito activity in North Florida – their thermal tolerances consistently surpassed the recorded extreme temperatures in our study both at fine and coarse temperature sampling (Figure 3, Supporting Information S3, S4 and S5). We note that although the minimum recorded temperature during our study was 9.5 °C, we did not sample in the coldest months of winter and across years temperatures can reach sub-zero in our region, which would exceed the CT_{min} of some species in our study. However, species can invoke diapause or other seasonal dormancy responses to cope with seasonally predictable cold exposure. These adaptations place them into a physiologically protective state whereby high and low temperature tolerances can be substantially different than animals in the active season (Werner and Gilliam 1984, Hahn and Denlinger 2007, Ragland and Kingsolver 2008, Ragland and Keep 2017). Species can also avoid extreme temperatures by seeking shelter within buffered microhabitats (Williams et al. 2015). Winter temperatures are considered the major factor limiting species distributions in our study region, which occurs at the southern extent of the North American freeze line. Thus, with climate change, mosquitoes may increase their annual activity time as well as expand their distribution Northward or upward in altitude, both of which can lead to greater host-vector interactions (Siraj et al. 2014). Temperature, and particularly

daily and seasonal thermal variation, are emerging as important predictors of vector competency for mosquito-borne diseases (Lambrechts et al. 2011, Mordecai et al. 2019). Yet, our understanding of what internal physiological factors of individual mosquitoes may combine with mosquito population dynamics to affect disease risk is still developing (Sternberg and Thomas 2014, Thomas et al. 2018). Our work on community-wide patterns of variation in thermal breadth for activity lays a foundation for understanding seasonal patterns of disease risk within and across latitudes. Additionally, our findings were relatively consistent within species and across species (community level) suggesting that our results are likely broadly applicable to mosquito species distributed across North America, as well as likely applicable to many other species of ectotherms, from insects to amphibians (Rohr et al. 2018).

Conclusions

We show that through time at a single latitude, thermal breadth shrinks and expands with seasonal changes in temperature—predictable seasonal shifts in thermal traits that recapitulate broader latitudinal patterns. Importantly, our results suggest that to more accurately understand species vulnerability and responses to climate change, studies of species sensitivity and exposure over time as well as space are required to fully characterize a species' phenotypic range.

Considering the variability in thermal limits expressed across seasons may help explain the overfilling of thermal tolerances at the cold boundary of species ranges (Sunday et al. 2014).

Such understanding can inform species distribution models and can more broadly inform predictions of climate impacts from specific populations to community interactions and ecosystem functioning. Filling this knowledge gap is critical for understanding general ecological patterns across scale, intrinsic resilience to climate change (Sunday et al. 2014,

Seebacher et al. 2015, Sgrò et al. 2016), and how common disease vectors might impact society in the future. In the case of our study system, mosquitos as disease vectors may phenotypically become more tropical-like in pattern as a reflection of summers becoming longer and winter night-time temperatures becoming warmer, with likely consequence for their future distribution, activity, and vector competency.

4//	
478	References
479	Addo-Bediako, A., S. L. Chown, and K. J. Gaston. 2000. Thermal tolerance, climatic variability
480	and latitude. Proceedings of the Royal Society B: Biological Sciences 267:739–745.
481	Allen, J. L., S. L. Chown, C. Janion-Scheepers, and S. Clusella-Trullas. 2016. Interactions
482	between rates of temperature change and acclimation affect latitudinal patterns of
483	warming tolerance. Conservation Physiology 4:cow053.
484	Anderson, R. C. de O., R. P. Bovo, and D. V. Andrade. 2018. Seasonal variation in the thermal
485	biology of a terrestrial toad, Rhinella icterica (Bufonidae), from the Brazilian
486	Atlantic Forest. Journal of Thermal Biology 74:77–83.
487	Angilletta, M. J. 2009. Thermal Adaptation: A Theoretical and Empirical Synthesis. 1st
488	edition. Oxford University Press, Oxford.
489	Arnan, X., N. Blüthgen, R. Molowny-Horas, and J. Retana. 2015. Thermal Characterization of
490	European Ant Communities Along Thermal Gradients and Its Implications for
491	Community Resilience to Temperature Variability. Frontiers in Ecology and
492	Evolution 3.
493	Bacigalupe, L. D., J. D. Gaitán-Espitia, A. M. Barria, A. Gonzalez-Mendez, M. Ruiz-Aravena, M.
494	Trinder, and B. Sinervo. 2018. Natural selection on plasticity of thermal traits in a
495	highly seasonal environment. Evolutionary Applications 11:2004–2013.
496	Bartoń, K. 2017. MuMIn: Multi-model inference. Version 1.40.0. Available at:

http://CRAN.R-project.org/package=MuMIn.

400	
498	Bergland, A. O., E. L. Behrman, K. R. O'Brien, P. S. Schmidt, and D. A. Petrov. 2014. Genomic
499	Evidence of Rapid and Stable Adaptive Oscillations over Seasonal Time Scales in
500	Drosophila. PLoS Genetics 10:e1004775.
501	Brown, J. H., and C. R. Feldmeth. 1971. Evolution in constant and fluctuating environments:
502	Thermal tolerances of desert pupfish (Cyprinodon). Evolution 25:390–398.
503	Chevin, LM., R. Lande, and G. M. Mace. 2010. Adaptation, Plasticity, and Extinction in a
504	Changing Environment: Towards a Predictive Theory. PLoS Biology 8:e1000357.
505	Chown, S. L., K. R. Jumbam, J. G. Sørensen, and J. S. Terblanche. 2009. Phenotypic variance,
506	plasticity and heritability estimates of critical thermal limits depend on
507	methodological context. Functional Ecology 23:133-140.
508	Denlinger, D. L., and R. E. Lee. 2010. Low Temperature Biology of Insects. 1st edition.
509	Cambridge University Press, Cambridge.
510	Donoso, D. A., M. K. Johnston, and M. Kaspari. 2010. Trees as templates for tropical litter
511	arthropod diversity. Oecologia 164:201–211.
512	Forsman, A. 2015. Rethinking phenotypic plasticity and its consequences for individuals,
513	populations and species. Heredity 115:276–284.
514	Franks, S. J., J. Weber, and S. N. Aitken. 2014. Evolutionary and plastic responses to
515	climate change in terrestrial plant populations. Evolutionary Applications 7:123-
516	139.
517	De Frenne, P., F. Rodriguez-Sanchez, D. A. Coomes, L. Baeten, G. Verstraeten, M. Vellend, M.
518	Bernhardt-Romermann, C. D. Brown, J. Brunet, J. Cornelis, G. M. Decocq, H.
519	Dierschke, O. Eriksson, F. S. Gilliam, R. Hedl, T. Heinken, M. Hermy, P. Hommel, M. A.
520	Jenkins, D. L. Kelly, K. J. Kirby, F. J. G. Mitchell, T. Naaf, M. Newman, G. Peterken, P.

521	Petrik, J. Schultz, G. Sonnier, H. Van Calster, D. M. Waller, GR. Walther, P. S. White, K.
522	D. Woods, M. Wulf, B. J. Graae, and K. Verheyen. 2013. Microclimate moderates plant
523	responses to macroclimate warming. Proceedings of the National Academy of
524	Sciences 110:18561-18565.
525	Gaston, K. J., S. L. Chown, P. Calosi, J. Bernardo, D. T. Bilton, A. Clarke, S. Clusella-Trullas, C.
526	K. Ghalambor, M. Konarzewski, L. S. Peck, W. P. Porter, H. O. Pörtner, E. L. Rezende,
527	P. M. Schulte, J. I. Spicer, J. H. Stillman, J. S. Terblanche, and M. van Kleunen. 2009.
528	Macrophysiology: A Conceptual Reunification. The American Naturalist 174:595-
529	612.
530	Ghalambor, C. K. 2006. Are mountain passes higher in the tropics? janzen's hypothesis
531	revisited. Integrative and Comparative Biology 46:5–17.
532	Gunderson, A. R., and J. H. Stillman. 2015. Plasticity in thermal tolerance has limited
533	potential to buffer ectotherms from global warming. Proceedings of the Royal
534	Society B: Biological Sciences 282:20150401.
535	Hahn, D. A., and D. L. Denlinger. 2007. Meeting the energetic demands of insect diapause:
536	Nutrient storage and utilization. Journal of Insect Physiology 53:760-773.
537	Hazell, S. P., and J. S. Bale. 2011. Low temperature thresholds: Are chill coma and CTmin
538	synonymous? Journal of Insect Physiology 57:1085–1089.
539	Hoffmann, A. A., and C. M. Sgrò. 2011. Climate change and evolutionary adaptation. Nature
540	470:479–485.
541	Hoffmann, A. A., J. Shirriffs, and M. Scott. 2005. Relative importance of plastic vs genetic
542	factors in adaptive differentiation: geographical variation for stress resistance in
543	Drosophila melanogaster from eastern Australia. Functional Ecology 19:222–227.

544	Houghton, D. C., and L. Shoup. 2014. Seasonal Changes in the Critical Thermal Maxima of
545	Four Species of Aquatic Insects (Ephemeroptera, Trichoptera). Environmental
546	Entomology 43:1059-1066.
547	Hu, X. P., and A. G. Appel. 2004. Seasonal Variation of Critical Thermal Limits and
548	Temperature Tolerance in Formosan and Eastern Subterranean Termites (Isoptera
549	Rhinotermitidae). Environmental Entomology 33:197–205.
550	Hutchison, V. H. 1961. Critical Thermal Maxima in Salamanders. Physiological Zoology
551	34:92–125.
552	Janzen, D. H. 1967. Why Mountain Passes are Higher in the Tropics. The American
553	Naturalist 101:233–249.
554	Lambrechts, L., K. P. Paaijmans, T. Fansiri, L. B. Carrington, L. D. Kramer, M. B. Thomas, and
555	T. W. Scott. 2011. Impact of daily temperature fluctuations on dengue virus
556	transmission by Aedes aegypti. Proceedings of the National Academy of Sciences
557	108:7460-7465.
558	Layne, J. R., D. L. Claussen, and M. L. Manis. 1987. Effects of acclimation temperature,
559	season, and time of day on the critical thermal maxima and minima of the crayfish
560	Orconectes rusticus. Journal of Thermal Biology 12:183–187.
561	Li, Y., F. Kamara, G. Zhou, S. Puthiyakunnon, C. Li, Y. Liu, Y. Zhou, L. Yao, G. Yan, and XG.
562	Chen. 2014. Urbanization Increases Aedes albopictus Larval Habitats and
563	Accelerates Mosquito Development and Survivorship. PLoS Neglected Tropical
564	Diseases 8:e3301.

565	Lumsden, W. H. R. 1952. The crepuscular biting Activity of Insects in the Forest Canopy in
566	Bwamba, Uganda. A Study in Relation to the Sylvan Epidemiology of Yellow Fever.
567	Bulletin of Entomological Research 42:721.
568	Mordecai, E. A., J. M. Caldwell, M. K. Grossman, C. A. Lippi, L. R. Johnson, M. Neira, J. R. Rohr,
569	S. J. Ryan, V. Savage, M. S. Shocket, R. Sippy, A. M. Stewart Ibarra, M. B. Thomas, and
570	O. Villena. 2019. Thermal biology of mosquito-borne disease. Ecology Letters
571	22:1690–1708.
572	Nadeau, C. P., M. C. Urban, and J. R. Bridle. 2017. Climates Past, Present, and Yet-to-Come
573	Shape Climate Change Vulnerabilities. Trends in Ecology & Evolution 32:786–800.
574	Nagelkerke, N. J. D. 1991. A note on a general definition of the coefficient of determination.
575	Biometrika 78:691–692.
576	Nussey, D. H., A. J. Wilson, and J. E. Brommer. 2007. The evolutionary ecology of individual
577	phenotypic plasticity in wild populations. Journal of Evolutionary Biology 20:831-
578	844.
579	Overgaard, J., M. R. Kearney, and A. A. Hoffmann. 2014. Sensitivity to thermal extremes in
580	Australian Drosophila implies similar impacts of climate change on the distribution
581	of widespread and tropical species. Global Change Biology 20:1738–1750.
582	Overgaard, J., T. N. Kristensen, K. A. Mitchell, and A. A. Hoffmann. 2011. Thermal Tolerance
583	in Widespread and Tropical Drosophila Species: Does Phenotypic Plasticity Increase
584	with Latitude? The American Naturalist 178:S80-S96.
585	Overgaard, J., and H. A. MacMillan. 2017. The Integrative Physiology of Insect Chill
586	Tolerance. Annual Review of Physiology 79:187–208.

587	Paaijmans, K. P., A. F. Read, and M. B. Thomas. 2009. Understanding the link between
588	malaria risk and climate. Proceedings of the National Academy of Sciences
589	106:13844–13849.
590	Phillips, B. L., M. M. Muñoz, A. Hatcher, S. L. Macdonald, J. Llewelyn, V. Lucy, and C. Moritz.
591	2016. Heat hardening in a tropical lizard: geographic variation explained by the
592	predictability and variance in environmental temperatures. Functional Ecology
593	30:1161–1168.
594	Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, EISPACK, S. Heisterkamp, B. Van Willigen, and R.
595	core. 2018. "nlme": Linear and Nonlinear Mixed Effects Models. R package version
596	3.1-137. Vienna, Austria: Comprehensive R Archive Network.
597	Ragland, G. J., and E. Keep. 2017. Comparative transcriptomics support evolutionary
598	convergence of diapause responses across Insecta. Physiological Entomology
599	42:246–256.
600	Ragland, G. J., and J. G. Kingsolver. 2008. EVOLUTION OF THERMOTOLERANCE IN
601	SEASONAL ENVIRONMENTS: THE EFFECTS OF ANNUAL TEMPERATURE
602	VARIATION AND LIFE-HISTORY TIMING IN WYEOMYIA SMITHII. Evolution
603	62:1345–1357.
604	Rezende, E. L., L. E. Castañeda, and M. Santos. 2014. Tolerance landscapes in thermal
605	ecology. Functional Ecology 28:799–809.
606	Rohr, J. R., D. J. Civitello, J. M. Cohen, E. A. Roznik, B. Sinervo, and A. I. Dell. 2018. The
607	complex drivers of thermal acclimation and breadth in ectotherms. Ecology Letters
608	21:1425–1439.

609	Sanabria, E. A., L. B. Quiroga, and A. L. Martino. 2012. Seasonal changes in the thermal
610	tolerances of the toad Rhinella arenarum (Bufonidae) in the Monte Desert of
611	Argentina. Journal of Thermal Biology 37:409–412.
612	Scheffers, B. R., D. P. Edwards, A. Diesmos, S. E. Williams, and T. A. Evans. 2014.
613	Microhabitats reduce animal's exposure to climate extremes. Global Change Biology
614	20:495–503.
615	Schulte, P. M., T. M. Healy, and N. A. Fangue. 2011. Thermal Performance Curves,
616	Phenotypic Plasticity, and the Time Scales of Temperature Exposure. Integrative and
617	Comparative Biology 51:691–702.
618	Seebacher, F., C. R. White, and C. E. Franklin. 2015. Physiological plasticity increases
619	resilience of ectothermic animals to climate change. Nature Climate Change 5:61-66
620	Sgrò, C. M., J. S. Terblanche, and A. A. Hoffmann. 2016. What Can Plasticity Contribute to
621	Insect Responses to Climate Change? Annual Review of Entomology 61:433-451.
622	Sharma, N. K., M. S. Akhtar, N. Pandey, R. Singh, and A. K. Singh. 2015. Seasonal variation in
623	thermal tolerance, oxygen consumption, antioxidative enzymes and non-specific
624	immune indices of Indian hill trout, Barilius bendelisis (Hamilton, 1807) from
625	central Himalaya, India. Journal of Thermal Biology 52:166–176.
626	Sheldon, K. S., and J. J. Tewksbury. 2014. The impact of seasonality in temperature on
627	thermal tolerance and elevational range size. Ecology 95:2134–2143.
628	Siraj, A. S., M. Santos-Vega, M. J. Bouma, D. Yadeta, D. R. Carrascal, and M. Pascual. 2014.
629	Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia.
630	Science 343:1154–1158.

631	Slatyer, R. A., M. A. Nash, and A. A. Hoffmann. 2016. Scale-dependent thermal tolerance
632	variation in Australian mountain grasshoppers. Ecography 39:572–582.
633	Sternberg, E. D., and M. B. Thomas. 2014. Local adaptation to temperature and the
634	implications for vector-borne diseases. Trends in Parasitology 30:115–122.
635	Sunday, J. M., A. E. Bates, and N. K. Dulvy. 2011. Global analysis of thermal tolerance and
636	latitude in ectotherms. Proceedings of the Royal Society B: Biological Sciences
637	278:1823–1830.
638	Sunday, J. M., A. E. Bates, M. R. Kearney, R. K. Colwell, N. K. Dulvy, J. T. Longino, and R. B.
639	Huey. 2014. Thermal-safety margins and the necessity of thermoregulatory
640	behavior across latitude and elevation. Proceedings of the National Academy of
641	Sciences of the United States of America 111:5610-5615.
642	Terblanche, J. S., J. A. Deere, S. Clusella-Trullas, C. Janion, and S. L. Chown. 2007. Critical
643	thermal limits depend on methodological context. Proceedings of the Royal Society
644	B: Biological Sciences 274:2935–2943.
645	Thomas, S., S. Ravishankaran, N. A. J. A. Justin, A. Asokan, T. M. J. Kalsingh, M. T. Mathai, N.
646	Valecha, J. Montgomery, M. B. Thomas, and A. Eapen. 2018. Microclimate variables of
647	the ambient environment deliver the actual estimates of the extrinsic incubation
648	period of Plasmodium vivax and Plasmodium falciparum: a study from a malaria-
649	endemic urban setting, Chennai in India. Malaria Journal 17:201.
650	Valladares, F., E. Gianoli, and J. M. Gómez. 2007. Ecological limits to plant phenotypic
651	plasticity. New Phytologist 176:749–763.

653 Correlate with Climate in Populations of a Widespread Mosquito. Physiological and 654 Biochemical Zoology 86:73–81. 655 Werner, E. E., and J. F. Gilliam. 1984. The ontogenetic niche and species interactions in size-656 structured populations. Annual review of ecology and systematics 15:393–425. 657 Williams, C. M., H. A. L. Henry, and B. J. Sinclair. 2015. Cold truths: How winter drives 658 responses of terrestrial organisms to climate change. Biological Reviews 90:214-659 235. 660 Zuur, A. F., and E. N. Ieno. 2016. A protocol for conducting and presenting results of 661 regression-type analyses. Methods in Ecology and Evolution 7:636–645. 662 663 664 Figures legends 665 Figure 1. Conceptual figure highlighting our main hypothesis in terms of spatio-temporal 666 temperature variation and its impact on mosquito thermal tolerance. Sunday et al. 2011 suggests 667 increasing thermal breadth with latitude due to largely fixed CT_{max} and substantial lowering of 668 CT_{min}. In addition to space, temperature also changes seasonally through time. We predict lower 669 CT_{min} during Spring and Autumn and higher CT_{min} during the summer. CT_{max} is predicted to stay 670 constant. As a result, thermal breadth should reflect the same pattern in time at a single location

(latitude) as it does across locations separated by latitude. As a result, temperate latitudes are

'tropical' during the summer and 'temperate' during the spring and autumn.

Vorhees, A. S., E. M. Gray, and T. J. Bradley. 2013. Thermal Resistance and Performance

652

671

672

Environmental temperature varied considerably through time over the sampling season (A). Most species occurred over the entire sampling season (B). In (A), black circles represent mean daily environmental temperature and the black line represents the fit of a polynomial function. In (B),

circles represent species occurrence. For seasonal variation in microclimate temperature refer to

Figure 2. Variation in environmental temperature and species composition through time.

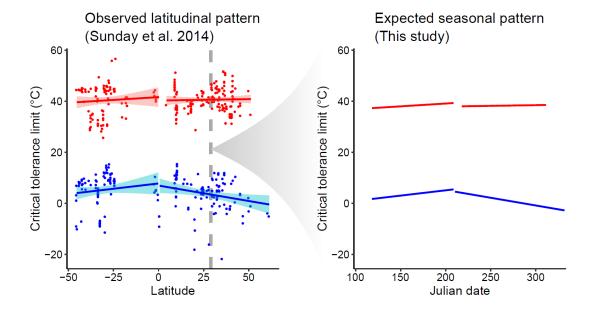
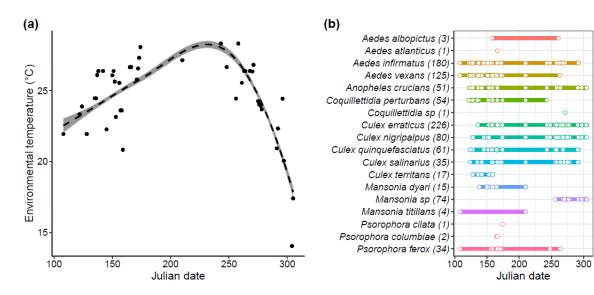
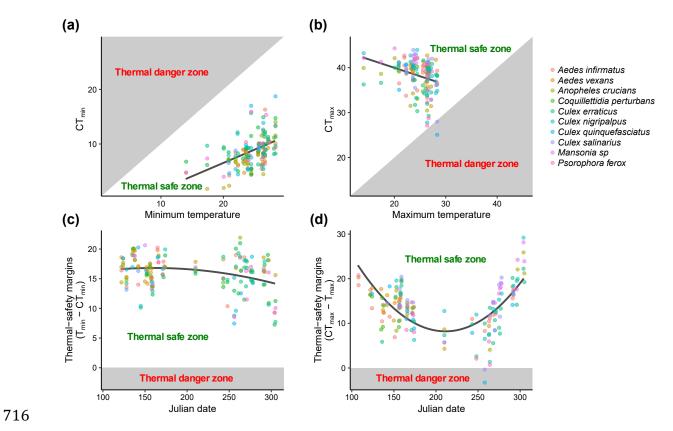
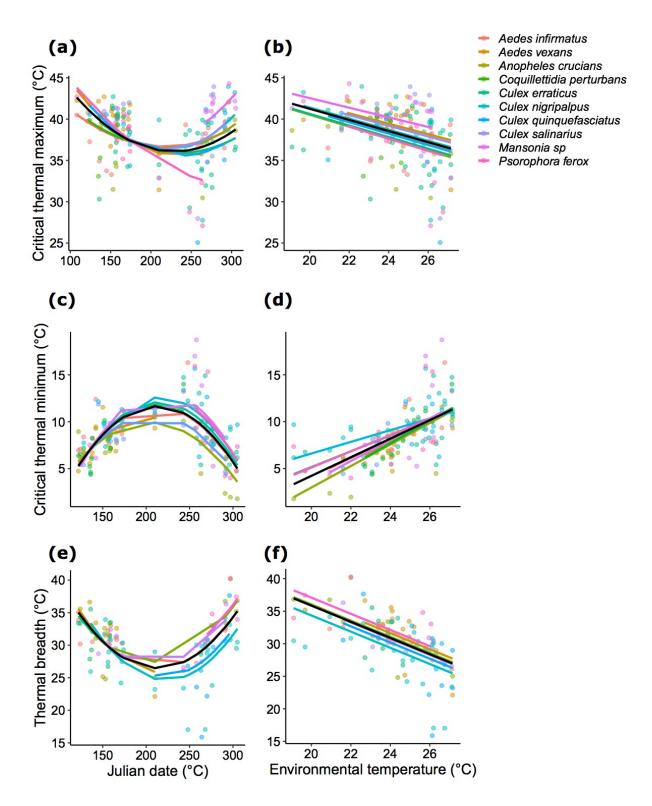

Supporting Information Figure S3.

Figure 3. Thermal safety margins of mosquitoes in North Florida. The white areas of the diagrams (A) and (B) show where species have a physiological thermal-safety margin to the mean minimum temperatures (A) or to the mean maximum temperatures (B) of the previous 11 days. Diagrams (C) and (D) show thermal-safety margins of species as a function of Julian day based on the difference between the mean minimum environmental temperature observed and their CT_{min} (C) and the difference between their CT_{max} and the mean maximum environmental temperature observed (D). Similar trends hold for thermal safety margins measured at the scale of the microclimate (Supporting Information Figure S5). Lines are derived from a linear model and a polynomical model to visualize general patterns of thermal-safety margins changing in response to temperature (A and B) and Julian day (C and D), respectively

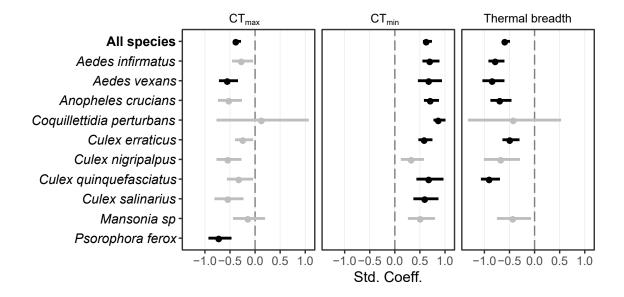

Figure 4. Responses of mosquito thermal tolerances to time (Julian day) and environmental temperature. Observations (dots) and regression lines are color coded by species. Black lines represent general patterns regardless of species. The responses of mosquito thermal tolerances to time (A, C and E) were modeled using 2nd ordered polynomial regression model within a mixed-effect framework $[y \sim poly(x,2)]$ whereas the responses of mosquito thermal tolerances to

environmental temperature (B, D and F) were modeled using linear regressions. Similar trends hold for relationships of mosquito thermal tolerances and temperature measured at the scale of the microclimate (Supporting Information Figure S6). Lines are connecting fitted values from the linear mixed-effects model.


Figure 5. Effect of environmental temperature on mosquito thermal tolerance. Environmental temperature had a positive effect on mosquito CT_{min} , but a negative effect on their CT_{max} and thermal breadth. Most species showed seasonal shifts in their CT_{min} (7 out of 9), and thermal breadth (5 out of 8), but only a few showed seasonal shifts in their CT_{max} (2 out of 10). Refer to Supporting Information Figure S4 for the relationships between mosquito thermal tolerance and temperature measured at the scale of the microhabitat. Similar trends hold for relationships between mosquito thermal tolerance and temperature measured at the scale of the microhabitat (Supporting Information Figure S6 and S7).



712 Figure 2



715 Figure 3

724 Figure 5.

