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Abstract
Geometry-centric shape animation, usually represented as dynamic meshes with fixed connectivity and time-deforming
geometry, is becoming ubiquitous in digital entertainment and other relevant graphics applications. However, digital animation
with fine details, which requires more diversity of texture on meshed geometry, always consumes a significant amount of
storage space, and compactly storing and efficiently transmitting these meshes still remain technically challenging. In this
paper, we propose a novel key-frame-based dynamic meshes compression method, wherein we decompose the meshes into
the low-frequency and high-frequency parts by applying piece-wise manifold harmonic bases to reduce spatial-temporal
redundancy of primary poses and by using deformation transfer to recover high-frequency details. First of all, we partition the
animated meshes into several clusters with similar poses, and the primary poses of meshes in each cluster can be characterized
as a linear combination of manifold harmonic bases derived from the key-frame of that cluster. Second, we recover the
geometric details on each primary pose using the deformation transfer technique which reconstructs the details from the
key-frames. Thus, we only need to store a very small number of key-frames and a few harmonic coefficients for compressing
time-varying meshes, which would reduce a significant amount of storage in contrast with traditional methods where bases
were stored explicitly. Finally, we employ the state-of-the-art static mesh compression method to store the key-frames and
apply a second-order linear prediction coding to the harmonics coefficients to further reduce the spatial-temporal redundancy.
Our comprehensive experiments and thorough evaluations on various datasets have manifested that, our novel method could
obtain a high compression ratio while preserving high-fidelity geometry details and guaranteeing limited human perceived
distortion rate simultaneously, as quantitatively characterized by the popular Karni–Gotsman error and our newly devised
local rigidity error metrics.

Keywords Animated mesh compression · Manifold harmonic basis · Deformation transfer · Linear prediction coding

1 Introduction andmotivation

In the past decades, computer animation is becoming preva-
lently popular with the rapid technical advancement inmovie
and game industry. A digital computer animation is usu-
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ally generated by means of driving a character mesh created
by designer using 3D modeling software, and stored as a
sequence of dynamic meshes with fixed connectivity and
time-varying geometry. Such dynamic meshes, especially
those with complex geometric details, require large stor-
age space and transmission bandwidth in practical computer
graphics applications. Therefore, high-fidelity compression
of dynamic meshes with fine details has gained increasing
attention during the past decades.

In technical essence, the goal of compressing dynamic
meshes is to find a compact representation of the sequence
under a controllable distortion, and the most intuitive way
is to pursue a set of bases that can well character geome-
try of the meshes. Principle Component Analysis (PCA) has
been reused frequently in combination with other compres-
sion techniques [1,18,36], wherein the meshes are projected
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onto a few principal orthogonal bases and the compression
is achieved by removing the bases whose influence is neg-
ligible compared with others. Nonetheless, these bases take
up to 50% of the encoded data size [37] and inevitably limit
the compression ratio of these methods when being applied
to meshes with a lot of geometric details or a large number
of vertices, so it is necessary to find a compression method
which does not need to store bases explicitly; on the other
hand, even though these methods achieve high compression
rate under traditional limited vertex-based error measure-
ment, the removal of bases inevitably cause information loss
and consequently affect the quality of reconstructed meshes
from the perceptual aspect. We shall explore a high-fidelity
way for dynamic meshes compression, whose reconstructed
meshes should not only be statistical precise but also visu-
ally plausiblewhich can be evaluated under perceptualmetric
such as our newly proposed local rigidity (LR) error .

Manifold harmonic transform [33] projects a 3D mesh
onto several Fourier-like function bases derived as eigen-
functions of the Laplace–Beltrami operator and converts
the mesh from geometry domain into frequency domain.
Some static mesh compression methods [15,41] showed that
they can reconstruct a static mesh with a small number of
low-frequency bases according to the assumption that low-
frequency coefficients contribute more to the mesh than
the high-frequency ones. In addition, these bases can be
obtained by solving an eigenvalue problem of the Laplace–
Beltrami operator defined on the mesh itself without the
need for explicit storage. However, simply ignoring the high-
frequency bases certainly loses geometric details and causes
errors similar to those in PCA-based methods. Nonethe-
less, how to apply the manifold harmonic bases (MHBs)
to high-fidelity dynamic meshes compression still remains
challenging.

Traditional vertex-based error metric, such as Karni–
Gotsman (KG) error [16], tends to evaluate the accuracy of
geometry information of the reconstructed mesh sequence.
However, simply treating the meshes as coordinates data and
calculate the error ignoring the geometric structure of each
mesh are obviously not suitable for validation on dynamic
meshes compression methods. Because, on the one hand,
small translation or rotation on meshes will result in large
quantization of KG error, but these kinds of global motion
can be easily removed when generating animations and is
not a big deal; on the other hand, even though many methods
can achieve high compression ratio under this kind of metric,
the reconstructed mesh still has visually obvious artifacts, as
shown in Fig. 1. Thus, how to define a perceptual metric that
measures the visual plausibility need to be further studied.

In this paper, we propose a key-frame-based framework
for dynamic meshes compression with manifold harmonic
bases, in which we decompose the sequence into low-
frequency primary poses and high-frequency geometric

Fig. 1 Comparison with CoDDyaC under the same compression ratio.
From left to right: the original frame (a), reconstructed frame using
CoDDyaC (b), reconstructed frame using our newly proposed method
(c)

Fig. 2 Reconstructed low-frequency parts with different bases. From
left to right: SamBa sequence’s original frame 28 (a), frame 30 (b),
reconstructed low-frequency part of frame 30 using 400MHBs of frame
28 (c), and using 400 MHBs of frame 30 itself (d). The reconstructed
meshes using different bases are almost the same

details and compress them separately. We first partition the
sequence by the notion of pose similarity into several small
fragments and observe that in each fragment, low-frequency
parts of all meshes can be well described by manifold
harmonic bases derived from one single mesh within this
fragment, as shown in Fig. 2. So we can compress the low-
frequency part in this fragment by storing one representative
key-frame and a few coefficients instead of many large bases
to reduce the spatial redundancy. For high-frequency part,
we find that geometric details of the meshes within one frag-
ment are almost unchanged, because a mesh sequence is
usually created by deforming one static mesh along time axis
and geometric details of meshes should be similar to those
with similar poses. So we can just store the details of one
representative key-frame to remove redundant information.
Furthermore,we use state-of-the-art staticmesh compression
method to store the key-frames and apply a second-order lin-
ear prediction coding to the harmonic coefficients to further
reduce the spatial-temporal redundancy. To validate the abil-
ity of our method when compressing meshes with limited
distortion, we also introduce a new perceptual metric based
on as-rigid-as-possible definition which measures distortion
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as the variation of local rigidity. In particular, the primary
contributions of this paper can be summarized as follows:

– We devise a hierarchical framework in which we decom-
pose the mesh sequence into high-frequency part and
low-frequency part and compress them separately to
reduce the geometric redundancy in space.

– We apply the notion of pose similarity to extract the
key-frames and define the piece-wise manifold harmonic
bases to compress the primary poses.

– We apply deformation transfer techniques to preserve
the geometry details in order to reconstruct high-quality
mesh sequence.

– We apply the notion of as-rigid-as-possible energy to
define local rigidity (LR) error metric to evaluate the spa-
tial and temporal reconstruction errors, which measures
the precision both in statistical and perceptual perspec-
tives.

2 Related works

All compression schemes aim at exploiting correlations
amongmesh sequence. In terms of de-correlation techniques,
the existing compression methods can be roughly classi-
fied into two categories [19]: spatial de-correlation methods
and temporal de-correlation methods. Actually most meth-
ods explore both temporal and spatial redundancy, the two
categories are roughly classified according to whether the
core idea is benefited more from spatial de-correlation or
temporal de-correlation.

2.1 Spatial de-correlation

The most commonly used method to exploit spatial corre-
lations is principal component analysis (PCA) which was
firstly introduced to mesh sequence compression by Alexa
and Müller [1] in which they projected the sequence data
onto a few principal orthogonal bases to represent each frame
as a linear combination of these bases. The approach was
improved by Lee et al. [17] who described how to determine
the optimal number of PCA bases. Then Karni et al. [16]
applied linear prediction coding to further compress PCA
coefficients.

Some authors proposed methods that segmented frames
into meaningful clusters to exploit spatial correlation. Sat-
tler et al. [25] first clustered the vertex trajectories and applied
PCA to the trajectories of all vertices of a cluster. Mamou et
al. [20] proposed a skinning approach based on segmenta-
tion. The mesh vertices were partitioned into patches whose
motion can be accurately described by a 3D affine transform.
Then an affine motion model was defined to estimate the
frame-wise motion of each patch. Hou et al. [11] proposed

learned spatial de-correlation transform to transform each
frame into a sparse vector to reduce the spatial redundancy,
then they [12] used low-rank matrix approximation for data
compression and in 2014 they [13] use the near-isometric
property of human facial expressions to parameterize the 3-
D dynamic faces into an expression-invariant 2-D canonical
domain to compress 3-D time-varying meshes.

Some methods encoded only a set of key-information and
used them to predict the missing information with some
spatial predictors. Stefanoski et al. [28] proposed a lin-
ear predictive compression approach in which patch-based
mesh simplification algorithms were applied to derive spa-
tially decomposed layers of each frame to support spatial
scalability. Then scalable predictive coding (SPC) [30] was
proposed to support spatial-temporal scalability by decom-
posing animated meshes in spatial and temporal layers and
predicting these layers using the already encoded spatio-
temporal neighborhood. It was then improved by Bici et al.
[3], who proposed three novel prediction structures based
on weighted spatial prediction with its weighted refine-
ment and angular relations of triangles between current
and previous frames. Hajizadeh et al. [8] proposed a key-
frame-based technique in which extracted key-frames were
then linearly combined using blending weights to predict
the vertex locations of the other frames. Hou et al. [10]
extracts key-frames and produces a reconstruction matrix
to compress 3D human motion data using geometry video
format.

2.2 Temporal de-correlation

PCAcanbe also used to exploit temporal coherence by apply-
ing it to the space of vertex trajectories rather than shapes.
Váša and Skala [36] proposed CoDDyaC algorithm in which
they applied PCA to the vertex trajectories to find a minimal
number of significant trajectories characterizing the motion
of the shape over the sequence.Comparedwith PCAon shape
space, it involved the eigenvalues decomposition of a covari-
ance matrix of 3F × 3F instead of 3V × 3V , where F , V
is the number of frames and vertices of the mesh, respec-
tively. Improved results were obtained by predicting PCA
bases with an efficient mechanism [37]. Then in [35] they
combined CoDDyaC with a novel spatio-temporal predictor
and used a discrete geometric Laplacian of average surface to
encode the coefficients to achieve a good compression rate.
Luo et al. [18] applied PCA to temporal clusters based on
pose similarity to extend the notion of temporal coherence
to postural coherence.

Payan and Antonini [24] exploited the temporal coher-
ence by using a temporal wavelet filtering and using a bit
allocation process to optimize the resulting wavelet coeffi-
cients. A signal-to-noise ratio (SNR) and temporal scalable
coding algorithm for 3D mesh sequences using singular
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value decomposition (SVD) was proposed by Heu et al. [9].
They developed a temporal prediction mode to improve
the rate-distortion performance which also supports tempo-
ral scalability. In 2003, Ibarria et al. [14] introduced two
extrapolating space-time predictors: the ELP extension of
the Lorenzo predictor and the Replica predictor. With these
two predictors they predicted the position of each vertex v

of frame f from three of its neighbors in frame f and from
the positions of v and of these neighbors in the previous
frame.

2.3 Spectral analysis

Researchers have been looking for spectral geometric pro-
cessing methods [40] for spectral geometry filtering [33],
compression [15,41], and surface editing [33]. Manifold
Harmonics constitute a compact and elegant basis for spec-
tral shape processing that is independent of the actual
shape representation and parameterization. Due to their
compactness, encoding efficiency, isometric invariance, and
computational efficiency, manifold harmonics can be found
in countless applications in computer graphics. The pro-
posed functional map framework [23] used maps between
functions on shapes, for example to transfer segmentations
or to estimate correspondences between deformed shapes.
Various point signatures based on Laplace–Beltrami eigen-
functions were successfully used in shape matching [32].
Other applications included mesh parametrization [21] and
shape segmentation [5]. In this paper, we employ spectral
analysis for dynamicmeshes compression for its general abil-

ity of representing shapes in reduced space, which greatly
improves the performance of compression.

3 Dynamic meshes compression based on
local spectral analysis and deformation
transfer method

Given a sequence of F triangular meshes fi , i = 1, . . . , F
with fixed connectivity of N vertices in each frame, a
frame fi is composed of the vertex coordinates of the
mesh which we represent as a column vector: fi =
[xi,1 . . . xi,N yi,1 . . . yi,N zi,1 . . . zi,N ]T . The mesh sequence
is then represented with a matrix A whose columns are the
frames of the animation, A = [fi . . . fF ], we assume that
the connectivity is encoded once using any state-of-the-art
algorithm. The purpose of our method is to compress the
time-varying coordinate data only. Our method can also be
briefly summarized as an encoder shown in Fig. 3 and a
decoder shown in Fig. 4.

3.1 Key-frame extraction based on pose similarity

As shown in Fig. 3, the first step of the encoder is to group
the frames into clusters in which poses are similar to each
other and then extract one key-frame in each cluster. Geom-
etry of the frames with similar posture within one cluster lies
in a space with much lower dimensionality than the whole
sequence. Compressing each cluster separately enables us to
reduce the temporal redundancy in order to achieve a higher

Fig. 3 Flowchart of the proposed compression algorithm (encoder)
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Fig. 4 Flowchart of the proposed decompression algorithm (decoder)

compression rate and retain a reasonable reconstruction qual-
ity at the same time. Note that, the frames belonging to the
same cluster may not be contiguous.

3.1.1 Global rotation and translation elimination

Aswe know, an animation character usually not only deforms
as different poses, but also moves or rotates in or along cer-
tain direction. And such global motion will of course affect
the mesh clustering step, because the global translation and
rotationwill result in significant difference in geometry coor-
dinates even though the poses are similar. However, we want
to put meshes with similar poses into one cluster despite the
global location and orientation, so we first apply frame align-
ment to align all the poses to a reference (the first mesh we
used in this paper) using themethod by Paul and Neil [2]. For
each vertex vi on frame ft , we solve for the optimal rotation
Rt and translation tt that will align this frame to the reference
frame fr as follows:

vit = Rt ∗ vir + tt . (1)

The rotation matrix can be calculated by solving an SVD
problem of the coordinates’ covariance matrix, and the trans-
lation can be obtained by subtracting the rotated frame from
the reference. The global motion can be represented with
three coefficients for rotation and three for translation which
can be compressed separately.

3.1.2 Pose similarity-based frames clustering

After frame alignment, we employ K-medoids clustering
to cluster the sequence. Given a mesh sequence A with
dimension 3N × F , K-medoids clusters the F frames into J
(J < F) clusters (S1,S2, . . . ,SJ ):

argmin
S

J∑

i=1

∑

f∈S
‖f j − μi‖1, (2)

where μi is one frame which has the smallest distance to all
other frames in the current cluster. The choice of the number
of clusters is an important factor of the compression ratio
which will be explained in the next section. Note that we
choose K-medoids clustering rather than K-means cluster-
ing because in contrast to the latter, K-medoids chooses one
of frames as center frame (medoid) rather than the mean of
frame vectors in Si which may produce artifacts, and works
with a generalization of the Manhattan Norm to define dis-
tance between frames instead of L2 which is gainful for the
key-frame extraction.

3.1.3 Key-frame extraction within clusters

After the clustering, it is vital to extract the key-frame in
each cluster, in this paper we offer two methods to extract
key-frames. In the first method, we select the medoid frame
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Fig. 5 Extracted key-frames of theWalk dataset from [38]. Left: Cluster
centers of K-medoids as key-frames; Right: Average shapes in edge
space as key-frames

in each K-medoids clusters as the key-frames directly. It is
noteworthy that key-frame, which is not only applied to com-
pute the piece-wise MHB but also applied to recover the
high-frequency part of non-key-frames in the decoded pro-
cessing, should be the one that obtains significant posture
and representative high-frequency geometry information. So
in the second method, we compute the average mesh which
captures the common inter-vertex relationships as the key-
frame in each cluster separately.Wefirst compute the average
mesh in the edge shape space [39], where each frame is
expressed by edges lengths and dihedral angles between
adjacent faces. Then we project the average mesh back to
the original Euclidean space by solving a global nonlin-
ear system via Gauss–Newton algorithm [6]. The key-frame
extraction results of the two methods for Walk dataset are
shown in Fig. 5. Experiments show that there is only a very
little difference on these two methods, and we use the first
convenient method for most sequence.We then store the key-
frames using any state-of-the-art static mesh compression
methods [27,34].

3.2 Intra-cluster compression with piece-wise MHBs

Now we have segmented the mesh sequence into clusters
such that frames within a cluster share similar postures and
extracted one key-frame for each cluster. We now apply
piece-wise manifold harmonic bases to compress the subse-
quence. As mentioned above, geometric details of the frames
within one cluster are almost unchanged and the geometric
primaries lie in a very low-dimensional space as the result of
pose similarity clustering. So we devise a hierarchical frame-
work in which we convert the mesh from geometry domain
into frequency domain and then the shape space is decom-
posed into high-frequency and low-frequency domains. We
compress these two part separately to reduce spatial redun-
dancy.

3.2.1 Piece-wise MHBs for geometry compression

In the low-frequency domain, meshes are treated as primary
poses, and then we project these meshes onto a fewmanifold
harmonic bases derived from the key-frame in each cluster.
These bases of the key-frame are derived as eigenvectors of
the Laplace–Beltrami operator, which can be computed by
solving the following eigenvalue problem [33]:

−L�k = λM�k, (3)

where M is an N × N mass matrix of the key-frame and L
is an N × N matrix which is so-called cotangent weight:

Li j =

⎧
⎪⎨

⎪⎩

cotαi j + cotβi j , j ∈ N(i)
0, j /∈ N(i)
− ∑

k �=i
Lik, i = j

, (4)

where N(i) are the vertices adjacent to (neighboring) ver-
tex i , and αi j , βi j are the angles opposite to edge i j . We
assemble the first K eigenvectors into a basis matrix U ∈
RN×K , where each column �k is one eigenvector. After
performing MHBs for all J clusters, we get J new basis
matrices {U1, . . . ,UJ } which we call piece-wise manifold
harmonic bases. Low-frequency part of original frame f j ,
reshaped as f ′j ∈ RN×3, from Si is then represented byMHB
coefficients:

c j = UT
i ∗ f ′j ∈ RK×3. (5)

Combining the coefficients of frames in each cluster into
Ci , we can get coefficient matrices {C1, . . . ,CJ } for all clus-
ters. One clear advantage of MHBs is that we can just store
or transmit the key-frames and re-compute MHBs in the
decompressing process which saves a lot of storage space
compared with other PCA-based methods in which they
store the PCA bases directly. In addition, manifold harmonic
basis captures all the intrinsic properties of the mesh and
is invariant to extrinsic shape transformations such as iso-
metric deformations so that the reconstructed meshes have
a better shape fidelity. Note that increasing the number of
eigenvectors reduces the distortion, while the total code size
might increase due to the additional coefficients as shown
in Fig. 6.

3.2.2 Geometric details preserving and linear predictive
encoding

In the high-frequency domain, as geometric details of the
frames within one cluster are almost unchanged, we can
just store the details once to reduce the spatial redundant
information. Actually we store full geometry of key-frames
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Fig. 6 Compression with different number of bases. From left to right:
Low-frequency part of Frame 134 (yellow) of Samba with 200, 400,
600 bases (a, c, e) with the corresponding reconstruction errors (blue,
b, d, f) mapped to blue-red color map

which has included the representative geometric details for
each cluster in the previous section, so there is no more
effort for storing geometric details. A further compression
improvement can be achieved by efficiently encoding the
coefficient matrix C. In this paper we follow [16] by apply-
ing linear predictive coding to compress theMHB coefficient
matrix.

Linear prediction coding (LPC) predicts coefficients of the
t-th frame in a sequence as a linear function of the preceding
m frames’ coefficients:

ct = a0 +
m∑

j=1

a jct− j ∀k < t ≤ F . (6)

Asmany physics-based animationsmay be represented by
second-order PDEs, second-order LPC (m = 2) will proba-
bly suffice to capture the temporal correlation. So given the
coefficient matrix C with dimension 3K × F where K is the
number of MHBs and F is the number of frames, we solve
3K second-order LPC problems each of size F . To make the
coefficients compression lossless, the residuals �ct must be
encoded as

�ct = ct −
⎛

⎝a0 +
m∑

j=1

a jct− j

⎞

⎠ . (7)

We need to encode 3K triples of LPC coefficients and the
3K × (F − 2) LPC residuals. After LPC, we apply quan-
tization and arithmetic coder to the LPC coefficients and
residuals as other compression methods do in order to fur-
ther reduce the data size. After LPC, we apply quantization
and arithmetic coder to the LPC coefficients and residuals as
other compression methods do in order to further reduce the
data size.

In summary, the compressed information we should store
in our method only includes the following two parts:

– the compressed geometry and connectivity of key-
frames, which can be efficiently stored by any state-of-
the-art static mesh compression method;

– the quantized integers of LPC coefficients and residuals,
which only takes up a small fraction of storage comparing
to the meshes themselves.

3.3 Decompression with deformation transfer
method

In the decompressing process, we firstly use the LPC coef-
ficients and residuals to retrieve the MHB coefficient matrix
C (lossless up to quantization). Then with the decompressed
key-frames, we re-compute the manifold harmonic bases Ui

for each cluster. Low-frequency part of frame f ′i is recon-
structed using corresponding bases and coefficients:

f ′i = Ui ∗ ci . (8)

As mentioned above, we only store the geometry of
key-frames and low-frequency parts of non-key-frames rep-
resented byMHB coefficients, so the last step of decompres-
sion is to transfer the high-frequency geometric details of
key-frames to the low-frequency primary poses of non-key-
frames to recover high-quality mesh sequence via deforma-
tion transfer techniques [31]. We first take the low-frequency
part of key-frame as source mesh and the full key-frame as
target mesh. Then the source and target deformations are rep-
resented as affine transformations and a correspondence is
built here between them. Finally we use this correspondence
tomapgeometry details of key-frames to low-frequency parts
of non-key-frames by solving a constrained optimization as
shown in Fig. 7.

Multi-resolution technique for performance improve-
ment Even though we have proposed a key-frame-based
compression scheme with piece-wise manifold harmonic
bases; however, computing the spectral bases involves com-
puting the eigenvectors of an N × N matrix which will
cost much time. Thus, we need a multi-resolution scheme
to reduce the space complexities of the sequence to reduce
the decompression time. We firstly use an edge-collapse [7]
scheme to coarsen the given mesh sequence with exactly
same rule to keep topology consistent across coarse meshes
(Ghost) which have around 10000 vertices (actual number
depends on mesh complexity), explicitly reducing the infor-
mation present in the data set. Note that there is a trade-off
between space complexities and time, reconstruction error.
Then we apply the proposed scheme on the ghost sequence.
In the decompressing process, as the topology is modified,
we need to build a corresponding relationship between the
source and target mesh. Fortunately edge-collapse schemes
simplify a mesh by collapsing a few vertices into one.
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Fig. 7 Illustration of transferring the high-frequency part of key-frame
to the low-frequency parts of non-key-frames. The left and middle top
row are the decompressed low-frequency parts. The left andmiddle bot-

tom row are the reconstructed full frames. The right are reconstruction
errors mapped to blue-red color map

Fig. 8 Flowchart of the proposed multi-resolution scheme. a Original
mesh (165954 vertices). b Ghost mesh (10002 vertices). c Low-
frequency part of decompressed mesh. d Reconstructed mesh

For a vertex on the ghost mesh, we choose the nearest
one of these vertices as its corresponding vertex on the
original mesh. The multi-resolution scheme is shown in
Fig. 8.

4 Statistical and perceptual metrics for
comprehensive evaluations

For any compression method, the most importation met-
ric that measures the compression quality is the distortion
betweendecompressed data and its original counterpart using
limited storage. In compression community, researchers tend
to develop techniques where decompressed data are as-
close-as-possible to the uncompressed data, and for dynamic
meshes compression researchers also inherit this intuitive
metric. However, simply forcing the decompressed meshes

to be close to the uncompressed sequence in statistics of ver-
tex coordinates is usually not enough for dynamic meshes
compression, the decompressed mesh should also look like
its uncompressed counterpart one in a perceptual view.

4.1 Measuring statistical errors for dynamic meshes
compression

Statistical error is to measure the compressing distortion
between decompressed and uncompressed sequences by
treating the meshes as simple data and computing the dif-
ference of their vertex coordinates. Karni–Gotsman (KG)
error [16] is one of the most popular metric used for dynamic
meshes compression,whichmeasures the difference between
a mesh sequence and its decompressed one and defined as
follows,

KGerror = 100 ∗ ‖A − A′‖
‖A − E(A)‖ , (9)

whereA is a 3n×F matrix containing the original animation
sequence.A′ is the same animation after the compression and
reconstruction stages. E(A) is an average matrix.

However, even though this metric has been used for years
in dynamic meshes compression, it still has obvious limita-
tion that simply consider themeshes of coordinates as normal
data inevitably ignoring the geometric structure of meshes
themselves. It may occur as visual artifacts even under a very
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small error in statistical view, as shown in Fig. 1. Statistical
error works well only as long as the property being preserved
is vertices located near their original location; however, we
will show that visual similarity with the original is a different
property and it should be therefore evaluated by a different
measurement.

4.2 Perceptual local rigidity error

We believe that visual shape fidelity is more important than
the accuracy of geometric coordinates. Traditional statistical
metrics such as KG error are unable to distinguish between
smooth error and random error even though intuitively there
is a big perceptual difference between these two, as these
metrics explore just the accuracy of data and ignore the
intrinsic properties of the geometric structure. If we take
the decompressed mesh as the deformation of source model,
shape fidelity expects the deformation to preserve the shape
of the object locally which can be called detail-preserving
deformation. In other words, if the deformation is greater,
the distortion rate is higher and the shape fidelity is lower.
Here we apply the famous as-rigid-as-possible energy [26]
between source mesh fi and decompressed mesh f ′i to mea-
sure the distortion:

EV(V′) =
∑

vi∈V
min
ci

∑

j∈Ni

wi j‖ci ×(vi −v j )−v′
i +v′

j‖2, (10)

where V = {vi , i = 1, 2, . . . , N } is a set of all vertices of
frame fi andV′ is of frame f ′i . Here,Ni = N(vi ) = { j : ‖v j−
vi‖ < ε} is a set of indices of neighboring points for each
point vi , and theweights are simple symmetricwi j = (|Ni |+
|N j |)−1 . As we can see, as-rigid-as-possible energy only
measures the variation of shape local rigidity and ignores the
difference in coordinates, which is very suitable for quantify
the precision of the reconstructed mesh in a perceptual view.
That means small as-rigid-as-possible energy between two
meshes indicates small visual shape fidelity difference. With
the energy EV(V′) between two frames, we can define the
LR error of the whole sequence as the average as-rigid-as-
possible energy between all decompressed meshes and their
corresponding references as follows:

ErrorLR = α

F

F∑

i=0

‖EVi(Vi
′)‖1. (11)

where α is the corresponding coefficient taking different val-
ues depending on the sequence. The LR error is affected by
the size of sequence and the number of frames so that compar-
ison of errors between different sequences is not advisable.
We use α to limit the error to a certain range to compare the
relative errors of different algorithms in the same sequence.

Fig. 9 Map LR error to blue-red color map. From left to right: Recon-
structed meshes using 200, 400, 600, 800 bases

Figure 9 shows the result of mapping LR error to blue-
red color map, it is obvious that there is a big error at the
bottom of skirt, hands and shoulder which corresponds to
the error on the reconstructed mesh observed by the human
vision. That is because these parts are all high-frequency
parts which are recovered from key-frames that have some
differences and lose local rigidity. As the number of MHBs
increases, the error becomes very small and concentrates on
the skirt. Figure 6 shows the result of mapping KG error
to blue-red color map, there is a little error in these parts
while there is a big perceptual difference between these parts
that verifies that KG error cannot be used to measure human
visual errors.

5 Experimental results and comparisons

In this section, we show the experiments of our compres-
sion scheme with different mesh sequences which are shown
in Table 1. We use bit per vertex per frame (bvpf) to repre-
sent the size of data after compression. The overall sequence
distortion is measured by the traditional vertex-based error:
Karni–Gotsman (KG) error [16] and the Local Rigidity (LR)
error formeasuring visual discrepancy between two dynamic
meshes.

Choice of compression parameters The encoding perfor-
mance of our scheme is mainly affected by 2 parameters: (1)
the number of clusters, (2) the number of manifold harmonic

Table 1 Mesh sequence

Sequence Vertices Triangles Frames

Cloth 5525 10752 200

Humanoid 7646 15288 154

Horse 8431 16843 48

Samba 9971 19938 250

Walk 10002 20000 250

Jump 15826 31648 222

Armadillo 165954 331904 81
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Table 2 Compression performance with different number of clusters

Sequence #clusters #bases bvpf KG LR
error(%) error

Horse 1 800 0.96 0.84 1.63

2 800 1.32 0.68 1.40

4 800 2.20 0.46 1.17

Samba 4 600 0.90 0.61 0.48

6 600 1.00 0.68 0.32

10 600 1.35 0.65 0.21

Humanoid 4 600 0.91 0.65 0.74

6 600 1.11 0.58 0.63

8 600 1.29 0.57 0.55

Walk 4 600 0.70 0.93 0.65

8 600 1.13 0.70 0.48

10 600 1.20 0.63 0.45

basis. Table 2 shows the compression and distortion results
with different numbers of clusters. The optimal number of
clusters cannot be defined as a priori, but we can roughly esti-
mate a general range according to the pose changing. When
the similarity of each frame in one cluster is higher, the repre-
sentation ability of embedded space of MHBs of key-frames
is stronger and the compression performance is better. Tak-
ing into the key-postures in the test sequences, experiments
show that there is a significant reduction in reconstruction
errors with just 2 or 4 clusters for sequences with a few key-
postures such asHorse andHumanoid, while the complicated
sequences such as Samba andWalk need more clusters. It is
obvious that the number of extracted key-frames increases,
the error reduces while the bvpf increases. Therefore, there
is a trade-off between compression ratio and reconstruction
error. Table 3 shows the compression and distortion results
with different numbers of manifold harmonic bases which
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Fig. 10 Frame-wise LR error for Cloth sequence under the same com-
pression ratio. Blue: Ours; Red: CdmGL; Yellow: CoDDyaC

determines the threshold of high-frequency domain and low-
frequency domain. As the number of MHBs increases, bvpf
increases very little, becausewe just store key-frames and the
growingnumber ofMHBsonly affects coefficientmatrix. It is
obvious that the number of bases increases, the error reduces
which is becausemore information of low-frequency part has
transmitted to the decompressing process by embedding the
space with moreMHBs as shown in Figs. 6 and 10. However,
it needs more time to re-compute MHBs in decompressing
process, so there is a trade-off between compression ratio and
decompressing time.

Performance with different datasets Figure 11 shows typi-
cal rate-distortion (R-D) curves under the KG error on all test
sequence. It is obvious that the reconstructed error decreases
as the data rate increases. As we just store key-frames, our
method reduces the required data rate to 0.5 bpfv at 1%distor-
tion rate compared to other traditional PCA-based methods

Table 3 Compression
performance with different
number of MHB

Sequence Number of
MHBs

Number of
clusters

bvpf KG error
(%)

LR
error

Decompressing time
(per frame in seconds)

Horse 600 2 1.25 1.04 1.46 1.04

800 2 1.32 0.68 1.40 1.72

1000 2 1.54 0.63 1.31 2.95

Samba 400 6 0.90 0.97 0.37 1.37

600 6 1.00 0.68 0.32 2.65

800 6 1.14 0.70 0.26 5.10

Humanoid 300 4 0.90 0.85 0.75 0.66

600 4 0.91 0.65 0.63 1.51

800 4 0.95 0.58 0.58 3.41

Walk 400 6 0.93 1.12 0.57 0.88

600 6 0.98 0.77 0.52 1.97

800 6 1.08 0.73 0.46 3.27
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Fig. 11 R-D curves for all test sequences measured in KG error

Fig. 12 Multi-resolution scheme for Armadillo. Top row from left to
right: Original frame with 165954 vertices, edge collapse to 10002 ver-
tices, edge collapse to 5002 vertices. Middle row are the corresponding
reconstruction errors. Bottom row are the corresponding reconstruction
LR errors

and predictive methods. Our results are seen to be excellent
for relatively smooth sequence like Cloth and Jump. This
is due to the low frequencies present the geometry primary
more than the sharp parts like fingers or horseshoe. Note
that combination of different numbers of bases and clus-
ters may result in different reconstruction errors with the
same bpvf. Figure 12 shows the results of multi-resolution
scheme. With the edge-collapse scheme, the reconstruction
error increases while the encoding time decreases obviously
shown in Table 4, so there is a trade-off between distortion
rate and decompression time for complex sequence. Table 4
shows the timing cost for the encoding process implemented

Table 4 Encoding computation times (in seconds) of the proposed
method for different test sequences

Sequence Clustering MHBs LPC Total

Cloth 0.349 20.36 49.90 70.60

Horse 0.438 33.78 21.87 56.09

Samba 0.398 37.83 95.60 133.83

Humanoid 0.366 57.02 61.37 119.2

Walk 0.720 36.86 135.38 172.96

Jump 0.931 58.34 197.90 257.18

Armadillo (10002) 0.228 68.26 43.66 112.48

Armadillo (165954) 3.056 645.35 846.88 1496.28

All measured using 400 bases

withMATLAB on a PCwith Intel Core i7-3770 CPU@2.40
GHz. Note that the most time-consuming steps are comput-
ing MHBs of key-frames and encoding coefficients which is
dependent on the number of vertices.

Comparison with other methods We compare the recon-
struction accuracy measured by KG error with previous
techniques, namely SPC [28], improved SPC (im-SPC) [3]
and MPEG-4 FAMC [29] using data from their papers. Fig-
ure 13 shows the comparison results of Horse and Jump.
As observed from this figure our algorithm performs bet-
ter than others in low data rate. That means that inter-frame
redundancy can be captured with fewer cluster centers and
manifold harmonic bases. With the data rate increases,
the KG error decreases more slowly and becomes almost
constant, since we recover the geometry details of the non-
key-frames via deformation transfer which inevitably lose
certain information during transfer process. However, we
concentrate on obtaining a high compression rate with a lim-
ited distortion rate for complicated dynamicmesh sequences,
and the results seem satisfactory for this.

As said earlier, KG error only measures the precision of
coordinates data and low KG error do not means the visual
shape fidelity is also good enough. So we also quantify our
compression method using newly introduced LR error in a
perceptual view. Figure 14 shows typical rate-distortion(R-
D) curves for our algorithm as well as CoDDyaC [36] and
CdmGL [35]. It shows that our method performs much bet-
ter than CoDDyaCwhich is a traditional PCA-basedmethod.
That is because we can reconstruct the perfect geometry pri-
mary with MHBs which occupy an important component in
terms of human vision while CoDDyaC just uses PCA in
vertex space which can not keep the high shape fidelity mak-
ing the reconstructed model not smooth which is also shown
in Fig. 1. CdmGL which uses Laplacian weights of aver-
age shape to encode the delta trajectories is better than us in
low data rate. However, our scheme is better than CdmGL
in higher data rate. That is because we use more Laplacian
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Fig. 13 R-D curves comparison of the proposed method with previous techniques measured by KG error. Left: Horse sequence. Right: Jump
sequence

Fig. 14 R-D curves comparison of the proposed method with previous techniques measured by LR error. Left: Samba sequence. Right: Cloth
sequence

matrix of key-frames to capture the intrinsic properties of
sequence while CdmGL just store one average shape. As our
aim is to achieve a very high compression rate with limited
distortion, it is obviously our method is better than the others
in this case. Figure 10 shows the frame-wise LR error for the
three algorithms. As we store six frames directly, so there are
six zero-points on the energy curve making the overall LR
error smaller than the state-of-the-art algorithm CdmGL.

6 Conclusion and discussion

In this paper, we have presented a key-frame-based method
with piece-wise manifold harmonic bases to compress com-
plex mesh sequence and a perceptual error metric LR error.
We explored intrinsic geometry properties of sequence with

MHBs to reduce spatial redundancy by decomposing the
shape space into high-frequency part and low-frequency part
and compressing them separately. Thenwe applied the notion
of pose similarity to reduce the geometric redundancy along
the time axis. We extended the traditional spectral meth-
ods to piece-wise manifold harmonic bases to compress the
low-frequency part of non-key-frames and applied the defor-
mation transfer techniques to recover geometry details of
non-key-frames. Compared with PCA-based methods and
other predictivemethods, we not only eliminated the need for
an explicit storage bases to improve the compression radio,
but also achieved better shape fidelity which we strongly
believe is more important than the accuracy of geometric
coordinates by way of a piece-wise MHBs.
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Limitations and future works A possible limitation arises
when dealing with frames which have many sharp protru-
sions, which means we need more bases to reconstruct even
the low-frequency part subject to a limited reconstruction
error and of course the computation cost and compression
rate will increase in such cases. One possible solution is to
partition themeshes into a few patches with simpler structure
and compress these patches separately, or replace the glob-
ally defined manifold harominic bases with the compressed
manifold modes (CMM) [22] which has local support in con-
trast. However, the feasibility and the broader impacts of
these solutions will need further investigation in the future.
In addition, the parameters in our framework, such as the
number of clusters and the number of harmonic bases, are all
empirically set according to adequate experiments. Adap-
tively determining these parameters based on the sequence
itself will make our method more practical and adaptable in
a wider range of graphics applications.
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