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LOWER BOUNDS ON SPARSE SPANNERS, EMULATORS, AND
DIAMETER-REDUCING SHORTCUTS*
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Abstract. We prove better lower bounds on additive spanners and emulators, which are lossy
compression schemes for undirected graphs, as well as lower bounds on shortcut sets, which reduce
the diameter of directed graphs. We prove that any O(n)-size shortcut set cannot bring the diameter
below Q(n'/%) and that any O(m)-size shortcut set cannot bring it below Q(n'/11). These improve
Hesse’s [Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
Baltimore, MD, 2003] lower bound of Q(n1/17). By combining these constructions with Abboud and
Bodwin’s [J. ACM, 64 (2017), 28] edge-splitting technique, we get additive stretch lower bounds of
+Q(nt/11) for O(n)-size spanners and +Q(nl/18) for O(n)-size emulators. These improve Abboud
and Bodwin’s +0(n'/22) lower bounds for both spanners and emulators.
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1. Introduction. A spanner of an undirected unweighted graph G = (V, F) is
a subgraph H that approximates the distance function of G up to some stretch. An
emulator for G is defined similarly, except that H need not be a subgraph and may
contain weighted edges. In this paper we consider only additive stretch functions:

distg(u, v) < distgy (u,v) < distg(u,v) + B,

where § may depend on n, the number of nodes in G.

Graph compression schemes (like spanners and emulators) are related to the prob-
lem of shortcutting digraphs to reduce diameter, inasmuch as lower bounds for both
objects are constructed using the same suite of techniques. These lower bounds begin
from the construction of graphs in which numerous pairs of vertices have shortest paths
that are unique, edge-disjoint, and relatively long. Such graphs were independently
discovered by Alon [4], Hesse [19], and Coppersmith and Elkin [14]; see also [1, 2].
Given such a “base graph,” derived graphs can be obtained through a variety of graph
products such as the alternation product discovered independently by Hesse [19] and
Abboud and Bodwin [1] and the substitution product used by Abboud and Bodwin [1]
and developed further by Abboud, Bodwin, and Pettie [2].

In this paper we apply the techniques developed in [4, 19, 14, 1, 2] to obtain better
lower bounds on shortcutting sets, additive spanners, and additive emulators.

Shortcutting sets. Let G = (V, E) be a directed graph and G* = (V, E*) its
transitive closure. The diameter of a digraph G is the maximum of distg(u,v) over
all pairs (u,v) € E*. Thorup [24] conjectured that it is possible to reduce the diameter
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TABLE 1
Upper and lower bounds on shortcutting sets. The lower bounds are existential and independent
of computation time.

Citation Shortcut set size Diameter Computation time

O(n) O(v/n) O(m+/n)
Folklore/trivial -

O(m) O(n//m) O(m?/2)
Fineman [18] O(n) O(n?2/3) O(m)
Liu, ~ ~ ~
Jambulapati, and | O(nk) O(n1/2+001/ logk)y O(mk)
Sidford [22]
Hesse [19] O(mnt/17) Q(n1/17) —

O(n) Qn'/%) —
New

Oo(m) Q(nt/11) _

of any digraph to poly(logn) by adding a set E’ C E* of at most m = |E| shortcuts;
ie,, G = (V,EUE") would have diameter poly(logn). This conjecture was confirmed
for a couple special graph classes [24, 25] but refuted in general by Hesse [19], who
exhibited a graph with m = ©(n'%/17) edges and diameter ©(n'/'7) such that any
diameter-reducing shortcutting requires Q(mn'/*7) shortcuts. More generally, there
exist graphs with m = n'*¢ edges and diameter n%, § = §(¢) that require Q(n?~¢)
shortcuts to make the diameter o(n°); see Abboud, Bodwin, and Pettie [2, 6] for an
alternative proof of this result.

On the upper bound side, it is trivial to reduce the diameter to O(,/n) with O(n)
shortcuts or diameter O(n/+/m) with O(m) shortcuts." Unfortunately, the trivial
shortcutting schemes are not efficiently constructible in near-linear time. In some
applications of shortcuttings, efficiency of the construction is just as important as re-
ducing the diameter. For example, a longstanding problem in parallel computing is to
simultaneously achieve time and work efficiency in computing reachability.? Recently,
Fineman [18] proved that an O(n)-size shortcut set can be computed in near-optimal
work O(m) (and O(n?/3) parallel time) that reduces the diameter to O(n?/?). The
diameter is further reduced by Liu, Jambulapati, and Sidford [22] (and parallelized
by Cao, Fineman, and Russell [12]) to O(n!/2t°(M) by slightly modifying Fineman’s
algorithm.

In this paper we prove that O(n)-size shortcut sets cannot reduce the diameter
below Q(n'/6) and that O(m)-size shortcut sets cannot reduce it below Q(n'/11). See
Table 1.

Additive spanners. Additive spanners with constant stretches were discovered by
Aingworth, et al. [3] (see also [15, 17, 6, 21, 16]), Chechik [13] (see also [9]), and
Baswana, et al. [6] (see also [27, 21]). The sparsest of these [6] has a size O(n*/3)
and stretch +6. Abboud and Bodwin [1] showed that the 4/3 exponent could not
be improved in the sense that any +n°1) spanner has a size Q(n4/3’°(1)) and that
any Q(n*/37¢)-size spanner has an additive stretch +Q(n?), § = §(¢). On the upper
bound side, Pettie [23] showed that O(n)-size spanners could have additive stretch
+0(n%/1%), and Bodwin and Williams [11] improved this to O(y/n) for O(n)-size

IPick a set S of \/n or /m vertices uniformly at random and include S? N E* as shortcuts.
2This is the notorious transitive closure bottleneck.
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TABLE 2
Upper and lower bounds on additive spanners. § > 0 is a constant.

Citation Spanner size Additive stretch Remarks

Aingworth, et al. [3] O(n3/2) 2 See also [15, 17, 6, 21]
Bodwin [9] O(n"/5) 4 See also [13]
Baswana, et al. [6] O(n*/3) 6 See also [27, 21]
Pettie [23] O(nlte) O(n9/16-7¢/8) 0<e

Chechik [13] O(n20/17+ey | O(n4/17-3¢/2) 0<e

O(n1/2—5/2)
Bodwin and Williams [10] O(n'te) 0<e¢
O(n2/3—5e/3)

O(n3/T+6=9¢/T) e € {0}U[2/13,1/3)

Bodwin and Williams [11] | Og(n!t€) O(n3/T+0=5¢/T) e € (0,2/15]
O(nl19-5¢) e € (2/15,2/13)
O(n/3-¢) Q(n?) 5 =4d(e)
Abboud and Bodwin [1]
O(n) Q(n'/?2)
New O(n) Q(n/11)

spanners and O(n®/7) for O(n'*°(M)-size spanners. Abboud and Bodwin [1] ex-
tended their lower bound to O(n)-size spanners, showing that they require a stretch
+Q(n1/ 22). Using our lower bound for shortcuttings as a starting place, we improve
[1] by giving an +Q(n'/!1) stretch lower bound for O(n)-size spanners. See Table 2.

Additive emulators. Dor, Halperin, and Zwick [15] were the first to explicitly
define the notion of an emulator and gave a +4 emulator with size O(n*/3). Abboud
and Bodwin’s [1] lower bound applies to emulators; i.e., we cannot go below the 4/3
threshold without incurring polynomial additive stretch. Bodwin and Williams [10,
11] pointed out that some spanner construtions [6] imply emulator bounds and gave
new constructions of emulators with a size O(n) and stretch +O(n'/?) and with a
size O(n'T°(M) and stretch +O(n®/11).3 Here we observe that Pettie’s [23] +O(n%/16)
spanner, when turned into an O(n)-size emulator, has a stretch +O(n'/*), which is
slightly better than the linear-size emulators found in [6, 10, 11]. We improve Abboud
and Bodwin’s [1] lower bound and show that any O(n)-size emulator has an additive
stretch +Q(n'/1®). See Table 3.

Our emulator lower bounds are polynomially weaker than the spanner lower
bounds. Although neither bound is likely sharp, this difference reflects the possi-
bility that emulators may be strictly more powerful than spanners. For example, at
sparsity O(n*/3), the best known emulators [15] are slightly better than spanners [6].
Below the 4/3 threshold the best sublinear additive emulators [26, 20] have a size

O(n1+2’“+1171) and stretch function d + O(d'~'/*).* Abboud, Bodwin, and Pettie [2]

3This last result is a consequence of [11, Thm. 5] and the fact that any pair set P C V2 has a
pair-wise emulator with size |P|.
4i.e., vertices initially at distance d are stretched to d + O(d'~1/¥).
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TABLE 3
Upper and lower bounds on additive emulators. Emulators with sublinear additive stretch [26,
20, 2] are not shown.

Citation Emulator size Additive stretch Remarks

Aingworth, et al. [3] 0(n3/?) 2 See also [15, 17, 6, 21]
Dor, Halperin, and Zwick [15] | O(n*/3) 4

Baswana, et al. [6] O(nlte) O(nl/2-3¢/2) (not claimed in [6])
Bodwin and Williams [10] O(n'te) O(nlt/3—2¢/3)

Pettie [23] O(nltte) O(nl/4=3¢/4) (not claimed in [23])
Abboud and Bodwin [1] O(n) Q(n1/22)

New O(n) Q(n1/18)

showed that this tradeoff is optimal for emulators, but the best known sublinear ad-
ditive spanners [23, 13] are polynomially worse.

There are a certain range of parameters where emulators are known to be polyno-
mially sparser than spanners. For pairwise distance preservers with the specified set
P of vertex pairs, Coppersmith and Elkin [14] showed that whenever w(n'/?) = |P| =
o(n?=°M)), any pairwise distance preserver has an w(n 4 |P|) lower bound, which is
worse than the trivial distance preserving emulator with size |P|. A similar separa-
tion holds for sourcewise distance preservers, where the goal is to exactly preserve
distances between all vertex pairs in S C V. A trivial sourcewise emulator has size
|S|2, e.g., O(n) for |S| = \/n, but sourcewise spanners with a size O(n) only exist for
|S] = O(n'/*) [8].

Organization. In section 2 we present diameter lower bounds for shortcut sets
of size O(n) and O(m). Section 3 modifies the construction to give lower bounds
on additive spanners and additive emulators. We conclude with some remarks in
section 4.

2. Lower bounds on shortcutting digraphs.

2.1. Using O(n) shortcuts. Existentially, the best-known upper bound on
O(n)-size shortcut sets is the trivial O(y/n) bound. Theorem 2.1 shows that we
cannot go below Q(n'/%).

THEOREM 2.1. There exists a directed graph G with n vertices, such that for any
shortcut set E' with size O(n), the graph (V, EU E') has diameter Q(n'/%).

The remainder of section 2.1 constitutes a proof of Theorem 2.1. We begin by
defining the vertex set and edge set of G and its critical pairs.

Vertices. The vertex set of G is partitioned into D+ 1 layers numbered 0 through
D. Define By(p) to be the set of all lattice points in Z? within Euclidean distance
p of the origin. In the calculations below we treat d as a constant. For each k €
{0,..., D}, layer-k vertices are identified with lattice points in By(R + kr), where
r, R are parameters of the construction. A vertex can be represented by a pair (a, k),
where a € Bg(R+ kr). We want the size of all layers to be the same up to a constant
factor. To that end we fix R = drD, so the total number of vertices is
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d
n~ neR! 1d+<1+1)d+~~+ 1472
R R

d d
= ngR¢ <1d + (1 + d1D> N <1 + (11> ) =0 (RdD) (by definition of R),

R to a d-dimensional cube of side length R.

Edges. Define V4(r) to be the set of all lattice points at the corners of the convex
hull of By(r). (This excludes points that happen to lie on the boundary but in the
interior of one of its faces.) We treat elements of V,;(r) as vectors. For each layer-k
vertex (a, k), k € {0,...,D — 1}, and for each vector v € V4(r), we include a directed
edge ((a,k),(a+ v,k +1)). All edges in G are of this form.

Critical pairs. The critical pair set is defined to be

where 17g = )%/2 is the ratio of volume between a d-dimensional ball of radius

P ={((a,0),(a+ Dv, D)) | a € Ba(R), and v € Va(r)}.
Each such pair has a corresponding path of length D, namely,
(a,0) = (a+v,1) = -+ = (a+ Dv, D).

Lemma 2.2 shows that this path is unique. It was first proved by Hesse [19] and inde-
pendently by Coppersmith and Elkin [14]. (Both proofs are inspired by Behrend’s [7]
construction of arithmetic progression-free sets, which uses ¢, balls rather than convex
hulls.)

LEMMA 2.2 (cf. [19, 14]). The set of critical pairs P have the following properties:
e For all (x,y) € P, there is a unique path from x toy in G.
e For any two distinct pairs (x1,y1) and (x2,y2) € P, their unique paths share
no edge and at most one verter.
d—1
e |P| = O(Rri o).

Proof. For the first claim, let x = (a,0) and v € V4(r) be the vector for which y =
(a+Dv, D). One path from z to y exists by construction. Let Vy(r) = {v1,v2,...,0s}.
Suppose there exists another path from z to y. It must have length D because all edges
join consecutive layers. Every edge on this path corresponds to a vector v;, which
implies that Dv can be represented as a linear combination kyvi + kovo + - - - + ksvs,
where k1 + --- 4+ ks = D and k; > 0. This implies that v is a nontrivial convex
combination of the vectors in V;(r), which contradicts the fact that Vg(r) is a strictly
convex set.

The second claim follows from the fact that any edge in the unique x;-to-y; path
uniquely identifies both x1 and y;.

For the last claim, we can express the number of critical pairs as |P| = |Bg(R)| -
[Va(r)|. From Bardny and Larman [5], for any constant dimension d, we have |V,(r)| =
@(rd% ). O

LEMMA 2.3. Let E' be a shortcut set for G = (V, E). If the diameter of G' =
(V,EUE') is strictly less than D, then |E'| > |P|.

Proof. Every path in G’ corresponds to some path in G. However, for pairs in P,
there is only one path in G; hence any shortcut in E’ useful for a pair (x,y) € P must
have both endpoints on the unique z-y path in G. By Lemma 2.2, two such paths
for pairs in P share no common edges; hence each shortcut can only be useful for at
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most one pair in P. If |E’| < |P|, then some pair (z,y) € P must still be at distance
D in G O
Proof of Theorem 2.1. By Lemma 2.3, if |P| = Q(n), then any shortcut set that
makes the diameter < D has a size Q(n). In order to have |P| = Q(n), it suffices to
1 — d+1
let rdat > D. This implies r > D@, From the construction, by fixing d as a
constant and using the fact that n = O(R?D), we have

n = O(R'D) = O((rD)'D) = QD'+,

Therefore, the diameter is D = O(n'/(Fd+ dﬂ)). We can maximize D = ©(n'/%)
in one of two ways: by setting d = 2, r = ©(n'/4), and R = O(n°/?), or d = 3,
r = 0(n'/?), and R = ©(n®/18). In either case, the construction leads to a graph
with very similar structure; the number of vertices in each layer is ©(n%/¢) and the
out degrees of each vertex are ©(n'/9). 0

Theorem 2.1 is indifferent between d = 2 and d = 3, but that is only because the
size of the shortcut set is precisely O(n). When we allow it to be O(n'*€), for € > 0,
there is generally one optimum dimension.

COROLLARY 2.4. Fiz an € € [0,1), and let d be an integer such that € € [0, dﬁ]

There exists a directed graph G with n vertices such that for any shortcut set E' with
d

O(n'*€) shortcuts, the graph (V,E U E') has diameter Q(n (-5 )/(Hdﬂﬂ)) In

particular, by setting d = 3, the diameter lower bound becomes Q(nﬁ %6).

d—1
Proof. In order to have |P| > n'T¢, it suffices to let r¥&1 > Dn¢. Hence, we
have

nlf% :®(Ran el )
= Q(riD iy —*6) (R=0O(rD))
= Q(DM ) (r? > (Dnc)T). 0

2.2. Using O(m) shortcuts. Let G4, p) denote the layered graph constructed
in section 2.1 with parameters d, D, r, and R = drD, and let Pg be its critical pair set.
The total number of edges m = ©(n|Vy(r)|) is always larger than |Pg| = ©(%[Va(r)])
by a factor of D. In order to get a lower bound for O(m) shortcuts, we use a Carte-
sian product combining two such graphs layer by layer, forming a sparser graph.
This transformation was discovered by Hesse [19] and rediscovered by Abboud and
Bodwin [1].

Let G1 and G2 be two copies of G4, p)y where each of them has D + 1 layers.
The product graph G; ® G2 is defined below.

Vertices. The product graph has 2D + 1 vertex layers numbered 0, ...,2D. The
vertex set of layer i is {(z,y,i) | # € Ba(R+ [%]7),y € Ba(R+ | 4| r)}. Since we set
R = drD, the total number of vertices is © (R2 D).

Edges. Let (x,y,i) be a vertex in layer i. If ¢ is even, then for every vector
v € Vy4(r) we include an edge ((x,y,%), (z + v,y,i + 1)). If ¢ is odd, then for every
vector w € Vy(r) we include an edge ((x,y,1), (z,y + w,i+ 1)). The total number of
edges in the product graph is then @(deDrd%).

Critical pairs. By combining two graphs, we are able to construct a larger set of
critical pairs, as follows:

P ={((a,b,0),(a + Dv,b+ Dw,2D)) | a,b € By(R);v,w € Vy(r)}.
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In other words, a pair in P can be viewed as the product of two pairs ((a,0), (a +
Dv, D)) € Pg, and ((b,0), (b+ Dw, D)) € Pg,.

LEMMA 2.5. For any a,b € By(R) and v,w € Vy(r), there is a unique path from
(a,b,0) to (a+ Dv,b+ Dw,2D).

Proof. Every path in G; ® G5 from layer 0 to layer 2D corresponds to two paths
from layers 0 to D in G; and G, respectively. It follows from Lemma 2.2 that

(a,b,0) > (a+wv,b,1) » (a+v,b+w,2) = --- —= (a + Dv,b+ Dw,2D)

is a unique path in G; ® Gs. d

In G; ® G2 it is no longer true that pairs in P have edge-disjoint paths. They
may intersect at just one edge.

LEMMA 2.6. Consider two pairs (x1,y1) and (z2,y2) € P. Let Py and P be the
unique paths in the combined graph from x1 to y1 and from x4 to ys. Then, Py N Py
contains at most one edge.

Proof. Any two nonadjacent vertices on the unique x1-y; path uniquely identify

21 and y;. Thus, two such paths can intersect in at most 2 (consecutive) vertices and
hence one edge. 0

LEMMA 2.7. Let E' be a shortcut set on G = (V, E). If the diameter of (V, EUE")
is strictly less than 2D, then |E'| > |P|.

Proof. Assume the diameter of (V, E U E’) is strictly less than 2D. Every useful
shortcut connects vertices that are at a distance of at least 2. By Lemma 2.6, such a
shortcut can only be useful for one pair in P. Thus, if the diameter of (V, EU E’) is
less than 2D, |E’| > |P]. d

By construction, the size of |P| is
[Pl = 6 (R¥Va(r)?) = © (R0 ).

THEOREM 2.8. There exists a directed graph G with n vertices and m edges such
that for any shortcut set E' with a size O(m), the graph (V,E U E') has a diameter
Q(nl/ll)'

Proof. If we set |P| = Q(m), by Lemma 2.7, any shortcut set E' with O(m)
shortcuts has a diameter (D). In order to ensure |P| = Q(m), it suffices to set
rda > D. Hence,

n = O(R*D)
=0 (r*Dp>t) (R =drD)
=0 (DQ% D2d+1> (plugging in relation between r and d, D)

—-Q (D2%+2d+1) )

The exponent is minimized when d is either 2 or 3, so we get n = Q(D'!) and hence
D = O(n'/™). In particular, by setting d = 2 we have D = O(n'/'1), r = O(n*/??),
and R = ©(n®/??), and by setting d = 3 we have D = O(n'/'1), r = ©(n?/3%), and
R = 0(n®/3%). 0
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3. Lower bounds on additive spanners and emulators. We now establish
better bounds on O(n)-size additive spanners and emulators. In section 3.1 we give
an +Q(n'/13) stretch lower bound on spanners. Using a different construction, we
improve this in section 3.2 to +Q(n'/!). In section 3.3 we show how to adapt the
+Q(n'/13)-spanner lower bound from section 3.1 to prove that O(n)-size emulators
have stretch +Q(n'/1%).

Recall the definition of additive spanners and emulators.

DEFINITION 3.1. Let G = (V, E) be an unweighted undirected graph. A subgraph
H=(V,E'"), E' CE, is said to be a spanner for G with additive stretch 8 if for any
two vertices u,v € V,

dist g (u, v) < distg(u,v) + 8.

A weighted graph H = (V, E' ,w) is an emulator for G with additive stretch 8 if
distg(u, v) < distgy (u,v) < distg(u,v) + B.

Observe that we can assume without loss of generality that if (u,v) € E’, then
w(u,v) = distg(u, v).

3.1. O(n)-size spanners. By combining the technique of Abboud and Bod-
win [1] with the graphs constructed in section 2.2, we improve the +Q(n'/?2) lower
bound of [1] to +Q(n'/*3) for O(n)-size spanners.

THEOREM 3.2. There exists an undirected graph G with n vertices such that any
spanner for G with O(n) edges has +Q(n'/'3) additive stretch.

In this section we regard G g, py to be an undirected graph. We begin with the
undirected graph Go = G4, p) ® G(4,r,D), then modify it in the edge subdivision step
and the biclique replacement step to obtain G.

The edge subdivision step. Every edge in Gy is subdivided into D edges, yielding
G . This step makes the graph very sparse since most of the vertices in Gg now have
degree 2.

The biclique replacement step. Consider a vertex u in Gg that comes from one
of the interior layers of Gy, i.e., layers 1,...,2D — 1, not 0 or 2D. Note that u has
degree at most 2§ with at most § = @(rd%) edges leading to the preceding layer
and exactly ¢ edges leading to the following layer. We replace each such u with a
complete bipartite clique Ks s, where each biclique vertex becomes attached to one
nonbiclique edge formerly attached to w. The final graph is denoted by G.

Critical pairs. The set P of critical pairs for G is identical to the set of critical
pairs for Gy. For each (z,y) € P, the unique z-y path in G is called a critical path.
From the construction, the number of vertices, edges, and critical pairs in G is

(3.1) n =0 (R*D?%),
(3.2) m = O (R*D(Dé + 6%)),
(3.3) |P| = © (R*?).

Lemma 3.3 is key to relating the size of the spanner with the pair set P.
LEMMA 3.3. Every biclique edge belongs to at most one critical path.

Proof. Every biclique has § vertices on one side and § vertices on the other side.
Each vertex on the left side corresponds to a vector v € Vy(r), and each vertex on
the right side also corresponds to a vector w € Vy(r). Each biclique edge uniquely
determines a pair of vectors (v, w) and hence exactly one critical pair in P. 0
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LEMMA 3.4. Every spanner of G with additive stretch +(2D — 1) must contain at
least D|P| biclique edges.

Proof. For the sake of contradiction suppose there exists a spanner H containing
at most D|P| — 1 biclique edges. For any critical pair (u,v) € P, let P, ,) be the
unique shortest path from u to v in G, and let P(Iu,v) be the shortest path from u to
v in H. By the pigeonhole principle there exists a pair (z,y) € P such that at least
D biclique edges along P, ,) are missing in H.

Since Gy is formed from G by contracting all bipartite cliques and replacing
subdivided edges with single edges, we can apply the same operations on P(’ 2.y) tO get

a path P(’; )

o If P(’g’c ) 18 the unique shortest path from z to y in Gg, then P(’x ) suffers

in Gg. We now consider two cases.

at least a +2 stretch on each of the D missing biclique edges, so |P(/;c y)| >
|P(a:,y)‘ +2D.
o If P('; Y is not the unique shortest path from z to y in Gp, then it must
traverse at least two more edges than the shortest z-y path in Gy (because
Gy is bipartite), each of which is subdivided D times in the formation of G.
Thus |P(/$7y)| > ‘P(:r,y)| +2D.
In either case, P,  has at least 42D additive stretch, and H cannot be a +(2D —1)
spanner. ‘ 0

Proof of Theorem 3.2. The goal is to have parameters set up so that D|P| =
Q(n), and then apply Lemma 3.4. By comparing (3.1) with (3.3), it suffices to set
0 > D. We can express the number of vertices in terms of D as follows:

= © (R*'D%)

= Q((rD)*D?) (6 > D)
=Q ((5’101 D D D3) (by definition of §)
—Q ( +2d+3) (6 > D).

The exponent is minimized when d is either 2 or 3, so n = Q(D'?), and hence the
additive stretch is D = O(n'/'3). When d = 2 we have D = ©(n'/13), r = ©(n3/25),
and R = ©(n®?%), and when d = 3 we have D = O(n'/13), r = ©(n?/3%), and
R = 0(n°/39). O

COROLLARY 3.5. Fiz an € € [0,1/3), and let d be an integer such that € €

[0, 3dd +11] There exists a graph G with n vertices such that any spanner H C G

with O(n'*¢) edges has a additive stretch +Q(n (1= €)/(3+2d+2 dﬂ)) In particular,
by setting d = 3 the additive stretch becomes Q(n 13— 13€).

Proof. By the above construction, we may express n and |P| as functions to D,
6, and e:

n=0 (RD%) = 0 (D225t

[P| = © (R9%) = © (D2 #1742
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To show that D|P| > Q(n'*€) it suffices to set
5(2%+2)—(1+e)(2%+1) — p2d+2)(1+e)—(2d+1)

e §RFETH)(er1/QFET+1) _ p2dt+2)etl

ey 52 (—et 1/ (D) U p2d+2)ett

%+1 _ D((2d+2)6+1) (8d+1)/(d—1) d—1

— §? T=@dFD/(@-De | (meaningful ife < ) .

3d+1
Now, we are able to establish that there exists a graph with the following relation
between n and D,

n—0 (D2+2d52%+1)
3d+1 d—1
o (D2+2d+((2d+2)e+1)1j(?,cl+{7§}w{)s)

-0 (D(3+2d+2%)/(1*%6))

7

which concludes the proof. 0

3.2. An improved O(n)-size spanner lower bound. The construction from
section 3.1 is versatile, inasmuch as it extends to polynomial densities (Corollary 3.5)
and emulator lower bounds (section 3.3). However, it can be improved slightly for
the specific case of O(n)-size additive spanners. It turns out that the the Cartesian
product step (generating Go from G4, py ® G(4,r,p)) is inefficient and that we can
do better with a simple replacement step.

By its nature, the proof of Theorem 3.6 needs to explictly keep track of the leading
absolute constant in the size of the spanner; i.e., it has at most con = O(n) edges.
(In contrast, the proof of Theorem 3.2 can easily accommodate any O(n)-size bound
by tweaking r, R, D by constant factors.) Although ¢y and ¢ (see Lemma 3.7) will
eventually be set to constants, we treat them as parameters; all asymptotic notation
hides constants that are independent of cg, c.

THEOREM 3.6. For any parameter co > 1 and sufficiently large n there exists an
undirected n-vertex graph G such that any spanner for G with at most con edges has

+Q(n1/1lcalg/1l) additive stretch.

In Lemmas 3.7 and 3.8 we construct the inner and outer graphs, then discuss
how to combine them using a substitution product.

LEMMA 3.7 (Inner graph construction). Fiz a parameter ¢ > 1. There exists
sufficiently large q, L such that ¢ = ©(L?c®) and a graph G; = (Vi, Er) with a set of
critical pairs Py C Vi x Vi satisfying the following conditions.

L |Vi| < qL.

3. For all (u,v) € Pr, the shortest path between u and v is unique and has a
length Lc.

4. For all (u1,v1), (ug,ve) € P, the unique shortest paths between uy and vy
and between uy and vy are edge-disjoint. Moreover, distg, (ui,v2) > Le, and
distg, (ug,v1) > Le. (As a consequence, |Er| > cqL.)

Proof. We use almost the same construction as in Theorem 2.1 except that the
graph will be undirected and we will pay closer attention to the density. In this proof

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/01/21 to 35.3.105.140 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

L.B. ON SPARSE SPANNERS AND SPARSE SHORTCUT SETS 2139

d = O(c) represents the density of the graph, not the geometric dimension. We will
ultimately choose d = 12.97c. The graph G; we construct consists of Lc + 1 layers,
numbered by 0,1, ..., Lec.

Recall that Vs (r) is the set of all lattice points at the corners of the convex hull
of By(r). Let 7o = m = ©(1) be the ratio between the area of a circle of a radius 1
and the area of the unit square. In this case we know that for large r, (72 — 0.1)7‘2 <
|Ba(r)| < (2 +0.1)r2. We do not always have |Ba(r)| = 12r? because we are working
on a lattice. In this sense 7, is the limiting value; i.e., 7y = lim, .o |Ba(r)|/r?. In
addition, let £, = ©(1) be such that [Va(£4d%/?)| > d/(n2 — 0.1). (It follows from [5]
that we can choose & = (3/(m — 0.1))3/2 =~ 0.979 = ©(1).) On the kth layer, the
vertices are labelled by (a, k) where a € By(+/q/d + k&4d*/?). For each layer-k vertex
(a,k), k € {0,...,Lc—1} and each vector v € Vy(£4d%/?), we connect an (undirected)
edge between (a k) and (a + v,k + 1).

By choosing \/7 (Le) dd3/2 we have ¢ = L*c?¢3d* = ©(L?c®), and the total
number of vertices in G can be upper bounded by the number of layers times the size
of the last layer:

(Lc)|B2(2+/q/ (Le)(ne 4 0.1)(2+4/q/d)* < 12.97¢qLc/d.

Thus, condition 1 is satisfied whenever d > 12.97c.
Define

P = {((a,O), (a+ (Le)v, (Le))) | a € Ba(y/q/d) and v € vg(gdd?’/?)} :

We have that |Pr| = |Ba(y/q/d)| - [Va(€4d®/?)| > (02 — 0.1)(g/d) - d/(n2 — 0.1) = ¢, so
condition 2 is satisfied.

Now, for each pair of vertices ((a,0), (a + (Lc)v, (Lc))) in P, there is an unique
shortest path from (a,0) to (a + (Lc)v, (Lc)) by Lemma 2.2. Moreover, since the
graph is a layered graph, any path from a vertex in the Oth layer to any vertex in the
(Lc)th layer has length at least Le, satisfying conditions 3 and 4. 0

Again, we use a similar construction to Theorem 2.1 to obtain our outer graph.

LEMMA 3.8 (Outer graph Construction, three-dimensional version). For any
given q,L € N, there exists an undirected graph Go = (Vy, Eo) with a set of criti-
cal pairs P C Vy x Vi satisfying

1. Gg is a layered graph with L + 1 layers. Fach vertex in Gy connects to at
most q vertices in the next layer and at most q vertices in the previous layer.
2. Vol = O(Lig?).
IP| = O(L3%).
4. For all (u,v) € P, the shortest path between u and v (denoted by Py, ) is
unique. Moreover, Py, has a length exactly L.
5. For all (u1,v1), (ug,v2) € P, the unique shortest paths between uy and vy and
between uy and vy are edge-disjoint.

w

Proof. Consider the following (L + 1)-layer graph. Vertices in the kth layer are
identified with points in the three-dimensional integer lattice inside the ball of radius
Lr + kr around the origin. Here r is the minimum value such that [Vs(r)| > ¢. From
Barany and Larman [5] we have r = ©(¢/3).

We label each vertex with its coordinate and its layer number: (a,k) € Bs(Lr +
kr) x [L + 1]. Fix an arbitrary subset V4(r) C Vs(r) of any g vectors. For each
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vertex (a, k) in the kth layer (0 < k < L), and for every vector x € Vj(r), the edge
((a, k), (a + x,k+ 1)) is added to the graph.

It is straightforward to check that |Vo| ~ S p_, ns(2(Lr + kr))® = ©(L*q?). For
each vector v € Vj(r) and each layer-0 vertex (a,0), the vertex pair ((a,0), (a+ Lv, L))
is added to the critical pair set P; hence |P| = O((Lr)3q) = ©(L3¢?). By the same
argument as in the proof of Lemma 2.2, there is exactly one shortest path of length L
connecting (a,0) and (a+ Lv, L). Moreover, no edge belongs to more than one critical
path. O

Recall that we are aiming for lower bounds against spanners with a size con.
Once ¢y is fixed, we choose a ¢ = O(cp) and invoke Lemma 3.7 to construct an inner
graph G with parameters ¢, L. Once g, L are fixed we invoke Lemma 3.8 to build the
outer graph Gy. Our final graph G is formed from Gy, Gy through the inner graph
replacement step and the edge subdivision step, as follows.

Inner graph replacement step. For every vertex (a,k) € Gy (0 < k < L), we
replace (a, k) with a copy of inner graph G as follows.

Recall that the critical pair set for G has a size q. We regard the sources of these
q pairs to be input ports and the sinks to be output ports. Let Gy (4 ) be the copy
of Gt substituted for (a,k) in the outer graph. For each v; € Vi(r) = {v1,v2,..., 04}
and each critical path of Gy passing through (¢ —v;,k — 1), (a, k), (a + v;, k+ 1), we
reattach the vertex (a — v;, k — 1) to the ith input port of G7,(a,k) and reattach the
vertex (a +wv;, k + 1) to the ith output port of G (4,%). Let G* be the result of this
process.

The edge subdivision step. Every edge in G* that was inherited from Gy (i.e., not
inside any copy of Gy) is subdivided into a path of L/2 edges. The outcome of this
process is G.

Observe that for every critical pair (z,y) from Gy, there is a unique shortest path
between z and y in G of length 2L? 4+ (L — 1)Lc, where 1L? edges come from the
subdivision step and the remaining ones come from copies of G'1. Moreover, any two
unique shortest paths are edge-disjoint.

LEMMA 3.9. Every spanner of G with an additive stretch +(L — 2) contains at
least (L2 + cL(%51))|P| edges.

Proof. Suppose there exists a spanner H of G with an additive stretch +(L — 2)
but has strictly less than (3L?+cL(£51))|P| edges. By the pigeonhole principle there
must exist a critical pair (z,y) € P with the unique shortest path P, ,) that is in one
of the following two cases: (1) H is missing an edge in P, ,) introduced in the edge
subdivision step, or (2) H is missing at least one critical edge from P,y in at least
half ((L —1)/2) of the copies of G along P ).

Let P,y be a shortest path connecting z and y in H. If (1) holds, then P,
traverses at least two more subdivided edges than P(x y) and at least the same number
of copies of G; hence |szy)| > |P(y,)| + L, which is a contradiction.

Suppose now (2) holds; let Q(z y) On Gy be the result of P/, . by contracting
inner graphs on H back into vertices and by replacing all subd1v1ded edges back into
single edges. Let Q. ) be the result of P, ,y through the same process. Depending
on whether Q) # Q’(myy), we have two cases:

o If Qi) # Q’(%y), then since Q(,,,) is the unique shortest path on Go by
Lemma 3.8, |Q(, »| = |Q(z )| + 2. This implies that [P, | > |Pay| + L,
which is a contradiction.
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e Otherwise, Q) = Q’(JJ ) In this case for every inner graph that has a
missing edge on P, ), P(’I ,) traverses at least two more edges. Since there
are at least (L —1)/2 such inner graphs, [F(, | > [Pz )|+ (L —1). In either
case, P(, ») has at least +(L — 1) additive stretch so H cannot be a +(L — 2)
spanner. O

Proof of Theorem 3.6. Given the density parameter ¢y, we will choose a larger
parameter ¢ = O(c¢g) (defined precisely below) and construct the inner graph Gy
(Lemma 3.7) with at most gL vertices, at least cqL edges, and ¢ critical pairs, with
q = O(L3c’). Once ¢, L are fixed, we construct the outer graph G using Lemma 3.8.
After the replacement and subdivision steps, G has |V| = ©(L%¢?) vertices and |P| =
O(L3¢?) critical pairs. This implies that there is some absolute constant A > 1 such
that AL(£52)|P| > |[V].

Now, by Lemma 3.9, any spanner of G with at most cL(%) | P| edges has additive
stretch at least +(L — 1). We choose ¢ = Acg, so cL(£51)|P| > ¢y|V|. Therefore, any
spanner of G with at most ¢y|V| edges has an additive stretch of at least +(L — 1).
Since ¢ = O(L2c®) = O(L3c), it follows that |V| = O(Lc{®). Thus, we conclude
that any spanner of G with con edges has an additive stretch +Q(|V[/11¢;"*/™). O

Remark 3.10. Tt follows from Theorem 3.6 that any ©(n!*¢)-size spanner has
+Q(n1111€) stretch, which is only better than the +€(n13~13¢) bound of Corol-
lary 3.5 when e < 2/181 is quite small.

Remark 3.11. The construction from Theorem 3.6 cannot be easily translated
into an emulator lower bound. The reason is that the number of critical pairs is
always sublinear in the number of vertices. A distance-preserving emulator of linear
size always exists in this type of construction.

3.3. O(n)-size emulators. The difference between emulators and spanners is
that emulators can use weighted edges not present in the original graph. In this
section, our lower bound graph G is constructed exactly as in section 3.1 but with
different numerical parameters.

THEOREM 3.12. There exists an undirected graph G with n vertices such that any
emulator with O(n) edges has +Q(n'/'®) additive stretch.

Before proving Theorem 3.12 we first argue that the size of low-stretch emulators
is tied to the number of critical pairs | P| for G.

LEMMA 3.13. Every emulator for G with additive stretch +(2D — 1) requires at
least |P|/2 edges.

Proof. Let H be an emulator with additive stretch +(2D — 1). Without loss of
generality, we may assume that any (u,v) € E(H) has weight precisely distg(u,v).
(It is not allowed to be smaller, and it is unwise to make it larger.) We proceed to
convert H into a spanner H' that has the same stretch +(2D — 1) on all pairs in P,
then apply Lemma 3.4.

Initially H’ is empty. Consider each (x,y) € P one at a time. Let P, ) be the
shortest path in H and P(’w,y) be the corresponding path in G. Include the entire
path P(’I,y) in H'. After this process is complete, for any (z,y) € P, disty/ (z,y) =
disty (z,y), and H' is a spanner with at most n + 2D|H| edges. In particular, it has
at most 2D|H| biclique edges since each weighted edge in some P, ,) contributes at
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most 2D biclique edges to H'. By Lemma 3.4, the number of biclique edges in H' is
at least D|P|, hence |H| > |P|/2. d

Proof of Theorem 3.12. In order to get |P| = Q(n), it suffices to set § > D?.
Now, we have

= 0 (R*D?5)
— Q((rD)*DY) (6 > D?)
=Q 6d(d 5 D D4) (by definition of §)
—0 (D4%+2d+4) (6> D?).

The exponent is minimized when d = 3. This implies n = Q(D'®), and hence
D = O(nl/ 18). These parameters can be achieved asymptotically by setting D =
O(n'/18), § = D?, r = ©(n?*/?7), and R = O(n7/%%). |
COROLLARY 3.14. Fiz an € € [0,1/3), and let d be such that € € |0, 3dd+11} There
exists a graph G with n vertices such that any emulator H with O(n'*€) edges has
an additive stretch —&-Q(n(l_gdd+1 O/ (420455 1)), In particular, by setting d = 3 the

additive stretch lowerbound becomes Q(ns ~15€).

Proof. The proof is the similar to the proof of Corollary 3.5. By setting
5= D(2+(2d+2)e)/(1—%e)7
we have that
n =6 (R*D%) = o (pU+2+455)/ (=) | ana
|P| = © (R*5?) = © (D(4+2d+4j+1+(4+2d+4%)e)/(173ddj11 e)> '

Now we do have |P| = ©(n'*€) which completes the proof. O

Using the same proof technique as in [1, 2], it is possible to extend our emulator
lower bound to any compressed representation of graphs using O(n) bits.

THEOREM 3.15. Consider any mapping from n-vertex graphs to O(n)—length bit-
strings. Any algorithm for reconstructing an approzimation of distg, given the bit-
string encoding of G, must have an additive error +Q(n'/18).

Proof. For each subset T C P construct the graph G by removing all biclique
edges from G that are on the critical paths of pairs in 7. Because all biclique edges
are missing, for all (z,y) € T we have dg, (z,y) > da(z,y) +2D. On the other hand,
for all (x,y) ¢ T, dg,(z,y) = dg(x,y).

There are 27! such graphs. If we represent all such graphs with bitstrings of
length |P| — 1, then by the pigeonhole principle two such graphs Gr and Gp are
mapped to the same bitstring. Let (x,y) be any pair in T\T". Since distg,(z,y) >
distg,, (z,y) + 2D, the additive stretch of any such scheme must be at least 2D.
Alternatively, any scheme with stretch 2D — 1 must use bitstrings of a length of at
least length | P].

Now, by setting d = 3 with D = O(n'/18), r = O(n?/?7), and R = O(n"/%),
we have |P| = ©(n). Thus, any O(n)-length encoding must recover approximate
distances with stretch +Q(n i 18), O
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4. Conclusion. Our constructions, like [1, 14, 2, 19|, are based on looking at
the convex hulls of integer lattice points in Z¢ lying in a ball of some radius. Whereas
Theorems 3.12 and 3.15 hold for d = 3, Theorems 2.1, 2.8, and 3.2 are indifferent
between dimensions d = 2 and d = 3, but that is only because d must be an integer.

Suppose we engage in a little magical thinking and imagine that there are integer
lattices in any fractional dimension and, moreover, that some analogue of Barany
and Larman’s [5] bound holds in these lattices. If such objects existed, then we
could obtain slightly better lower bounds. For example, setting d = 1 + v/2 in the
proof of Theorem 2.1, we would conclude that any O(n)-size shortcut set cannot

reduce the diameter below Q(nt/3+2V2) which is an improvement over Q(n/6) as
3+2V2 <583

For near-linear size spanners and emulators there are still large gaps between the
best lower and upper bounds on additive stretch: [n'/1', n3/7] in the case of spanners
and [n'/*® n'/4] in the case of emulators. None of the existing lower or upper bound
techniques seem up to the task of closing these gaps entirely.
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