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Planar Distance Oracles with Better Time-Space Tradeoffs*

Yaowei Long!

Abstract

In a recent breakthrough, Charalampopoulos,
Gawrychowski, Mozes, and Weimann [9] showed that
exact distance queries on planar graphs could be answered

in n°® time by a data structure occupying n'T°™" space,
i.e., up to o(1) terms, optimal exponents in time (0) and
space (1) can be achieved simultaneously. Their distance
query algorithm is recursive: it makes successive calls to
a point-location algorithm for planar Voronoi diagrams,
which involves many recursive distance queries. The depth
of this recursion is non-constant and the branching factor
logarithmic, leading to (logn)*™ = n°® query times.

In this paper we present a new way to do point-location
in planar Voronoi diagrams, which leads to a new exact
distance oracle. At the two extremes of our space-time
tradeoff curve we can achieve either

pito) 2+0(1)

space and log n query time, or

240(1)

nlog nspace and n°W query time.

All previous oracles with O(1) query time occupy space
n1+9(1), and all previous oracles with space O(n) answer

queries in n®® time.

1 Introduction

A distance oracle is a data structure that answers
distance queries (or approximate distance queries)
w.r.t. some underlying graph or metric space. On gen-
eral graphs there are many well known distance oracles
that pit space against multiplicative approximation [40],
space against mixed multiplicative/additive approxima-
tion [34, 1], and, in sparse graphs, space against query
time [2, 38]. Refer to Sommer [37] for a survey on dis-
tance oracles.

Whereas approximation seems to be a necessary in-
gredient to achieve any reasonable space/query time
on general graphs, structured graph classes may ad-
mit exact distance oracles with attractive time-space
tradeoffs. In this paper we continue a long line of
work [3, 14, 10, 17, 27, 41, 33, 7, 32, 11, 19, 9] focused
on exact distance oracles for weighted, directed planar
graphs.

" *This work was supported by NSF grants CCF-1637546
and CCF-1815316, and a grant from IIIS, Tsinghua Uni-
versity. A full version of this paper is available at
https://arxiv.org/abs/2007.08585.
tTsinghua University, longyw17@mails.tsinghua.edu.cn.
tUniversity of Michigan, pettie@umich.edu.

Seth Pettiet

1.1 History. Between 1996-2012, work of Arikati et
al. [3], Djidjev [14], Chen and Xu [10], Fakcharoen-
phol and Rao [17], Klein [27], Wulff-Nilsen [41], Nuss-
baum [33], Cabello [7], and Mozes and Sommer [32]
achieved space O(S) and query time O(n/v/S), for var-
ious ranges of S that ultimately covered the full range
[n,n?].

In 2017, Cabello [8] introduced planar Voronoi di-
agrams as a tool for solving metric problems in pla-
nar graphs, such as diameter and sum-of-distances.
This idea was incorporated into new planar distance
oracles, leading to O(n®/2/S8%/2) query time [11] for
S e [n%/2,n5/3] and O(n®/?/S) query time [19] for
S € [n,n%/?]. Finally, in a major breakthrough Char-
alampopoulos, Gawrychowski, Mozes, and Weimann [9]
demonstrated that up to n°(!) factors, there is no trade-
off between space and query time, i.e., space n'to(®)
and query time n°!) can be achieved simultaneously.
In more detail, they proved that space O(n*/3y/Iogn)
allows for query time O(log?n), space O(n'*€) allows
for query time O(logn)/<~1, and space O(nlog?*/<n)
allows for query time O(n?c).

The Charalampopoulos et al. structure is based
on a hierarchical 7-decomposition of the graph, ¥ =
(n,ntm=1/m___ nt/m)  (See Section 2.) Given u,v,
it iteratively finds the last boundary vertex wu; on the
shortest u-v path that lies on the boundary of the level-
i region containing u. Given u;_1, finding u; amounts to
solving a point location problem on an ezternal Voronoi
diagram, i.e., a Voronoi diagram of the complement of
a region in the hierarchy. Each point location query is
solved via a kind of binary search, and each step of the
binary search involves 3 recursive distance queries that
begin at a “higher” level in the hierarchy. This leads
to a tradeoff between space O(n'T1/™) and query time
O(logn)™~1.

See Table 1 for a summary of the space-time trade-
offs for exact and approximate planar distance oracles.

1.2 New Results. In this paper we develop a more
direct and more efficient way to do point location in
external Voronoi diagrams. It uses a new persistent data
structure for maintaining sets of non-crossing systems
of chords, which are paths that begin and end at the
boundary vertices of a region, but are internally vertex

Copyright © 2021 by SIAM

2517 Unauthorized reproduction of this article is prohibited



Downloaded 10/01/21 to 35.3.105.140 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

Table 1: Space-query time tradeoffs for exact and approximate planar distance oracles. O hides log(e~!logn)

factors.

REFERENCE SPACE QUERY TIME
Arikati, Chen, Chew 3/2 2 n?
Das, Smid & Zaroliagis 1996 | S € [n T ] O(§>

S € [n,n?] O("—;)
Djidjev 1996

S € [n*/3,n3/? O(%logn)
Chen & Xu 2000 | S € [n*/3,n?] O(% 1og(%)>
Fakcharoenphol & Rao 2006 | O(nlogn) O(y/nlog®n)
Walff-Nilsen 2010 | O(n? 108 loan) o(1)

O(n) O(n'/?*e)
Nussbaum 2011

S € [n/3,n?] O(%)
Cabello 2012 | S € [n*/31og!/® n,n?] O (% log®/? n)

S € [nloglogn,n?| O (% log? nlog®?log n)
Mozes & Sommer 2012

O(n) O(n'/?+)
Cohen-Addad, Dahlgaard 3/2 ,.5/3 (n5/2 )
% Walff.Nilsen 2017 | S € [n°/2,n°/7] O( Gsz logn
Gawrychowski, Mozes, ~ 3/2 ~ (n3/2>
Weimann & Wulff-Nilsen 2018 | O(S) for § € [n, /7] O

14o(1 1

Charalampopoulos, nttet) not
Gawrychowski, Mozes 2019 | O(n'*t¢) for 0 < e <1/3 | O(log® ~'n)
& Weimann O(n log2+1/e n) for e >0 | O(n*)

iFo() log2°M 1,
new 2020 ” 1Og2+o(1) n no)
(14 €)-APPROX. ORACLES SPACE QUERY TIME

O(ne'log®n)

O(loglogn + € 1)

Thorup 2001

O(ne~tlogn) O(e™h) (Undir.)
Klein 2002 | O(n(logn + e tloge 1)) | O(e71) (Undir.)
Eivivjr;bsai?i:ér 2011 | O(n) O(e2log® n) (Undir.)
Kawarabayashi, 2013 O(nlogn) O(e™) (Undir.)
Sommer & Thorup O(n) O(e!) (Undir.,Unweight.)
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disjoint from the boundary. By applying this point
location method in the framework of Charalampopoulos
et al. [9], we obtain a better time-space tradeoff, which
is most noticeable at the “extremes” when O(n) space
or O(1) query time is prioritized.

THEOREM 1.1. Let G be an n-vertex weighted pla-
nar digraph with no negative cycles, and let k,m >
1 be parameters. A distance oracle occupying space
O(mrn /™15 can be constructed in O(n3/2t1/™ 4
n1+1/m+1/“) time that answers exact distance queries
in O(2™klog? nloglogn) time. At the two extremes of
the space-time tradeoff curve, we can construct oracles
in /2t time with either

2+0(1)

o ') space and log n query time, or

2+0(1)

e nlog n space and n°Y) query time.

Our new point-location routine suffices to get the query
time down to O(log®n). In order to reduce it further
to O(log?"°M n), we develop a new dynamic tree data
structure based on Euler-Tour trees [22] with O(kn!/*)
update time and O(k) query time. This allows us to
generate MSSP (multiple-source shortest paths) struc-
tures with a similar space-query tradeoff, specifically,
O(kn't1/%) space and O(kloglogn) query time. Our
MSSP construction follows Klein [27] (see also [19]), but
uses our new dynamic tree in lieu of Sleator and Tar-
jan’s Link-Cut trees [36], and uses persistent arrays [12]
in lieu of [15] to make the data structure persistent.

1.3 Organization. In Section 2 we review back-
ground on planar embeddings, planar separators,
multiple-source shortest paths, and weighted Voronoi
diagrams. In Section 3 we introduce key parts of the
data structure and describe the query algorithm, as-
suming a certain point location problem can be solved.
Section 4 introduces several more components of the
data structure, and shows how they can be applied to
solve this particular point location problem in near-
logarithmic time. The space and query-time claims of
Theorem 1.1 are proved in Section 5. We leave the fol-
lowing details and proofs in the full version [30] of this
paper due to page limitations. The construction time
claims of Theorem 1.1 are proved in [30, Appendix C].
The MSSP structure based on Euler Tour trees appear
in [30, Appendix B]. In [30, Appendix A] it is explained
how to remove a simplifying assumption made through-
out the paper, that the boundary vertices of every re-
gion in the 7~decomposition lie on a single hole, which
is bounded by a simple cycle.

2 Preliminaries

2.1 The Graph and Its Embedding. A weighted
planar graph G = (V, E, {) is represented by an abstract
embedding: for each v € V(G) we list the edges incident
to v according to a clockwise order around v. We assume
the graph has no negative weight cycles and further
assume the following, without loss of generality.

o All the edge-weights can be made non-negative
(¢ : E — R>() [23]. Furthermore, via randomized
or deterministic perturbation [16], we can assume
there are no zero weight edges, and that shortest
paths are unique in any subgraph of G.

e The graph is connected and triangulated. Assign
all artificial edges weight n - max.c g(c){f(e)} so as
not to affect any finite distances.

o If (u,v) € E(G) then (v,u) € E(G) as well. (In the
circular ordering around v, they are represented as
a single element {u,v}.)

Suppose P = (vg,v1,...,vk) is a path oriented from
vp to vk, and e = (v;, u) is an edge not on P, ¢ € [1,k—1].
Then e is to the right of P if e appears between (v;, v;+1)
and (v;—1,v;) in the clockwise order around v;, and left
of P otherwise.

2.2 Separators and Divisions. Lipton and Tar-
jan [29] proved that every planar graph contains a sep-
arator of O(y/n) vertices that, once removed, breaks
the graph into components of at most 2/3 the size.
Miller [31] showed that every triangulated planar graph
has a O(y/n)-size separator that consists of a simple
cycle. Frederickson [18] defined a division to be a set
of edge-induced subgraphs whose union is G. A ver-
tex in more than one region is a boundary vertex; the
boundary of a region R is denoted dR. Edges along the
boundary between two regions appear in both regions.
The r-divisions of [18] have ©(n/r) regions each with
O(r) vertices and O(y/r) boundary vertices.

We use a linear-time algorithm of Klein, Mozes,
and Sommer [28] for computing a hierarchical 7-division,
where 7 = (rp,...,r1) and n =1y, > - > = Q(1).
Such an 7-division has the following properties:

e (Division & Hierarchy) For each i, R; is the set of
regions in an r;-division of G, where R,, = {G}
consists of the graph itself. For each i < i’ < m
and R; € R;, there is a unique R;; € R; such
that E(R;) C E(R;). The r-division is therefore
represented as a rooted tree of regions.

¢ (Boundaries and Holes) The O(,/r;) boundary ver-
tices of any R; € R; lie on a constant number of
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faces of R; called holes, each bounded by a cycle
(not necessarily simple).

We supplement the 7-division with a zeroth level. The
layer-0 Ro = {{v} | v € V(G)} consists of singleton
sets, and each {v} is attached as a (leaf) child of an
arbitrary R € R; for which v € R.

Suppose f is one of the O(1) holes of region R
and C the cycle around f. The cycle Cy partitions
E(G) — Cy into two parts. Let R/°" be the graph
induced by the part disjoint from R, together with C¥,
i.e., Cy appears in both R and R7out To keep the
description of the algorithm as simple as possible, we
will assume that OR lies on a single simple cycle (hole)
fr, and let R°" be short for R/7°", The modifications
necessary to deal with multiple holes and non-simple
boundary cycles are explained in Appendix B in the
full version.

2.3 Multiple-source Shortest Paths. Suppose H
is a weighted planar graph with a distinguished face f on
vertices S. Klein’s MSSP algorithm takes O(|H|log |H|)
time and produces an O(|H|log|H]|)-size data struc-
ture such that given s € S and v € V(H), returns
distg (s,v) in O(log|H]|) time. Klein’s algorithm can
be viewed as continuously moving the source vertex
around the boundary face f, recording all changes to
the SSSP tree in a dynamic tree data structure [36]. It
is shown [27] that each edge in H enters and leaves
the SSSP tree exactly once, meaning the number of
changes is O(|H|). Each change to the tree is effected in
O(log|H]|) time [36], and the generic persistence method
of [15] allows for querying any state of the SSSP tree.
The important point is that the total space is linear
in the number of updates to the structure (O(|H]))
times the update time (O(log |H]|)). As observed in [19],
this structure can also answer other useful queries in
O(log |H|) time. Lemma 2.1 is similar to [27, 19] except
that we use a dynamic tree data structure based on Eu-
ler Tour trees [22] rather than Link-Cut trees [36], which
allows for a more flexible tradeoff between update and
query time. Because our data structure does not satisfy
the criteria of Driscoll et al.’s [15] persistence method for
pointer-based data structures, we use the folklore imple-
mentation of persistent arrays! to make any RAM data
structure persistent, with doubly-logarithmic slowdown
in the query time. See Appendix A in the full version
for a proof of Lemma 2.1.

LEMMA 2.1. (Cf. Klein [27], Gawrychowski et al. [19])
Let H be a planar graph, S be the vertices on some

TDietz [12] credits this method to an oral presentation of
Dietzfelbinger et al. [13], which highlighted it as an application of

dynamic perfect hashing.

Figure 1: The clockwise order of e.,e,, e, around v
tells us whether the shortest s-u path branches from
the shortest s-v path to the right or left.

distinguished face f, and k > 1 be a parameter. An
O(k|H|'"Y/*®)-space data structure can be computed in
O(k|H|"Y/%) time that answers the following queries in
O(kloglog|H]|) time.

o Given s € S,v € V(H), return distg(s,v).

e Given s € S,u,v € V(H), return (x, ey, €,), where
x is the least common ancestor of u and v in the
SSSP tree rooted at s and e, is the edge on the path

from x to z (if x # z), z € {u,v}.

The purpose of the second query is to tell whether
u lies on the shortest s-v path (z = u) or vice versa,
or to tell which direction the s-u path branches from
the s-v path. Once we retrieve the LCA = and edges
€y, €y, we get the edge e, from x to its parent. The
clockwise order of e, e,,e, around z tells us whether
s-u branches from s-v to the left or right. See Figure 1.

2.4 Additively Weighted Voronoi Diagrams.
Let H be a weighted planar graph, f a distinguished
face whose vertices S are called sites, and w : § = Rx>¢
be a weight function on sites. We augment H with large-
weight edges so that it is triangulated, except for f. For
s € S,veV(H), define

d”(s,v) def w(s) + distg (s, v).

The Voronoi diagram VD[H, S,w] is a partition of V(H)
into Voronoi cells, where for s € S, Vor(s) et {v €
V(H) | Vs #s.(d“(s,v), —w(s)) < (d¥(s,v), —w(s))}.
In other words, Vor(s) is the set of vertices that are
closer to s than any other site, breaking ties in favor
of larger w-values. We usually work with the dual
representation of a Voronoi diagram. It is constructed
as follows.

e Define S to be the set of sites with nonempty
Voronoi cells, i.e., S = {s € S| s € Vor(s)}. The
case |S| =1 is trivial, so assume |S| > 2.
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e Add large-weight dummy edges to H so that S
appear on the boundary of a single face f , but is
otherwise triangulated. Observe that this has no
effect on the Voronoi cells.

e An edge is bichromatic if its endpoints are in
different cells. In particular, the edges bounding
f are all bichromatic. Define VD} to be the
(undirected) subgraph of H* consisting of the duals
of bichromatic edges.

e Obtain VD] from VD{ by repeatedly contracting
edges incident to a degree-2 vertex, terminating
when there are no degree-2 vertices, or when it
becomes a self-loop.2 Observe that in VD], f
has degree |§ | and all other vertices have degree
3; moreover, the faces of VD] are in one-to-one
correspondence with the Voronoi cells.

e We obtain VD* = VD*[H, S, w] by splitting f* into
|S| degree-1 vertices, each taking an edge formerly
incident to f*. It was proved in [19, Lemma 4.1]
that VD* is a single tree.?

e We store with VD* supplementary information
useful for point location. Each degree-3 vertex g* in
VD* corresponds a trichromatic face g whose three
vertices, say Yo, Y1, Y2, belong to different Voronoi
cells. We store in VD™ the sites sg,s1,59 € S
such that y; € Vor(s;). We also store a centroid
decomposition of VD*. A centroid of a tree T is
a vertex c¢ that partitions the edge set of T into
disjoint subtrees 71, ..., Tyeg(c), €ach containing at
most (|E(T)|+ 1)/2 edges, and each containing c
as a leaf. The decomposition is a tree rooted at c,
whose subtrees are the centroid decompositions of
Ti,. .., Tyeg(c)- The recursion bottoms out when 7'
consists of a single edge, which is represented as a
single (leaf) node in the centroid decomposition.*

The most important query on Voronoi diagrams is
point location.

LEMMA 2.2. (Gawrychowski et al. [19])  The
PointLocate(VD*[H, S,w|,v) function is given the
dual representation of a Voronoi diagram VD*[H, S, w]
and a vertex v € V(H) and reports the s € S for which
v € Vor(s). Given access to an MSSP data structure for
H with source-set S and query time T, we can answer

2The latter case only occurs when |§] = 2.

31If we skipped the step of forming the face f on the site-set S
and triangulating the rest, VD* would still be acyclic, but perhaps
disconnected. See [19, 9].

41.e., internal nodes correspond to vertices of T'; leaf nodes
correspond to edges of T'.

PointLocate(VD*[H, S,w],v) queries in O(7 - log|H])
time.

The challenge in our data structure (as in [9]) is
to do point location when our space budget precludes
storing all the relevant MSSP structures. Nonetheless,
we do make use of PointLocate when the MSSP data
structures are available.

3 The Distance Oracle

As in [9], the distance oracle is based on an 7-
decomposition, ¥ = (rp,,...,r1), where r; = n¥/™
and m is a parameter. Suppose we want to compute
distg(u,v). Let Rg = {u} be the artificial level-0 region
containing v and R; € R; be the level-i ancestor of Ry.
(Throughout the paper, we will use “R;” to refer specif-
ically to the level-i ancestor of Ry = {u}, as well as to a
generic region at level-i. Surprisingly, this will cause no
confusion.) Let ¢ be the smallest index for which v ¢ R;
but v € Ri+1. Define u; to be the last vertex on OR;
encountered on the shortest path from u to v. The main
task of the distance query algorithm is to compute the
sequence (u = ug,...,u). Suppose that we know the
identity of u; and ¢ > i. Finding u;4+1 now amounts to
a point location problem in VD[R9V, OR;41,w], where
w(s) is the distance from u; to s € OR;+1. However,
we cannot apply the fast PointLocate routine because
we cannot afford to store an MSSP structure for every
(R, 0R;41), since |RY| = Q(|G]). Our point loca-
tion routine narrows down the number of possibilities
for u;+1 to at most two candidates in O(xlog> ™M) n)
time, then decides between them using two recursive
distance queries, but starting at a higher level in the
hierarchy. There are about 2™ recursive calls in total,
leading to a O(2mnlog2+°(1) n) query time.

The data structure is composed of several parts.
Parts (A) and (B) are explained below® while parts (C)—
(E) will be revealed in Section 4.2.

(A) (MSSP Structures) For each i € [0,m — 1] and
each region R; € R; with parent R;11 € R;41,
we store an MSSP data structure (Lemma 2.1) for
the graph R", and source set OR;. However, the
structure only answers queries for s € OR; and
u,v € R N R;41. Rather than represent the
full SSSP tree from each root on s € OR;, the
MSSP data structure only stores the tree induced
by R N R;y1, i.e., the parent of any vertex
v E Rf‘” N R;y1 is its nearest ancestor v’ in the
SSSP tree such that v’ € RO N R;yq. If (v/,v) is

5They are similar to corresponding parts of the [9] structure,

but the MSSP data structures in (A) use “shortcut” edges to
simplify the distance query algorithm.
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Figure 2: (a) The original H is a triangulated grid, with f being the exterior face. The boundary vertices S
with non-empty Voronoi cells are marked with colored halos. Edges are added so that S are on the exterior face
f. The vertices of VD* are the duals of trichromatic faces, and those derived by splitting f* into |S| vertices.
The edges of VD™ correspond to paths of duals of bichromatic edges. (b) The dual representation VD*. (c) A
centroid decomposition of VD™,
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a “shortcut” edge corresponding to a path in R?}itl,

it has weight dist gou (', v).

We fix a x and let the update time in the dynamic
tree data structure be O(kn'/*) time. Thus, the
space for this structure is O((|RS" N R;11|+ |OR;|-
|OR11]) - k") = O(ri41 - knt/*) since each edge
in RO" N R;;1 is swapped into and out of the
SSSP tree once [27], and the number of shortcut
edges on OR;11 swapped into and out of the SSSP
is at most |OR;11| for each of the |OR;| sources.
Over all ¢ and ©O(n/r;) choices of R;, the space is
O(mrn!+1/m+1/%) gince 741 /r; = nt/™.

(B) (Voronoi Diagrams) For each i € [0,m —
2] and R; € R; with parent R;11 € Rit1,
and each ¢ € OR;, define VD] ,(q, Ri+1) to be
VD*[RY, 0R; 41, w], with w(s) = diste(g,s). The
space to store the dual diagram and its centroid
decomposition is O(|0R;11|) = O(\/riz1). Over all
choices for i, R;, and ¢, the space is O(mn!*+1/(2m))

since /71 /ri = nt/ M),

Due to our tie-breaking rule in the definition of
Vor(+), locating w11 (¢ > ¢+ 1) is tantamount to
performing a point location on a Voronoi diagram in
part (B) of the data structure.

LEMMA 3.1. Suppose that ¢ € OR; and v €
Ri+1. Consider the Voronoi diagram associated with
VD! (¢, Rit1) with sites OR;+1 and additive weights
defined by distances from q in G. Then v € Vor(s) if
and only if s is the last OR;1-vertex on the shortest
path from q to v in G, and d¥(s,v) = distg(q,v).

Proof. By definition, d“(s,v) is the length of the short-
est path from ¢ to v that passes through s and whose s-v
suffix does not leave R9YS. Thus, d”(s,v) > distg(g,v)
for every s, and d“(s,v) = distg(q,v) for some s. Be-
cause of our assumption that all edges are strictly pos-
itive, and our tie-breaking rule for preferring larger w-
values in the definition of Vor(-), if v € Vor(s) then s
must be the last OR;1-vertex on the shortest ¢g-v path.
0

3.1 The Query Algorithm. A distance query is
given u,v € V(G). We begin by identifying the
level-0 region Ry = {u} € Ry and call the function
Dist(u, v, Ry). In general, the function Dist(u;,v, R;)
takes as arguments a region R;, a source vertex u; on the
boundary OR;, and a target vertex v ¢ R;. It returns a
value d such that

(3.1) diste(us,v) < d < dist goue (ui, v).

Note that R"* = G, so the initial call to this function
correctly computes distg(u,v). When v is “close”
to u; (v € R N Riyq1) it computes dist gout (ug, v)
without recursion, using part (A) of the data structure.
When v € R9Y, it performs point location using the
function CentroidSearch, which culminates in up to
two recursive calls to Dist on the level-(i + 1) region
R;+1. Thus, the correctness of Dist hinges on whether
CentroidSearch correctly computes distances when v €
Ry

Algorithm 1 Dist(u;, v, R;)
Input: A region R;, a source u; € OR; and a destina-
tion v € RY".
Output: A value d such that distg(u;,v) < d <
dist gout (4, v).
if v e R?Ut N Ri+1 then
return d < dist gout (u;, v)
end if '
f* <« root of the centroid decomposition of
VD:ut (uiv Ri-i-l)
5: return d < CentroidSearch(VD]  (u;, Ri+1), v, f*)

Algorithm 2 CentroidSearch(VD]  (u;, Ri+1),v, f*)

Input: The dual
VD] (u;, Ri+1) of a Voronoi diagram with additive
weights w(s) = distg(us, s), a vertex v € R, and
a node f* in the centroid decomposition of VD] ;.

Output: The distance distg(u;, v).

1. if f* is a leaf in the centroid decomposition (an edge
in VD] ;) then

2: S1,89 < sites whose Voronoi cells are bounded

by f*
dl — W(Sl) + DiSt(Sl, v, Ri+1>
dg — UJ(SQ) + DiSt(SQ, v, Ri+1)
return min(dy, ds)
end if
(flag, a*) < Navigation(VD} . (u;, Ri1+1),v, [*)
if flag = terminal then
return w(a*) + Dist(a*, v, Ri11)
10: else (i.e., flag = nonterminal)
11: return CentroidSearch(VD]  (u;, Riy1),v,a")
12: end if

representation ~ VD? . =

The procedure CentroidSearch is given u; € 0R;,
v e RN, VD = VDJ(ui, Ri+1) and a node f* on
the centroid decomposition of VD] .. It ultimately com-
putes u;11 € dR;41 for which v € Vor(u;4+1) and re-
turns w(uiﬂ) + Dist(qu,v, Ri+1) < distg(ui, ui+1) +
dist gout (wit1,v) = distg(ui, v). The algorithm is recur-

sive, and bottoms out in one of two base cases (Line 5
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or Line 9). The first way the recursion can end is if we
reach the bottom of the centroid decomposition. If f* is
a leaf of the decomposition, it corresponds to an edge in
VD},, separating the Voronoi cells of two sites, say s;
and s. At this point we know that either u;1; = s1 or
U;4+1 = S2, and determine which case is true with two re-
cursive calls to Dist(s;,v, Ri11), j € {1,2} (Lines 2-5).
In general, f* is dual to a trichromatic face f composed
of three vertices 4o, 1, y2 in clockwise order, which are,
respectively, in distinct Voronoi cells of sg, s1,82. The
three shortest s;-y; paths and f partition the vertices
of R;’ﬂ into six parts, namely the shortest s;-y; paths
themselves, and the interiors of the regions bounded by
OR; 41, two of the s;-y; paths and an edge of f. See Fig-
ure 3. The Navigation function returns a pair (flag, a*)
that identifies which part v is in. If flag = terminal then
a* € {sg, 81, s2} is interpreted as a site, indicating that v
lies on the shortest path from a* to its f-vertex. In this
case we return w(a*) + Dist(a*, v, R;+1) = distg(u;, v)
with just one call to Dist. If flag = nonterminal then
a* is the correct child of f* in the centroid decom-
position. In particular, f* is incident to three edges
5. €7,¢5 dual to {yo, 2} {910} {y2,v1}. The chil-
dren of f* in the centroid decomposition are fg, fi, f5,

with fF ancestral to ej. We have a* = f7 if v lies

to the right of the chord (s;,...,y;,¥j-1,...,5;-1) in
;’fl For example, in Figure 3, v lies to the right of
the chord (so,...,%0,%2,...,52). In this case we con-

tinue the search recursively from a* = fj.

LEMMA 3.2. CentroidSearch
distg (ui, v).

correctly computes

Proof. Define f,y;,s;,e;, [ as usual, and let u;11 be
such that v € Vor(u;y1). The loop invariant is that
in the subtree of the centroid decomposition rooted at
f*, there is some leaf edge on the boundary of the cell
Vor(u;+1). This is clearly true in the intial recursive
call, when f* is the root of the centroid decomposition.
Suppose that Navigation tells us that v lies to the right
of the oriented chord C* = (sj,...,¥j,¥j—1,---,5j—1)-
Observe that since the sj;-y; and s;_;-y;—1 shortest
paths are monochromatic, all edges of the centroid de-
composition correspond to paths in G* that lie strictly
to the left or right of C*, with the exception of e;. More-
over, since v € Vor(u;+1), Vor(u;11) must be bounded
by some edge that is either e} or one entirely to the
right of C*, from which it follows that ff = a* is an-
cestral to at least one edge bounding Vor(u;+1). When
f* is a single edge on the boundary of Vor(sy), Vor(sz)
the loop invariant guarantees that either u;1; = s1 or
Uj1 = S9; suppose that u; 11 = s1. It follows from the

specification of Dist (Eqn. (3.1)) and Lemma 3.1 that

dl = OJ(Sl) + DiSt(Sl,U, Ri-l—l)
< diste (ug, 51) + diStquitl(817'l))

= distg (u;, v).
Furthermore,

dy = UJ(SQ) + DiSt(SQ, v, RH»I)
> distg(us, s2) + distg (s, v)
> distg (ug,v),

so in this base case CentroidSearch correctly returns
dy = distg(u;,v). If Navigation ever reports that v is
on an s;-y; path, then by definition v € Vor(s;). By
the specification of Dist (Eqn. (3.1)) and Lemma 3.1 we
have

w(s;) + Dist(s;, v, Riy1)
< diste (u4, 55) + dist gout (sj,v)

= distg (ug,v)

and the base case on Lines 8-9 also works correctly.
O

Thus, the main challenge is to design an effi-
cient Navigation function, i.e., to solve the restricted
point location problem in R§Y{ depicted in Figure 3.
Whereas Charalampopoulos et al. [9] solve this prob-
lem using several more recursive calls to Dist, we give
a new method to do this point location directly, in
O(r1og ™M n) time per call to Navigation.

4 The Navigation Oracle

The input to Navigation is the same as CentroidSearch,
except that f* is guaranteed to correspond to a trichro-
matic face f. Define y;,s;,e;, fj, j € {0,1,2} as in the
discussion of CentroidSearch. The Navigation func-
tion determines the location of v relative to f and the
shortest s;-y; paths. It delegates nearly all the ac-
tual computation to two functions: SitePathindicator,
which returns a boolean indicating whether v is on the
shortest s;-y; path, and ChordIndicator, which indi-
cates whether v lies strictly to the right of the oriented
chord (s;,...,Y;,Yj-1,.-.,8j—1). If so, we return the
centroid child f7 of f* in this region. Three calls each
to SitePathindicator and ChordIndicator suffice to de-
termine the location of v.
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Figure 3: Here f* is a degree-3 vertex in
VD] (u;, Rit1), corresponding to a trichromatic face

f on vertices yg,y1,y2, which are in the Voronoi cells
of sg,51,s2 on the boundary ORJ}{. The shortest s;-
y; paths partition V(R9Y)) into six parts: the three
shortest paths and the three regions bounded by them
and f. Let ej,ef,e5 be the edges in VD, dual to

out

{yo,v2}, {y1, 0}, {y2,y1}. In the centroid decomposi-
tion eg, €7, €3 are in separate subtrees of f*. Let f be
the child of f* ancestral to e}, which is either e it-
self, or a trichromatic face to the right of the “chord”
(Sj5-++,¥Yj»Yj—1,---,5j—1). CentroidSearch locates the
site whose Voronoi cell contains v via recursion. It calls
Navigation, a function that finds which of the 6 parts
contains v. If v lies on an s;-y; path the CentroidSearch
recursion terminates; otherwise it recurses on the cor-
rect child f7 of f*.

Algorithm 3 Navigation(VD] . (u;, Rit1),v, [*)
Input: The dual representation VD], (u;, Ri+1) of a
Voronoi diagram, a vertex v € R9}{, and a centroid
f* in the centroid decomposition. The face f is on
Y0, Y1, Y2, which are in the Voronoi cells of sq, s1, s2,
and fr is the child of f* containing the edge dual
to {y;,y;-1}-
Output: (terminal,s;) if v is on the shortest s;-y;
path, or (nonterminal, f;) where f; is the child of
f* ancestral to an edge bounding v’s Voronoi cell.
1: Sg, S1, S2 < sites corresponding to f*
2: for 7 =0,1,2 do
3: if SitePathindicator(VD} , (u;, Rit1),v, f*,7)
returns True then
return (terminal, s;)
end if
end for
for 7 =0,1,2 do
if ChordIndicator(VD}  (u;, Riy1),v, f*,j) re-
turns True then
9: return (nonterminal, f7)
10: end if
11: end for

In Section 4.1 we formally introduce the notion
of chords used informally above, as well as some re-
lated concepts like laminar sets of chords and maximal
chords. In Section 4.2 we introduce parts (C)-(E) of the
data structure used to support Navigation. The func-
tions SitePathindicator and ChordIndicator are pre-
sented in Sections 4.3 and 4.4.

4.1 Chords and Pieces. We begin by defining the
key concepts of our point location method: chords,
laminar chord sets, pieces, and the occludes relation.

DEFINITION 4.1. (Chords) Fiz an R in the 7-
decomposition and two vertices co,c1 € OR. An oriented
simple path coci is a chord of R if it is contained in
R and is internally vertez-disjoint from OR. When
the orientation is irrelevant we write it as ¢ocy.

DEFINITION 4.2. (Laminar Chord Sets) A set of
chords C for R°“ is laminar (non-crossing) if for any
two such chords C = co—c{,C’ = cz—cg, if there exists a
v € (CNC") — IR then the subpaths from ¢y to v and
from co to v are identical; in particular co = 3.

The orientation of chords does not always coincide
with a natural orientation of paths defined by the
algorithm. For example, in Figure 3, the oriented
chord 5985 = (S0, --+5Y05Y2, - - - , S2) is composed of three
parts: a shortest sg-yo path (whose natural orientation
coincides with that of 5953), the edge {yo, y2} (which has
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Figure 4: A laminar set of chords partition R°" into
pieces. Observe that the chords separating pieces Ps—Fy
overlap in certain prefixes. The piece tree is indicated
by diamond vertices and pink edges. Note two pieces
(e.g. Ps and Py) may share a boundary, but not be
adjacent.

no natural orientation in this context), and the shortest
$9-y2 path (whose natural orientation is the reverse of
its orientation in %33) The orientation serves two
purposes. In Definition 4.1 we can speak unambiguously
about the parts of R°" to the right and left of 5055. In
Definition 4.2 the role of the orientation is to ensure
that the partition of R°" into pieces induced by C can
be represented by a tree, as we show in Lemma 4.1.

DEFINITION 4.3. (Pieces) A laminar chord set C for
RO partitions the faces of R°" into pieces, excluding
the face on OR. Two faces f,g are in the same piece iff
f* and g* are connected by a path in (R°")* that avoids
the duals of edges in C and edges along the boundary
cycle on OR. A piece is regarded as the subgraph induced
by its faces, i.e., it includes their constituent vertices
and edges. Two pieces Py, Py are adjacent if there is
an edge e on the boundary of Py and Py and e is in a
unique chord of C. See Figure /.

LEMMA 4.1. Suppose C is a laminar chord set for R°",
P =P(C) is the corresponding piece set and £ are pairs
of adjacent pieces. Then T = (P, ) is a tree, called the
piece tree induced by C.

Proof. The claim is clearly true when C contains zero or
one chords, so we will try to reduce the general case to

this case via a peeling argument. We will find a piece P
with degree 1 in 7, remove it and the chord bounding it,
and conclude by induction that the truncated instance
is a tree. Reattaching P implies 7T is a tree.

Let C = &y € C be a chord such that no
edge of any other chord appears strictly to one side
of C, say to the right of C. Let P be the piece to
the right of C. (In Figure 4 the chords bounding
Py, Py, P11, P12 would be eligible to be C.) Let C =

(co = vo,v1,v2,...,v, = c1) and v;+» be such that the
edges of the suffix (vj«,...,v;) are on no other chord,
meaning the vertices {vj«41,...,vp—1} are on no other

chord. Let g; be the face to the left of (v;,v;11).
It follows that there is a path from g7. to gy _; in
(R°"*)* that avoids the duals of all edges in C and along
OR. All pieces adjacent to P contain some face among
{gj*,...,9k—1}, but these are in a single piece, hence
P corresponds to a degree-1 vertex in 7. Let P be
bounded by C' and an interval B of the boundary cycle
on OR. Obtain the “new” R°" by cutting along C
and removing P, the new dR by substituting C' for B,
and the new chord set C by removing C and trimming
any chords that shared a non-empty prefix with C. By
induction the resulting piece-adjacency graph is a tree;

reattaching P as a degree-1 vertex shows 7 is a tree.
O

DEFINITION 4.4. (Occludes Relation) Fiz R°“,
chord C, and two faces f, g, neither of which is the hole
defined by OR. If f and g are on opposite sides of C,
we say that from vantage f, C occludes g. Let C be a
set of chords. We say C' € C is maximal in C with re-
spect to a vantage f if there is no C' € C such that C’
occludes a strict superset of the faces that C' occludes.
(Note that the orientation of chords is irrelevant to the
occludes relation.)

It follows from Definition 4.4 that if C is laminar,
the set of maximal chords with respect to f are exactly
those chords whose own suffixes are on the boundary of
/s piece in P(C).

We can also speak unambiguously about a chord C
occluding a wvertex or edge not on C, from a certain
vantage. Specifically, we can say that from some
vantage, C occludes an interval of the boundary cycle
on OR, say according to a clockwise traversal around
the hole on OR in R°'.® This will be used in the
Chordindicator procedure of Section 4.4.2.

4.2 Data Structures for Navigation. Parts (C)-
(E) of the data structure are used to implement the
SitePathlindicator and ChordIndicator functions.

6This is one place where we use the assumption that all

boundary holes are simple cycles.
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(C) (More Voronoi Diagrams) For each i € [1,m —
1], each R; € R;, and each ¢ € OR;, we store
VD} (¢, R;), which is VD*[R" OR;,w|, where
w(s) = distg(q,s). The total space for these

diagrams is O(n) and dominated by part (B).

(D) (Chord Trees; Piece Trees) For each i € [1,m—
1], each R; € R;, and source q € OR;, we store the
SSSP tree from ¢ with respect to G induced by
OR; as a chord tree TqRi. In particular, the parent
of x € OR; in TqRi is the nearest ancestor in the
SSSP tree from ¢ that lies on OR;. Every edge
of TqRi is designated a chord if the corresponding
path is contained in RY"* but not in R;, or a non-
chord otherwise. Define Cfi to be the set of all
chords in TqRi, oriented away from g¢; this is clearly
a laminar set since shortest paths are unique and
all prefixes of shortest paths are shortest paths.
Define Pfi to be the corresponding partition of
R9M into pieces, and 7;Ri the corresponding piece
tree. Define T [z] to be the path from ¢ to
in T/, Cli[z] the corresponding chord set, and
PREi[z] the corresponding piece set.

The data structure answers the following queries

MaximalChord(R;, ¢, z, P, P'): We are given R;,
q,x € OR;, a piece P € ’PqRi, and possibly
another piece P’ € P (which may be Null).
If P’ is Null, return any maximal chord in
Cli[z] from vantage P. If P’ is not Null,
return the maximal chord in CJti[z] (if any)
that occludes P’ from vantage P.

AdjacentPiece(R;, g, e): Here e is an edge on the
boundary cycle on dR;. Return the unique
piece in PqRi with e on its boundary.”

(E) (Site Tables; Side Tables) For each i and
Voronoi diagram VD] . = VD; (v, R;) from part
(B) or (C). Let f* be any node in the centroid
decomposition of VD}, ., with y;,s;, j € {0,1,2}
defined as usual, and let R;; € R;» be any ancestor
of R;, ¢/ > 4. Fix 7 € {0,1,2}, define ¢ and z to
be the first and last vertices on the shortest s;-y;
path that lie on OR;. For all VD ., f*,j and i/, we

store (g, z) and distg(u/, z) with respect to them.
For all VD] ., f*,j and ¢, we also store whether
RO lies to the left or right of the site-centroid-
site chord s;y;y;—15;—1 in RY™, or Null if the
relationship cannot be determined, i.e., if the chord

This is another place where we use the assumption that holes

are bounded by simple cycles.

crosses OR;s. These tables increase the space of (B)
and (C) by a small O(m) factor.

Part (D) of the data structure is the only one that
is non-trivial to store compactly. Our strategy is as
follows. We fix R; and ¢ € OR; and build a dynamic
data structure for these operations relative to a dynamic
subset € C Cf’? subject to the insertion and deletion
of chords in O(log|0R;|) time. By inserting/deleting
O(|OR;]) chords in the correct order, we can arrange
that C = Cfi [x] at some point in time, for every = €
OR;. Using the generic persistence technique for RAM
data structures (see [12]) we can answer MaximalChord
queries relative to CHi[z] in O(log|OR;|loglog |OR;])
time.®

LEMMA 4.2. Part (D) of the data structure can
be stored in O(mnlogn) total space and answer
MaximalChord queries in O(lognloglogn) time and
AdjacentPiece queries in O(1) time.

Proof. We first address MaximalChord. Let 7 =
7;R'i be the piece tree. The edges of 7 are in 1-
1 correspondence with the chords of C = Cfi and if
PP P = PqRi are two pieces, the path from P
to P’ in T crosses exactly those chords that occlude
P’ from vantage P (and vice versa). We will argue
that to implement MaximalChord it suffices to design
an efficient dynamic data structure for the following
problem; initially all edges are unmarked.

Mark(e) Mark an edge e € E(T).
Unmark(e) Unmark e.

LastMarked(P’, P) Return the last marked edge on
the path from P’ to P, or Null if all are unmarked.

By doing a depth-first traversal of the chord tree
TqR"7 marking/unmarking chords as they are encoun-
tered, the set {e € E(T) | e is marked} will be equal
to CJ%[x] precisely when 2 is first encountered in DFS.
To answer a MaximalChord(R;, q,x, P, P') query we
interact with the state of the data structure when
the marked set is C[[z]. If P’ is not null we re-
turn LastMarked(P’, P). Otherwise we pick an ar-
bitrary (marked) chord C' € C[[z], get the adja-
cent pieces Pj,Pj on either side of C, then query
LastMarked(P;, P) and LastMarked(P;, P). At

least one of these queries will return a chord and that

8Qur data structure works in the pointer machine model, but it
has unbounded in-degrees so the theorem of Driscoll et al. [15, 35]
cannot be applied directly. It is probably possible to improve
the bound to O(log|OR;|) but this is not a bottleneck in our
algorithm.
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chord is maximal w.r.t. vantage P. (Note that C' must
separate P from either P or Pj.)

The full version [30] shows how to support these
operations in O(logn) worst case time. A more sophis-
ticated data structure of Brodal et al. [6] improves this
to optimal O(logn/loglogn) time.

For fixed R;,q € OR; there are O(|OR;|) Mark
and Unmark operations, each taking O(logn) time.
Over all choices of i, R;, and ¢ the total update time
is O(mnlogn). After applying generic persistence for
RAM data structures (see [12]) the space becomes
O(mnlogn) and the query time for LastMarked be-
comes O(lognloglogn).

Turning to AdjacentPiece(R;, q, ¢), there are |OR; |
choices of (g, e). Hence all answers can be precomputed
in a lookup table in O(mn) space. a

4.3 The SitePathIndicator Function. The
SitePathIndicator function is relatively simple. We are
given VD?  (u;, Rit1), v € RYYY, a centroid f* € R9YY,
f being a trichromatic face on yg,y1,y2, which are,
respectively, in the Voronoi cells of sg, s1,52 € OR;11,
and an index j € {0,1,2}. We would like to know if v
is on the shortest s;-to-y; path. Recall that ¢ is such
that v g Rt but v € Rt+l~

Using the lookup tables in part (E) of the data
structure, we find the first and last vertices (¢ and x)
of OR; on the s;-y; path. If ¢,z do not exist then v is
certainly not on the s;-y; path (Line 4). Using parts
(A,C,E) of the data structure, we invoke PointLocate
to find the last point z of OR; on the shortest path
(in G) from ¢ to v. (See Lemma 3.1.) If z is not on
the path from ¢ to « in G (which corresponds to it not
being on the path from ¢ to x in Tfi, stored in Part
(D)), then once again v is certainly not on the s;-y;
path (Line 8). So we may assume z lies on the ¢-z
path. If z = x then there are three cases to consider,
depending on whether the destination y; of the path is
in R?ut N Rt+1, or in R?}i}tl, or in Rt- If Yj S R;}ut mRt+1
we let o' = y;; if y; ¢ Rip1 we let 2’ be the last vertex
of OR; 1 encountered on the shortest s;-y; path (part
(E)); and if y; ¢ RY" we let 2’ = z. In all cases, 2’ is the
last vertex of the shortest s;-y; path that is contained
in the relevant subgraph R{" N R;yq. (Figure 5(a,b)
illustrates the first two possibilities for 2’.) Now v is on
the s;-y; path iff it is on the z-2’ shortest path, which
can be answered using part (A) of the data structure
(Lines 13, 15). (Figure 5(b) illustrates one way for v
to appear on the z-z’ path.) In the remaining case
z is on the shortest ¢-z path but is not x, meaning
the child 2’ of z on T)f*[2] is well defined. If 22 is a
chord (corresponding to a path in RY™) then v is on
the shortest s;-y; path iff it is on the shortest z-z" path

in R9", which, once again, can be answered with part
(A) of the data structure (Lines 19, 21). See Figure 5(a)
for an illustration of this case.

REMARK 4.1. Strictly speaking we cannot apply
Lemma 2.2 (Gawrychowski et al. [19]) since we do not
have an MSSP structure for all of R™. Part (A) only
handles distance/LCA queries when the query vertices
are in R N Ryyq. It is easy to make Gawrychowski
et al.’s algorithm work wusing parts (A) and (E) of
the data structure. See the discussion at the end of
Section 4.4.3.

Algorithm 4 SitePathlIndicator(VD;  (u;, Ri+1),v, f*,j)

Input: The dual representation VD], (u;, Ri+1) of a
Voronoi diagram, a vertex v € R9}{, and an s;-to-
y; site-centroid shortest path (s;,y; are with respect
to f*) in VD*.

Output: True if v is on s;-to-y; shortest path, or
False otherwise.
1: R < the ancestor of R; s.t. v ¢ Ry, v € Ryy;.
(g, z) <+ first and last OR; vertices on the shortest
s;-y; path.
if ¢, x are Null then
return False

end if

z < PointLocate(VD} .(q, R¢),v)

if z is not on 7% [z] then
return False

end if

10: if z = x then

11: Let 2’ be

N

yj, if y; € RY™ N Rypq;
last OR;41 vertex on s;-y; path, if y; & Ryq1;
z, ify; & RO,

12: if v is on the shortest z-z’ path then
13: return True

14: end if

15: return False

16: end if

17: 2" 4= the child of z on T [x]

18: if g is a chord in Cf*[z] and v is on the shortest
z-2' path in RY" then

19: return True

20: end if

21: return False

4.4 The Chordindicator Function. The
ChordIndicator function is given VD7, (u;, Rit1),
v € R, a centroid f*, with {y;,s;} defined as usual,

Copyright © 2021 by SIAM

2528 Unauthorized reproduction of this article is prohibited



Downloaded 10/01/21 to 35.3.105.140 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

()

(b)

Figure 5: (a) If 2 = x and y; is not in Ry41, 2’ is the last boundary vertex of OR;41 on the s;-y; path. (b) If
z =z and y; is in RY" N Ryyq then 2/ = y;. (Not depicted: if y; € R; then 2’ = x.) We test whether v is on the
shortest z-z" path. If z # x then 2’ is well defined and the position of y; is immaterial; we test whether v is on

the shortest z-z" path (depicted in (a)).

and an index j € {0,1,2}. The goal is to report
whether v lies to right of the oriented site-centroid-site
chord
C" = 55Y;95-15;-1,

which is composed of the shortest s;-y; and s;_1-y;_1
paths, and the single edge {y;,y;_1}. Note that C* is a
simple path since the shortest s;-y; and s;_1-y;_1 paths
belong to different Voronoi cells. See Figure 3 as an
illustration. It is guaranteed that v does not lie on C*,
as this case is already handled by the SitePathindicator
function.

Figure 6 illustrates why this point location problem
is so difficult. Since we know v € Ry;1 but not in Ry,
we can narrow our attention to RY" N Ry,. However
the projection of C* onto R¢" can touch the boundary
OR; an arbitrary number of times. Define C to be the
set of oriented chords of RY"* obtained by projecting C*
onto R9Ut.

Luckily C has some structure. Let (g;,z;) and
(gj—1,xj—1) be the first and last OR; vertices on the
shortest s;-y; and sj_1-y;—1 paths, respectively. (One
or both of these pairs may not exist.) The chords of
C are in one-to-one correspondence with the chords of
C1UC2UCs3, defined below, but as we will see, sometimes
with their orientation reversed.

Ci: By definition C; = C’(ﬁt [x;] contains all the chords

on the path from ¢; to x;, stored in part (D) of
the data structure. Moreover, the orientation of Cq

agrees with the orientation of C'*. The blue chords
of Figure 6(a) are isolated as C; in Figure 6(b).

Cy : By definition C; = Cgil[xj_l] contains all the
chords on the path from g¢;_; to ;1. The red
chords of C in Figure 6(a) are represented by chords
Co, but with reversed orientation. Figure 6(c)
depicts C,.

C3 : This is the singleton set containing the oriented
chord z;x;_{ consisting of the shortest x;-y; and
xj_1-yj—1 paths and the edge {y;,y;-1}.

The chord set C partitions R$"® into a piece set P,
with one such piece P € P containing v. (Remember
that v is not on C*.) We can also consider the piece sets
P1, P2, P3 generated by Cq,Co,C3. Let P, € P, Py €
P2, P3 € P3 be the pieces containing v. Since, ignoring
orientation, C = C; U Cy U C3, it must be that P =
P, N P, N P3. In order to determine whether v is to
the right of C*, it suffices to find some chord C € C
bounding P and ask whether v is to the right of C.
Thus, C' must also be on the boundary of one of Py, Ps,
or P3.

The high-level strategy of ChordIndicator is as
follows. First, we will find some piece P| € Pﬁf that
is contained in P; using the procedure PieceSearch
described below, in Section 4.4.1. The chords of C;
bounding P; are precisely the mazimal chords in C; from
vantage P;. Using MaximalChord (part (D)) we will
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(a)

(b) (c) (d)

Figure 6: (a) The projection of a site-centroid-site chord C* = 5;y;y;_15;—1 of R} onto R" yields a set C of
chords of RY™, partitioned into three classes. Let ¢;,z; and ¢j_1,2;_1 be the first and last OR;-vertices on the
sj-yj and s;_1-y;—1 paths. (b) Ci: all chords in T,*[z;]. (c) Ca: all chords in T, [2;-1]. Their orientation is

. . . %
the reverse of their counterparts in C*. (d) Cs: the single chord z;y;y;—12;-1.

find a candidate chord C; € C;, and one edge e on the
boundary cycle of dR; occluded by Cy from vantage Py.
Turning to Cs, we use AdjacentPiece to find the piece
P, € Pji* | adjacent to e. Then, using PieceSearch and
MaximalChord again, we find a P, € P;% | contained in
P5 and the maximal chord C5 occluding P, from vantage
Pj. Let C5 be the singleton chord in C5. We determine
an “eligible” chord Cy € {C1, Cs,C3}, decide whether v
lies to the right of Cy, and return this answer if £ € {1, 3}
or reverse it if £ = 2. Recall that chords in Cy have the
opposite orientation as their counterparts in C.

PieceSearch is presented in Section 4.4.1 and
ChordlIndicator in Section 4.4.2.

4.4.1 PieceSearch. We are given a region R, a ver-
tex v € RY" N Ry, and two vertices ¢,z € OR;. We
must locate any piece P’ € Pft that is contained in
the unique piece P € P[[z] containing v. The first
thing we do is find the last OR; vertex z on the short-
est path from ¢ to v, which can be found with a call to
PointLocate on VD] (¢, R;). (This uses parts (A,C,E)
of the data structure.) The shortest path from z to v
cannot cross any chord in CJ*[z] (since they are part of
a shortest path tree), but it can coincide with a prefix
of some chord in C}*[z]. Thus, if no chord of Cf**[z]
is incident to z, then we are free to return any piece
containing z. (There may be multiple options if z is an
endpoint of a chord in Cf‘. This case is depicted in Fig-

ure 7. When z = zp, we know that v € PsU---U Py and
return any piece containing z.) In general z may be inci-
dent to up to two chords Cy,Cy € CF[z]. (This occurs
when the shortest ¢g-x path touches OR; at z without
leaving R9"*.) In this case we determine which side of
Cy and Cs v is on (using parts (A) and (E) of the data
structure; see Lemma 4.3 in Section 4.4.3 for details)
and return the appropriate piece adjacent to C7 or Cs.
This case is depicted in Figure 7 with z = 21; the three
possible answers coincide with v € {v1, va, v3}.

Algorithm 5 PieceSearch(R;,q,z,v)

Input: A region R;, two vertices ¢,z € OR;, and a
vertex v not on the g-to-x shortest path in G.

Output: A piece P’ € Pff, which is a subpiece of the

unique piece P € Pff [] containing v.

z < PointLocate(VD} .(q, R¢),v)

if z is not the endpoint of any chord in Cf**[z] then

return any piece in ’Pth containing z.
end if
C1,Cy <+ two chords in Cl*[z] adjacent to z (Cs
may be Null)
6: Determine whether v is to the left or right of C; and
Cs.
7: return a piece adjacent to Cy or Cy that respects
the queries of Line 6.
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Figure 7: Solid chords are in C[**[z]. Dashed chords
are in Cf* but not Cf*[z]. When z = z0,v = vp, the
piece in PHt[z] containing v is the union of P;—Pj.
PieceSearch reports any piece containing zg. When
z = z1,v € {v1,vg,v3}, z is incident to two chords
C1,C5. PieceSearch decides which side of Cy,Cs v is
on (see Lemma 4.3), and returns the appropriate piece
adjacent to Cy or Cs.

4.4.2 ChordIndicator. Let us walk through the
ChordIndicator function. If C* = m does
not touch the interior of RY" then the left-right rela-
tionship between C* and v € R; is known, and stored
in part (E) of the data structure. If this is the case the
answer is returned immediately, at Line 3. A relatively
simple case is when C; and Cs are empty, and C = C3
consists of just one chord C5 = W . We de-
termine whether v is to the right or left of C3 and return
this answer (Line 8). (Lemma 4.3 in Section 4.4.3 ex-
plains how to test whether v is to one side of a chord.)
Thus, without loss of generality we can assume C; # ()
and Co may or may not be empty.

Recall that P; is v’s piece in Pg‘ [z;]. Using
PieceSearch we find a piece P C P; in the more
refined partition Pft and find a maximal chord C; € C;
from vantage Pj, and hence from vantage v as well.
We regard OR,; as circularly ordered according to a
clockwise walk around the hole on OR; in RY". The
chord C; occludes an interval I; of R, from vantage v.
If Cy is not one of the chords bounding P, then Cs or
some Cy € Cy must occlude a superset I of I1, so we
will attempt to find such a Cs, as follows.

Let e be the first edge on the boundary cycle
occluded by Ci, i.e., e joins the first two elements
of I1. Using AdjacentPiece we find the unique piece

Algorithm 6 ChordlIndicator(VD} . (u;, Ri+1),v, [*, j)

Input: The dual representation VD], =
VD} i (ui, Rit+1) of a Voronoi diagram, a cen-
troid f* in VD], with face f on vertices yo, y1, Y2,
which are in the Voronoi cells of sg, s1, S2, an index
J €40,1,2}, and a vertex v € R}} that does not lie
on the site-centroid-site chord C* = W .
Output: True if v lies to the right of C*, and False
otherwise.
1: R; « the ancestor of R; s.t. v & Ry,v € Ryyq. C is
the projection of C* onto R".
2: if the left/right relationship between RY" and C* =
5;U;U;_15;_1 is known then
3: return stored True/False answer.
4: end if
5: (gj,x;) < first and last OR;-vertices on shortest s;-
y; path.
6: (gj—1,2j—1) < first and last OR;-vertices on short-
est Sj—1-Yj—1 path.
7. if C4 =Cy = 0 then
8: return True if v is to the right of the C3-chord
Z;9;9; 17,1, or False otherwise.
9: end if
10: P < PieceSearch(R;,q;,x;,v)
11: C1 + MaximalChord(R;, g;, x;, P, 1)
12: I < the clockwise interval of hole OR; occluded by
C from vantage v.
13: e < edge joining first two elements of ;.
14: P, < AdjacentPiece(R;,q;_1,€)
15: Py < PieceSearch(R;,q;_1,%j_1,v)
16: Cy < MaximalChord(R;, q; 1,21, Py, P.)
17: I + the clockwise interval of hole OR; occluded by
Cs from vantage v.
18: (5 < single chord in Cs, if any.
19: I3 + the clockwise interval of hole OR; occluded by
Cs from vantage v.
20: ¢ < index such that I, covers e, and |[| is maxi-
mum.
21: if v is to the right of Cy and £ € {1, 3} or v is to the
left of Cy and £ = 2 then
22: return True
23: end if
24: return False
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Rt ) RQ R.
(a) (b)

()

Figure 8: The intervals Iy, I, I3 are represented as pink circular arcs. The edge e is the first edge of I; in a
clockwise walk around the hole bounded by OR; in R¢"*. (Note that in this drawing the hole on OR; is the infinite
face. Thus, a clockwise walk around R, looks like a counter-clockwise walk in the plane.) In (a) Cy exists and
Cj is eligible since I3 D Io D I;. In (b) Cy exists, but C3 occludes an interval I3 that does not contain e, so Cs is
an eligible chord. In (¢) Cs is Null, and C5 does not occlude e from v, so C} is the only eligible chord. (In the
figure Is C I; but it could also be as in (b), with I3 disjoint from I;.)

P.e P,
again we find Py € 73(531 contained in P,, and using
MaximalChord again, we find the maximal chord C5 €
Cs that occludes P, from vantage Pj, and hence from
vantage v as well. Observe that since all chords in Cy
are vertex-disjoint from C, if Cy £ Null then Cy must
occlude a strictly larger interval Iy D I of OR;. (If Cs is
Null then I5 = ).) It may be that C; and Cy are both
not on the boundary of P, but the only way that could
occur is if C3 € C3 occludes a superset of I; and Iy on
the boundary 0R;. We check whether v lies to the right
or left of C3 and let I3 be the interval of OR; occluded
by Cs from vantage v. If I3 does not cover e, then we
cannot conclude that Cj is superior than C/C5. Thus,
we find the chord Cy € {C},Cs,C3} that covers e and
maximizes |Iy|. Cy must be on the boundary of P, so
the left-right relationship between v and C* is exactly
the same as the left-right relationship between v and Cy,
if £ € {1, 3}, and the reverse of this relationshp if £ = 2
since chords in Cy have the opposite orientation as their
subpath counterparts in C*. Figure 8 illustrates how ¢
could take on all three values.

with e on its boundary. Using PieceSearch

4.4.3 Side Queries. Lemma 4.3 explains how we
test whether v is to the right or left of a chord, which
is used in both PieceSearch and ChordIndicator.

LEMMA 4.3. For any C € C; UCy UC3 and v not on C,
we can test whether v lies to the right or left of C in
O(kloglogn) time, using parts (A) and (E) of the data
structure.

Proof. There are several cases.

Case 1. Suppose that C' = coct € Cy U Cy cor-
responds to the shortest path from ¢y to ¢; in R9U,
co,c1 € ORy. Let ¢, ¢} be pendant vertices attached
to ¢g, 1 embedded inside the face of RY"* bounded by
OR;. The shortest ¢j-v and ¢{-¢j paths branch at some
point. We ask the MSSP structure (part (A)) for the
least common ancestor, w, of v and ¢} in the shortcut-
ted SSSP tree rooted at cj. This query also returns
the two tree edges e,, e, leading to v and ¢}, respec-
tively. Let e, be the edge connecting w to its parent.’
If the clockwise order around w is ey, €., €, then v lies
to the right of Coct: otherwise it lies to the left. Note
that if the shortest c¢j-¢| and cj-v paths in G branch
at a point in R{Y, then w will be the nearest ancestor
of the branchpoint on 0R;11 and one or both of e,, e,
may be “shortcut” edges in the MSSP structure. See
Figure 9(a) for a depiction of this case.

Case 2. Now suppose C' = W is the one
chord in C3. Consider the following distance function d
for vertices in z € RY™: d(z) = min{distq(u;,z;) +
dist gout (25, 2), distq (us, 1) + dist goue (251, 2) }. Ob-
serve that the terms involving u,; are stored in part (E)
and, if z € R N Ry41, the other terms can be queried
in O(kloglogn) time using part (A). It follows that the
" 9The purpose of adding cp, €} is to make sure all three edges
€w, v, €t exist. The vertices cj, ¢} are not represented in the
MSSP structure. The edges (c{, co) and (c1,¢}) can be simulated
by inserting them between the two boundary edges on OR:
adjacent to cp and c1, respectively.
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out

Figure 9: (a) The chord C' € C;UCs corresponds to a shortest path, which may pass through R\Y, in which case it
is represented in the MSSP structure with shortcut edges (solid, angular edges). (b) The chord C' = Z;y;4; 17,1
is in C3, and f lies in R"* N Ryy1. This is handled similarly to (a). (c) Here f lies in RV, Z;,4;_1 are the last
OR, 1 vertices on the s;-y; and s;_1-y;_1 paths. If the shortest x;-—a?j and x;-—v paths branch, we can answer the
query as in (b). If 2-2; is a prefix of 2%-v, e, = (;,9), and 9 € OR;11, then we can use the clockwise order of
Zj,0,%;—1 around the hole on R4 to determine whether v lies to the right of C. (Not depicted: the case when

O OR41.)

shortest path forest w.r.t. d has two trees, rooted at Z;
and z;_1. Using part (A) of the data structure we com-
pute d(v), which reveals the j* € {j,j — 1} such that v
is in xj+’s tree. At this point we break into two cases,
depending on whether f is in R{" N Ry, or in R{YY.
We assume j* = j without loss of generality and depict
only this case in Figure 9(b,c).

Case 2a. Suppose that f is in RP"™ N Ryyq. Let
y; be a pendant vertex attached to y; embedded inside
f and let a:; be a pendant attached to x; embedded
in the face on OR;. The shortest /-y and x-v paths
diverge at some point. We query the MSSP structure
(part (A)) to get the least common ancestor w of y;
and v and the three edges ey, €v; Cw around w, then
determine the left/right relationship as in Case 1. (If
j* = j — 1 then we would reverse the answer due to the
reversed orientation of the x;_1-y;_1 subpath w.r.t. C.)
Once again, some of €y, €, €y May be shortcut edges
between OR;,1-vertices or artificial pendant edges. See
Figure 9(b)

Case 2b. Now suppose [ lies in RPYS. We get
from part (E) the last vertices &;,2;_1 € ORs41 that
lie on the s;-y; and s;_1-y;—1 shortest paths. We ask
the MSSP structure of part (A) for the least common
ancestor w of £; and v in the shortcutted SSSP tree
rooted at ZL‘;, and also get the three incident edges
€3, €y, €y. The edges e, and e, exist and are different,
but ez, may not exist if w =, i.e., if v is a descendant
of &;. If all three edges {es,,e,, e} exist we can
determine whether v lies to the right of C' as in Case
1 or 2a.

Case 2b(i). Suppose w = Z; and ez, does not
exist. Let e, = (£;,0). If 0 € OR;y1 then e, represents

a path that is completely contained in R{Y§. Thus, if
we walk clockwise around the hole of R{Y on OR:yq
and encounter Z;,7,%;-1 in that order then v lies to
the right of C, and if we encounter them in the reverse
order then v lies to the left of C. See Figure 9(c).
Case 2b(ii). Finally, suppose © &€ OR;11 and e, =
(#;,0) is a normal edge in G. Redefine ez, to be the
first edge on the path from Z; to y;.' Now we can
determine if v is to the right of C' by looking at the
clockwise order of e, €,, €z, around ;. 0

As pointed out in Remark 4.1, Lemma 2.1 does not
immediately imply that Line 6 of SitePathIndicator
and Line 1 of PieceSearch can be implemented ef-
ficiently.  Gawrychowski et al’s [19] implementa-
tion of PointLocate requires MSSP access to R9“,
whereas part (A) only lets us query vertices in R9"* N
Riy1. Gawrychowski et al.’s algorithm is identical to
CentroidSearch, except that Navigation is done di-
rectly with MSSP structures. Suppose we are currently
at f* in the centroid decomposition, with y;, s; defined
as usual. Gawrychowski’s algorithm finds j minimizing
w(s;)+dist gout (85, v) using three distance queries to the
MSSP structure, then decides whether the s;-—v shortest
path is a prefix of the s’-y shortest path, and if not,
which direction it branches in.'' If f is in RY™ N Ryt
we can proceed exactly as in Gawrychowski et al. [19]. If

TOWe could store ez; in part (E) of the data structure but

that is not necessary. If eg,e; are the edges adjacent to £; on
the boundary cycle of OR:y1, then we can use any member of
{eo,e1}\{ew} as a proxy for ez ;.

lls;,y;. being pendant vertices attached to sj,yj;, as in
Lemma 4.3.
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not, we retrieve from part (E) the last vertex & of OR;41
on the s;-y; shortest path, use £ in lieu of yg for the LCA
queries, and tell whether the s;-—v path branches to the
right exactly as in Lemma 4.3, Case 2b.

5 Analysis

This section constitutes a proof of the claims of The-
orem 1.1 concerning space complexity and query time;
refer to Appendix C in the full version for an efficient
construction algorithm.

Combining Lemmas 2.1 and 2.2 (see Section 4.4.3),
PointLocate runs in O(xlognloglogn) time. To-
gether with Lemma 4.3 it follows that PieceSearch
also takes O(klognloglogn) time. SitePathlndicator
uses PointLocate, the MSSP structure, and O(1)-time
tree operations on TqRi and the 7-division like least
common ancestors and level ancestors [21, 4, 5, 20].
Thus SitePathindicator also takes O(klognloglogn)
time. The calls to MaximalChord and AdjacentPiece
in ChordIndicator take O(lognloglogn) time by
Lemma 4.2, and testing which side of a chord v lies
on takes O(kloglogn) time by Lemma 4.3. The bot-
tleneck in ChordIndicator is still PieceSearch, which
takes O(klognloglogn) time. The only non-trivial
parts of Navigation are calls to SitePathlndicator and
ChordIndicator, so it, too, takes O(rlognloglogn)
time.

An initial call to CentroidSearch (Line 5 of
Dist) generates at most logn recursive calls to
CentroidSearch, culminating in the last recursive call
making 1 or 2 calls to Dist with the “/” parameter in-
cremented. Excluding the cost of recursive calls to Dist,
the cost of CentroidSearch is dominated by calls to
Navigation, i.e., an initial call to CentroidSearch costs
logn - O(klognloglogn) = O(klog®nloglogn) time.
Let T'(i) be the cost of a call to Dist(u;,v, R;). In the
worst case that ¢t = m — 1, we have

T(m —1) = O(kloglogn)
T(i) = 2T(i + 1) + O(rlog® nloglog n)
It follows that the time to answer a distance query is
T(0) =0(2™ - rlog? nloglog n).

The space complexity of each part of the data
structure is as follows. (A) is O(kmn!t1/m+1/x) by
Lemma 2.1 and the fact that r,,1/r; = n'/™. (B)

is O(mn'TYCm)) since \/rii1/ri = n/C™. (Q)

is O(mn) since Y, n/r; - (\/r7)> = O(mn). (D) is
O(mnlogn) by Lemma 4.2, and (E) is O(m) times the
space cost of (B) and (C), namely O(m?n!'+1/2™)). The

bottleneck is (A).

We now explain how m, k can be selected to achieve
the extreme space and query complexities claimed The-

orem 1.1. To optimize for query time, pick kK = m to
be any function of n that is w(1) and o(loglogn). Then
the query time is

O(2™klog? nloglogn) = log?toMW p,

and the space is

O(m,‘in1+1/m+l/ﬁ) — TL1+O(1).

To optimize for space, choose k = logn and m to be a
function that is w(logn/loglogn) and o(logn). Then
the space is

1+1/m+1/n) — O(n1+1/m 10g2 ’I’L)

—-n- 20(log logn) | 10g2 n

2+o(1)

O(mkn

= nlog n,

and the query time

0(2™klog? nloglogn) = 2°0°8™ 1og3 nloglog n
— poM
=n%Y,
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