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ABSTRACT

Estimating the cardinality (number of distinct elements) of a large
multiset is a classic problem in streaming and sketching, dating
back to Flajolet and Martin’s classic Probabilistic Counting (PCSA)
algorithm from 1983.

In this paper we study the intrinsic tradeoff between the space
complexity of the sketch and its estimation error in the RANDOM
ORACLE model. We define a new measure of efficiency for cardi-
nality estimators called the Fisher-Shannon (Fish) number H /1. It
captures the tension between the limiting Shannon entropy (H)
of the sketch and its normalized Fisher information (Z), which
characterizes the variance of a statistically efficient, asymptotically
unbiased estimator.

Our results are as follows.

(i) We prove that all base-g variants of Flajolet and Martin’s PCSA
sketch have Fish-number Hy /Iy ~ 1.98016 and that every base-q
variant of (Hyper)LogLog has Fish-number worse than Hy/I, but
that they tend to Hy/Ip in the limit as ¢ — oco. Here Hy, I are
precisely defined constants.

(ii) We describe a sketch called Fishmonger that is based on a
smoothed, entropy-compressed variant of PCSA with a different
estimator function. It is proved that with high probability, Fishmon-
ger processes a multiset of [U] such that at all times, its space is
O(log?logU) + (1 + 0(1))(Ho/Io)b ~ 1.98b bits and its standard
error is 1/Vb.

(iii) We give circumstantial evidence that Hy/Ij is the optimum
Fish-number of mergeable sketches for Cardinality Estimation. We
define a class of linearizable sketches and prove that no member of
this class can beat Hy/Iy. The popular mergeable sketches are, in
fact, also linearizable.
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1 INTRODUCTION

Cardinality Estimation (aka Distinct Elements or Fy-estimation) is
a fundamental problem in streaming/sketching, with widespread
industrial deployments in databases, networking, and sensing.
Sketches for Cardinality Estimation are evaluated along three axes:
space complexity (in bits), estimation error, and algorithmic
complexity.

In the end we want a perfect understanding of the three-way
tradeoff between these measures, but that is only possible if we
truly understand the two-way tradeoff between space complexity
and estimation error, which is information-theoretic in nature. In
this paper we investigate this two-way tradeoff in the RANDOM
ORACLE model.

Prior work in Cardinality Estimation has assumed either the RAN-
DOM ORACLE model (in which we have query access to a uniformly
random hash function) or what we call the STANDARD MODEL (in
which unbiased random bits can be generated, but all hash func-
tions are stored explicitly). Sketches in the RANDOM ORACLE model
typically pay close attention to constant factors in both space and
estimation error [6, 13, 14, 16, 18, 24, 27-30, 32, 33, 39, 40, 45, 47, 49].
Sketches in the STANDARD MODEL [3-5, 9, 31, 35, 37] use explicit
(e.g., O(1)-wise independent) hash functions and generally pay less
attention to the leading constants in space and estimation error.
Sketches in the RANDOM ORACLE model have had a bigger impact
on the practice of Cardinality Estimation [34, 47, 48]; they are typ-
ically simple and have empirical performance that agrees! with
theoretical predictions [29, 30, 34, 48].

Random Oracle Model. 1t is assumed that we have oracle access
to a uniformly random function h : [U] — {0,1}*°, where [U]
is the universe of our multisets and the range is interpretted as a
point in [0, 1]. (To put prior work on similar footing we assume in
Table 1 that such hash values are stored to log U bits of precision.)

10ne reason for this is surely the non-adversarial nature of real-world data sets, but
even in adversarial settings we would expect RANDOM ORACLE sketches to work well,
e.g., by using a (randomly seeded) cryptographic hash function. Furthermore, since
many applications maintain numerous Cardinality Estimation sketches, they can afford
to store a single O (n€)-space high-performance hash function [15], whose space-cost
is negligible, being amortized over the large number of sketches.
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For practical purposes, elements in [U] and [0, 1] can be regarded
as 64-bit integers/floats.

Problem Definition. A sequence A = (ay,...,aN) € [UIN over
some universe [U] is revealed one element at a time. We maintain
a b-bit sketch S € {0,1}? such that if S; is its state after seeing
(ai,...ai), Si+1 is a function of S; and h(a;+1). The goal is to be
able to estimate the cardinality A = |{aj, ..., an}| of the set. Define
i(S) :{0,1}® — R to be the estimation function. An estimator is
(e, 8)-approximate ifPr(i ¢ [(1—€e)A, (1+€)A]) < 8. Most results in
the RANDOM ORACLE model use estimators that are almost unbiased
or asymptotically unbiased (as b — o0). Given that this holds it
is natural to measure the distribution of A relative to 1. We pay
particular attention to the relative variance % Var(i | A) and the

relative standard deviation %\/ Var(/i | A), also called the standard

error.

Remark 1. Table 1 summarizes prior work. To compare RANDOM
ORACLE and STANDARD MODEL algorithms, note that an asymptot-
ically unbiased O(m)-bit sketch with standard error O(1/+/m) is
morally similar to an O(e~2)-bit sketch with (e, §)-approximation
guarantee, § = O(1). However, the two guarantees are formally
incomparable. The (e, §)-guarantee does not specifically claim any-
thing about bias or variance, and with probability § the error is
technically not bounded.

Formally, a b-bit sketching scheme is defined by a state transition
function T : {0, 1}? x [0,1] — {0, 1}¥ where Sis1 = T(Si, h(ais1))
is the state after seeing {ay, ..., aj+1}. One can decompose T into
a function family & def {T(-,r) | r € [0,1]} of possible actions on
the sketch, and a probability distribution u over #. Le., if R is the
hash value, uniformly distributed in [0, 1], then p(f) = Pr(T(-,R) =
f). For example, the (Hyper)LogLog sketch [24, 29] stores m non-
negative integers (S(0),...,5(m — 1)) and can be defined by the
function family & = {f;;} and distribution u(f;;) = m127/,
i € [m],j € Z*, where action f; j updates the ith counter to be at
least j:

£i,j(8(0),...,S(m=1)) = (5(0),...,S(i - 1),
max{S(i), j},S(i+1),...,S(m-1)).
Suppose we process the stream &/ = {ay, ..., an} using a sketching

scheme (F, p). If Sy is the initial state, and f;, € & is the action of
a; determined by h(a;), the final state is

def
Foy = fay 00 fay(So)

Naturally, one wants the distribution of the final state Fg; to depend

solely on A, not the identity or permutation of A. We define a
sketching scheme (%, y) to be history independent? if it satisfies

History Independence: For any two sequences A; and Ay
with [A1| = |Az|, Fa, 4 A, (distributionally identical).

Until quite recently [14, 18, 33, 45, 49], all sketching schemes

achieved history independence by satisfying a stronger property. A

commutative idempotent function family (CIFF) & consists of a set

of functions from {0, 1}¥ — {0, 1}? that satisfy

2This is closely related to the definition of history independence from [42], which was
defined as a privacy measure.
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Idempotency: For all f € & and S € {0, 1}, (fof)S) =
f($).
Commutativity: Forall f,g € # and S € {0, 1}?, (feg)(S) =
(9o N)S).
We define a sketching scheme (&, ) to be commutative if & is
a CIFF. Clearly any commutative sketching scheme satisfies his-
tory independence, but the reverse is not true. The main virtue of
commutative sketching schemes is that they are mergeable [2].

Mergeability: If multisets A; and Ay are sketched as S; and
Sy using the same random oracle/hash function h, then the
sketch S for A; U Ay is a function of S; and S5.

E.g., in the MPC? model we could split the multiset among M
machines, sketch them separately, and estimate the cardinality of
their union by combining the M sketches.

In recent years a few cardinality estimation schemes have
been proposed that are history independent but non-commutative,
and therefore suited to stream-processing on a single machine.
The S-Bitmap [14] and Recordinality [33] sketches are history-
independent but non-commutative/non-mergeable, as are all
sketches derived by the Cohen/Ting [18, 49] transformation, which
we call the “Martingale” transformation* in Table 1. Not being
the focus of this paper, we discuss non-commutative sketches in
the full version [44], and evaluate a non-commutative, non-history
independent sketch due to Sedgewick [47] called HyperBitBit.

1.1 Survey of Cardinality Estimation

1.1.1  Commutative Algorithms in the Random Oracle Model. Flajo-
let and Martin [30] designed the first non-trivial sketch, called
Probabilistic Counting with Stochastic Averaging (PCSA). The
basic sketch S is a log U-bit vector where S;(j) = 1 iff some
h(a1), ..., h(a;) begins with the prefix 0/1. Their estimation func-
tion i(S) depends only on the least significant 0-bit min{j | S(j) =
0}, and achieves a constant-factor approximation with constant
probability. By maintaining m such structures they brought the
standard error down to roughly 0.78//m.’

Flajolet [28] analyzed a sketch proposed by Wegman called Adap-
tiveSampling. The sketch S; stores an index [ and a list L of all
distinct hash values among h(ay), ..., h(a;) that have 0 asa pre-
fix. Whenever |L| > m, we increment , filter L appropriately and
continue. The space is thus mlog U +loglog U. Flajolet proved that
i(S) o |L|21 has standard error approaching 1.21/+/m.

The PCSA estimator pays attention to the least significant 0-bit
in the sketch rather than the most significant 1-bit, which results in
slightly better error distribution (in terms of m) but is significantly
more expensive to maintain in terms of storage (log U vs. loglog U
bits to store the most significant bit.) Durand and Flajolet’s LogLog
sketch implements this change, with stochastic averaging. The hash
function h : U — [m] XZ" produces (j, k) with probability m1i27k.

3(Massively Parallel Computation)

“4Cohen [18] called these estimators “HIP” (historic inverse probability) and Ting [49]
called them “Streaming” sketches to emphasize that they only work in single-stream
environments.

5The m structures are not independent. The stream A is partitioned into m streams
A0, A yar (using h), each of which is sketched separately. They call the
process of combining estimates from these m sketches stochastic averaging.



Information Theoretic Limits of Cardinality Estimation: Fisher Meets Shannon

STOC ’21, June 21-25, 2021, Virtual, Italy

Table 1: Algorithms analyzed in the RANDOM ORACLE model assume oracle access to a uniformly random hash function h : [U] — [0,1].

Algorithms in the STANDARD MODEL can generate uniformly random bits, but must store any hash functions explicitly. The state of a commu-

tative algorithm is independent of the order elements are processed, once all randomness is fixed. All algorithms are commutative except for
those marked with star(s). Algorithms marked with (x) are history independent, meaning before the randomness is fixed, the distribution of
the final state depends only on the cardinality, not the order/identity of elements. The algorithm marked with (x*) is neither commutative

nor history independent.

Ranpom ORACLE MODEL
MERGEABLE SKETCHES

SKETCH SI1ZE (BITS)

APPROXIMATION GUARANTEE

Flajolet & Martin (PCSA) 1983 | mlogU Std. err. ~ 0.78/y/m
Flajolet (AdaptiveSampling) 1990 | mlog U +loglog U Std. err. ~ 1.21/4/m
Durand & Flajolet (LoglLog) 2003 | mloglogU Std. err. ~ 1.3/y/m
Giroire (MinCount) 2005 | mlog U Std. err. ~ 1/ym
Chassaing & Gerin (MinCount) 2006 | mlogU Std. err. x 1/+/m
l\alz.tragr}ll)ase & Fisk (Multires.Bitmap) 2006 | mlogU Std. err. O(1/+/m)
Beyer, Haas, Reinwald

Sismanis & Gemulla 2007 | mlogU Std. err. ~ 1/ym
Ig:i(gzte};u;yMeunier(HyperLogLog) 2007 | mloglogU Std. err. ~ 1.04/m
Lumbroso 2010 | mlogU Std. err. ~ 1/y/m

Lang (Compressed FM85) 2017

~ logU + 1.99m (in expectation)

Std. err. = 1/y/m

new (Fishmonger) 2020

O(log?log U) + (1 + 0(1)) (Ho/Ip)m
where Hy /Iy ~ 1.98016

Std. err. ~ 1/y/m

NON-MERGEABLE SKETCHES

Chen, Cao, Shepp

& Ngayen (S-Bitmap) 2009 | m Std. err. ~ W (%)
Helmi, Lumbroso, -
Martinez & Viola  (Recordinality) 2012 | (1+0(1))mlogU Std. err. O(1)/\Vm (%)
Cohen (Martingale LoglLog) mloglogU +log U Std. err. ~ 0.833/+/m
Ting (Martingale MinCount) 2014 (m+1)logU Std. err. ~ 0.71/\m (*)

| Sedgewick (HyperBitBit) 2016 [ 134 | ? (See [44]) (%) |
STANDARD MODEL
Alon, Matias & Szegedy 1996 | O(logU) (€,2/€)-approx., € > 2
Gibbons & Tirthapura 2001 | O(e~?logUlog6™1) (e, )-approx.

Bar-Yossef, Kumar & Sivakumar 2002

O(e3logUlog67T)

(e, 8)-approx.

Bar-Yossef, Jayram, Kumar,
Sivakumar & Trevisan 2002

O ([e2loglogU +1log U] log 571)

(e, 8)-approx.

Kane, Nelson & Woodruff 2015

O([e ? +logU] log 67 1)

(€, §)-approx.

Blasiok 2018

O(e%logsT+logl)

(e, 8)-approx.

LowER BOUNDS

Trivial Q(loglogU) (0(1),0(1))-approx. (RAND. ORACLE)
Alon, Matias & Szegedy 1996 | Q(logU) (0(1),0(1))-approx. (STD. MODEL)
Indyk & Woodruff 2003 | Q(e7?) (€,0(1))-approx. (Both)
Jayram & Woodruff 2011 | Q(e?logsT) (e, 6)-approx. (Both)
new 2020 | (Ho/Ip)m Std. err. 1/vm (Linearizable)
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After processing {ay, ..., a;}, the sketch is defined to be
Si(j) =max{k | 3i" € {1,...,i}, h(ar) = (j,k)}.

Durand and Flajolet’s estimator A(S) is based on taking the geomet-
ric mean of the estimators derived from the individual components
S(0),...,S(m—-1),ie.,

AS) «<m- om X ()

It is shown to have a standard error tending to 1.3/y/m. The Hy-
perLogLog sketch of Flajolet, Fusy, Gandouet, and Meunier [29]
differs from LogLog only in the estimation function, which uses
the harmonic mean rather than geometric mean.
m—1 -1
/i(S) o« m? Z 275()
j=0

They proved it has standard error tending to ~ 1.04/+/m in the limit,
where 1.04 ~ V3In2 - 1.

Giroire [32] considered a class of sketches (MinCount) that splits
the stream into m” sub-streams, and keeps the smallest k hash values
in each substream. Le., if we interpret h : [U] — [0,m’), S;(j)
stores the smallest k values among {h(a1),...,h(a;)} N [j,j+1).
Chassaing & Gerin [13] showed that a suitable estimator for this
sketch has standard error roughly 1/Vkm’ -2, i.e., fixing m
km’ we are indifferent to k and m’. Lumbroso [40] gave a detailed
analysis of asymptotic distribution of errors when k = 1 and offered
better estimators for smaller cardinalities. When k = 1 this is
also called m-Min or Bottom-m sketches [10, 17-19] popular in
measuring document/set similarity.

1.1.2 Commutative Algorithms in the Standard Model. In the STAN-
DARD MODEL one must explicitly account for the space of every hash
function. Specifically, a k-wise independent function h : [D] — [R]
requires O(klog(DR)) bits. Typically an e-approximation (A e
[(1-€)A, (1+€)A]) is guaranteed with constant probability, and then
amplified to 1 — § probability by taking the median of O(log §~1)
trials. The following algorithms are commutative in the abstract,
meaning that they are commutative if certain events occur, such as
a hash function being injective on a particular set.

Gibbons and Tirthapura [31] rediscovered AdaptiveSampling
[28] and proved that it achieves an (e, d)-guarantee using an
O(e % log Ulog 671)-bit sketch and O(1)-wise independent hash
functions. The space was improved [4] to O((e %loglogU +
log U) log 671). Kane, Nelson, and Woodruff [37] designed a sketch
that has size O((e™2 + logU)log '), which is optimal when
571 = 0(1) as it meets the Q(e~2) lower bound of [35] (see also [11])
and the Q(log U) lower bound of [3]. Using more sophisticated
techniques, Blasiok [9] derived an optimal sketch for all (e, §) with
space O(e~%log 8 1 +log U), which meets the Q(e~2 log 571) lower
bound of Jayram and Woodruff [36].

1.2 Sketch Compression

The first thing many researchers notice about classic sketches like
(Hyper)LogLog and PCSA is their wastefulness in terms of space.
Improving space by constant factors can have a disproportionate
impact on time, since this allows for more sketches to be stored at
lower levels of the cache-hierarchy. In low-bandwidth situations
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(e.g., distributed sensor networks), improving space can be an end
initself [21, 43, 46]. The idea of sketch compression goes back to the
original Flajolet-Martin paper [30], who observed that the PCSA
sketch matrix consists of nearly all 1s in the low-order bits, nearly
all 0s in the high order bits, and a mix in between. They suggested
encoding a sliding window of width 8 across the sketch matrix. By
itself this idea does not work well.

In her Ph.D. thesis [23, p. 136], Durand observed that each
counter in LoglLog has constant entropy, and can be encoded with
a prefix-free code with expected length 3.01. The state-of-the-art
STANDARD MODEL [9, 37] algorithms use this property, and further
show that a compressed representation of these counters can be
updated in O(1) time [8].

The practical efforts to compress (Hyper)LoglLog have used
fixed-length codes rather than variable length codes. Xiao, Chen,
Zhou, and Luo [52] proposed a variant of HyperLoglLog called HLL-
Tailcut+ that codes the minimum counter and m 3-bit offsets, where
{0,..., 6} retain their natural meaning but larger offsets are trun-
cated at 7. They claimed that with a different estimation function,
the variance is 1/+/m. This claim is incorrect; the relative bias and
squared error of this estimator are constant, independent of m;
see [44]. An implementation of HyperLoglLog in Apache DataS-
ketches [48] uses a 4-bit offset, where {0, ..., 14} retain their normal
meaning and 15 indicates that the true value is stored in a separate
exception list. This is lossless compression, and therefore does not
affect the estimation accuracy [29].

A recent proposal of Sedgewick [47] called HyperBitBit can also
be construed as a lossy compression of LoglLog. It has constant
relative bias and variance, independent of sketch length; see [44].

Scheuemann and Mauve [46] experimented with compression
of PCSA and HyperLoglog sketches to their entropy bounds
via arithmetic coding, and noted that, with the usual estima-
tion functions [29, 30], Compressed-PCSA is slightly smaller than
Compressed-HLL for the same standard error. Lang [38] went a step
further, and considered Compressed-PCSA and Compressed-HLL
sketches, but with several improved estimators including Minimum
Description Length (MDL), which in this context is essentially the
same as the Maximum Likelihood Estimator (MLE). Lang’s numeri-
cal calculations revealed that Compressed-PCSA+MDL is substan-
tially better than Compressed-HLL+MDL, and that off-the-shelf
compression algorithms achieve compression to within roughly 10%
of the entropy bounds. A variation on Lang’s scheme is included in
Apache DataSketches under the name CPC for Compressed Prob-
abilistic Counting [48]. By buffering stream elements and only
decompressing when the buffer is full, the amortized cost per in-
sertion can be reduced to O(1) from O(m), which is competitive in
practice [48].

To sum up, the idea of compressing sketches has been studied
since the beginning, heuristically [30, 47, 52], experimentally [46,
48], and numerically [38], but to our knowledge never analytically.

1.3 New Results

Our goal is to understand the intrinsic tradeoff between space
and accuracy in Cardinality Estimation. This question has been
answered up to a large constant factor in the STANDARD MODEL
with matching upper and lower bounds of ©(e 2 log ™! +log U) [9,
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35-37]. However, in the RANDOM ORACLE model we can aspire to
understand this tradeoff precisely.

To answer this question we need to grapple with two of the
influential notions of “information” from the 20th century: Shannon
entropy, which controls the (expected) space of an optimal encoding,
and Fisher information, which limits the variance of an asymptoti-
cally unbiased estimator, via the Cramér-Rao lower bound [12, 50].

To be specific, consider a sketch S = (5(0),...,S(m — 1)) com-
posed of m ii.d. experiments over a multiset with cardinality A.
We assume that these experiments are useful, in the sense that
any two cardinalities Ag, A1 induce distinct distributions on S. Un-
der this condition and some mild regularity conditions, it is well
known [12, 50] that the Maximum Likelihood Estimator (MLE):

i(S) = argmax Pr(S | A)
A
is asymptotically unbiased and meets the Cramér-Rao lower bound:

tim v (A(5) - A) ~ & (0, ;) .
m—>00 Is(0) (A)
Here Igg) () is the Fisher information number of A associated with
any one component of the vector S. This implies that as m gets
large, i(S) tends toward a normal distribution N/ (/1, ﬁ) with
variance 1/Is(4) = 1/(m - Is(g) (4)). (See Section 2.)

Suppose for the moment that I (1) is scale-free, in the sense that
we can write it as Is(1) = I (S)/A?, where I (S) does not depend on
A. We can think of 7 (S) as measuring the value of experiment S to
estimating the parameter A, but it also has a cost, namely the space
required to store the outcome of S. By Shannon’s source-coding
theorem we cannot beat H(S | A) bits on average, which we also
assume for the time being is scale-free, and can be written H(S),
independent of 1. We measure the efficiency of an experiment by
its Fisher-Shannon (Fish) number, defined to be the ratio of its cost
to its value:

H(S)

)

In particular, this implies that using sketching scheme S to achieve
a standard error of \/m (variance 1/b) requires Fish(S) - b bits
of storage on average,’ i.e., lower Fish-numbers are superior. The
actual definition of Fish (Section 3.4) is slightly more complex in
order to deal with sketches S that are not strictly scale-invariant.

Our main results are as follows.

(1) Let g-PCSA be the natural base-q analogue of PCSA, which
is 2-PCSA. We prove that the Fish-number of g-PCSA does
not depend on g, and is precisely:

Hy
— =~ 1.98016.
Iy

Fish(S) =

Fish(g-PCSA) =

where

1 <1
Hy=— -1 1+1
0 1nz+,;k ogy (1+1/k).

)

/

Ih=0(2)=

>

Set m such that b = I(S) = m - 7(S(0)). The expected space required is m -
H(S(0)) = b(H(S(0))/1(5(0))) = b - Fish(S).
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The constant Hy/Ij is very close to Lang’s [38] numerical
calculations of 2-PCSA’s entropy and mean squared error.
Let g-LL be the natural base-q analogue of LoglLog = 2-LL.
Whereas the Fisher information for g-PCSA is expressed in
terms of the Riemann zeta function ({'(2)), the Fisher infor-
mation of g-LL is expressed in terms of the Hurwitz zeta
function (2, %) =Yksolk+ %)_2. We prove that g-LL
is always worse than PCSA, but approaches the efficiency
of PCSA in the limit, i.e.,

Vq > 1, Fish(g-LL) > Hy/I,
but qli_r)n Fish(g-LL) = Ho/Io.

@

~

The results of (1) should be thought of as lower bounds on
implementing compressed representations of g-PCSA and
g-LL. We give a new sketch called Fishmonger whose space,
at all times, is O(log?log U) + (1 + o(1))(Ho/Ip)b ~ 1.98b
bits and whose standard error, at all times, is 1/ \/E, with
probability 1 — 1/poly(b).”

Is it possible to go below Hy/Ip? We define a natural class of
commutative sketches called linearizable sketches and prove
that no member of this class has Fish-number strictly smaller
than Hy/Iy. Since all the popular commutative sketches are,
in fact, linearizable, we take this as circumstantial evidence
that Fishmonger is information-theoretically optimal, up to
a 1+ o0(1) factor in space/variance.

(3

=

1.4 Related Work

As mentioned earlier, Scheuermann and Mauve [46] and Lang [38]
explored entropy-compressed PCSA and LoglLog sketches ex-
perimentally. Maximum Likelihood Estimators (MLE) for Min-
Count were studied by Chassaing and Gerin [13] and Clifford and
Cosma [16]. Clifford and Cosma [16] and Ertl [25] studied the
computational complexity of MLE in LoglLog sketches. Lang [38]
experimented with MLE-type estimators for 2-PCSA and 2-LogLog.
Cohen, Katzir, and Yehezkel [20] looked at MLE estimators for
estimating the cardinality of set intersections.

1.5 Organization

In Section 2 we review Shannon entropy, Fisher information, and
the asymptotic efficiency of Maximum Likelihood Estimation.

In Section 3.2 we define a notion of base-q scale-invariance for a
sketch, meaning its Shannon entropy and normalized Fisher infor-
mation are invariant when changing the cardinality by multiples
of q. Under this definition Shannon entropy and normalized Fisher
information are periodic functions of logq A.In Section 3.3 we define
average entropy/information and show that the average behavior
of any base-q scale-invariant sketch can be realized by a generic
smoothing mechanism. Section 3.4 defines the Fish number of a

"This sketch was developed before we were aware of Lang’s technical report [38]. If
one combined Lang’s Compressed-FM85 sketch with our analysis, it would yield a
theorem to the following effect: at any particular moment in time the expected size
of the sketch encoding is log U + (Hy /Iy + €)b and the standard error at most 1/Vb,
for some small constant € > 0 (see Section 3.3 concerning the periodic behavior of
sketches). Fishmonger improves this by bringing the leading coefficient down to Hy /Iy
and making a “for all” guarantee: that the sketch is stored in O(log? logU) + (1 +
0(1)) (Ho/Iy)b bits at all times, with high probability 1 — 1/poly(b).
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scale-invariant sketch in terms of average entropy and average
information.

Section 4 analyzes the Fish numbers of base-q generalizations
of PCSA and LogLog. Section 5 defines the class of linearizable
sketches and proves that no such sketch has Fish-number smaller
than Hy/Iy. We conclude and highlight some open problems in
Section 6.

The Fishmonger sketch is described and analyzed in the full
version [44]. In [44], we also survey non-commutative sketching.
All missing proofs appear in the full version [44].

2 PRELIMINARIES
2.1 Shannon Entropy

Let X7 be a random variable with probability density/mass function
f. The entropy of X is defined to be

H(X1) = E(-log, f(X1)).

Let (X1, R1) be a pair of random variables with joint probability
function f(x1,r1). When X; and R are independent, entropy is
additive: H(X3,R1) = H(Xj) + H(R;). We can generalize this to
possibly dependent random variables by the chain rule for entropy.
We first define the notion of conditional entropy. The conditional
entropy of X; given R; is defined as

H(Xy | Ry) =E (-log, f(X1 | Ry)),
which is interpreted as the average entropy of X; after knowing Rj.

THEOREM 1 (CHAIN RULE FOR ENTROPY [22]). Let
(X0, X1,...Xm—-1) be a tuple of random wvariables. Then
H(X0, X1, ... Xm-1) = 2%V H(XG | X0, .. Xio1).

Shannon’s source coding theorem says that it is impossible to
encode the outcome of a discrete random variable X in fewer than
H(X;) bits on average. On the positive side, it is possible [22] to
assign code words such that the outcome [X; = x] is communicated
with less than {log2 (1/f(x))] bits, e.g., using arithmetic coding [41,
51].

2.2 Fisher Information and the Cramér-Rao
Lower Bound

Let F = {f} | A € R} be a family of distributions parameterized by
a single unknown parameter A € R. (We do not assume there is a
prior distribution on A.) A point estimator )I(X ) is a statistic that
estimates A from a vector X = (X, ..., X;;—1) of samples drawn
iid. from fj.

The accuracy of a “reasonable” point estimator is limited by the
properties of the distribution family F itself. Informally, if every
fa € F is sharply concentrated and statistically far from other fj,
then fj is informative. Conversely, if f is poorly concentrated and
statistically close to other f), then f} is uninformative. This measure
is formalized by the Fisher information [12, 50].

Fix A = Ap and let X ~ f, be a sample drawn from f;. The
Fisher information number with respect to the observation X at Ay
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is defined to be:?
2
ZHEX) |
[OO | AR

The conditional Fisher information of X1 given Xy at A = A is defined
as

Ix(do) = E(

2
2 H(X1 | Xo)

fHi(X1 | Xo)

Similar to Shannon’s entropy, we also have a chain rule for Fisher
information numbers.

Ix,1x,(A0) =E [A=2, -

THEOREM 2 (CHAIN RULE FOR FISHER INFORMATION [53]). LetX =
(X0, X2, ...,Xm-1) be a tuple of random variables all depending on

,,,,,

Specifically if X = (Xo, ..., Xm-1) is a set of independent samples
from f) then Ix(A) = m - Ix, (A).

The celebrated Cramér-Rao lower bound [12, 50] states that,
under mild regularity conditions (see Section 2.3), for any unbiased
estimator A(X) with finite variance,

2 1
Var(A | ) > ——.
Ix(4)
Suppose now that i(X = (Xo,...,Xm-1)) is, in fact, the Maximum
Likelihood Estimator (MLE) from m i.i.d. observations. Under mild
regularity conditions, it is asymptotically normal and efficient, i.e.,

. A 1
i, V=2 <N 0 5 ).

( A, ﬁ) as m — oo. In the Cardinality

or equivalently, A ~ N
Estimation problem we are concerned with relative variance and rel-
ative standard deviations (standard error). Thus, the corresponding
lower bound on the relative variance is (/12 . Ix(l))_l. We define
the normalized Fisher information number of A with respect to the
observation X to be A2 - Ix(1).

2.3 Regularity Conditions and Poissonization

The asymptotic normality of MLE and the Cramér-Rao lower bound
depend on various regularity conditions [1, 7, 53], e.g., that f3 (x)
is differentiable with respect to A and that we can swap the oper-
ators of differentiation w.r.t. A and integration over observations
x. (We only consider discrete observations here, so this is just a
summation.)

A key regularity condition of Cramér-Rao is that the support
of f) does not depend on A, i.e., the set of possible observations is
independent of 1.7 Strictly speaking our sketches do not satisfy this
property, e.g., when A = 1 the only possible PCSA sketches have
Hamming weight 1. To address this issue we Poissonize the model,
as in [24, 29]. Consider the following two processes.

Discrete counting process. Starting from time 0, an element
is inserted at every time k € N.

8Since in this paper the parameter is always the cardinality, the parameter A is omitted
in the notation Ix (Ag).

A canonical example violating this condition (and one in which the Cramér-Rao
bound can be beaten) is when 6 is the parameter and the observation X is sampled
uniformly from [0, ]; see [12].
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Poissonized counting process. Starting from time 0, ele-
ments are inserted memorylessly with rate 1. This corre-
sponds to a Poisson point process of rate 1 on [0, o).

For both processes, our goal would be to estimate the current time
A. In the discrete process the number of insertions is precisely
A] + 1 whereas in the Poisson one it is A~ Poisson(A). When A is
sufficiently large, any estimator for A with standard error ¢ /Vm also
estimates A with standard error (1-0(1))c/+/m, since A = A+O0(VA)
with probability 1 — 1/poly(4). Since we are concerned with the
asymptotic efficiency of sketches, we are indifferent between these
two models.!°

For our upper and lower bounds we will use the Poissonized
counting process as the mathematical model. As a consequence,
for any real A > 0 the state space is independent of A, and f; will
always be differentiable w.r.t. 1. Henceforth, we use the terms “time”
and “cardinality” interchangeably.

3 SCALE-INVARIANCE AND Fish NUMBERS

We are destined to measure the efficiency of observations in terms
of entropy (H) and normalized information (12 x I), but it turns out
that these quantities are slightly ill-defined, being periodic when we
really want them to be constant (at least in the limit). In Section 3.1
we switch from the functional view of sketches (as CIFFs) to a dis-
tributional interpretation, then in Section 3.2 define a weak notion
of scale-invariance for sketches. In Section 3.3 we give a generic
method to iron out periodic behavior in scale-invariant sketches,
and in Section 3.4 we formally define the Fish number of a sketch.

3.1 Induced Distribution Family of Sketches

Given a sketch scheme, Cardinality Estimation can be viewed as
a point estimation problem, where the unknown parameter is the
cardinality A and f) is the distribution over the final state of the
sketch.

Definition 1 (Induced Distribution Family). Let A be the name of a
sketch having a countable state space M. The Induced Distribution
Family (IDF) of A is a parameterized distribution family

WAZ{lﬁA’A:M—)[O,l] | A >0},

where /4 5 (x) is the probability of A being in state x at cardinality
A. Define X4 3 ~ ¥4 3 to be a random state drawn from /4 ;.

We can now directly characterize existing sketches as IDFs.!!
For example, the state-space of a single LogLog (2-LL) sketch [24]'2
is M =N and ¥ | contains, for each A > 0, the function'?

_A A
Ya(k) =e 4 —e 2k,

We usually consider just the basic version of each sketch, e.g.,
a single bit-vector for PCSA or a single counter for LL. When we
apply the machinery laid out in Section 2 we take m independent

10 Algorithmically, the Poisson model could be simulated online as follows. When an
element a arrives, use the random oracle to generate &, ~ Poisson(1) and then insert
elements (a, 1),..., (a, &) into the sketch as usual.

1t is still required that the sketches be effected by a CIFF family, but this does not
influence how IDFs are defined.

121n any real implementation it would be truncated at some finite maximum value,
typically 64.

31t would be 2 (k) = (1 - Zk%)/l -(1- zik)’1 without Poissonization.
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copies of the basic sketch, i.e., every element is inserted into all
m sketches. One could also use stochastic averaging [26, 29, 30],
which, after Poissonization, yields the same sketch with cardinality
A =mA.

3.2 Weak Scale-Invariance

Consider a basic sketch A with IDF ¥4, and let A™ denote a vector
of m independent A-sketches. From the Cramér-Rao lower bound
we know the variance of an unbiased estimator is at least m =
m. (Here Lam (4) is short for Ix, . , (1), where Xsm ; is the
observed final state of A at time A.) The memory required to store
it is at least H(Xym ) = m - H(X, 3). Thus the product of the
memory and the relative variance is lower bounded by

H(Xa)
2 L)

which only depends on the distribution family ¥4 and the unknown
parameter A. However, ideally it would depend only on ¥4.

Essentially every existing sketch is insensitive to the scale of 4,
up to some coarse approximation. However, it is difficult to design
a sketch with a countable state-space that is strictly scale-invariant.
It turns out that a weaker form is just as good for our purposes.

Definition 2 (Weak Scale-Invariance). Let A be a sketch with
induced distribution family ¥4 and g > 1 be a real number. We say
A is weakly scale-invariant with base q if for any A > 0, we have

H(Xa) =H(Xgq2) and In(1) = ¢* - La(qh).

Remark 2. For example, the original (Hyper)LoglLog and PCSA
sketches [24, 29, 30] are, after Poissonization, base-2 weakly scale-
invariant.

Observe that if a sketch A is weakly scale-invariant with base ¢,
then the ratio

H(Xpq)  H(Xa))
@)% Ta(gh)  22-La(d)

becomes multiplicatively periodic with period g. See Figure 1 for
illustrations of the periodicity of the entropy (H) and normalized
information (A2I) of the base-q LoglLog sketch.

3.3 Smoothing via Random Offsetting

The LogLog sketch has an oscillating asymptotic relative variance
but since its magnitude is very small (less than 107%), it is often
ignored. However, when we consider base-q generalizations of
Loglog, e.g., ¢ = 16, the oscillation becomes too large to ignore; see
Figures 1 and 2. Here we give a simple mechanism to smooth these
functions.

Rather than combine m i.i.d. copies of the basic sketch, we will
combine m randomly offsetted copies of the sketch. Specifically, the
algorithm is hard-coded with a random vector (Ry,...,Rm-1) €
[0,1)™ and for all i € [m], each element processed by the algorithm
will be withheld from the ith sketch with probability 1—g~Ri. Thus,
after seeing A distinct elements, the ith sketch will have seen Ag~R
distinct elements in expectation. As m goes to infinity, the mem-
ory size (entropy) and the relative variance tend to their average
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Figure 1: Entropy and normalized Fisher information number for
g-LogLog sketches for A € [21°,22*]. See Section 4.2 for the precise
definitions. Left: At a sufficiently small scale, the oscillations in en-
tropy (top) and normalized information (bottom) of 2-LL become
visible. Right: At higher values of g € {2,4, 16}, the oscillations in en-
tropy (top) and normalized information (bottom) of g-LL are clearly
visible. From the bottom left plot one can see that the standard error
coefficient lower bound ‘/ﬁ = 1.037 is very close to the standard
error coefficient 133 = 1.046 obtained by Flajolet et al. [29]. This
highlights how little room for improvement there is in the Hyper-
LogLog analysis.

values.'* Figure 2 illustrates the effectiveness of this smoothing
operation for reasonably small values of ¢ = 16 and m = 128.

Throughout this section we let A be a weakly scale-invariant
sketch with base g, having state-space M, and IDF ¥4. Let
(R1,Y1) € [0,1) X M be a pair where R; is uniformly random
in [0, 1), and Y; is the state of A after seeing Aq’Rl distinct inser-
tions.!> Then

Pr(Y1 =y1 | Ri =11, 4) = Yapqn (Y1)

Thus the joint density function is

(L y1) = Yaagn (Y.

LEMMA 1. Fix the unknown cardinality (parameter) A. The Fisher
information of A with respect to (Ry, Y1) is equal to

1
2r r
I ; q“"Ia(q") dr.
LEMMA 2. Fix the unknown cardinality (parameter) A. The condi-
tional entropy H(Y1 | Ry) is equal to

1
/ H(XA’qr)dr.
0

14As m goes to infinity, using the set of uniform offsets (0, ..., mT_l) will also work.
lsTechnically, with the offset Ry, the sketch should see B(A, q’R1 ) distinct insertions,
where B(A, g"R1) is a binomial random variable with A trials and success probability
q~R1. We approximate B(A, g”R1) by its mean Ag~R! since we are only considering
the asymptotic relative behavior as A goes to infinity.
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Figure 2: The empirical relative error ()1/ A) distribution (for A €
[21%,2%4]) of g-LogLog for four cases: (1) ¢ = 2 without offsets; (2)
q = 16 without offsets; (3) g = 16 with random offsets; (4) g = 16 with
uniform offsets. All use m = 128 and the number of experiments
is 5000 for each cardinality. We use a HyperLogLog-type estimator
A(S) = agmyr - m(Ske(m) 5% ~7%)~! (without stochastic averag-
ing), where S(k) is the final state of the kth sketch and ry is the
offset for the kth sketch. The sketches without offsets have rp = 0
forall k € [m]. The sketches with random offsets have r = (rx)ie[m]
uniformly distributed in [0, 1)"”. Sketches with uniform offsets use
the offset vector r = (0,1/m, ..., (m — 1)/m). The constant ag m,, is
determined experimentally for each case.

In conclusion, with random offsetting we can transform any
weakly scale-invariant sketch A so that the product of the memory
and the relative variance is

1 1
Jy H(Xagr)dr ~ Jo H(Xagr)dr
1 - ’
A2 [ qrIa(g)dr [ q¥Ia(q") dr

and hence independent of the cardinality A.

3.4 The Fisher-Shannon Number of a Sketch

Let A4 be a weakly scale-invariant sketch with base g. The Fisher-
Shannon (Fish) number of A4 captures the maximum performance
we can potentially extract out of Ag, after applying random offsets
(Section 3.3), optimal estimators (Section 2.2), and compression
to the entropy bound (Section 2.1), as m — co. In particular, any
sketch composed of independent copies of Ay with standard error

1

Vb

are better.

must use at least Fish(Ag) - b bits. Thus, smaller Fish-numbers

Definition 3. Let Ag be a weakly scale-invariant sketch with

base gq. The Fish number of Ay is defined to be Fish(Ag) et
H(Ag) /I (Ag), where

def [ def [ 2r r
H(Ag) = ; H(XAq,qr)dr and I(Aq) = , q IAq(q )dr.
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4 Fish NUMBERS OF PCSA AND LL

In this section, we will find the Fish numbers of generalizations of
PCSA [30] and (Hyper)LoglLog [24, 29]. The results are expressed
in terms of two important constants, Hy and Iy.

Definition 4. Let h(x) = —xInx — (1 — x) In(1 — x) and g(x) =

,’f—il, We define
h (e / g(e") dw.

L

Lemma 3 derives simplified expressions for Hy and Iy. All missing
proofs from this section can be found in the full version [44].

def

def 1
Hy = —
0 In2

_EW) dw and I

LEMMA 3.

o 1
Ho:n+kz_1ilogz(l+l/k) and Ip={(2)=—

where {(s) = X0, # is the Riemann zeta function.

4.1 The Fish Numbers of ¢g-PCSA Sketches

In the discrete counting process, a natural base-q generalization of
PCSA (g-PCSA) maintains a bit vector b = (by)reny Where Pr(b; =
0) = (1-q~)* ~ e=#/4" after processing a multiset with cardinality
A. The easiest way to effect this, conceptually, is to interpret h(a)
as a sequence x € {0,1}* of bits,!® where Pr(x;=1) = q_i, then
update b < b V x, where V is bit-wise OR.'7 After Poissonization,
we have

(1) The probability that the ith bit is zero is exactly Pr(b; = 0) =

e M
(2) All bits of the sketch are independent.

Since we are concerned with the asymptotic behavior of the sketch
when A — oo we also assume that the domain of the sketch b
is extended from N to Z, e.g., together with Poissonization, we
have Pr(b_s = 0) = e9'A. The resulting abstract sketch is weakly
scale-invariant with base ¢, according to Definition 2.

Definition 5 (IDF of q-PCSA Sketches). For any base q > 1, the
state space'® of ¢-PCSA Mpcsa = {0, 1}2 and the induced distri-
bution for cardinality A is

co A(1=by)

- _a
Yapcsar®) = [ e & (1-e @)

k=—c0

THEOREM 3. For any q > 1, q-PCSA is weakly scale-invariant
with base q. Furthermore, we have

H(g-PCSA) = —~  and I (q-PCSA) = ——

and hence Fish(q-PCSA) = 7 ~ 1.98016.

The proof of Theroem 3 can be found in the full version [44].

161f we are interested in cardinalities < U, we would truncate the hash at log U bits.
7We can simplify this scheme with the same two levels of stochastic averaging used by
Flajolet and Martin [30], namely choosing x to have bounded Hamming weight (weight
1 in their case), and splitting the stream into m substreams if we are maintaining m
such b-vectors.

18Strictly speaking the state-space is not countable. However, it suffices to consider
only states with finite Hamming weight.
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4.2 The Fish Numbers of g-LogLog Sketches

In a discrete counting process, the natural base-q generalization
of the (Hyper)LogLog sketch (g-LL) works as follows. Let ¥ =
minge # h(a) € [0, 1] be the minimum hash value seen. The g-LL
sketch stores the integer S = {— logq YJ, so when the cardinality is
A,

Pr(S = k) K _

— Pr(q_k <Y< q—k+1) — (1 —q _ q—k+l)l

k k-1
~eMT — M

Once again the state space of this sketch is Z* but to show
weak scale-invariance it is useful to extend it to Z. Together with
Poissonization, we have the following.

(1) Pr(S = k) is precisely e /9" — ¢
(2) The state space is Z, e.g., together with (1) we have Pr(S =
—1) = e~ — =T,

“Aq

Definition 6 (IDF of q-LL sketches). For any base g > 1, the state
space of g-LL is M| | = Z and the induced distribution for cardinal-
ity A is

Y
YgLa(k) =e M- =AM

In Lemma 5 we express the Fish number of g-LL in terms of two
quantities ¢(q) and p(q), defined as follows.

Definition 7.

def

d(q) = / —(e™¢ —¢7¢'9) logz(efer —e ¢ 9 dr.
def S ele™ e” +e e—e q\2
ple) = / = 0 o

e~¢ —e€q
Lemma 4 gives simplified expressions for ¢(q) and p(q).

LEMMA 4. Let{(s,t) = Xgso(k+t)™ be the Hurwitz zeta function.
Then ¢ and p can be expressed as:

k+ +1
s ! ”"+Zklogz("—l)-
1
_ g \_y_ 1
p(q)—g(z,q_l)—;:;)(“%)z.

The following lemma calculates the entropy and normalized
information of g-LL.

LEMMA 5. For anyq > 1, g-LL is weakly scale-invariant with base
q. Furthermore, we have

H(g-LL) = ¢(q) and  T(g-LL) = p(q)
In
THEOREM 4. For any q > 1, the Fish number of g-LL is
H
Fish(g-LL) > —.
Iy
Furthermore, we have

lim Fish(g-LL) = —
q—)OO
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Proor. We prove the second statement first. By Lemma 5, we
have

N . H(g-LL)
lim Fish(g-LL) = lim ———
q— (q ) q— I(q—LL)
) 1
1— 1/q 1 k+ -1 +1
+), 7 logs (—1
o 2k k+ o5
= lim =
& ler 5
1 w1 k+1
— + Z —log, —)
) In2 P k k ) IE
2
k=1 k

The first statement follows from Lemmas 6 and 7. Refer to the full
version [44] for proof. O

LEMMA 6. Fish(g-LL) is strictly decreasing for q > 1.4.
LEmMMA 7. Fish(g-LL) > Fish(2-LL) forq € (1,1.4].

5 A SHARP LOWER BOUND ON
LINEARIZABLE SKETCHES

In Section 5.1 we introduce the Dartboard model, which is essen-
tially the same as Ting’s area-cutting process [49], with some minor
differences.'® In Section 5.2 we define the class of Linearizable
sketches, and in Section 5.3 we prove that no Linearizable sketch
has Fish-number strictly smaller than Hy/I.

5.1 The Dartboard Model

Define the dartboard to be a unit square [0, 1]2, partitioned into a
set C of cells of various sizes. A state space is a set S C 2. Each
state o € S partitions the cells into occupied cells (o) and free cells
(C\ o). We process a stream of elements from some multiset. When
a new element arrives we throw a dart at the dartboard and update
the state.?” The probability that a cell ¢; € C is hit is p;: the size
of the cell. A dartboard sketch is defined by a transition function
satisfying some simple rules.

(R1) Every cell containing a dart is occupied; occupied cells may
contain no darts.

(R2) If a dart hits an occupied cell, the state does not change.
Rule (R1) implies that if a dart hits a free cell, the state must
change.

(R3) Once occupied, a cell never becomes free.

Observation 8. Every commutative sketch is a dartboard sketch.

The state of a commutative sketch is completely characterized by
the set of hash-values that cause no state transition. (In particular,
the state cannot depend on the order in which elements are pro-
cessed.) Such a sketch is mapped to the dartboard model by realizing

9Ting’s definition does not fix the state-space a priori, and in its full generality allows
for non-deterministic sketching algorithms.

20This model can be extended to allow for insertions triggering multiple darts, or a
variable number of darts. The dart throwing is effected by the random oracle, so if
the same element arrives later, its dart will hit the same cell, and not register a state
change, by Rule (R2), below.
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“dart throwing” using the random oracle, say h : [U] — [U]. The
dartboard is partitioned into [U] equally-sized cells, where occu-
pied cells are precisely those that cause no change to the state. Rules
(R1)—(R3) then follow from the fact that the sketch transition func-
tion is commutative and idempotent. However, it is usually possible
to partition the dartboard more coarsely than at the level of indi-
vidual hash-values. For example, base-q PCSA and (Hyper)LoglLog
(without offsetting) use the same cell partition depicted in Fig. 3.

After Poissonizing the dartboard, at time (cardinality) A,
Poisson(A) darts are randomly scattered in the unit square [0, 1]%.
By properties of the Poisson distribution, the number of darts inside
each cell are independent variables. We use the words “time” and
“cardinality” interchangeably.

5.2 Linearizable Sketches

Informally, a sketch in the dartboard model is called linearizable if
there is a fixed permutation of cells (¢, 1, .. ., C|C\—1) such that if
o € S is the state, whether ¢; € o is a function of e N {cg, ...,ci—1}
and whether c; has been hit by a dart.

More formally, let Z; be the indicator for whether c; has been hit
by a dart and Y; be the indicator for whether ¢; is occupied. A sketch
is linearizable if there is a monotone function ¢ : {0, 1}* — {0,1}
such that

Yi=Z;V$(Yi—1), whereY; = (Yp,...,Yi1).

In other words, if ¢(Y;—1) = 1 then cell ¢; is “forced” to be occupied,
regardless of Z;. Such a sketch adheres to Rules (R1)-(R3), where
(R3) follows from the monotonicity of ¢. Note that Y; is a function
of (Yij—1,Z;), and by induction, also a function of (Zy, ..., Z;). This
implies that state transitions can be computed online (as darts
are thrown) and that the transition function is commutative and
idempotent.

Observation 9. All linearizable sketches are commutative (and
hence mergeable).

Thus we have

D dartboard sketches 2 commutative sketches

all sketches

(V]

linearizable sketches

All of these containments are strict (see Figure 4), but most
popular commutative sketches are linearizable. For example, PCSA-
type sketches [27, 30] are defined by the equality Y; = Z;, and hence
are linearizable w.r.t. any permutation of cells and constant ¢(-) = 0.
For LoglLog, put the cells in non-decreasing order by size. The
function ¢(Y;—1) = 1iff any cell above ¢; in its column is occupied.
For the k-Min sketch (aka Bottom-k or MinCount), the cells are in
1-1 correspondence with hash values, and listed in increasing order
of hash value. Then ¢(Y;—1) = 1 iff Y;—; has Hamming weight
at least k, i.e., we only remember the k smallest cells hit by darts.
One can also confirm that other sketches are linearizable, such as
Multires. Bitmap [27], Discrete MaxCount [49], and Curtain [45].

Strictly speaking AdaptiveSampling [28, 31] is not linearizable.
Similar to k-Min, it remembers the smallest k’ hash values for
varying k’ < k, but k’ cannot be determined in a linearizable
fashion. One can also invent non-linearizable variations of other
sketches. For example, we could add a rule to PCSA that if, among
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Figure 3: The cell partition used by g-PCSA and g-LL. (a) A possible state of PCSA. Occupied (red) cells are precisely those containing darts. (c)
The corresponding state of LogLog. Occupied (red) cells contain a dart, or lie below a cell in the same column that contains a dart.
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Figure 4: A classification of sketching algorithms for cardinality estimation.

all cells of the same size, at least 70% are occupied, then 100% of
them must be occupied.

We are only aware of one sketch that fits in the dartboard model
that is not commutative, namely the S-Bitmap [14].

The sketches that fall outside the dartboard model are of two
types. The first are non-commutative sketches like Recordinality or
those derived by the Cohen/Ting [18, 49] transformation. These con-
sist of a commutative (dartboard) sketch and a cardinality estimate A,
where A depends on the order in which the darts were thrown. The
other type are heuristic sketches that violate Rule (R3) (occupied
cells stay occupied), like HyperBitBit [47] and HLL-Tailcut+ [52].
Rule (R3) is critical if the sketch is to be (asymptotically) unbiased;
see [44].

5.3 The Lower Bound

When phrased in terms of the dartboard model, our analysis of the
Fish-number of PCSA (Section 4) took the following approach. We
fixed a moment in time A and aggregated the Shannon entropy and
normalized Fisher information over all cells on the dartboard.

Our lower bound on linearizable sketches begins from the op-
posite point of view. We fix a particular cell ¢; € C of size p;
and consider how it might contribute to the Shannon entropy and
normalized Fisher information at various times. The H, I functions
defined in Lemma 10 are useful for describing these contributions.?!

LEMMA 10. Let Z be the indicator variable for whether a particular
cell of size p has been hit by a dart. At time A, Pr(Z = 0) = e P* and

H(Z)=H(pd) and 2*-Iz(}) = (pA),

ZSee [44] for the missing proofs in this section.
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where

def L
" In2
def 12
T el -1

In other words, the number of darts in this cell is a Poisson(t)
random variable, t = pA, and both entropy and normalized infor-
mation can be expressed in terms of ¢ via functions H, I.

Still fixing ¢; € C with size p;, let us now aggregate its potential
contributions to entropy/information over all time. We say potential

H(t) (te_t —-(1-¢HIn(1 - e_t)),

I(t)

contribution because in a linearizable sketch, it is possible for cell
¢; to be “killed”; at the moment ¢(Y;—1) switches from 0 to 1, Z;
is no longer relevant. We measure time on a log-scale, so A = e*.
Unsurprisingly, the potential contributions of ¢; do not depend on

pi:

LeEmmaA 11.

(e8] [e9)
/ H(eX)dx =Hy and / I(e¥)dx = I.

In other words, if we let cell ¢; “live” forever (fix #(Y;j—1) = 0
for all time) it would contribute Hy to the aggregate entropy and Iy
to the aggregate normalized Fisher information. In reality c; may
die at some particular time, which leads to a natural optimization
question. When is the most advantageous time A to kill ¢;, as a
function of its density t; = p;A?

Figure 5 plots H(t), I(t) and—most importantly—the ratio
H(t)/I(t). It appears as if H(t)/I(t) is monotonically decreasing in
t and this is, in fact, the case, as established in Lemma 12.

LemMA 12. H(t)/I(t) is decreasing in t on (0, 00).
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Figure 5: H(t),[(t) and H(t)/I(t)

Lemma 12 is the critical observation. Although the cost H(t) and
value I(t) fluctuate with t, the cost-per-unit-value only improves
with time. In other words, the optimum moment to “kill” any cell
c; should be never, and any linearizable sketch that routinely kills
cells prematurely should, on average, perform strictly worse than
PCSA—the ultimate pacifist sketch.

The rest of the proof formalizes this intuition. One difficulty is
that Hy /Iy is not a hard lower bound at any particular moment
in time. For example, if we just want to perform well when the
cardinality A is in, say, [106, 2- 106], then we can easily beat Hy /Iy
by a constant factor.?? However, if we want to perform well over a
sufficiently long time interval [a, b], then, at best, the worst case
efficiency over that interval tends to Hy /Iy in the limit.

Define Z; »,Y; ) to be the variables Z;, Y; at time A. Let Y =
Y|cj-1 = (Yo, ..., Y|c|-1) be the vector of indicators encoding the
state of the sketchand Y1} = (Yo 2, ..., Y|¢|-1,2) refer to Y at time
A.

ProOPOSITION 1. For any linearizable sketch and any c¢; € C,
Pr(¢(Y;—1,2) = 0) is non-increasing with A.

Proor. Follows from Rule (R3) and the monotonicity of ¢. O

The proof depends on linearizability mainly through Lemma 13,
which uses the chain rule to bound aggregate entropy/information
in terms of a weighted sum of cell entropy/information. The weights
here correspond to the probability that the cell is still alive, which,
by Proposition 1, is non-increasing over time.

LEMMA 13. For any linearizable sketch and any A > 0, we have

|Cl-1
H(Y[a) = ). H(pid) Pr($(Y;_1,0) = 0),
i=0
ICl-1
Pyy= ) Hpid) Pr($(Yi_1p) = 0).
i=0
Definition 8 introduces some useful notation for talking about
the aggregate contributions of some cells to some period of time
(on a log-scale) W = [a,b], i.e, all A € [e4, eb].

22(lifford and Cosma [16] calculated the optimal Fisher information for Bernoulli
observables when A was known to lie in a small range.
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Definition 8. Fix a linearizable sketch. Let C C C be a collection
of cells and W C R be an interval of the reals. Define:

H(C - W) = /W D" H(pie*) Pr(¢(Yiorex) = 0)dx,

c;eC

1€ W)= [ 3 ") Prp(¥ioser) =01
w c;ieC

A linearizable sketching scheme is really an algorithm that takes
a few parameters, such as a desired space bound and a maximum
allowable cardinality, and produces a partition C of the dartboard, a
function ¢ (implicitly defining the state space S), and a cardinality
estimator A : & — R. Since we are concerned with asymptotic
performance we can assume 1 is MLE, so the sketch is captured by
just C, .

In Theorem 5 we assume that such a linearizable sketching
scheme has produced C, ¢ such that the entropy (i.e., space, in
expectation) is at most H at all times, and that the normalized in-
formation is at least I for all times A € [e% e®]. It is proved that
H/I > (1-04(1))Hy/Iy, whered = b—aand oy(1) — 0asd — co.
The take-away message (proved in Corollary 1) is that all scale-
invariant linearizable sketches have Fish-number at least Hy/Ij.

THEOREM 5. Fixrealsa < b withd =b—a > 1. LetI:I,f >0.Ifa
linearizable sketch satisfies that
e ForallA>0,H(Ypy)) <H,
e Foralll e [e% ], 22 - (1) > 1,
then
. Ho 1 — max(8d~1/4 5¢74/2)

g, (344;4\/3) %0 (1 - max(8d-1/4, 5¢-4/2))

H H
i

Hy
= (1= 0g(1) 2,
0
The expression for this 1 —o04(1) factor arises from the following
two technical lemmas.
LEmMMA 14. Foranyd > 0 andt > %ln d,
/_ ;: H(eX)dx

—t+d
—00

- < max(8d71/4, Sefd/z).
H(eX)dx

LemMA 15. Letd =b—a > 1,A = $Ind andC* ={c; € C | pi <
e~} Assume that for allA > 0, H(Y[3]) < H (the first condition
of Theorem 5). Then we have

I(C\C* = [ab]) < (344 + 4¢®)H.

COROLLARY 1. Let Ag be any linearizable, weakly scale-invariant
sketch with base q. Then Fish(Aq) > Ho/Io.

6 CONCLUSION

We introduced a natural metric (Fish) for sketches that consist of
statistical observations of a data stream. It captures the tension
between the encoding length of the observation (Shannon entropy)
and its value for statistical estimation (Fisher information).

The constant Hy/Iy ~ 1.98016 is fundamental to the Cardinal-
ity Estimation problem. It is the Fish-number of PCSA [30], and
achievable up to a (1 + o(1))-factor with the Fishmonger sketch
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([44]), i.e., roughly (1 + 0(1))(Ho/Ip)m bits suffice to get standard
error 1/+/m. These two facts were foreshadowed by Lang’s [38] nu-
merical and experimental investigations into compressed sketches
and MLE-type estimators.

We defined a natural class of commutative (mergeable) sketches
called linearizable sketches, and proved that no such sketch can
beat Hy/Iy. The most well known sketches are linearizable, such as
PCSA, (Hyper)LogLog, MinCount/k-Min/Bottom-k, and Multres.
Bitmap.

We highlight two open problems.

e Shannon entropy and Fisher information are both subject to
data processing inequalities, i.e., no deterministic transfor-
mation can increase entropy/information. Our lower bound
(Section 5) can be thought of as a specialized data processing
inequality for Fish, with two notable features. First, the de-
terministic transformation has to be of a certain type (the lin-
earizability assumption). Second, we need to measure H /1
over a sufficiently long period of time. The second feature
is essential to the Hy/Iy lower bound. The open question
is whether the first feature can be relaxed. We conjecture
that Hy /Iy is a lower bound on all commutative/mergeable
sketches.?®

e Our lower bound provides some evidence that Fishmon-
ger is optimal up to a (1 + o(1))-factor among commuta-
tive/mergeable sketches. However, it is not particularly fast
nor elegant, and must be decompressed/recompressed be-
tween updates. This can be mitigated in practice, e.g., by
storing the first column containing a 0-bit?* or buffering in-
sertions and only decompressing when the buffer is full. The
CPC sketch in Apache DataSketches uses the latter strat-
egy [38, 48]. Is it possible to design a conceptually simple
mergeable sketch (i.e., without resorting to entropy com-
pression) that can be updated in O(1) worst-case time and
occupies space (Hy/Iy + ¢)m (with standard error 1/+/m) for
some reasonably small ¢ > 0?
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