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Abstract

We investigate the increasingly important and common game-solving setting where we do
not have an explicit description of the game but only oracle access to it through gameplay,
such as in financial or military simulations and computer games. During a limited-duration
learning phase, the algorithm can control the actions of both players in order to try to learn
the game and how to play it well. After that, the algorithm has to produce a strategy that has
low exploitability. Our motivation is to quickly learn strategies that have low exploitability in
situations where evaluating the payoffs of a queried strategy profile is costly. For the stochastic
game setting, we propose using the distribution of state-action value functions induced by a
belief distribution over possible environments. We compare the performance of various explo-
ration strategies for this task, including generalizations of Thompson sampling and Bayes-UCB
to this new setting. These two consistently outperform other strategies.

1 Introduction
We study the problem of how to efficiently explore zero-sum games whose payoffs and dynamics
are initially unknown. The agent is given a certain number of episodes to learn as much useful
information about the game as possible. During this learning, the rewards obtained in the game
are fictional and thus do not count toward the evaluation of the final strategy. After this exploration
phase, the agent must recommend a strategy that should be minimally exploitable by an adversary
(who has complete knowledge of the environment and can thus play optimally against it). This setup
is called pure exploration in the single-agent reinforcement learning literature. This is an important
problem for simulation-based games in which a black-box simulator is queried with strategies to
obtain samples of the players’ resulting utilities [33], as opposed to the rules of the game being
explicitly given. For example, in many military settings, war game simulators are used to generate
strategies, and then the strategies need to be ready to deploy in case of actual war [17]. Another
prevalent example is finance, where trading strategies are generated in simulation, and then they
need to be ready for live trading. A third example is video games such as Dota 2 [4] and Starcraft
II [31], where AIs can be trained largely through self-play.

This raises the challenge not only of learning approximate equilibria with noisy observations,
but of learning in as few queries as possible, since running the simulator is usually an expensive
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operation. This is true even for benchmark computer games like Dota 2 and Starcraft II, which
are costly to explore due to their length and complexity. Furthermore, unlike this paper, that prior
work on Dota 2 and Starcraft II did not evaluate the exploitability of the learned strategies and
did not directly target the minimization of exploitability.

In the context of single-agent reinforcement learning, Q-learning [35] tries to learn state-action
values directly in a model-free way, that is, without learning the structure of the underlying environ-
ment. Dearden et al. [9] extended Q-learning to incorporate uncertainty by propagating probability
distributions over the Q values in order to compute a myopic approximation of the value of infor-
mation, which measures the expected improvement in future decision quality that can be gained
from exploration. Bellemare et al. [3] and Donoghue et al. [20] argue for the importance of the Q
value distribution and propose a new version of Bellman updating that incorporates uncertainty.

A similar problem has been studied in the context of single-agent model-based reinforcement
learning. Posterior sampling reinforcement learning [23, 1] samples an environment from the agent’s
belief distribution, follows a policy that is optimal with respect to it, and then updates the agent’s
beliefs about the environment with the resulting observations.

Even in single-agent settings, sampling a new policy on every step within an episode is inefficient
because it does not perform so-called deep exploration, which accounts not only for information
gained by taking an action but also for how the action may position the agent to more effectively
acquire information later [26]. To address this limitation, in deep exploration a single policy is chosen
at the beginning of each episode and followed for its duration. Osband et al. [22] and Osband and
Van Roy [24] propose an approach to deep exploration that chooses actions that are optimal with
respect to a value function that is sampled from an ensemble. Each element of the ensemble is a deep
neural network trained with deep Q-learning [19], and the ensemble constitutes a belief distribution
over possible value functions of the environment. It incentivizes experimentation with actions of
uncertain value because uncertainty induces variance in the sampled value estimate. Chen et al. [7]
also use an ensemble of Q functions but, instead of sampling from them, use the resulting upper
confidence bounds. Chaudhuri et al. [18] combine a decaying schedule with exploration bonuses
computed from upper quantiles of the learned distribution. Littman [16] describes a Q-learning-like
algorithm for finding optimal policies for one player in stochastic games when playing against an
opponent that the algorithm does not control.

Sandholm and Crites [27] study reinforcement learning in a repeated game. They study the
role of other agents making the setting stochastic for a learner, the role of exploration, and con-
vergence to cycles of different lengths, and how recurrent neural networks can, in principle, help
with those issues. Claus and Boutilier [8] study reinforcement learning in cooperative settings,
showing that several optimistic exploration strategies increase the likelihood of reaching an optimal
equilibrium. Wang and Sandholm [34] describe an algorithm that converges almost surely to an
optimal equilibrium in any team stochastic game. Hu and Wellman [13] present Nash Q-learning
for general-sum stochastic games, which is guaranteed to converge to an equilibrium if all agents
follow the algorithm and the stage games satisfy certain highly restrictive conditions. Ganzfried
and Sandholm [10] design algorithms for computing equilibria in special classes of stochastic games
of imperfect information. Casgrain et al. [6] study Nash Q-learning but they use a neural network
to model the Q function, decomposing it into a sum of the state value function and a specific
form of action advantage function. Sokota et al. [29] use neural networks to learn a mapping from
mixed-strategy profiles to deviation payoffs in order to approximate role-symmetric equilibria in
large simulation-based games.

In this paper we study model-driven exploration for two-player zero-sum normal-form games
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and stochastic games (of the standard kind where the agents know the state but they make parallel
moves in each state, which begets a form of imperfect information). The exploring agent controls
both players and tries to quickly learn a minimally-exploitable strategy.

2 Normal-form games
A zero-sum normal-form game is a function u : A1×A2 → R where A1 is a set of actions available to
Player 1 and A2 is a set of actions available to Player 2. Both players choose actions simultaneously.
If they jointly play the action profile (a1, a2), the mean payoff obtained by Player 1 is u(a1, a2) and
the mean payoff obtained by Player 2 is −u(a1, a2).

Let 4S ⊆ S → R be the set of all probability distributions on S. Then 4A1 and 4A2 are the
sets of mixed strategies available to each player. The maxmin strategy of Player 1, which maximizes
their minimum payoff, is

σ∗1 = argmax
σ1∈4A1

min
σ2∈4A2

u(σ1, σ2) where (1)

u(σ1, σ2) =
∑
a1∈A1

∑
a2∈A2

u(a1, a2)σ1(a1)σ2(a2) (2)

Any fixed strategy for Player 1 has a deterministic best response from Player 2. Hence minimiza-
tion over the infinite set of mixed strategies inside the argmax can be turned into a minimization
over the finite set of pure strategies:

σ∗1 = argmax
σ1∈4A1

min
a2∈A2

u(σ1, a2) (3)

where the summation is now carried out over A1 alone. Similarly, the minmax strategy of Player 2
is

σ∗2 = argmin
σ2∈4A2

max
σ1∈4A1

u(σ1, σ2) (4)

By the celebrated minmax theorem [32], the maxmin and minmax payoffs are equal. That
quantity is called the value of the game.

2.1 Playing optimally under uncertainty
Suppose Player 1 is uncertain about the payoffs u. More precisely, her beliefs about u are de-
scribed by some distribution U . To minimize the expected exploitability of her strategy—that is,
to maximize the expected minimum payoff of such a strategy—she should play

argmax
σ1∈4A1

E
u∼U

min
σ2∈4A2

u(σ1, σ2) (5)

We coin this the maxmeanmin strategy of Player 1. Similarly, we will call

argmin
σ2∈4A1

E
u∼U

max
σ1∈4A2

u(σ1, σ2) (6)

the minmeanmax strategy of Player 2, assuming their beliefs about u are described by the distri-
bution U . These definitions would work even if the belief distributions U of the two players were
different, but in our setting they are the same because we are controlling the exploration by both
players.
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2.2 Solutions via linear programming
The maxmin strategy is the solution to the following linear program over the variables v ∈ R and
σ1 ∈ R|A1|:

maximize v

subject to v ≤ u(σ1, a2) ∀a2 ∈ A2

σ1 ≥ 0

1 · σ1 = 1

(7)

where 0 is the vector of zeros and 1 is the vector of ones. The dual variables of the solution contain
the minmax strategy of Player 2. We observe that a similar approach can be used to solve for the
maxmeanmin strategy. Specifically, we can use a Monte Carlo estimate of the expectation:

argmax
σ1∈4A1

1

K

K∑
k=1

min
σ2∈4A2

uk(σ1, σ2) (8)

where uk ∼ U are payoff functions sampled from the belief distribution. The maxmeanmin strategy
problem can then be formulated as a linear program over the variables v ∈ RK and σ1 ∈ R|A1|:

maximize 1 · v
subject to vk ≤ uk(σ1, a2) ∀a2 ∈ A2, k ∈ [K]

σ1 ≥ 0

1 · σ1 = 1

(9)

Analogous expressions hold for the minmax and minmeanmax strategies of Player 2.

2.3 Connection to multi-armed bandits
In a multi-armed bandit problem, an agent faces a set of actions with uncertain payoff distributions
from which they can sample a limited number of times. In the standard version of that problem, the
agent must—over a given period of time—acquire information about the mean payoff of each action
while simultaneously trying to maximize the cumulative payoff. Because of this tradeoff, multi-
armed bandit problems exemplify the kind of exploration-exploitation dilemma that is central to
reinforcement learning.

In the pure exploration version of that problem, there is a learning phase first, during which
the rewards obtained are fictional and do not count toward the evaluation [5]. Then the agent
recommends an arm (i.e., action) to play going forward. The agent’s performance is measured
purely by the effectiveness of her recommended action. This performance measure is called simple
regret, in contrast to the cumulative regret of the standard problem where rewards throughout the
process count. Our paper focuses on the multiagent generalization of pure exploration.

Garivier et al. [11] study the problem of pure exploration in the context of a sequential -move
game with the aim of identifying an ε-maxmin action with probability at least 1 − δ. Marchesi et
al. [17] tackle the problem of learning equilibria in simulation-based games of infinite strategy spaces
with high confidence using as few simulator queries as possible. They propose an algorithm for the
fixed-confidence setting (guaranteeing the desired confidence level while minimizing the number of
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queries) and one for the fixed-budget setting (maximizing the confidence without exceeding the
given maximum number of queries).

We study the following version of this problem: An agent faces a normal-form (that is, simul-
taneous-move) game with unknown mean payoffs for each action profile. The agent has a belief
distribution U : 4(A1 × A2 → R) that describes her beliefs about the mean payoff of each action
profile.

In each of T episodes, the agent chooses an action profile (that is, actions for both players),
observes a sample from the payoff distribution for that action profile, and updates her belief distri-
bution accordingly. After the T episodes are over, the agent recommends a strategy σ̂1 for Player
1. The simple regret R(σ̂1) of this recommended strategy is

max
σ1∈4A1

min
σ2∈4A2

u(σ1, σ2)− min
σ2∈4A2

u(σ̂1, σ2) (10)

It measures how exploitable the recommended strategy is in comparison to the true maxmin strat-
egy. The original multi-armed bandit problem is a single-player version of this problem, that is,
one where |A2| = 1.

Since the agent is trying to minimize the expectation of this quantity, if her beliefs about the
mean payoffs are modelled by U , she should recommend the strategy that is maxmeanmin under
U . This leaves the question of how she should explore over the T episodes, since this determines
how useful the belief distribution she ends up with is.

2.4 Exploration strategies
The simplest exploration strategy, which we call the random strategy, selects an action profile
(a1, a2) ∈ A1 ×A2 uniformly at random on every episode:

(a1, a2) ∼ uniform(A1 ×A2) (11)

Even a simple exploration strategy like this is guaranteed to converge to correct beliefs about
u—and hence to recommending the optimal strategy—because every action profile is explored an
infinite number of times. It may, however, converge significantly more slowly than other methods.

Another strategy—called the round robin, least-explored, or min count strategy—selects uni-
formly at random from the action profiles that have been explored the least:

(a1, a2) ∼ uniform

(
argmin

(a1,a2)∈A1×A2

n(a1, a2)

)
(12)

where n(a1, a2) denotes the number of times (a1, a2) has been explored. It allocates an equal (or
almost equal) number of rounds to every action profile. Like the random strategy, it is guaranteed
to converge to correct beliefs.

Our next exploration strategy, which we call the greedy strategy, samples an action profile
from the distribution over action profiles created by the maxmeanmin and minmeanmax strategies
for players 1 and 2, respectively:

σ1 = argmax
σ1∈4A1

E
u∼U

min
σ2∈4A2

u(σ1, σ2)

σ2 = argmin
σ2∈4A2

E
u∼U

max
σ1∈4A2

u(σ1, σ2)
(13)
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The intuition behind adopting such an exploration strategy (possibly in combination with other
strategies, as we will see below) is that, if the explorer is reasonably certain about where the Nash
equilibrium of the game is, it makes sense to try to refine her knowledge about the payoffs near
this equilibrium rather than waste time on action profiles and strategies that are thought to be far
from equilibrium.

The greedy strategy alone is not guaranteed to converge to correct beliefs because it may get
stuck with false maxmeanmin and minmeanmax strategies from which it samples forever, ignoring
the other action profiles. To resolve this problem, one can combine it with the random strategy to
produce the so-called ε-greedy strategy. In every episode, it follows the random strategy with
probability ε and the greedy strategy with probability 1− ε.

Our next exploration strategy is based on Thompson sampling, a remarkably simple but suc-
cessful heuristic for solving exploration-exploitation dilemmas in multi-armed bandit problems that
consists of playing an action according to the probability it is the optimal action. This is done
by sampling a belief from the belief distribution and then acting optimally with respect to that
belief. Originally introduced by Thompson [30], it was rediscovered and analyzed in the context of
the multi-armed bandit problem [21]. In recent years, it has become a popular approach for rein-
forcement learning [26], and convergence results have been obtained that show it is asymptotically
optimal and well-behaved [23, 1]. Our adaptation of this approach to games, which we call the
Thompson strategy, samples from the Nash equilibrium of a payoff matrix u, which is in turn
sampled from the belief distribution U . Seen another way, it selects an action profile according to
the probability it would be played under the true (unknown) game by optimal players:

σ1 = argmax
σ1∈4A1

min
σ2∈4A2

u(σ1, σ2)

σ2 = argmin
σ2∈4A2

max
σ1∈4A1

u(σ1, σ2)
(14)

where u ∼ U . Like the greedy exploration strategy, it biases sampling toward what is believed to be
the Nash equilibrium, but unlike greedy exploration, it also leaves room for exploration according
to how uncertain the agent is. The more certain the agent is of the true payoffs u, and thus of
where the Nash equilibrium lies, the more often it will sample action profiles that are played by
that equilibrium, refining its knowledge of the equilibrium.

Another exploration strategy in single-agent settings is called the UCB strategy. It is based
on an approach to the multi-armed bandit problem with the same name. This strategy, also known
as “optimism in the face of uncertainty”, selects the action with the highest upper confidence bound
on its mean payoff. Our adaptation of this exploration strategy to the setting of a normal-form
game samples an action profile from the action profile distribution induced by the following pair of
strategies:

σ1 = argmax
σ1∈4A1

UCB
u∼U

min
σ2∈4A2

u(σ1, σ2)

σ2 = argmin
σ2∈4A2

LCB
u∼U

max
σ1∈4A1

u(σ1, σ2)
(15)

where UCB and LCB are episode-dependent upper and lower confidence bounds, respectively. Note
that each strategy is optimistic from the perspective of its corresponding player. We study two
instantiations of UCB, which we will present in the next two paragraphs, respectively.

Auer et al. [2] introduced the UCB1 algorithm for single-agent settings and proved it achieves
optimal regret up to a multiplicative constant. It uses the following upper-confidence bound for
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utilities bounded by the interval [0, 1]:

UCB
u∼U

u(a) = E
u∼U

u(a) +

√
2 lnn

n(a)
(16)

where n(a) is the number of times a has been explored and n =
∑
a n(a) is the total number of

explorations. To adapt this to games, we have to define some analog of action counts for mixed
strategies. We do this as follows:

n(σ1) =
∑
a∈A1

σ1(a1)n(a1)

u(σ1) = min
σ2∈4A2

u(σ1, σ2)
(17)

Kaufmann et al. [15] introduced a Bayesian version of the UCB strategy called Bayes-UCB
and proved it satisfies finite-time regret bounds that imply asymptotic optimality. It selects the
action whose mean payoff 1 − 1

n quantile is highest. Our adaption of the Bayes-UCB strategy to
this normal-form game setting is as follows. Sample K payoff matrices uk ∼ U from the belief
distribution. Then compute

σ1 = argmax
σ1∈4A1

quantile
k∈[K]

(
min
a2∈A2

uk(σ1, a2), 1−
1

n

)
(18)

σ2 = argmin
σ2∈4A2

quantile
k∈[K]

(
max
a1∈A1

uk(a1, σ2), 0 +
1

n

)
(19)

where quantilek∈[K](ak, q) is the qth (linearly-interpolated) empirical quantile of the data ak. The
optimization technique used to find σ1 and σ2 may vary. In our experiments, we simply optimize
over finite sets of strategies that are sampled from 4A1 and 4A2, respectively. This finite-sample
empirical Bayes-UCB can be seen as an interpolation of the true Bayes-UCB (with infinite samples)
and Thompson sampling (with a single sample).

3 Stochastic games
We now turn to stochastic games, which generalize repeated normal-form games to multiple states
and Markov decision processes (MDPs) to multiple agents. Stochastic games were introduced by
Shapley [28] to model a game played in a sequence of steps. At the beginning of each step the
game is in some state. Each player simultaneously selects an action and receives a payoff that
depends on the current state and the joint action profile. The game then transitions to a new
state—possibly stochastically—that depends on the current state and the joint action profile. This
process continues either forever or until a fixed number of steps.

Here we focus on the case of a two-player zero-sum discounted infinite-horizon stochastic game.
It is defined as a tuple (S,A1, A2, γ, R, T ) where S is a set of states, A1 is a set of actions for Player
1, A2 is a set of actions for Player 2, γ ∈ [0, 1] is a discount factor, R : S → (A1 × A2 → R)
gives the mean reward for a state and action profile (when actually playing we only get a sample),
and T : S → (A1 × A2 → 4S) is a state transition function that yields a distribution of next
states for a state and action profile. Stochastic games subsume simultaneous-move extensive-form
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perfect-information games by letting γ = 1 and adding transitions from all terminal states to a
zero-reward absorbing state.

A policy for Player 1 is an assignment of a strategy to every state (π1 : S →4A1) and likewise
for Player 2 (π2 : S →4A2). The (expected) cumulative reward obtained by such a pair of policies
when starting from state s0 ∈ S is

Vπ1,π2
(s0) = E

∞∑
t=0

γtR(st)(xt, yt) (20)

where xt ∼ π1(st), yt ∼ π2(st), st+1 ∼ T (st)(xt, yt). The goal of Player 1 is to maximize the
cumulative reward, while the goal of Player 2 is to minimize it. Assuming both players play
optimally, from the perspective of Player 1, the value of a state and action profile is Q : S →
(A1 ×A2 → R),

Q(s)(a1, a2) = R(s)(a1, a2) + γ〈T (s)(a1, a2), V 〉 (21)

where 〈f, g〉 =
∫
s∈S f(s)g(s) ds is the inner product of functions over S (with the integral replaced

by a sum in a discrete state space) and V : S → R,

V (s) = max
σ1∈4A1

min
σ2∈4A2

Q(s)(σ1, σ2) (22)

is the value of a state. For any state s, Q(s) is a normal-form game and V (s) is its value.

3.1 Solving stochastic games
Several algorithms for solving stochastic games have been developed. The first is the Shapley
algorithm [28]. It consists of repeatedly applying the Bellman operator to a value function V :
S → R until the value function converges to a fixed point, much like value iteration for single-agent
MDPs. See Algorithm 1.

Algorithm 1 Shapley algorithm
function Shapley(R, T , γ)

V ← 0
loop

Q← R+ γ〈T, V 〉
Vnew ← solveNFGs(Q).values
if ‖V − Vnew‖∞ < ε then

return Q

V ← Vnew

The auxiliary function solveNFGs uses linear programming to solve a batch of normal-form
games. It returns their values, maxmin strategies, and minmax strategies. The Shapley algorithm
converges slowly if γ ≈ 1.

The Hoffman-Karp algorithm [12]—which we present as Algorithm 2—converges in fewer
iterations. In the inner loop, it solves the MDP induced by the policy π2 for Player 2. Specifically,
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Algorithm 2 Hoffman-Karp algorithm
function HoffmanKarp(R, T , γ)

V ← 0
loop

Q← R+ γ〈T, V 〉
π2 ← solveNFGs(Q).minmax-strategies
Rπ2
← reward function induced by R under π2

Tπ2
← transition function induced by T under π2

Vnew ← solveMDP(Rπ2
, Tπ2

, γ).max
if ‖V − Vnew‖∞ < ε then

return Q

V ← Vnew

in the algorithm,

Rπ2
(s)(a) =

∑
a2∈A2

π2(a2)R(s)(a, a2)

Tπ2(s)(a) =
∑
a2∈A2

π2(a2)T (s)(a, a2)
(23)

To solve the corresponding MDP, we can use any of the standard algorithms for solving MDPs, such
as policy iteration (Algorithm 3), which improves a policy with respect to its own value function
until convergence.

Algorithm 3 Policy iteration algorithm
function PolicyIteration(R, T , γ)

π ← 0
loop

Rπ ← reward function induced by R under π
Tπ ← transition function induced by T under π
V ← (I − γTπ)−1Rπ
Q← R+ γ〈T, V 〉
πnew ← Q.argmax
if π = πnew then

return Q
π ← πnew

3.2 Distributional perspective
As in the normal-form game setting discussed earlier, suppose an agent is trying to learn minimally-
exploitable strategies for a two-player zero-sum stochastic game with unknown rewards and tran-
sitions. Her beliefs about the game structure are described by a joint distribution over reward and
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transition functions. Her goal is to find a least-exploitable policy for Player 1. More precisely, let

minpay(π1) = min
π2:S→4A2

1

|S|
∑
s∈S

Vπ1,π2
(s) (24)

The goal of the agent is to recommend, at the end of the experiment, a Player 1 policy π̂1 that
minimizes the regret

R(π̂1) = max
π1:S→4A1

minpay(π1)−minpay(π̂1) (25)

In the first T episodes, the agent selects actions for both players to explore the game. Recall
that, for any given state s, the matrix of Q values Q(s) constitutes a normal-form game. This
means that, once we have a distribution over Q matrices for a particular state, we can treat it as a
normal-form game with uncertainty. Hence if the agent’s beliefs about the environment’s Q values
are captured by a belief distribution U , the optimal policy to recommend is

π̂1(s) = argmax
σ1∈4A1

E
Q∼U

min
σ2∈4A2

Q(s)(σ1, σ2) (26)

3.3 Exploration strategies
We use the same exploration strategies that we introduced for normal-form games, except that the
mean payoff matrices are now given by a Q function evaluated at the desired state. The belief
distribution over Q functions is approximated by sampling K stochastic games (that is, reward and
transition function pairs) from the belief distribution over stochastic games and then solving them
with any of the algorithms used to solve stochastic games. At the end of each episode, we update
our beliefs about the stochastic game in accordance with the observed rewards and transitions. (As
discussed in the introduction, we do not update beliefs after every time step because that would
not achieve deep exploration.)

4 Experiments
We empirically compare the performance of the exploration strategies we proposed. We mea-
sure how quickly the exploitability of the recommended final strategy decreases over the course of
episodes in the learning phase. We benchmark on discrete finite-state environments. The next-state
distributions of each state-action profile are categorical, while the reward distributions of each state-
action profile are Bernoulli (binary). In the experiments we assume that our initial beliefs about
the parameters of these distributions are uninformatve. Specifically, they are Jeffreys priors [14],
which are parameterization-independent. Thus, for any given state and action profile, our beliefs
about its reward distribution are modeled by a beta distribution, while our initial beliefs about
its next-state distribution are modelled by a Dirichlet distribution. These distributions have the
advantage that they are conjugate priors and are very easy to update under new observations (by
simply incrementing the concentration parameter corresponding to the observed outcome).

It is not necessary to start with such beliefs. For example, we may be certain there are only
two possible environments, in which case the agent’s beliefs are modelled by a mixture of the two.
Unlike the Jeffreys prior case, the reward and transition distributions become highly correlated.
Nonetheless, our exploration strategies are independent of the details about the environment belief
distribution, since they only require the ability to sample from it.
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The experimental parameters to be considered in the case of normal-form games are the number
of actions |A1| and |A2| for each player, the number of samples used to approximate the distribution
of payoffs, the number of trials for each method, the total number of episodes T , and the number
of strategies sampled from the strategy spaces of each player that are used to estimate the UCBs
and LCBs of the UCB exploration strategy (we use 100 for each player). In the case of a stochastic
game we also have the discount factor γ, the number of states |S|, and the number of steps per
episode.

In all experiments, the number of strategies sampled from the strategy spaces of each player that
is used to estimate the UCBs and LCBs of the Bayes-UCB exploration strategy was 100. Figure 1
shows the mean exploitability (with bands of 0.1 standard deviations) in a normal-form game that
was randomly generated from the Jeffreys prior. The relative performance of the methods was the
same across several generated games (not shown due to limited space).

Figure 1: Performance of each exploration method on a normal-form game with 10 actions for
Player 1, 2 actions for Player 2, 1000 trials per method, and 100 belief samples.

Figure 2 shows performance on a stochastic game that was randomly generated from the Jeffreys
prior. That is, the reward and transition probabilities for each action profile are sampled from
the beta and Dirichlet distribution, respectively, with concentration parameters 1

2 . The relative
performance of the methods was the same across several generated games (not shown due to limited
space).

As expected, the greedy exploration method, while initially performing well, gets stuck at posi-
tive regret and is eventually outpaced by all the other methods. The random and mincount methods
attain a similar level of performance. The epsilon-greedy method (in this case with ε = 0.1) at-

11



Figure 2: Performance of each exploration method on a stochastic game with 10 states, 10 actions
for Player 1, 2 actions for Player 2, a discount factor of 0.99, 100 trials per method, 100 belief
samples, and 100 exploration steps per episode.

tains better performance and, unlike the purely-greedy method, does not get stuck at a positive
exploitability. UCB1 performed even better. The best-performing methods were Bayes-UCB and
Thompson; this is not that surprising since the analogs of these strategies for the cumulative-regret
version of the multi-armed bandit problem are known to perform well in that setting. It is also
known that regret bounds for UCB can be converted into Bayesian regret bounds for Thompson
sampling [25]. The latter has an advantage in terms of computational efficiency because it only
needs to sample and solve one belief rather than many.

5 Conclusions and future research
We investigated the increasingly important and common game-solving setting where we do not
have an explicit description of the game but only oracle access to it through game play. During a
limited-duration learning phase, the algorithm can control the actions of both players in order to
try to learn the game and how to play it well. After that, the algorithm has to produce a strategy
that has low exploitability.

We generalized the typical exploration strategies proposed for single-agent settings to normal-
form and stochastic games. We proposed using the distribution of state-action value functions
induced by a belief distribution over possible environments. The exploration strategies we evalu-
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ated were a strategy that chooses random action profiles, a strategy that chooses action profiles
which have been explored the least, a greedy strategy that samples action profiles induced by the
recommended strategies of each player, a Thompson-sampling-like strategy that samples an en-
vironment from its belief distribution and then samples an action profile from the resulting Nash
equilibrium, and two UCB-like strategies that sample action profiles induced by optimistic strategies
for each player. Bayes-UCB and Thompson sampling performed clearly the best.

In future work, we would like to see this research extended to nonzero-sum games and to more
than two players. We would also like to see it extended to environments with large and/or continuous
state spaces, where function approximation is required. Our exploration strategies suggest the
following approach for such settings. Maintain an ensemble of randomly-initialized neural networks
that together represent the agent’s belief distribution over environments. Each network takes as
input a state and action profile, and outputs the expected reward and next-state distribution, thus
capturing the transition and reward structure of a hallucinated environment. Each network is
repeatedly trained on the tuples of states, action profiles, rewards, and next states the agent has
observed over the course of exploration. In parallel, one trains separate Q-value networks on each
of these environment networks using, for example, the value iteration algorithm that repeatedly
applies Equation 21 to randomly-sampled observation tuples that are queried from the hallucinated
environment. This yields an ensemble of Q functions, one for each possible environment in the
agent’s belief distribution, which is what our exploration strategies use.
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