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ABSTRACT

Feature attributions and counterfactual explanations are popular
approaches to explain a ML model. The former assigns an impor-
tance score to each input feature, while the latter provides input
examples with minimal changes to alter the model’s predictions. To
unify these approaches, we provide an interpretation based on the
actual causality framework and present two key results in terms of
their use. First, we present a method to generate feature attribution
explanations from a set of counterfactual examples. These feature
attributions convey how important a feature is to changing the
classification outcome of a model, especially on whether a subset
of features is necessary and/or sufficient for that change, which
attribution-based methods are unable to provide. Second, we show
how counterfactual examples can be used to evaluate the goodness
of an attribution-based explanation in terms of its necessity and
sufficiency. As a result, we highlight the complementarity of these
two approaches. Our evaluation on three benchmark datasets —
Adult-Income, LendingClub, and German-Credit — confirms the
complementarity. Feature attribution methods like LIME and SHAP
and counterfactual explanation methods like Wachter et al. and
DiCE often do not agree on feature importance rankings. In addi-
tion, by restricting the features that can be modified for generating
counterfactual examples, we find that the top-k features from LIME
or SHAP are often neither necessary nor sufficient explanations of
a model’s prediction. Finally, we present a case study of different
explanation methods on a real-world hospital triage problem.
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1 INTRODUCTION

As complex machine learning (ML) models are being deployed in
high-stakes domains like finance and healthcare, explaining why
they make a certain prediction has emerged as a critical task. Expla-
nations of a ML model’s prediction have found many uses, including
to understand the most important features [35, 44], discover any
unintended bias [49], debug the model [29], increase trust [28, 33],
and provide recourse suggestions for unfavorable predictions [58].
There are two popular explanation methods: attribution-based
and counterfactual-based. Attribution-based explanations provide a
score or ranking over features, conveying the (relative) importance
of each feature to the model’s output. Example methods include
local function approximation using linear models [44] and game-
theoretic attribution such as Shapley values [35]. The second kind,
counterfactual-based explanations, instead generate examples that
yield a different model output with minimum changes in the input
features, known as counterfactual examples (CF) [58]. Because of
the differences in the type of output and how they are generated,
these two methods are largely studied independent of each other.
In this paper, we demonstrate the fundamental relationship be-
tween attribution-based and counterfactual-based explanations (see
Fig. 1). To provide a formal connection, we introduce the frame-
work of actual causality [18] to the explanation literature. Actual
causality reasons about the causes of a particular event, while the
more common causal inference setting estimates the effect of a
particular event [41, 45]. Using actual causality, we define an ideal
model explanation and propose two desirable properties for any
explanation: necessity (is a feature value necessary for generating
the model’s output?) and sufficiency (is the feature value sufficient
for generating the model output?). A good explanation should sat-
isfy both [32, 59], but we find that current explanation methods
optimize either one of them. CF-based methods like Wachter et al.
(henceforth “WachterCF’) and DiCE [39] find examples that high-
light the necessary feature value for a given model output whereas
attribution-based methods like LIME [44] and SHAP [35] focus on
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the sufficiency of a feature value. Thus, the actual causality frame-
work underscores their complementarity: we need to provide both
necessity and sufficiency for a good explanation.

Our empirical analysis, using LIME and SHAP as examples
of attribution-based and WachterCF and DiCE as examples of
counterfactual-based methods, confirms this complementarity. First,
we show that counterfactual-based methods can be used to evaluate
explanations from LIME and SHAP. By allowing only a specific
feature to change in generating CFs, we can evaluate the necessity
of the feature’s value for the model’s predicted output. Similarly,
by generating CFs with all but a specific feature, we can evalu-
ate the sufficiency of the feature’s value for causing the model’s
outcome. On benchmark datasets related to income or credit pre-
dictions (Adult-Income, German-Credit and LendingClub), we find
that the top-ranked features from LIME and SHAP are often nei-
ther necessary nor sufficient. In particular, for Adult-Income and
German-Credit, more counterfactuals can be generated by using
features except the top-3 than using any of the top-3 features, and
it is easy to generate counterfactuals even if one of the top-ranked
features is not changed at all.

Second, we show that CF examples can be used to generate fea-
ture importance scores that complement the scores from LIME and
SHAP. The scores from DiCE and WachterCF do not always agree
with those from attribution-based methods: DiCE and WachterCF
tend to assign relatively higher scores to low-ranked features from
LIME and SHAP, likely because it is possible to generate valid CFs
using those features as well. Ranks generated by the four methods
also disagree: not only do attribution-based methods disagree with
counterfactual-based methods, but LIME and SHAP also disagree
on many features and so do WachterCF and DiCE.

Our results reveal the importance of considering multiple ex-
planation methods to understand the prediction of an ML model.
Different methods have different objectives (and empirical approxi-
mations). Hence, a single method may not convey the full picture.
To demonstrate the value of considering multiple kinds of expla-
nation, we analyze a high-dimensional real-world dataset that has
over 200 features where the ML model’s task is to predict whether
a patient will be admitted to a hospital. The differences observed
above are magnified: an analyst may reach widely varying conclusion
about the ML model depending on which explanation method they
choose. DiCE considers triage features as the most important, LIME
considers chief-complaint features as the most important, whereas
SHAP identifies demographic features as the most important. We
also find odd results with LIME on necessity: changing the 3rd most
important feature provides more valid CFs than changing the most
important feature.
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To summarize, we make the following contributions:

o A unifying framework for attribute-based explanations and
counterfactual examples using actual causality;

¢ A method to evaluate attribution-based methods on the ne-
cessity and sufficiency of their top-ranked features;

e Empirical investigation of explanations using commonly
used datasets and a high-dimensional dataset.

2 RELATED WORK

We discuss the desirable properties that any explanation method
should have, the two main types of explanations, and how different
explanation methods compare to each other. There is also important
work on building intelligible models by design [9, 34, 46] that we
do not discuss here.

2.1 Desirable Properties of an Explanation

Explanations serve a variety of purposes, including debugging for
the model-developer, evaluating properties for an auditor, and pro-
viding recourse and trust for an end individual. Therefore, it is
natural that explanations have multiple desirable properties based
on the context. Sokol and Flach [52] and Miller [37] list the different
properties that an explanation ideally should adhere to. Different
works have evaluated the soundness [60] (truthfulness to the ML
model), completeness [43] (generalizability to other examples), par-
simony [10, 37], and actionability [56] of explanations. In general,
counterfactual-based methods optimize soundness over complete-
ness, while methods that summarize data to produce an attribution
score are less sound but optimize for completeness.

In comparison, the notions of necessity and sufficiency of a fea-
ture value for a model’s output are less studied. In natural language
processing (NLP), sufficiency and comprehensiveness have been
defined based on the output probability in the context of rationale
evaluation (e.g., whether a subset of words leads to the same pre-
dicted probability as the full text) [8, 13, 61]. By using a formal
framework of actual causality [18], we define the necessity and
sufficiency metrics for explaining any ML model, and provide a
method using counterfactual examples to compute them. In con-
current work, Galhotra et al. [16] propose an explanation method
based on necessity and sufficiency metrics.

2.2 Attribution-based and Counterfactuals

Majority of the work in explainable ML provides attribution-based
explanations [51, 54]. Feature attribution methods are local expla-
nation techniques that assign importance scores to features based
on certain criteria, such as by approximating the local decision
boundary [44] or estimating the Shapley value [35]. A feature’s
score captures its contribution to the predicted value of an instance.
In contrast, counterfactual explanations [11, 14, 21, 42, 56—58] are
minimally-tweaked versions of the original input that lead to a
different predicted outcome than the original prediction. In addi-
tion to proximity to the original input, it is important to ensure
feasibility [22], real-time response [48], and diversity among coun-
terfactuals [39, 47].

We provide a unified view of these two explanations. They need
not be considered separate (Research Challenge 1 in Verma et
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al. [57]): counterfactuals can provide another way to generate fea-
ture attributions, as suggested by Sharma et al. [50] and Barocas
et al. [7]. We extend this intuition by conducting an extensive em-
pirical study on the attributions generated by counterfactuals, and
comparing them to other attribution-based methods. In addition,
we introduce a formal causality framework to show how different
explanation methods correspond to different notions of a feature
“causing” the model output: counterfactuals focus on the necessity
of a feature while other methods tend to focus on its sufficiency to
cause the model output.

3 ACTUAL CAUSALITY: UNIFYING
EXPLANATIONS

Let f(x) be a machine learning model and x denote a vector of d
features, (x1, x2, ...xg). Given input x( and the output f(xo), a com-
mon explanation task is to determine which features are responsible
for this particular prediction.

Though both attribution-based and counterfactual-based meth-
ods aim to explain a model’s output at a given input, the difference
and similarity in their implications are not clear. While feature
attributions highlight features that are important in terms of their
contributions to the model prediction, it does not imply that chang-
ing important features is sufficient or necessary to lead to a different
(desired) outcome. Similarly, while CF explanations provide insights
for reaching a different outcome, the features changed may not in-
clude the most important features of feature attribution methods.

Below we show that while these explanation methods may ap-
pear distinct, they are all motivated by the same principle of whether
a feature is a “cause” of the model’s prediction, and to what extent.
We provide a formal framework based on actual causality [18] to
interpret them.

3.1 Background: Actual Cause and Explanation

We first define actual cause and how it can be used to explain an
event. In our case, the classifier’s prediction is an event, and the
input features are the potential causes of the event. According to
Halpern [18], causes of an event are defined w.r.t to a structural
causal model (SCM) that defines the relationship between the poten-
tial causes and the event. In our case, the learnt ML model f is the
SCM (M) that governs how the prediction output is generated from
the input features. The structure of the SCM consists of each feature
as a node that causes other intermediate nodes (e.g., different layers
of a neural network), and then finally leads to the output node. We
assume that the feature values are generated from an unknown
process governed by a set of parameters that we collectively denote
as u, or the context. Together, (M, u) define a specific configuration
of the input x and the output f(x) of the model.

For simplicity, the following definitions assume that individual
features are independent of each other, and thus any feature can be
changed without changing other features. However, in explanation
goals such as algorithmic recourse it is important to consider the
causal dependencies between features themselves [16, 22, 26, 36];
we leave such considerations for future work.

Definition 3.1 (Actual Cause, (Original definition) [18]). A
subset of feature values x; = a is an actual cause of the model
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output f(x_; = b,x; = a) = y* under the causal setting (M, u) if
all the following conditions hold:
(1) Given (M,u), xj =aand f(x_j =b,xj =a) =y".
(2) There exists a subset of features W C x_; such that if W
is set to w’, then (x; <« a W < w’) = (y = y*) and
(xj «—a’,W «w') =y # y* for some value a’.
(3) x; is minimal, namely, there is no strict subset x5 C x; such
that x5 = as satisfies conditions 1 and 2, where as C a.

In the notation above, x; « v denotes that x; is intervened on
and set to the value v, irrespective of its observed value under (M, u).
Intuitively, a subset of feature values x; = a is an actual cause of y*
if under some value b’ of the other features x_ j» there exists a value
a’ # asuch that f(x_; = b’,a’) # y* and f(x_j = b’,a) = y*.
For instance, consider a linear model with three binary features
f(x1,x2,x3) = I(0.4x1 + 0.1x2 + 0.1x3 >= 0.5) and an observed
prediction of y = 1. Here each feature x; = 1 can be considered an
actual cause for the model’s output, since there is a context where
its value is needed to lead to the outcome y = 1.

To differentiate between the contributions of features, we can
use a stronger definition, the but-for cause.

Definition 3.2 (But-for Cause). A subset of feature values x; = a
is a but-for cause of the model output f(x—; = b,x; = a) = y*
under the causal setting (M, u) if it is an actual cause and the empty
set W = ¢ satisfies condition 2.

That is, changing the value of x; alone changes the prediction
of the model at x(. On the linear model, now we obtain a better
picture: x; = 1 is always a but-for cause for y = 1. The only context
in which x2 = 1 and x3 = 1 are but-for causes for y = 1 is when
x1=1.

While the notion of but-for causes captures the necessity of a
particular feature subset for the obtained model output, it does not
capture sufficiency. Sufficiency means that setting a feature subset
x;j < a will always lead to the given model output, irrespective of
the values of other features. To capture sufficiency, therefore, we
need an additional condition.

xje—a=>y=y" YueU

(1)

That is, for the feature subset value x; = a to be a sufficient cause,
the above statement should be valid in all possible contexts. Based
on the above definitions, we are now ready to define an ideal expla-
nation that combines the idea of actual cause and sufficiency.

Definition 3.3 (Ideal Model Explanation). A subset of feature
values xj = a is an explanation for a model output y* relative to a
set of contexts U, if

(1) Existence: There exists a context u € U such that x; = a
and f(x-j =b,xj =a) =y".

(2) Necessity: For each context u € U where x; = a and
f(x—j = b,xj = a) = y*, some feature subset x5, C x; is
an actual cause under (M, u) (satisfies conditions 1-3 from
Definition 3.1).

(3) Sufficiency: For all contexts u’ € U, xj < a = y = y*.

(4) Minimality: x; is minimal, namely, there is no strict subset
xs C xj such that xg = as satisfies conditions 1-3 above,
where a; C a.
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This definition captures the intuitive meaning of explanation.
For a given feature x, condition 2 states that the feature affects
the output (output changes if the feature is changed under certain
conditions), and condition 3 states that as long as the feature is
unchanged, the output cannot be changed. In practice, however,
it is rare to find such clean explanations of a ML model’s output.
Even in our simple linear model above, no feature is sufficient to
cause the output, y = 1.

3.2 Partial Explanation for Model Output

For most realistic ML models, an ideal explanation is impractical.
Therefore, we now describe the concept of partial explanations [18]
that relaxes the necessity and sufficiency conditions to consider the
fraction of contexts over which these conditions are valid. Partial
explanations are characterized by two metrics.

The first metric captures the extent to which a subset of feature
values is necessary to cause the model’s (original) output.

)
where ‘is a cause’ means that x; = a satisfies Definition 3.1. The

second metric captures sufficiency using conditional probability of
outcome given the subset of feature values.

a =Pr(x;j is a cause of y*|xj = a,y = y*)

B=Pr(y=y*lxj < a) ®3)

where x; < a denotes an intervention to set x; to a. Both proba-
bilities are over the set of contexts U. Combined, they can be called
(a, B) goodness of an explanation. When both @ = 1 and § = 1,
a = 1 captures that x; = a is a necessary cause of y = y* and f = 1
captures that x; = a is a sufficient cause of y = y*. In other words,
a subset of feature values x; = a is a good explanation for a model’s
output y* if it is an actual cause of the outcome and y = y* with
high probability whenever x; = a.

3.3 Unifying Different Local Explanations

Armed with the (a, f) goodness of explanation metrics, we now
show how common explanation methods can be considered as
special cases of the above framework.

Counterfactual-based explanations. First, we show how coun-
terfactual explanations relate to («, §): When only but-for causes
(instead of actual causes) are allowed, a and f§ capture the intuition
behind counterfactuals. Given y = y* and a candidate feature subset
xj, o corresponds to fraction of contexts where x is a but-for cause.
That is, keeping everything else constant and only changing x;,
how often does the classifier’s outcome change? Eqn. 2 reduces to,

©)

where the above probability is over a reasonable set of contexts
(e.g., all possible values for discrete features and a bounded region
around the original feature value for continuous features). By defi-
nition, each of the perturbed inputs above that change the value of
y can be considered as a counterfactual example [58]. Counterfac-
tual explanation methods aim to find the smallest perturbation in
the feature values that change the output, and correspondingly the
modified feature subset x; is a but-for cause of the output. acr pro-
vides a metric to summarize the outcomes of all such perturbations
and to rank any feature subset for their necessity in generating
the original model output. In practice, however, computing «a is

acr=Pr((xj —ad =y #y)|xj=ax_j=by=y")
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computationally prohibitive and therefore explanation methods
empirically find a set of counterfactual examples and allow (man-
ual) analysis on the found counterfactuals. In §4, we will see how
we can develop a feature importance score using counterfactuals
that is inspired from the acp formulation.

p corresponds to the fraction of contexts where x; = a is suffi-
cient to keep y = y*. That corresponds to the degree of sufficiency
of the feature subset: keep x; constant but change everything else
and check how often the outcome remains the same. While not
common, such a perturbation can be considered as a special case
of the counterfactual generation process, where we specifically
restrict change in the given feature set. A similar idea is explored
in (local) anchor explanations (Ribeiro et al). It is also related to
pertinent positives and pertinent negatives [14].
Attribution-based explanations. Next, we show the connection
of attribution-based explanations with (a, ). f is defined as in
Eqn. 3, the fraction of all contexts where x; < a leads to y = y*.
Depending on how we define the set of all contexts, we obtain
different local attribute-based explanations. The total number of
contexts is 2 for m binary features and is infinite for continuous
features. For ease of exposition, we consider binary features below.

LIME can be interpreted as estimating f for a restricted set of
contexts (random samples) near the input point. Rather than check-
ing Eqn. 1 for each of the random sampled points and estimating
using Eqn. 3, it uses linear regression to estimate f(a, y*) - f(a’, y*).
Note that linear regression estimates E[Y|x; = a] —E[Y|x; = a']
are equivalent to Pr[Y = 1|x; = a] = Pr[Y = 1|x; = a’] fora
binary y. LIME estimates effects for all features at once using linear
regression, assuming that each feature’s importance is independent.

Shapley value-based methods take a different approach. Shapley
value for a feature is defined as the number of times that including
a feature leads to the observed outcome, averaged over all possible
configurations of other input features. That is, they define the valid
contexts for a feature value as all valid configurations of the other
features (size 2™ 1). The intuition is to see, at different values
of other features, whether the given feature value is sufficient to
cause the desired model output y*. The goal of estimating Shapley
values corresponds to the equation for f described above (with an
additional term for comparing it to the base value).

Note how selection of the contexts effectively defines the type
of attribution-based explanation method [26, 53]. For example, we
may weigh the contexts based on their likelihood in some world
model, leading to feasible attribute explanations [3].

Example and practical implications. The above analysis indi-
cates that different explanation methods optimize for either « or f:
counterfactual explanations are inspired from the acr metric and
attribution-based methods like LIME and SHAP from the f metric.
Since f focuses on the power of a feature to lead to the observed out-
come and @ on its power to change the outcome conditional that the
(feature, outcome) are already observed, the two metrics need not be
the same. For example, consider a model, y = 1(0.45x1+0.1x2 > 0.5)
where x1,x3 € [0, 1] are continuous features, and an input point
(x1 = 1,x2 = 1,y = 1). To explain this prediction, LIME or SHAP
will assign high importance to x; compared to x3 since it has a
higher coefficient value of 0.45. Counterfactuals would also give
importance to x; (e.g., reduce x; by 0.12 to obtain y = 0), but also
suggest to change x (e.g., reduce x3 to 0.49), depending on how the
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loss function from the original input is defined (which defines the
set of contexts for &). We include the importance scores by different
methods for this example in our Supplementary Materials.!

Therefore, a good explanation ideally needs both high @ and f to
provide the two different facets. Our framework suggests that there
is value in evaluating both qualities for an explanation method,
and in general considering both types of explanations for their
complementary value in understanding a model’s output. In the
following, we propose methods for evaluating necessity (acr) and
sufficiency (f) of an explanation and study their implications in
real-world datasets.

4 PROPOSED METHODS

To connect attribution-based methods with counterfactual expla-
nation, we propose two methods. The first measures the necessity
and sufficiency of any attribution-based explanation using coun-
terfactuals, and the second creates feature importance scores using
counterfactual examples.

4.1 Background: Explanation methods

For our empirical evaluation, we looked for explanation methods
that are publicly available on GitHub. For attribution-based meth-
ods, we use the two most popular open-source libraries, LIME [44]
and SHAP [35]. We choose counterfactual methods based on their
popularity and whether a method supports generating CFs using
user-specified feature subsets (a requirement for our experiments).
Alibi [23], AIX360 [6], DiCE [39], and MACE [21] are most popular
on GitHub, but only DiCE explicitly supports CFs from feature sub-
sets (more details about method selection are in the Supplementary
Materials). We also implemented the seminal method from Wachter
et al. for CF explanations, calling it WachterCF.
Attribution-based methods. For a given test instance x and a ML
model f(.), LIME perturbs its feature values and uses the perturbed
samples to build a local linear model g of complexity Q(g). The
coefficients of the linear model are used as explanations { and larger
coeflicients imply higher importance. Formally, LIME generates
explanations by optimizing the following loss where L measures
how close g is in approximating f in the neighborhood of x, 7.

{(x) = argminL(f, g, 7x) + Q(9) (5)
geG

SHAP, on the other hand, assigns importance score to a feature
based on Shapley values, which are computed using that feature’s
average marginal contribution across different coalitions of all fea-
tures.

Counterfactual generation method. For counterfactual expla-
nations, the method from Wachter et al. optimizes the following
loss, where c is a counterfactual example.

¢* = argminyloss(f(c),y) + A1 dist(c, x) (6)
c

The two additive terms in the loss minimize (1) yloss(.) between

ML model f(.)’s prediction and the desired outcome y, (2) distance

between c; and test instance x. For obtaining multiple CFs for the

same input, we simply re-initialize the optimization with a new

!Supplementary materials are in the arXiv version: https://arxiv.org/abs/2011.04917.
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random seed. As a result, this method may not be able to find unique
CFs.

The second method, DiCE, handles the issue of multiple unique
CFs by introducing a diversity term to the loss, using a determinan-
tal point processes based method [25]. It returns a diverse set of
nCFs counterfactuals by solving a combined optimization problem
over multiple CFs, where c; is a counterfactual example:

— yloss(f(ci), y) + —= dist(cj, x)
nCF — nCF —

™)

C(x) = argmin
€1;--,CnCF

— Az dpp_diversity(ci, . . ., cncF)-

4.2 Measuring Necessity and Sufficiency

Suppose y* = f(xj = a,x_;j = b) is the output of a classifier f
for input x. To measure necessity of a feature value x; = a for
the model output y*, we would like to operationalize Equation 4.
A simple way is to use a method for generating counterfactual
explanations, but restrict it such that only x; can be changed. The
fraction of times that changing x; leads to a valid counterfactual
example indicates that the extent to which x; = a is necessary for
the current model output y*. That is, if we can change the model’s
output by changing x;, it means that the x; features’ values are
necessary to generate the model’s original output. Necessity is thus
defined as
Zi,xj#:a ]I(CFi)
nCF+N ®)
where N is the total number of test instances for which nCF coun-
terfactuals are generated each.

For the sufficiency condition from Equation 3, we adopt the re-
verse approach. Rather than changing x;, we fix it to its original
value and let all other features vary their values, If no unique valid
counterfactual examples are generated, then it implies that x; = a
is sufficient for causing the model output y*. If not, then (1- fraction
of times that unique CFs are generated) tells us about the extent of
sufficiency of x; = a. In practice, even when using all the features,
we may not obtain 100% success in generating valid counterfac-
tuals. Therefore, we modify the sufficiency metric to compare the
fraction of unique CFs generated using all features to the fraction
of unique CFs generated while keeping x ; constant (in other words,
we encode the benchmark of using all features to generate CFs in
the definition of sufficiency):

i 1(CF;) Zi,xj<—a 1(CF;)
nCF * N nCF * N

Necessity =

Sufficiency =

4.3 Feature Importance using Counterfactuals

In addition to evaluating properties of attribution-based explainers,
counterfactual explanations offer a natural way of generating fea-
ture attribution scores based on the extent to which a feature value
is necessary for the outcome. The intuition comes from Equation 4:
a feature that is changed more often when generating counterfac-
tual examples must be an important feature. Below we describe the
methods, WachterCFgs and DiCEpp to generate attribution scores
from a set of counterfactual examples.
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To explain the output y* = f(x), the DiCEp algorithm proceeds
by generating a diverse set of nCF counterfactual examples for the
input x, where nCF is the number of CFs. To generate multiple CFs
using WachterCF, we run the optimization in Eqn. 6 multiple times
with random initialization as suggested by Wachter et al. A feature
xj that is important in changing a predicted outcome, is more likely
to be changed frequently in nCF CFs than a feature xj that is less
important. For each feature, therefore, the attribution score is the
fraction of CF examples that have a modified value of the feature.
To generate a local explanation, the attribution score is averaged
over multiple values of nCF, typically going from 1 to 8. To obtain
a global explanation, this attribution score is averaged over many
test inputs. Detailed algorithm is in the Supplementary Materials.

4.4 Datasets and Implementation Details

We use three common datasets in explainable ML literature: Adult-
Income [24], LendingClub [55], German-Credit [2]. We use the
default hyperparameters for LIME, SHAP (using KernelExplainer)
and DiCE. For the counterfactual methods, we use the same value
of A1 (0.5) for both DiCE (Eqn. 7) and WachterCF (Eqgn. 6) and set
A2 to 1.0. The results presented are robust to different choices of
hyperparameters of proximity and diversity. More details about the
dataset and implementation are in the Supplementary Materials.

5 EVALUATING NECESSITY & SUFFICIENCY

We start by examining the necessity and sufficiency of top features
derived with feature attribution methods through counterfactual
generation. Namely, we measure whether we can generate valid
CFs by changing only the k-th most important feature (necessity)
or changing other features except the k-th most important feature
(sufficiency). Remember that necessity and sufficiency are defined
with respect to the original output. For example, if changing a
feature can vary the predicted outcome, then it means that this
feature is necessary for the original prediction.

Are important features necessary? Given top features identified
based on feature attribution methods (LIME and SHAP), we investi-
gate whether we can change the prediction outcomes by using only
the k-th most important feature, where k € {1,2,3}, We choose small
k since the number of features is small in these datasets. Specifically,
we measure the average percentage of unique and valid counter-
factuals generated using DiCE and WachterCF for 200 random test
instances by fixing other features and changing only the k-th most
important feature. This analysis helps us understand if the top fea-
tures from LIME or SHAP are necessary to produce the current
model output. Fig. 2a shows the results for different datasets when
asked to generate different numbers of CFs. While we produced
CFs for nCF € {1,2,4,6,8}, we show results only for 1, 4, and 8 for
brevity. To provide a benchmark, we also consider the case where
we use all the other features that are not in the top three.

Our results in Fig. 2a suggest that the top features are mostly
unnecessary for the original prediction: changing them is less likely
to alter the predicted outcome. For instance, in German-Credit,
none of the top features have a necessity of above 50%, in fact often
below 30%. In comparison, features outside the top three can always
achieve almost 100%. This is likely related to the fact that there
are 20 features in German-Credit, but the observation highlights
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the limited utility in explanation by focusing on the top features
from feature attribution methods. Similar results also show up in
Adult-Income, but not as salient as in German-Credit.

In LendingClub, we do find that the top feature is relatively
higher on the necessity metric. Upon investigation, we find this
dataset has a categorical feature grade of seven levels, which is
assigned by the lending company as an indicator of loan repayment.
The loan grade is designed based on a combination of factors includ-
ing credit score. Since the quality of loan grade is highly correlated
with loan repayment status, both LIME and SHAP give high im-
portance score to this feature for most test instances - they assign
highest score for 98% and 73% of the test instances respectively.
As a result, changing LIME’s top-1 feature is enough to get almost
perfect unique valid CFs when generating one counterfactual. How-
ever, the necessity of a single feature quickly reduces as we generate
more CFs. Even in this dataset where there is a dominant feature,
the features other than the top-3 become more necessary than the
top feature (grade) for nCF > 4 and when diversity is enforced
using DiCE.

That said, necessity is generally aligned with the feature ranking
from LIME and SHAP: the higher the feature importance score, the
greater the necessity. The only exception is the second most impor-
tant feature in Adult-Income based on LIME. For most instances,
this feature is a person’s education level.

We repeat the above analysis by allowing all features upto top-k

to be changed (details in Supplementary Materials) and find that
necessity of the top-k subset increases, but is still less than 100%
for nCF> 1. That is, changing all top-3 ranked features is also
not enough to generate CFs for all input examples, especially for
higher-dimensional German-Credit.
Are important features sufficient? Similar to necessity, we mea-
sure the sufficiency of top features from attribution-based methods
by fixing the k-th most important feature and allowing DiCE and
WachterCF to change the other features. If the k-th most important
feature is sufficient for the original prediction, we would expect a
low success rate in generating valid CFs with the other features,
and our sufficiency measure would take high values.

Fig. 2b shows the opposite. We find that the validity is close to
100% till nCF = 8 even without changing the k-th most important
feature based on LIME or SHAP in Adult-Income and German-
Credit. This is the same as the validity (100%) when changing all
features, hence the sufficiency metric is near 0. In comparison, for
LendingClub, while no change in the top-2 or top-3 does not affect
the perfect validity, however, no change in the most important
feature does decrease the validity when generating more than one
CFs using DiCE. This result again highlights the dominance of grade
in LendingClub. However, even in this case, the sufficiency metric
is below 20%. Sufficiency results using WachterCF are similarly
low, except for LendingClub when nCF > 1. Here WachterCF, with
only random initialization and no explicit diversity loss formulation,
could not generate multiple unique CFs (without changing the most
important features) for many inputs, and therefore the measured
sufficiency is relatively higher. We also repeat the above analysis
by fixing all the top-k features and get similarly low sufficiency
results (see Supplementary Materials for more details).
Implications. These results qualify the interpretation of “impor-
tant” features returned by common attribution methods like LIME
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Figure 2: The y-axis represents the necessity and sufficiency measures at a particular nCF, as defined in §4.2. In Fig. 2a, we are
only allowed to change the k-th most important features (k = 1,2, 3) or the other features, whereas in Fig. 2b, we fix the k-th
most important features (k = 1,2, 3) but are allowed to change other features. While necessity is generally aligned with feature
ranking derived from LIME/SHAP, the most important features often cannot lead to changes in the model output on their own.
In almost all cases, “rest” achieves better success in producing CFs using both DiCE and WachterCF. For sufficiency, none of
these top features are sufficient to preserve original model output. DiCE and WachterCF differ the most for LendingClub with
nCF > 1, where latter’s difficulty to generate unique multiple CFs increases the measured sufficiency of a feature.
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Figure 3: In Fig. 3a, feature indexes on the x-axis are based on the ranking from LIME. Ranking from SHAP mostly agrees
with LIME, but less important features based on LIME can have high feature importance based on WachterCFgs and DiCEg4.
Fig. 3b shows the correlation of feature importance scores from different methods: LIME and SHAP are more similar to each
other than to DiCEgs and WachterCFga . In German-Credit, the correlation with DiCEgs can become negative as nCF grows.

or SHAP. Highly ranked features may often neither be necessary the application. Generally, whenever there are multiple kinds of
nor sufficient, and our results suggest that these properties be- attribution rankings to choose from, these results demonstrate the
come weaker for top-ranked features as the number of features in value of using CFs to evaluate them.

a dataset increases. In any practical scenario, hence, it is impor-
tant to check whether necessity or sufficiency is desirable for an 6 FEATURE IMPORTANCE BY CFS
explanation. While feature importance rankings may be generally
aligned with each feature’s necessity, they can also deviate from
this trend as we saw with LIME and Adult-Income. In addition, the
results on LendingClub indicate that the method used to generate

As discussed in §4, counterfactual methods can not only evaluate,
but also generate their own feature attribution rankings based
on how often a feature is changed in the generated CFs. In this
: i B ] . section, we compare the feature importance scores from DiCEgp
CFs matters too. Defining the loss function with or without diver- and WachterCFpy to that from LIME and SHAP, and investigate

sity corrfesponfls to Ad1fferent set of contexts on W}}ICh necessity how they can provide additional, complementary information about
or sufficiency is estimated, which needs to be decided based on a ML model
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Correlation with LIME or SHAP feature importance. We start
by examining how the importance scores from different methods
vary for different features and datasets. Fig. 3a shows the average
feature importance score across 200 random test instances when
nCF = 4. For LIME and SHAP, we take the absolute value of feature
importance score to indicate contribution. LIME and SHAP agree
very well for Adult-Income and LendingClub. While they mostly
agree in German-Credit, there are some bumps indicating disagree-
ments. In comparison, DiCEgs and WachterCFpy are less similar to
LIME than SHAP. This is especially salient in the high-dimensional
German-Credit dataset. The features that are ranked 13th and 18th
by LIME — the no. of existing credits a person holds at the bank and
the no. of people being liable to provide maintenance for — are the
top two important features by DiCEga s scores. They are ranked 1st
and 2nd, respectively, by DiCEga in 98% of the test instances. Simi-
larly, the 16th ranked feature by LIME, maximum credit amount, is
the most important feature by WachterCFga.

We then compute the Pearson correlation between these aver-
age feature importance scores derived with different explanation
methods in Fig. 3b for different nCF. LIME and SHAP agree on the
feature importance for all the three datasets, similar to what was
observed in Fig. 3a at nCF=4. The correlation is especially strong for
Adult-Income and LendingClub, each of which have only 8 features.

Comparing CF-based and feature attribution methods, we find
that they are well correlated in LendingClub. This, again, can be at-
tributed to the dominance of grade. All methods choose to consider
grade as an important feature. In Adult-Income, the correlation
of CF-based methods with SHAP and LIME decreases as nCF in-
creases. This is not surprising since at higher nCF, while DiCE
changes diverse features of different importance levels (according
to LIME or SHAP) to get CFs, WachterCF does so to a lesser extent
with random initializations. For instance, in Fig. 3a at nCF = 4,
the feature that is ranked 6th on average by LIME, hours-per-week,
is changed by WachterCF almost to the same extent as the top-3
features. Similarly, DiCE varies this feature almost twice more than
feature sex, which is ranked 4th on average by LIME. Hence, we can
expect that the average frequency of changing the most important
feature would decrease with increasing nCF and less important
features would start to vary more (see §5). By highlighting the less-
important features as per LIME or SHAP, DiCEpp and WachterCFpp
focuses on finding different subsets of necessary features that can
change the model output. In particular, even without a diversity
loss, WachterCFgp varies less important features to get valid CFs.
LIME and SHAP instead tend to prefer sufficiency of features in
contributing to the original model output.

This trend is amplified in German-Credit dataset that has the
highest number of features: correlation between DiCEgs and LIME
or SHAP is below 0.25 for all values of nCF and can even be neg-
ative as nCF increases. We hypothesize that this is due to the
number of features. German-Credit has 20 features and in gen-
eral with increasing feature set size, we find that DiCE is able
to generate CFs using less important features of LIME or SHAP.
Even though WachterCFgy varies less important features as shown
for nCF=4 in Fig. 3a, it has a relatively moderate correlation with
LIME/SHAP. This implies that attribution-based and CF-based meth-
ods agree more when CFs are generated without diversity. Interest-
ingly, the WachterCFra and DiCEpa correlate less with each other
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than WachterCFpy correlates with LIME/SHAP, indicating the mul-
tiple variations possible in generating CFs over high-dimensional
data. Further, LIME and SHAP also agree less in German-Credit
compared to other datasets, suggesting that datasets with few fea-
tures such as Adult-Income and LendingClub may provide limited
insights into understanding explanation methods in practice, espe-
cially as real-world datasets tend to be high-dimensional.
Differences in feature ranking. Feature importance scores can
be difficult to compare and interpret, therefore many visualization
tools show the ranking of features based on importance. We perform
a paired t-test to test if there is a significant difference between
rankings from different methods for the same feature. This analysis
allows us to see the local differences in feature rankings beyond
average feature importance score. For space reasons, we include
the figures in our Supplementary Materials.

For most features across all datasets, we find that the feature
rankings on individual inputs can be significantly different. In other
words, the differences between explanation methods are magnified
if we focus on feature ranking. This is true even when comparing
LIME and SHAP, which otherwise show high positive correlation
in average (global) feature importance score. For instance, in Adult-
Income, LIME consistently ranks marital status and sex higher than
SHAP, while SHAP tend to rank work class, race, and occupation
higher. Interestingly, they tend to agree on the ranking of continu-
ous features, i.e., hours per week and age. As expected, LIME and
DiCE provide different rankings for all features, while SHAP and
DiCE differs in all except marital status. Similar differences appear
in feature rankings for German-Credit and LendingClub datasets.
Implications. Feature importance rankings by counterfactuals are
quite different from attribution-based methods like LIME/SHAP.
In particular, they focus more on the less-important features from
LIME/SHAP and this trend accentuates as the number of features
increases. A possible reason is that these explanations capture dif-
ferent theoretical notions such as necessity and sufficiency, which
is why DiCEpp disagrees in its ranking on almost all features with
LIME and SHAP. This difference is not a critique to either method,
rather an invitation to consider multiple explanation methods to
complement each other. For example, in settings where necessity
of features is important (e.g., algorithmic recourse for individuals),
attribution rankings from CFs may be used in conjunction with the
standard attribution-based methods.

At the same time, attributions from both kinds of explanation
methods are sensitive to implementation details. While we expected
significant differences between DiCEps and the two attribution-
based methods based on global feature importance scores from
Fig. 3, we also find significant differences between LIME and SHAP
on individual inputs, and between DiCEgs and WachterCFga on
aggregate importances. In general, our results demonstrate the
difficulty in building a single, ideal explanation method.

7 CASE STUDY: HOSPITAL ADMISSION

To understand the complementarities between different explanation
methods on a realistic dataset, we present a case study using a
real-world hospital admission prediction problem with 222 features.
Predicting patients who are likely to get admitted during emergency
visits helps hospitals to better allocate their resources, provide
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appropriate medical interventions, and improving patient treatment
rates [5, 12, 15, 17, 20, 30, 38, 40]. Given the importance of the
decision, it is critical that the predictions from an ML model be
explainable to doctors in the emergency department. We leverage
the dataset and models by Hong et al. [19] who use a variety of ML
models including XGBoost and deep neural networks to predict
hospital admission at the emergency department (ED).

Data and model training. We use the ML model based on triage
features, demographic features and chief complaints information
from Hong et al. Triage features consist of 13 variables to indicate
the severity of ailments when a patient arrives at the ED. This model
also uses 9 demographic features, including including race, gender,
and religion, and 200 binary features indicating the presence of
various chief complaints. As a result, this dataset has many more
features than Adult-Income, LendingClub, and German-Credit. We
refer to this dataset as HospitalTriage. We reproduce the deep neural
network used by Hong et al. which has two hidden layers with 300
and 100 neurons respectively. The model achieves a precision and
recall of 0.81 each and an AUC of 0.87 on the test set. We used a
50% sample of the original data, consisting of 252K data points, for
model training as the authors show that the accuracy saturates
beyond this point. We sample 200 instances from the test set over
which we evaluate the attribution methods.

In-depth look at the feature ranking. We start with the feature
ranking produced by different methods to help familiarize with this
real-world dataset. We then replicate the experiments in §5 and §6.
We focus on DiCE in this comparison as WachterCF can struggle
to generate multiple unique valid CFs when nCF > 1.

We rank the features of HospitalTriage based on DiCEga, LIME,
and SHAP using the same method as in §6. Fig. 4 shows the dis-
tribution of mean rankings of different types of features in Hos-
pitalTriage according to our feature attribution methods.? This
dataset has three category of features — demographics, triage and
chief complaints. We find that SHAP ranks binary chief-complaints
features much higher on average than DiCEgs and LIME (rank o
m). Though DiCEpp and LIME disagree on demographics
and triage features rankings, they both have similar mean rankings
on chief-complaints features which constitutes 90% of the features.
Hence, DiCEpa and LIME has a relatively higher correlation (see
Fig. 5b) compared to any other pairs of methods.

Furthermore, DiCEpp considers demographics and triage fea-
tures more important as compared to the chief-complaints features,

2We assign features the maximum of the ranks when there is a tie. DiCEga’s and
LIME’s rankings are invariant to the treatment of ties whereas SHAP’s is. We choose
the maximum to better distinguish different methods’ rankings.
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Figure 5: In Fig. 5a, feature indexes in x-axis are based
on ranking from LIME. SHAP presents different outcomes
from LIME, and their feature importance show much
smaller variation than DiCEg, . Fig. 5b compares feature im-
portance score from different methods: the correlation be-
tween LIME and SHAP is much weaker than in Fig. 3b.

since the former features have smaller rank (<80) on average. In
contrast, LIME assigns them a larger rank. This has implications in
fairness: when the ML model is evaluated based on LIME alone, the
model would be seen as fair since chief-complaints features con-
tribute more to the prediction on average. However, DiCEgs and
SHAP show that demographic features can also be changed to alter
a prediction, raising questions about making decisions based on sen-
sitive features. Indeed, Hong et al. [19] present a low-dimensional
XGBoost model by identifying features using information gain as
the metric. They find that 5 out of 9 demographic details — insur-
ance status, marital status, employment status, race, and gender,
and 6 out of 13 triage features are identified as important in their re-
fined model. On the other hand, only 8 out of 200 chief-complaints
features are found important. Note that these demographic details
could be valid signals to use in health care; our main point is on the
different interpretations of the same model by different methods.
Necessity and sufficiency. Next, we replicate the experiments
from §5 for HospitalTriage to understand the necessity and suffi-
ciency of the important features of LIME and SHAP in generating
CFs. The trend for SHAP in Fig. 6 is similar to what was observed in
Fig. 2a— changing the more important features is more likely to gen-
erate valid CFs and hence higher necessity (green line). However, in
the case of LIME, we observe that the third important feature leads
to more CFs, almost double than that of the first or second feature
only. The reason is that in around 26% of the test instances, LIME
rates Emergency Severity Index (ESI) as the third most important
feature. ESI is a categorical feature indicating the level of severity
assigned by the triage nurse [19]. DiCEga considers this feature
important to change the outcome prediction and ranks it among
the top-10 features for more than 60% of the test instances. ESI is
also one of the top-3 features by the information gain metric in the
refined XGBoost model from Hong et al.

The sufficiency results (Fig. 6) are similar to Fig. 2b. Any of the
top-3 features are not sufficient for generating CFs. At nCF = 1,
the same number of valid counterfactuals (100%) can be generated
while keeping the 1st, 2nd or the 3rd feature fixed, compared to the
case when changing all features (and hence the sufficiency metric
is near 0). Similarly at nCF = 8, the same number of valid counter-
factuals (68%) can be generated, irrespective of whether the top-k
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Figure 6: Necessity and Sufficiency measures at a particular
nCeF, as defined in §4.2, for the HospitalTriage data.

features are kept fixed or not. Note that the overall fraction of valid
counterfactuals generated decreases as nCF increases, indicating
that it is harder to generate diverse counterfactuals for this dataset.
We expect the lack of sufficiency of top-ranked features to hold in
many datasets, as the number of features increases.

Similarity between feature importance from different meth-
ods. Fig. 5b shows the correlation of feature importance score de-
rived from different methods. Different from what was observed
for other datasets in Fig. 3b, LIME and SHAP have almost zero
correlation between the feature rankings in HospitalTriage. This
observation resonates with prior work demonstrating the instabil-
ity and lack of robustness of these feature attribution methods, i.e.,
they can significantly differ when used to explain complex nonlin-
ear models with high dimensional data [1, 4, 27, 62]. In the case of
HospitalTriage, the importance scores given by LIME and SHAP are
indeed very different for most of the features. For instance, SHAP
assigns close to zero weights for many binary “chief-complaint”
features of HospitalTriage data in most of the test instances, while
LIME assigns diverse importance scores. Fig. 5a shows the absolute
feature attribution scores of different methods at nCF = 4 and it
can be observed that SHAP’s scores are close to zero, on average,
for most of the features. Indeed, we find that the average entropy
of the importance scores of LIME is 3.2 points higher than that
of SHAP on average. On the other other hand, the differences in
entropy for LendingClub, Adult-Income, and German-Credit were
only 0.37, 0.48, and 0.84 respectively.

In addition, while DiCEgp agrees more with SHAP than with
LIME for other datasets (except LendingClub where all methods
agreed due to a dominating feature), here we obtain the reverse
trend. DiCEpp has relatively weaker correlation with SHAP in the
case of HospitalTriage, echoing the difference observed for chief
complaints in Fig. 4. In particular, at nCF = 6 and nCF = 8, they
both have no correlation on average feature rankings. At higher
nCF, DiCE varies more number of binary features most of which are
assigned very low weights by SHAP and hence the disagreement.
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Implications. To summarize, we show how analyzing the feature
attribution methods on a real-world problem highlights the comple-
mentarity and the differences in these methods. First, the highest
ranked features by attribution-based methods like LIME are not
sufficient, and are not always the most necessary for causing the
original model output; more valid counterfactuals can be gener-
ated by varying a feature with larger rank compared to those with
smaller rank. Second, there are substantial differences in feature im-
portance scores from the different methods, to the extent that they
can completely change the interpretation of a model with respect
to properties like fairness. Unlike the previous low-dimensional
datasets, even LIME and SHAP demonstrate substantial differences
in global feature importance scores. DiCEgs rankings somehow
strike a balance between the two methods in importance: DiCEpa
agrees with SHAP on demographics features and with LIME on
chief complaint features. Finally, similar to results in §6, DiCEgy dis-
tributes feature importance more equally, especially for the features
with larger rank from LIME and SHAP.

8 CONCLUDING DISCUSSION

Our work represents the first attempt to unify explanation methods
based on feature attribution and counterfactual generation. We
provide a framework based on actual causality to interpret these
two approaches. Through an empirical investigation on a variety
of datasets, we demonstrate intriguing similarities and differences
between these methods. Our results show that it is not enough
to focus on only the top features identified by feature attribution
methods such as LIME and SHAP. They are neither sufficient nor
necessary. Other features are (sometimes more) meaningful and
can potentially provide actionable changes.

We also find significant differences in feature importance induced
from different explanation methods. While feature importance in-
duced from DiCE and WachterCF can be highly correlated with
LIME and SHAP on low-dimensional datasets such as Adult-Income,
they become more different as the feature dimension grows. Even
in German-Credit with 20 features, they can show no or even neg-
ative correlation when generating multiple CFs. Interestingly, we
noticed differences even among methods of the same kind (LIME vs.
SHAP and WachterCFga vs. DiCEpp), indicating that more work
is needed to understand the empirical properties of explanation
methods on high-dimensional datasets.

Our study highlights the importance of using different explana-
tion methods and of future work to find which explanation methods
are more appropriate for a given question. There can be many valid
questions that motivate a user to look for explanations [31]. Even
for the specific question of which features are important, the defi-
nition of importance can still vary, for example, actual causes vs.
but-for causes. It is important for our research community to avoid
the one-size-fits-all temptation that there exists a uniquely best way
to explain a model. Overall, while it is a significant challenge to
leverage the complementarity of different explanation methods, we
believe that the existence of different explanation methods provides
exciting opportunities for combining these explanations.
Acknowledgments. We thank anonymous reviewers for their
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