
Planar Distance Oracles with Better Time-Space Tradeo↵s
∗

Yaowei Long
†

Seth Pettie
‡

Abstract
In a recent breakthrough, Charalampopoulos,
Gawrychowski, Mozes, and Weimann [9] showed that
exact distance queries on planar graphs could be answered
in n

o(1) time by a data structure occupying n
1+o(1) space,

i.e., up to o(1) terms, optimal exponents in time (0) and
space (1) can be achieved simultaneously. Their distance
query algorithm is recursive: it makes successive calls to
a point-location algorithm for planar Voronoi diagrams,
which involves many recursive distance queries. The depth
of this recursion is non-constant and the branching factor
logarithmic, leading to (log n)!(1) = n

o(1) query times.
In this paper we present a new way to do point-location

in planar Voronoi diagrams, which leads to a new exact
distance oracle. At the two extremes of our space-time
tradeo↵ curve we can achieve either

n
1+o(1) space and log2+o(1)

n query time, or

n log2+o(1)
n space and n

o(1) query time.

All previous oracles with Õ(1) query time occupy space

n
1+⌦(1), and all previous oracles with space Õ(n) answer

queries in n
⌦(1) time.

1 Introduction

A distance oracle is a data structure that answers
distance queries (or approximate distance queries)
w.r.t. some underlying graph or metric space. On gen-
eral graphs there are many well known distance oracles
that pit space against multiplicative approximation [40],
space against mixed multiplicative/additive approxima-
tion [34, 1], and, in sparse graphs, space against query
time [2, 38]. Refer to Sommer [37] for a survey on dis-
tance oracles.

Whereas approximation seems to be a necessary in-
gredient to achieve any reasonable space/query time
on general graphs, structured graph classes may ad-
mit exact distance oracles with attractive time-space
tradeo↵s. In this paper we continue a long line of
work [3, 14, 10, 17, 27, 41, 33, 7, 32, 11, 19, 9] focused
on exact distance oracles for weighted, directed planar
graphs.

∗
This work was supported by NSF grants CCF-1637546

and CCF-1815316, and a grant from IIIS, Tsinghua Uni-

versity. A full version of this paper is available at

https://arxiv.org/abs/2007.08585.

†
Tsinghua University, longyw17@mails.tsinghua.edu.cn.

‡
University of Michigan, pettie@umich.edu.

1.1 History. Between 1996-2012, work of Arikati et
al. [3], Djidjev [14], Chen and Xu [10], Fakcharoen-
phol and Rao [17], Klein [27], Wul↵-Nilsen [41], Nuss-
baum [33], Cabello [7], and Mozes and Sommer [32]
achieved space Õ(S) and query time Õ(n/

p
S), for var-

ious ranges of S that ultimately covered the full range
[n, n2].

In 2017, Cabello [8] introduced planar Voronoi di-
agrams as a tool for solving metric problems in pla-
nar graphs, such as diameter and sum-of-distances.
This idea was incorporated into new planar distance
oracles, leading to Õ(n5/2/S3/2) query time [11] for
S 2 [n3/2, n5/3] and Õ(n3/2/S) query time [19] for
S 2 [n, n3/2]. Finally, in a major breakthrough Char-
alampopoulos, Gawrychowski, Mozes, and Weimann [9]
demonstrated that up to no(1) factors, there is no trade-
o↵ between space and query time, i.e., space n1+o(1)

and query time no(1) can be achieved simultaneously.
In more detail, they proved that space O(n4/3

p
log n)

allows for query time O(log2 n), space Õ(n1+✏) allows
for query time O(log n)1/✏�1, and space O(n log2+1/✏ n)
allows for query time O(n2✏).

The Charalampopoulos et al. structure is based
on a hierarchical ~r-decomposition of the graph, ~r =
(n, n(m�1)/m, . . . , n1/m). (See Section 2.) Given u, v,
it iteratively finds the last boundary vertex ui on the
shortest u-v path that lies on the boundary of the level-
i region containing u. Given ui�1, finding ui amounts to
solving a point location problem on an external Voronoi
diagram, i.e., a Voronoi diagram of the complement of
a region in the hierarchy. Each point location query is
solved via a kind of binary search, and each step of the
binary search involves 3 recursive distance queries that
begin at a “higher” level in the hierarchy. This leads
to a tradeo↵ between space Õ(n1+1/m) and query time
O(log n)m�1.

See Table 1 for a summary of the space-time trade-
o↵s for exact and approximate planar distance oracles.

1.2 New Results. In this paper we develop a more
direct and more e�cient way to do point location in
external Voronoi diagrams. It uses a new persistent data
structure for maintaining sets of non-crossing systems
of chords, which are paths that begin and end at the
boundary vertices of a region, but are internally vertex

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2517

D
ow

nl
oa

de
d

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

Reference Space Query Time

Arikati, Chen, Chew
Das, Smid & Zaroliagis

1996 S 2 [n3/2, n2] O
⇣

n
2

S

⌘

Djidjev 1996
S 2 [n, n2] O

⇣
n
2

S

⌘

S 2 [n4/3, n3/2] O
⇣

np
S
log n

⌘

Chen & Xu 2000 S 2 [n4/3, n2] O
⇣

np
S
log

⇣
np
S

⌘⌘

Fakcharoenphol & Rao 2006 O(n log n) O(
p
n log2 n)

Wul↵-Nilsen 2010 O(n2 log4 logn

logn
) O(1)

Nussbaum 2011
O(n) O(n1/2+✏)

S 2 [n4/3, n2] O
⇣

np
S

⌘

Cabello 2012 S 2 [n4/3 log1/3 n, n2] O
⇣

np
S
log3/2 n

⌘

Mozes & Sommer 2012
S 2 [n log log n, n2] O

⇣
np
S
log2 n log3/2 log n

⌘

O(n) O(n1/2+✏)

Cohen-Addad, Dahlgaard
& Wul↵-Nilsen

2017 S 2 [n3/2, n5/3] O
⇣

n
5/2

S3/2 log n
⌘

Gawrychowski, Mozes,
Weimann & Wul↵-Nilsen

2018 Õ(S) for S 2 [n, n3/2] Õ
⇣

n
3/2

S

⌘

Charalampopoulos,

Gawrychowski, Mozes

& Weimann

2019

n1+o(1) no(1)

Õ(n1+✏) for 0 < ✏  1/3 O(log✏
�1�1 n)

O(n log2+1/✏ n) for ✏ > 0 O(n2✏)

new 2020
n1+o(1) log2+o(1) n

n log2+o(1) n no(1)

(1 + ✏)-Approx. Oracles Space Query Time

Thorup 2001
O(n✏�1 log2 n) O(log log n+ ✏�1)

O(n✏�1 log n) O(✏�1) (Undir.)

Klein 2002 O(n(log n+ ✏�1 log ✏�1)) O(✏�1) (Undir.)

Kawarabayashi,
Klein & Sommer

2011 O(n) O(✏�2 log2 n) (Undir.)

Kawarabayashi,

Sommer & Thorup
2013

O(n log n) O(✏�1) (Undir.)

O(n) O(✏�1) (Undir.,Unweight.)

Table 1: Space-query time tradeo↵s for exact and approximate planar distance oracles. O hides log(✏�1 log n)
factors.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2518

D
ow

nl
oa

de
d

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

disjoint from the boundary. By applying this point
location method in the framework of Charalampopoulos
et al. [9], we obtain a better time-space tradeo↵, which
is most noticeable at the “extremes” when Õ(n) space
or Õ(1) query time is prioritized.

Theorem 1.1. Let G be an n-vertex weighted pla-
nar digraph with no negative cycles, and let ,m �
1 be parameters. A distance oracle occupying space
O(mn1+1/m+1/) can be constructed in Õ(n3/2+1/m +
n1+1/m+1/) time that answers exact distance queries
in O(2m log2 n log log n) time. At the two extremes of
the space-time tradeo↵ curve, we can construct oracles
in n3/2+o(1) time with either

• n1+o(1) space and log2+o(1) n query time, or

• n log2+o(1) n space and no(1) query time.

Our new point-location routine su�ces to get the query
time down to O(log3 n). In order to reduce it further
to O(log2+o(1) n), we develop a new dynamic tree data
structure based on Euler-Tour trees [22] with O(n1/)
update time and O() query time. This allows us to
generate MSSP (multiple-source shortest paths) struc-
tures with a similar space-query tradeo↵, specifically,
O(n1+1/) space and O( log log n) query time. Our
MSSP construction follows Klein [27] (see also [19]), but
uses our new dynamic tree in lieu of Sleator and Tar-
jan’s Link-Cut trees [36], and uses persistent arrays [12]
in lieu of [15] to make the data structure persistent.

1.3 Organization. In Section 2 we review back-
ground on planar embeddings, planar separators,
multiple-source shortest paths, and weighted Voronoi
diagrams. In Section 3 we introduce key parts of the
data structure and describe the query algorithm, as-
suming a certain point location problem can be solved.
Section 4 introduces several more components of the
data structure, and shows how they can be applied to
solve this particular point location problem in near-
logarithmic time. The space and query-time claims of
Theorem 1.1 are proved in Section 5. We leave the fol-
lowing details and proofs in the full version [30] of this
paper due to page limitations. The construction time
claims of Theorem 1.1 are proved in [30, Appendix C].
The MSSP structure based on Euler Tour trees appear
in [30, Appendix B]. In [30, Appendix A] it is explained
how to remove a simplifying assumption made through-
out the paper, that the boundary vertices of every re-
gion in the ~r-decomposition lie on a single hole, which
is bounded by a simple cycle.

2 Preliminaries

2.1 The Graph and Its Embedding. A weighted
planar graph G = (V,E, `) is represented by an abstract
embedding: for each v 2 V (G) we list the edges incident
to v according to a clockwise order around v. We assume
the graph has no negative weight cycles and further
assume the following, without loss of generality.

• All the edge-weights can be made non-negative
(` : E ! R�0) [23]. Furthermore, via randomized
or deterministic perturbation [16], we can assume
there are no zero weight edges, and that shortest
paths are unique in any subgraph of G.

• The graph is connected and triangulated. Assign
all artificial edges weight n ·maxe2E(G){`(e)} so as
not to a↵ect any finite distances.

• If (u, v) 2 E(G) then (v, u) 2 E(G) as well. (In the
circular ordering around v, they are represented as
a single element {u, v}.)

Suppose P = (v0, v1, . . . , vk) is a path oriented from
v0 to vk, and e = (vi, u) is an edge not on P , i 2 [1, k�1].
Then e is to the right of P if e appears between (vi, vi+1)
and (vi�1, vi) in the clockwise order around vi, and left
of P otherwise.

2.2 Separators and Divisions. Lipton and Tar-
jan [29] proved that every planar graph contains a sep-
arator of O(

p
n) vertices that, once removed, breaks

the graph into components of at most 2/3 the size.
Miller [31] showed that every triangulated planar graph
has a O(

p
n)-size separator that consists of a simple

cycle. Frederickson [18] defined a division to be a set
of edge-induced subgraphs whose union is G. A ver-
tex in more than one region is a boundary vertex; the
boundary of a region R is denoted @R. Edges along the
boundary between two regions appear in both regions.
The r-divisions of [18] have ⇥(n/r) regions each with
O(r) vertices and O(

p
r) boundary vertices.

We use a linear-time algorithm of Klein, Mozes,
and Sommer [28] for computing a hierarchical ~r-division,
where ~r = (rm, . . . , r1) and n = rm > · · · > r1 = ⌦(1).
Such an ~r-division has the following properties:

• (Division & Hierarchy) For each i, Ri is the set of
regions in an ri-division of G, where Rm = {G}
consists of the graph itself. For each i < i0  m
and Ri 2 Ri, there is a unique Ri0 2 Ri0 such
that E(Ri) ✓ E(Ri0). The ~r-division is therefore
represented as a rooted tree of regions.

• (Boundaries and Holes) The O(
p
ri) boundary ver-

tices of any Ri 2 Ri lie on a constant number of

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2519

D
ow

nl
oa

de
d

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

faces of Ri called holes, each bounded by a cycle
(not necessarily simple).

We supplement the ~r-division with a zeroth level. The
layer-0 R0 = {{v} | v 2 V (G)} consists of singleton
sets, and each {v} is attached as a (leaf) child of an
arbitrary R 2 R1 for which v 2 R.

Suppose f is one of the O(1) holes of region R
and Cf the cycle around f . The cycle Cf partitions
E(G) � Cf into two parts. Let Rf,out be the graph
induced by the part disjoint from R, together with Cf ,
i.e., Cf appears in both R and Rf,out. To keep the
description of the algorithm as simple as possible, we
will assume that @R lies on a single simple cycle (hole)
fR, and let Rout be short for RfR,out. The modifications
necessary to deal with multiple holes and non-simple
boundary cycles are explained in Appendix B in the
full version.

2.3 Multiple-source Shortest Paths. Suppose H
is a weighted planar graph with a distinguished face f on
vertices S. Klein’sMSSP algorithm takes O(|H| log |H|)
time and produces an O(|H| log |H|)-size data struc-
ture such that given s 2 S and v 2 V (H), returns
distH(s, v) in O(log |H|) time. Klein’s algorithm can
be viewed as continuously moving the source vertex
around the boundary face f , recording all changes to
the SSSP tree in a dynamic tree data structure [36]. It
is shown [27] that each edge in H enters and leaves
the SSSP tree exactly once, meaning the number of
changes is O(|H|). Each change to the tree is e↵ected in
O(log |H|) time [36], and the generic persistence method
of [15] allows for querying any state of the SSSP tree.
The important point is that the total space is linear
in the number of updates to the structure (O(|H|))
times the update time (O(log |H|)). As observed in [19],
this structure can also answer other useful queries in
O(log |H|) time. Lemma 2.1 is similar to [27, 19] except
that we use a dynamic tree data structure based on Eu-
ler Tour trees [22] rather than Link-Cut trees [36], which
allows for a more flexible tradeo↵ between update and
query time. Because our data structure does not satisfy
the criteria of Driscoll et al.’s [15] persistence method for
pointer-based data structures, we use the folklore imple-
mentation of persistent arrays1 to make any RAM data
structure persistent, with doubly-logarithmic slowdown
in the query time. See Appendix A in the full version
for a proof of Lemma 2.1.

Lemma 2.1. (Cf. Klein [27], Gawrychowski et al. [19])
Let H be a planar graph, S be the vertices on some

1
Dietz [12] credits this method to an oral presentation of

Dietzfelbinger et al. [13], which highlighted it as an application of

dynamic perfect hashing.

Figure 1: The clockwise order of ex, eu, ev around v
tells us whether the shortest s-u path branches from
the shortest s-v path to the right or left.

distinguished face f , and  � 1 be a parameter. An
O(|H|1+1/)-space data structure can be computed in
O(|H|1+1/) time that answers the following queries in
O( log log |H|) time.

• Given s 2 S, v 2 V (H), return distH(s, v).

• Given s 2 S, u, v 2 V (H), return (x, eu, ev), where
x is the least common ancestor of u and v in the
SSSP tree rooted at s and ez is the edge on the path
from x to z (if x 6= z), z 2 {u, v}.

The purpose of the second query is to tell whether
u lies on the shortest s-v path (x = u) or vice versa,
or to tell which direction the s-u path branches from
the s-v path. Once we retrieve the LCA x and edges
eu, ev, we get the edge ex from x to its parent. The
clockwise order of ex, eu, ev around x tells us whether
s-u branches from s-v to the left or right. See Figure 1.

2.4 Additively Weighted Voronoi Diagrams.
Let H be a weighted planar graph, f a distinguished
face whose vertices S are called sites, and ! : S ! R�0

be a weight function on sites. We augmentH with large-
weight edges so that it is triangulated, except for f . For
s 2 S, v 2 V (H), define

d!(s, v)
def
= !(s) + distH(s, v).

The Voronoi diagram VD[H,S,!] is a partition of V (H)

into Voronoi cells, where for s 2 S, Vor(s)
def
= {v 2

V (H) | 8s0 6= s. (d!(s, v),�!(s)) < (d!(s0, v),�!(s0))}.
In other words, Vor(s) is the set of vertices that are
closer to s than any other site, breaking ties in favor
of larger !-values. We usually work with the dual
representation of a Voronoi diagram. It is constructed
as follows.

• Define Ŝ to be the set of sites with nonempty
Voronoi cells, i.e., Ŝ = {s 2 S | s 2 Vor(s)}. The
case |Ŝ| = 1 is trivial, so assume |Ŝ| � 2.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2520

D
ow

nl
oa

de
d

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

• Add large-weight dummy edges to H so that Ŝ
appear on the boundary of a single face f̂ , but is
otherwise triangulated. Observe that this has no
e↵ect on the Voronoi cells.

• An edge is bichromatic if its endpoints are in
di↵erent cells. In particular, the edges bounding
f̂ are all bichromatic. Define VD⇤

0 to be the
(undirected) subgraph of H⇤ consisting of the duals
of bichromatic edges.

• Obtain VD⇤
1 from VD⇤

0 by repeatedly contracting
edges incident to a degree-2 vertex, terminating
when there are no degree-2 vertices, or when it
becomes a self-loop.2 Observe that in VD⇤

1, f̂⇤

has degree |Ŝ| and all other vertices have degree
3; moreover, the faces of VD⇤

1 are in one-to-one
correspondence with the Voronoi cells.

• We obtain VD⇤ = VD⇤[H,S,!] by splitting f̂⇤ into
|Ŝ| degree-1 vertices, each taking an edge formerly
incident to f̂⇤. It was proved in [19, Lemma 4.1]
that VD⇤ is a single tree.3

• We store with VD⇤ supplementary information
useful for point location. Each degree-3 vertex g⇤ in
VD⇤ corresponds a trichromatic face g whose three
vertices, say y0, y1, y2, belong to di↵erent Voronoi
cells. We store in VD⇤ the sites s0, s1, s2 2 S
such that yi 2 Vor(si). We also store a centroid
decomposition of VD⇤. A centroid of a tree T is
a vertex c that partitions the edge set of T into
disjoint subtrees T1, . . . , Tdeg(c), each containing at
most (|E(T)| + 1)/2 edges, and each containing c
as a leaf. The decomposition is a tree rooted at c,
whose subtrees are the centroid decompositions of
T1, . . . , Tdeg(c). The recursion bottoms out when T
consists of a single edge, which is represented as a
single (leaf) node in the centroid decomposition.4

The most important query on Voronoi diagrams is
point location.

Lemma 2.2. (Gawrychowski et al. [19]) The
PointLocate(VD⇤[H,S,!], v) function is given the
dual representation of a Voronoi diagram VD⇤[H,S,!]
and a vertex v 2 V (H) and reports the s 2 S for which
v 2 Vor(s). Given access to an MSSP data structure for
H with source-set S and query time ⌧ , we can answer

2
The latter case only occurs when |Ŝ| = 2.

3
If we skipped the step of forming the face f̂ on the site-set Ŝ

and triangulating the rest, VD
⇤
would still be acyclic, but perhaps

disconnected. See [19, 9].
4
I.e., internal nodes correspond to vertices of T ; leaf nodes

correspond to edges of T .

PointLocate(VD⇤[H,S,!], v) queries in O(⌧ · log |H|)
time.

The challenge in our data structure (as in [9]) is
to do point location when our space budget precludes
storing all the relevant MSSP structures. Nonetheless,
we do make use of PointLocate when the MSSP data
structures are available.

3 The Distance Oracle

As in [9], the distance oracle is based on an ~r-
decomposition, ~r = (rm, . . . , r1), where ri = ni/m

and m is a parameter. Suppose we want to compute
distG(u, v). Let R0 = {u} be the artificial level-0 region
containing u and Ri 2 Ri be the level-i ancestor of R0.
(Throughout the paper, we will use “Ri” to refer specif-
ically to the level-i ancestor of R0 = {u}, as well as to a
generic region at level-i. Surprisingly, this will cause no
confusion.) Let t be the smallest index for which v 62 Rt

but v 2 Rt+1. Define ui to be the last vertex on @Ri

encountered on the shortest path from u to v. The main
task of the distance query algorithm is to compute the
sequence (u = u0, . . . , ut). Suppose that we know the
identity of ui and t > i. Finding ui+1 now amounts to
a point location problem in VD⇤[Rout

i+1, @Ri+1,!], where
!(s) is the distance from ui to s 2 @Ri+1. However,
we cannot apply the fast PointLocate routine because
we cannot a↵ord to store an MSSP structure for every
(Rout

i+1, @Ri+1), since |Rout
i+1| = ⌦(|G|). Our point loca-

tion routine narrows down the number of possibilities
for ui+1 to at most two candidates in O( log2+o(1) n)
time, then decides between them using two recursive
distance queries, but starting at a higher level in the
hierarchy. There are about 2m recursive calls in total,
leading to a O(2m log2+o(1) n) query time.

The data structure is composed of several parts.
Parts (A) and (B) are explained below5 while parts (C)–
(E) will be revealed in Section 4.2.

(A) (MSSP Structures) For each i 2 [0,m � 1] and
each region Ri 2 Ri with parent Ri+1 2 Ri+1,
we store an MSSP data structure (Lemma 2.1) for
the graph Rout

i
, and source set @Ri. However, the

structure only answers queries for s 2 @Ri and
u, v 2 Rout

i
\ Ri+1. Rather than represent the

full SSSP tree from each root on s 2 @Ri, the
MSSP data structure only stores the tree induced
by Rout

i
\ Ri+1, i.e., the parent of any vertex

v 2 Rout
i
\ Ri+1 is its nearest ancestor v0 in the

SSSP tree such that v0 2 Rout
i
\ Ri+1. If (v0, v) is

5
They are similar to corresponding parts of the [9] structure,

but the MSSP data structures in (A) use “shortcut” edges to

simplify the distance query algorithm.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2521

D
ow

nl
oa

de
d

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

(a)

(b) (c)

Figure 2: (a) The original H is a triangulated grid, with f being the exterior face. The boundary vertices Ŝ
with non-empty Voronoi cells are marked with colored halos. Edges are added so that Ŝ are on the exterior face
f̂ . The vertices of VD⇤ are the duals of trichromatic faces, and those derived by splitting f̂⇤ into |Ŝ| vertices.
The edges of VD⇤ correspond to paths of duals of bichromatic edges. (b) The dual representation VD⇤. (c) A
centroid decomposition of VD⇤.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2522

D
ow

nl
oa

de
d

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

a “shortcut” edge corresponding to a path in Rout
i+1,

it has weight distRout
i

(v0, v).

We fix a  and let the update time in the dynamic
tree data structure be O(n1/) time. Thus, the
space for this structure is O((|Rout

i
\Ri+1|+ |@Ri| ·

|@Ri+1|) · n1/) = O(ri+1 · n1/) since each edge
in Rout

i
\ Ri+1 is swapped into and out of the

SSSP tree once [27], and the number of shortcut
edges on @Ri+1 swapped into and out of the SSSP
is at most |@Ri+1| for each of the |@Ri| sources.
Over all i and ⇥(n/ri) choices of Ri, the space is
O(mn1+1/m+1/) since ri+1/ri = n1/m.

(B) (Voronoi Diagrams) For each i 2 [0,m �
2] and Ri 2 Ri with parent Ri+1 2 Ri+1,
and each q 2 @Ri, define VD⇤

out(q,Ri+1) to be
VD⇤[Rout

i+1, @Ri+1,!], with !(s) = distG(q, s). The
space to store the dual diagram and its centroid
decomposition is O(|@Ri+1|) = O(

p
ri+1). Over all

choices for i, Ri, and q, the space is O(mn1+1/(2m))
since

p
ri+1/ri = n1/(2m).

Due to our tie-breaking rule in the definition of
Vor(·), locating ui+1 (t � i + 1) is tantamount to
performing a point location on a Voronoi diagram in
part (B) of the data structure.

Lemma 3.1. Suppose that q 2 @Ri and v 62
Ri+1. Consider the Voronoi diagram associated with
VD⇤

out(q,Ri+1) with sites @Ri+1 and additive weights
defined by distances from q in G. Then v 2 Vor(s) if
and only if s is the last @Ri+1-vertex on the shortest
path from q to v in G, and d!(s, v) = distG(q, v).

Proof. By definition, d!(s, v) is the length of the short-
est path from q to v that passes through s and whose s-v
su�x does not leave Rout

i+1. Thus, d!(s, v) � distG(q, v)
for every s, and d!(s, v) = distG(q, v) for some s. Be-
cause of our assumption that all edges are strictly pos-
itive, and our tie-breaking rule for preferring larger !-
values in the definition of Vor(·), if v 2 Vor(s) then s
must be the last @Ri+1-vertex on the shortest q-v path.

3.1 The Query Algorithm. A distance query is
given u, v 2 V (G). We begin by identifying the
level-0 region R0 = {u} 2 R0 and call the function
Dist(u, v,R0). In general, the function Dist(ui, v, Ri)
takes as arguments a region Ri, a source vertex ui on the
boundary @Ri, and a target vertex v 62 Ri. It returns a
value d such that

(3.1) distG(ui, v)  d  distRout
i

(ui, v).

Note that Rout
0 = G, so the initial call to this function

correctly computes distG(u, v). When v is “close”
to ui (v 2 Rout

i
\ Ri+1) it computes distRout

i
(ui, v)

without recursion, using part (A) of the data structure.
When v 2 Rout

i+1 it performs point location using the
function CentroidSearch, which culminates in up to
two recursive calls to Dist on the level-(i + 1) region
Ri+1. Thus, the correctness of Dist hinges on whether
CentroidSearch correctly computes distances when v 2
Rout

i+1.

Algorithm 1 Dist(ui, v, Ri)

Input: A region Ri, a source ui 2 @Ri and a destina-
tion v 2 Rout

i
.

Output: A value d such that distG(ui, v)  d 
distRout

i
(ui, v).

1: if v 2 Rout
i
\Ri+1 then

2: return d distRout
i

(ui, v)
3: end if
4: f⇤ root of the centroid decomposition of

VD⇤
out(ui, Ri+1)

5: return d CentroidSearch(VD⇤
out(ui, Ri+1), v, f⇤)

Algorithm 2 CentroidSearch(VD⇤
out(ui, Ri+1), v, f⇤)

Input: The dual representation VD⇤
out =

VD⇤
out(ui, Ri+1) of a Voronoi diagram with additive

weights !(s) = distG(ui, s), a vertex v 2 Rout
i+1, and

a node f⇤ in the centroid decomposition of VD⇤
out.

Output: The distance distG(ui, v).
1: if f⇤ is a leaf in the centroid decomposition (an edge

in VD⇤
out) then

2: s1, s2 sites whose Voronoi cells are bounded
by f⇤

3: d1 !(s1) +Dist(s1, v, Ri+1)
4: d2 !(s2) +Dist(s2, v, Ri+1)
5: return min(d1, d2)
6: end if
7: (flag, a⇤) Navigation(VD⇤

out(ui, Ri+1), v, f⇤)
8: if flag = terminal then
9: return !(a⇤) +Dist(a⇤, v, Ri+1)

10: else (i.e., flag = nonterminal)
11: return CentroidSearch(VD⇤

out(ui, Ri+1), v, a⇤)
12: end if

The procedure CentroidSearch is given ui 2 @Ri,
v 2 Rout

i+1, VD
⇤
out = VD⇤

out(ui, Ri+1) and a node f⇤ on
the centroid decomposition of VD⇤

out. It ultimately com-
putes ui+1 2 @Ri+1 for which v 2 Vor(ui+1) and re-
turns !(ui+1) + Dist(ui+1, v, Ri+1)  distG(ui, ui+1) +
distRout

i+1
(ui+1, v) = distG(ui, v). The algorithm is recur-

sive, and bottoms out in one of two base cases (Line 5

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2523

D
ow

nl
oa

de
d

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

or Line 9). The first way the recursion can end is if we
reach the bottom of the centroid decomposition. If f⇤ is
a leaf of the decomposition, it corresponds to an edge in
VD⇤

out separating the Voronoi cells of two sites, say s1
and s2. At this point we know that either ui+1 = s1 or
ui+1 = s2, and determine which case is true with two re-
cursive calls to Dist(sj , v, Ri+1), j 2 {1, 2} (Lines 2–5).
In general, f⇤ is dual to a trichromatic face f composed
of three vertices y0, y1, y2 in clockwise order, which are,
respectively, in distinct Voronoi cells of s0, s1, s2. The
three shortest sj-yj paths and f partition the vertices
of Rout

i+1 into six parts, namely the shortest sj-yj paths
themselves, and the interiors of the regions bounded by
@Ri+1, two of the sj-yj paths and an edge of f . See Fig-
ure 3. The Navigation function returns a pair (flag, a⇤)
that identifies which part v is in. If flag = terminal then
a⇤ 2 {s0, s1, s2} is interpreted as a site, indicating that v
lies on the shortest path from a⇤ to its f -vertex. In this
case we return !(a⇤) + Dist(a⇤, v, Ri+1) = distG(ui, v)
with just one call to Dist. If flag = nonterminal then
a⇤ is the correct child of f⇤ in the centroid decom-
position. In particular, f⇤ is incident to three edges
e⇤0, e

⇤
1, e

⇤
2 dual to {y0, y2}, {y1, y0}, {y2, y1}. The chil-

dren of f⇤ in the centroid decomposition are f⇤
0 , f

⇤
1 , f

⇤
2 ,

with f⇤
j

ancestral to e⇤
j
. We have a⇤ = f⇤

j
if v lies

to the right of the chord (sj , . . . , yj , yj�1, . . . , sj�1) in
Rout

i+1. For example, in Figure 3, v lies to the right of
the chord (s0, . . . , y0, y2, . . . , s2). In this case we con-
tinue the search recursively from a⇤ = f⇤

0 .

Lemma 3.2. CentroidSearch correctly computes
distG(ui, v).

Proof. Define f, yj , sj , e⇤j , f
⇤
j
as usual, and let ui+1 be

such that v 2 Vor(ui+1). The loop invariant is that
in the subtree of the centroid decomposition rooted at
f⇤, there is some leaf edge on the boundary of the cell
Vor(ui+1). This is clearly true in the intial recursive
call, when f⇤ is the root of the centroid decomposition.
Suppose that Navigation tells us that v lies to the right
of the oriented chord C? = (sj , . . . , yj , yj�1, . . . , sj�1).
Observe that since the sj-yj and sj�1-yj�1 shortest
paths are monochromatic, all edges of the centroid de-
composition correspond to paths in G⇤ that lie strictly
to the left or right of C?, with the exception of e⇤

j
. More-

over, since v 2 Vor(ui+1), Vor(ui+1) must be bounded
by some edge that is either e⇤

j
or one entirely to the

right of C?, from which it follows that f⇤
j
= a⇤ is an-

cestral to at least one edge bounding Vor(ui+1). When
f⇤ is a single edge on the boundary of Vor(s1),Vor(s2)
the loop invariant guarantees that either ui+1 = s1 or
ui+1 = s2; suppose that ui+1 = s1. It follows from the

specification of Dist (Eqn. (3.1)) and Lemma 3.1 that

d1 = !(s1) +Dist(s1, v, Ri+1)

 distG(ui, s1) + distRout
i+1

(s1, v)

= distG(ui, v).

Furthermore,

d2 = !(s2) +Dist(s2, v, Ri+1)

� distG(ui, s2) + distG(s2, v)

� distG(ui, v),

so in this base case CentroidSearch correctly returns
d1 = distG(ui, v). If Navigation ever reports that v is
on an sj-yj path, then by definition v 2 Vor(sj). By
the specification of Dist (Eqn. (3.1)) and Lemma 3.1 we
have

!(sj) +Dist(sj , v, Ri+1)

 distG(ui, sj) + distRout
i+1

(sj , v)

= distG(ui, v)

and the base case on Lines 8–9 also works correctly.

Thus, the main challenge is to design an e�-
cient Navigation function, i.e., to solve the restricted
point location problem in Rout

i+1 depicted in Figure 3.
Whereas Charalampopoulos et al. [9] solve this prob-
lem using several more recursive calls to Dist, we give
a new method to do this point location directly, in
O( log1+o(1) n) time per call to Navigation.

4 The Navigation Oracle

The input toNavigation is the same as CentroidSearch,
except that f⇤ is guaranteed to correspond to a trichro-
matic face f . Define yj , sj , ej , fj , j 2 {0, 1, 2} as in the
discussion of CentroidSearch. The Navigation func-
tion determines the location of v relative to f and the
shortest sj-yj paths. It delegates nearly all the ac-
tual computation to two functions: SitePathIndicator,
which returns a boolean indicating whether v is on the
shortest sj-yj path, and ChordIndicator, which indi-
cates whether v lies strictly to the right of the oriented
chord (sj , . . . , yj , yj�1, . . . , sj�1). If so, we return the
centroid child f⇤

j
of f⇤ in this region. Three calls each

to SitePathIndicator and ChordIndicator su�ce to de-
termine the location of v.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2524

D
ow

nl
oa

de
d

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

Figure 3: Here f⇤ is a degree-3 vertex in
VD⇤

out(ui, Ri+1), corresponding to a trichromatic face
f on vertices y0, y1, y2, which are in the Voronoi cells
of s0, s1, s2 on the boundary @Rout

i+1. The shortest sj-
yj paths partition V (Rout

i+1) into six parts: the three
shortest paths and the three regions bounded by them
and f . Let e⇤0, e

⇤
1, e

⇤
2 be the edges in VD⇤

out dual to
{y0, y2}, {y1, y0}, {y2, y1}. In the centroid decomposi-
tion e⇤0, e

⇤
1, e

⇤
2 are in separate subtrees of f⇤. Let f⇤

j
be

the child of f⇤ ancestral to e⇤
j
, which is either e⇤

j
it-

self, or a trichromatic face to the right of the “chord”
(sj , . . . , yj , yj�1, . . . , sj�1). CentroidSearch locates the
site whose Voronoi cell contains v via recursion. It calls
Navigation, a function that finds which of the 6 parts
contains v. If v lies on an sj-yj path the CentroidSearch
recursion terminates; otherwise it recurses on the cor-
rect child f⇤

j
of f⇤.

Algorithm 3 Navigation(VD⇤
out(ui, Ri+1), v, f⇤)

Input: The dual representation VD⇤
out(ui, Ri+1) of a

Voronoi diagram, a vertex v 2 Rout
i+1, and a centroid

f⇤ in the centroid decomposition. The face f is on
y0, y1, y2, which are in the Voronoi cells of s0, s1, s2,
and f⇤

j
is the child of f⇤ containing the edge dual

to {yj , yj�1}.
Output: (terminal, sj) if v is on the shortest sj-yj

path, or (nonterminal, f⇤
j
) where f⇤

j
is the child of

f⇤ ancestral to an edge bounding v’s Voronoi cell.
1: s0, s1, s2 sites corresponding to f⇤

2: for j = 0, 1, 2 do
3: if SitePathIndicator(VD⇤

out(ui, Ri+1), v, f⇤, j)
returns True then

4: return (terminal, sj)
5: end if
6: end for
7: for j = 0, 1, 2 do
8: if ChordIndicator(VD⇤

out(ui, Ri+1), v, f⇤, j) re-
turns True then

9: return (nonterminal, f⇤
j
)

10: end if
11: end for

In Section 4.1 we formally introduce the notion
of chords used informally above, as well as some re-
lated concepts like laminar sets of chords and maximal
chords. In Section 4.2 we introduce parts (C)-(E) of the
data structure used to support Navigation. The func-
tions SitePathIndicator and ChordIndicator are pre-
sented in Sections 4.3 and 4.4.

4.1 Chords and Pieces. We begin by defining the
key concepts of our point location method: chords,
laminar chord sets, pieces, and the occludes relation.

Definition 4.1. (Chords) Fix an R in the ~r-
decomposition and two vertices c0, c1 2 @R. An oriented
simple path ��!c0c1 is a chord of Rout if it is contained in
Rout and is internally vertex-disjoint from @R. When
the orientation is irrelevant we write it as c0c1.

Definition 4.2. (Laminar Chord Sets) A set of
chords C for Rout is laminar (non-crossing) if for any
two such chords C = ��!c0c1, C 0 = ��!c2c3, if there exists a
v 2 (C \ C 0) � @R then the subpaths from c0 to v and
from c2 to v are identical; in particular c0 = c2.

The orientation of chords does not always coincide
with a natural orientation of paths defined by the
algorithm. For example, in Figure 3, the oriented
chord ��!s0s2 = (s0, . . . , y0, y2, . . . , s2) is composed of three
parts: a shortest s0-y0 path (whose natural orientation
coincides with that of��!s0s2), the edge {y0, y2} (which has

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2525

D
ow

nl
oa

de
d

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

Figure 4: A laminar set of chords partition Rout into
pieces. Observe that the chords separating pieces P5–P9

overlap in certain prefixes. The piece tree is indicated
by diamond vertices and pink edges. Note two pieces
(e.g. P5 and P9) may share a boundary, but not be
adjacent.

no natural orientation in this context), and the shortest
s2-y2 path (whose natural orientation is the reverse of
its orientation in ��!s0s2). The orientation serves two
purposes. In Definition 4.1 we can speak unambiguously
about the parts of Rout to the right and left of ��!s0s2. In
Definition 4.2 the role of the orientation is to ensure
that the partition of Rout into pieces induced by C can
be represented by a tree, as we show in Lemma 4.1.

Definition 4.3. (Pieces) A laminar chord set C for
Rout partitions the faces of Rout into pieces, excluding
the face on @R. Two faces f, g are in the same piece i↵
f⇤ and g⇤ are connected by a path in (Rout)⇤ that avoids
the duals of edges in C and edges along the boundary
cycle on @R. A piece is regarded as the subgraph induced
by its faces, i.e., it includes their constituent vertices
and edges. Two pieces P1, P2 are adjacent if there is
an edge e on the boundary of P1 and P2 and e is in a
unique chord of C. See Figure 4.

Lemma 4.1. Suppose C is a laminar chord set for Rout,
P = P(C) is the corresponding piece set and E are pairs
of adjacent pieces. Then T = (P, E) is a tree, called the
piece tree induced by C.

Proof. The claim is clearly true when C contains zero or
one chords, so we will try to reduce the general case to

this case via a peeling argument. We will find a piece P
with degree 1 in T , remove it and the chord bounding it,
and conclude by induction that the truncated instance
is a tree. Reattaching P implies T is a tree.

Let C = ��!c0c1 2 C be a chord such that no
edge of any other chord appears strictly to one side
of C, say to the right of C. Let P be the piece to
the right of C. (In Figure 4 the chords bounding
P1, P2, P11, P12 would be eligible to be C.) Let C =
(c0 = v0, v1, v2, . . . , vk = c1) and vj? be such that the
edges of the su�x (vj? , . . . , vk) are on no other chord,
meaning the vertices {vj?+1, . . . , vk�1} are on no other
chord. Let gj be the face to the left of (vj , vj+1).
It follows that there is a path from g⇤

j? to g⇤
k�1 in

(Rout)⇤ that avoids the duals of all edges in C and along
@R. All pieces adjacent to P contain some face among
{gj? , . . . , gk�1}, but these are in a single piece, hence
P corresponds to a degree-1 vertex in T . Let P be
bounded by C and an interval B of the boundary cycle
on @R. Obtain the “new” Rout by cutting along C
and removing P , the new @R by substituting C for B,
and the new chord set C by removing C and trimming
any chords that shared a non-empty prefix with C. By
induction the resulting piece-adjacency graph is a tree;
reattaching P as a degree-1 vertex shows T is a tree.

Definition 4.4. (Occludes Relation) Fix Rout,
chord C, and two faces f, g, neither of which is the hole
defined by @R. If f and g are on opposite sides of C,
we say that from vantage f , C occludes g. Let C be a
set of chords. We say C 2 C is maximal in C with re-
spect to a vantage f if there is no C 0 2 C such that C 0

occludes a strict superset of the faces that C occludes.
(Note that the orientation of chords is irrelevant to the
occludes relation.)

It follows from Definition 4.4 that if C is laminar,
the set of maximal chords with respect to f are exactly
those chords whose own su�xes are on the boundary of
f ’s piece in P(C).

We can also speak unambiguously about a chord C
occluding a vertex or edge not on C, from a certain
vantage. Specifically, we can say that from some
vantage, C occludes an interval of the boundary cycle
on @R, say according to a clockwise traversal around
the hole on @R in Rout.6 This will be used in the
ChordIndicator procedure of Section 4.4.2.

4.2 Data Structures for Navigation. Parts (C)–
(E) of the data structure are used to implement the
SitePathIndicator and ChordIndicator functions.

6
This is one place where we use the assumption that all

boundary holes are simple cycles.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2526

D
ow

nl
oa

de
d

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

(C) (More Voronoi Diagrams) For each i 2 [1,m�
1], each Ri 2 Ri, and each q 2 @Ri, we store
VD⇤

out(q,Ri), which is VD⇤[Rout
i

, @Ri,!], where
!(s) = distG(q, s). The total space for these
diagrams is Õ(n) and dominated by part (B).

(D) (Chord Trees; Piece Trees) For each i 2 [1,m�
1], each Ri 2 Ri, and source q 2 @Ri, we store the
SSSP tree from q with respect to G induced by
@Ri as a chord tree TRi

q
. In particular, the parent

of x 2 @Ri in TRi
q

is the nearest ancestor in the
SSSP tree from q that lies on @Ri. Every edge
of TRi

q
is designated a chord if the corresponding

path is contained in Rout
i

but not in Ri, or a non-
chord otherwise. Define CRi

q
to be the set of all

chords in TRi
q

, oriented away from q; this is clearly
a laminar set since shortest paths are unique and
all prefixes of shortest paths are shortest paths.
Define PRi

q
to be the corresponding partition of

Rout
i

into pieces, and T Ri
q

the corresponding piece
tree. Define TRi

q
[x] to be the path from q to x

in TRi
q

, CRi
q

[x] the corresponding chord set, and
PRi
q

[x] the corresponding piece set.

The data structure answers the following queries

MaximalChord(Ri, q, x, P, P 0): We are given Ri,
q, x 2 @Ri, a piece P 2 PRi

q
, and possibly

another piece P 0 2 PRi
q

(which may be Null).
If P 0 is Null, return any maximal chord in
CRi
q

[x] from vantage P . If P 0 is not Null,
return the maximal chord in CRi

q
[x] (if any)

that occludes P 0 from vantage P .

AdjacentPiece(Ri, q, e): Here e is an edge on the
boundary cycle on @Ri. Return the unique
piece in PRi

q
with e on its boundary.7

(E) (Site Tables; Side Tables) For each i and
Voronoi diagram VD⇤

out = VD⇤
out(u

0, Ri) from part
(B) or (C). Let f⇤ be any node in the centroid
decomposition of VD⇤

out, with yj , sj , j 2 {0, 1, 2}
defined as usual, and let Ri0 2 Ri0 be any ancestor
of Ri, i0 � i. Fix j 2 {0, 1, 2}, define q and x to
be the first and last vertices on the shortest sj-yj
path that lie on @Ri0 . For all VD⇤

out, f
⇤, j and i0, we

store (q, x) and distG(u0, x) with respect to them.

For all VD⇤
out, f

⇤, j and i0, we also store whether
Rout

i0 lies to the left or right of the site-centroid-
site chord ���������!sjyjyj�1sj�1 in Rout

i
, or Null if the

relationship cannot be determined, i.e., if the chord

7
This is another place where we use the assumption that holes

are bounded by simple cycles.

crosses @Ri0 . These tables increase the space of (B)
and (C) by a small O(m) factor.

Part (D) of the data structure is the only one that
is non-trivial to store compactly. Our strategy is as
follows. We fix Ri and q 2 @Ri and build a dynamic
data structure for these operations relative to a dynamic
subset Ĉ ✓ CRi

q
subject to the insertion and deletion

of chords in O(log |@Ri|) time. By inserting/deleting
O(|@Ri|) chords in the correct order, we can arrange
that Ĉ = CRi

q
[x] at some point in time, for every x 2

@Ri. Using the generic persistence technique for RAM
data structures (see [12]) we can answer MaximalChord
queries relative to CRi

q
[x] in O(log |@Ri| log log |@Ri|)

time.8

Lemma 4.2. Part (D) of the data structure can
be stored in O(mn log n) total space and answer
MaximalChord queries in O(log n log log n) time and
AdjacentPiece queries in O(1) time.

Proof. We first address MaximalChord. Let T =
T Ri
q

be the piece tree. The edges of T are in 1-
1 correspondence with the chords of C = CRi

q
and if

P, P 0 2 P = PRi
q

are two pieces, the path from P
to P 0 in T crosses exactly those chords that occlude
P 0 from vantage P (and vice versa). We will argue
that to implement MaximalChord it su�ces to design
an e�cient dynamic data structure for the following
problem; initially all edges are unmarked.

Mark(e) Mark an edge e 2 E(T).

Unmark(e) Unmark e.

LastMarked(P 0, P) Return the last marked edge on
the path from P 0 to P , or Null if all are unmarked.

By doing a depth-first traversal of the chord tree
TRi
q

, marking/unmarking chords as they are encoun-
tered, the set {e 2 E(T) | e is marked} will be equal
to CRi

q
[x] precisely when x is first encountered in DFS.

To answer a MaximalChord(Ri, q, x, P, P 0) query we
interact with the state of the data structure when
the marked set is CRi

q
[x]. If P 0 is not null we re-

turn LastMarked(P 0, P). Otherwise we pick an ar-
bitrary (marked) chord C 2 CRi

q
[x], get the adja-

cent pieces P 0
1, P

0
2 on either side of C, then query

LastMarked(P 0
1, P) and LastMarked(P 0

2, P). At
least one of these queries will return a chord and that

8
Our data structure works in the pointer machine model, but it

has unbounded in-degrees so the theorem of Driscoll et al. [15, 35]

cannot be applied directly. It is probably possible to improve

the bound to O(log |@Ri|) but this is not a bottleneck in our

algorithm.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2527

D
ow

nl
oa

de
d

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

chord is maximal w.r.t. vantage P . (Note that C must
separate P from either P 0

1 or P 0
2.)

The full version [30] shows how to support these
operations in O(log n) worst case time. A more sophis-
ticated data structure of Brodal et al. [6] improves this
to optimal O(log n/ log log n) time.

For fixed Ri, q 2 @Ri there are O(|@Ri|) Mark
and Unmark operations, each taking O(log n) time.
Over all choices of i, Ri, and q the total update time
is O(mn log n). After applying generic persistence for
RAM data structures (see [12]) the space becomes
O(mn log n) and the query time for LastMarked be-
comes O(log n log log n).

Turning to AdjacentPiece(Ri, q, e), there are |@Ri|2
choices of (q, e). Hence all answers can be precomputed
in a lookup table in O(mn) space.

4.3 The SitePathIndicator Function. The
SitePathIndicator function is relatively simple. We are
given VD⇤

out(ui, Ri+1), v 2 Rout
i+1, a centroid f⇤ 2 Rout

i+1,
f being a trichromatic face on y0, y1, y2, which are,
respectively, in the Voronoi cells of s0, s1, s2 2 @Ri+1,
and an index j 2 {0, 1, 2}. We would like to know if v
is on the shortest sj-to-yj path. Recall that t is such
that v 62 Rt but v 2 Rt+1.

Using the lookup tables in part (E) of the data
structure, we find the first and last vertices (q and x)
of @Rt on the sj-yj path. If q, x do not exist then v is
certainly not on the sj-yj path (Line 4). Using parts
(A,C,E) of the data structure, we invoke PointLocate
to find the last point z of @Rt on the shortest path
(in G) from q to v. (See Lemma 3.1.) If z is not on
the path from q to x in G (which corresponds to it not
being on the path from q to x in TRt

q
, stored in Part

(D)), then once again v is certainly not on the sj-yj
path (Line 8). So we may assume z lies on the q-x
path. If z = x then there are three cases to consider,
depending on whether the destination yj of the path is
in Rout

t
\Rt+1, or in Rout

t+1, or in Rt. If yj 2 Rout
t
\Rt+1

we let x0 = yj ; if yj /2 Rt+1 we let x0 be the last vertex
of @Rt+1 encountered on the shortest sj-yj path (part
(E)); and if yj /2 Rout

t
we let x0 = x. In all cases, x0 is the

last vertex of the shortest sj-yj path that is contained
in the relevant subgraph Rout

t
\ Rt+1. (Figure 5(a,b)

illustrates the first two possibilities for x0.) Now v is on
the sj-yj path i↵ it is on the x-x0 shortest path, which
can be answered using part (A) of the data structure
(Lines 13, 15). (Figure 5(b) illustrates one way for v
to appear on the x-x0 path.) In the remaining case
z is on the shortest q-x path but is not x, meaning

the child z0 of z on TRt
q

[x] is well defined. If
�!
zz0 is a

chord (corresponding to a path in Rout
t

) then v is on
the shortest sj-yj path i↵ it is on the shortest z-z0 path

in Rout
t

, which, once again, can be answered with part
(A) of the data structure (Lines 19, 21). See Figure 5(a)
for an illustration of this case.

Remark 4.1. Strictly speaking we cannot apply
Lemma 2.2 (Gawrychowski et al. [19]) since we do not
have an MSSP structure for all of Rout

t
. Part (A) only

handles distance/LCA queries when the query vertices
are in Rout

t
\ Rt+1. It is easy to make Gawrychowski

et al.’s algorithm work using parts (A) and (E) of
the data structure. See the discussion at the end of
Section 4.4.3.

Algorithm 4 SitePathIndicator(VD⇤
out(ui, Ri+1), v, f⇤, j)

Input: The dual representation VD⇤
out(ui, Ri+1) of a

Voronoi diagram, a vertex v 2 Rout
i+1, and an sj-to-

yj site-centroid shortest path (sj , yj are with respect
to f⇤) in VD⇤.

Output: True if v is on sj-to-yj shortest path, or
False otherwise.

1: Rt the ancestor of Ri s.t. v /2 Rt, v 2 Rt+1.
2: (q, x) first and last @Rt vertices on the shortest

sj-yj path.
3: if q, x are Null then
4: return False
5: end if
6: z PointLocate(VD⇤

out(q,Rt), v)
7: if z is not on TRt

q
[x] then

8: return False
9: end if

10: if z = x then
11: Let x0 be

8
><

>:

yj , if yj 2 Rout
t
\Rt+1;

last @Rt+1 vertex on sj-yj path, if yj 62 Rt+1;

x, if yj 62 Rout
t

.

12: if v is on the shortest x-x0 path then
13: return True
14: end if
15: return False
16: end if
17: z0 the child of z on TRt

q
[x]

18: if
�!
zz0 is a chord in CRt

q
[x] and v is on the shortest

z-z0 path in Rout
t

then
19: return True
20: end if
21: return False

4.4 The ChordIndicator Function. The
ChordIndicator function is given VD⇤

out(ui, Ri+1),
v 2 Rout

i+1, a centroid f⇤, with {yj , sj} defined as usual,

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2528

D
ow

nl
oa

de
d

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

(a) (b)

Figure 5: (a) If z = x and yj is not in Rt+1, x0 is the last boundary vertex of @Rt+1 on the sj-yj path. (b) If
z = x and yj is in Rout

t
\Rt+1 then x0 = yj . (Not depicted: if yj 2 Rt then x0 = x.) We test whether v is on the

shortest x-x0 path. If z 6= x then z0 is well defined and the position of yj is immaterial; we test whether v is on
the shortest z-z0 path (depicted in (a)).

and an index j 2 {0, 1, 2}. The goal is to report
whether v lies to right of the oriented site-centroid-site
chord

C? = ���������!sjyjyj�1sj�1,

which is composed of the shortest sj-yj and sj�1-yj�1

paths, and the single edge {yj , yj�1}. Note that C⇤ is a
simple path since the shortest sj-yj and sj�1-yj�1 paths
belong to di↵erent Voronoi cells. See Figure 3 as an
illustration. It is guaranteed that v does not lie on C?,
as this case is already handled by the SitePathIndicator
function.

Figure 6 illustrates why this point location problem
is so di�cult. Since we know v 2 Rt+1 but not in Rt,
we can narrow our attention to Rout

t
\ Rt+1. However

the projection of C? onto Rout
t

can touch the boundary
@Rt an arbitrary number of times. Define C to be the
set of oriented chords of Rout

t
obtained by projecting C?

onto Rout
t

.
Luckily C has some structure. Let (qj , xj) and

(qj�1, xj�1) be the first and last @Rt vertices on the
shortest sj-yj and sj�1-yj�1 paths, respectively. (One
or both of these pairs may not exist.) The chords of
C are in one-to-one correspondence with the chords of
C1[C2[C3, defined below, but as we will see, sometimes
with their orientation reversed.

C1: By definition C1 = CRt
qj

[xj] contains all the chords
on the path from qj to xj , stored in part (D) of
the data structure. Moreover, the orientation of C1

agrees with the orientation of C?. The blue chords
of Figure 6(a) are isolated as C1 in Figure 6(b).

C2 : By definition C2 = CRt
qj�1

[xj�1] contains all the
chords on the path from qj�1 to xj�1. The red
chords of C in Figure 6(a) are represented by chords
C2, but with reversed orientation. Figure 6(c)
depicts C2.

C3 : This is the singleton set containing the oriented
chord ����!xjxj�1 consisting of the shortest xj-yj and
xj�1-yj�1 paths and the edge {yj , yj�1}.

The chord set C partitions Rout
t

into a piece set P,
with one such piece P 2 P containing v. (Remember
that v is not on C?.) We can also consider the piece sets
P1,P2,P3 generated by C1, C2, C3. Let P1 2 P1, P2 2
P2, P3 2 P3 be the pieces containing v. Since, ignoring
orientation, C = C1 [C2 [C3, it must be that P =
P1 \ P2 \ P3. In order to determine whether v is to
the right of C?, it su�ces to find some chord C 2 C
bounding P and ask whether v is to the right of C.
Thus, C must also be on the boundary of one of P1, P2,
or P3.

The high-level strategy of ChordIndicator is as
follows. First, we will find some piece P 0

1 2 PRt
qj

that
is contained in P1 using the procedure PieceSearch
described below, in Section 4.4.1. The chords of C1
bounding P1 are precisely themaximal chords in C1 from
vantage P 0

1. Using MaximalChord (part (D)) we will

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2529

D
ow

nl
oa

de
d

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

(a) (b) (c) (d)

Figure 6: (a) The projection of a site-centroid-site chord C? = ���������!sjyjyj�1sj�1 of Rout
i+1 onto Rout

t
yields a set C of

chords of Rout
t

, partitioned into three classes. Let qj , xj and qj�1, xj�1 be the first and last @Rt-vertices on the
sj-yj and sj�1-yj�1 paths. (b) C1: all chords in TRt

qj
[xj]. (c) C2: all chords in TRt

qj�1
[xj�1]. Their orientation is

the reverse of their counterparts in C?. (d) C3: the single chord ���������!xjyjyj�1xj�1.

find a candidate chord C1 2 C1, and one edge e on the
boundary cycle of @Rt occluded by C1 from vantage P 0

1.
Turning to C2, we use AdjacentPiece to find the piece
Pe 2 PRt

qj�1
adjacent to e. Then, using PieceSearch and

MaximalChord again, we find a P 0
2 2 PRt

qj�1
contained in

P2 and the maximal chord C2 occluding Pe from vantage
P 0
2. Let C3 be the singleton chord in C3. We determine

an “eligible” chord C` 2 {C1, C2, C3}, decide whether v
lies to the right of C`, and return this answer if ` 2 {1, 3}
or reverse it if ` = 2. Recall that chords in C2 have the
opposite orientation as their counterparts in C.

PieceSearch is presented in Section 4.4.1 and
ChordIndicator in Section 4.4.2.

4.4.1 PieceSearch. We are given a region Rt, a ver-
tex v 2 Rout

t
\ Rt+1, and two vertices q, x 2 @Rt. We

must locate any piece P 0 2 PRt
q

that is contained in
the unique piece P 2 PRt

q
[x] containing v. The first

thing we do is find the last @Rt vertex z on the short-
est path from q to v, which can be found with a call to
PointLocate on VD⇤

out(q,Rt). (This uses parts (A,C,E)
of the data structure.) The shortest path from z to v
cannot cross any chord in CRt

q
[x] (since they are part of

a shortest path tree), but it can coincide with a prefix
of some chord in CRt

q
[x]. Thus, if no chord of CRt

q
[x]

is incident to z, then we are free to return any piece
containing z. (There may be multiple options if z is an
endpoint of a chord in CRt

q
. This case is depicted in Fig-

ure 7. When z = z0, we know that v 2 P5[· · ·[P9 and
return any piece containing z.) In general z may be inci-
dent to up to two chords C1, C2 2 CRt

q
[x]. (This occurs

when the shortest q-x path touches @Rt at z without
leaving Rout

t
.) In this case we determine which side of

C1 and C2 v is on (using parts (A) and (E) of the data
structure; see Lemma 4.3 in Section 4.4.3 for details)
and return the appropriate piece adjacent to C1 or C2.
This case is depicted in Figure 7 with z = z1; the three
possible answers coincide with v 2 {v1, v2, v3}.

Algorithm 5 PieceSearch(Rt, q, x, v)

Input: A region Rt, two vertices q, x 2 @Rt, and a
vertex v not on the q-to-x shortest path in G.

Output: A piece P 0 2 PRt
q

, which is a subpiece of the
unique piece P 2 PRt

q
[x] containing v.

1: z PointLocate(VD⇤
out(q,Rt), v)

2: if z is not the endpoint of any chord in CRt
q

[x] then
3: return any piece in PRt

q
containing z.

4: end if
5: C1, C2 two chords in CRt

q
[x] adjacent to z (C2

may be Null)
6: Determine whether v is to the left or right of C1 and

C2.
7: return a piece adjacent to C1 or C2 that respects

the queries of Line 6.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2530

D
ow

nl
oa

de
d

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

Figure 7: Solid chords are in CRt
q

[x]. Dashed chords
are in CRt

q
but not CRt

q
[x]. When z = z0, v = v0, the

piece in PRt
q

[x] containing v is the union of P5–P9.
PieceSearch reports any piece containing z0. When
z = z1, v 2 {v1, v2, v3}, z is incident to two chords
C1, C2. PieceSearch decides which side of C1, C2 v is
on (see Lemma 4.3), and returns the appropriate piece
adjacent to C1 or C2.

4.4.2 ChordIndicator. Let us walk through the
ChordIndicator function. If C? = ���������!sjyjyj�1sj�1 does
not touch the interior of Rout

t
then the left-right rela-

tionship between C? and v 62 Rt is known, and stored
in part (E) of the data structure. If this is the case the
answer is returned immediately, at Line 3. A relatively
simple case is when C1 and C2 are empty, and C = C3
consists of just one chord C3 = ���������!xjyjyj�1xj�1. We de-
termine whether v is to the right or left of C3 and return
this answer (Line 8). (Lemma 4.3 in Section 4.4.3 ex-
plains how to test whether v is to one side of a chord.)
Thus, without loss of generality we can assume C1 6= ;
and C2 may or may not be empty.

Recall that P1 is v’s piece in PRt
qj

[xj]. Using
PieceSearch we find a piece P 0

1 ✓ P1 in the more
refined partition PRt

qj
and find a maximal chord C1 2 C1

from vantage P 0
1, and hence from vantage v as well.

We regard @Rt as circularly ordered according to a
clockwise walk around the hole on @Rt in Rout

t
. The

chord C1 occludes an interval I1 of @Rt from vantage v.
If C1 is not one of the chords bounding P , then C3 or
some C2 2 C2 must occlude a superset I2 of I1, so we
will attempt to find such a C2, as follows.

Let e be the first edge on the boundary cycle
occluded by C1, i.e., e joins the first two elements
of I1. Using AdjacentPiece we find the unique piece

Algorithm 6 ChordIndicator(VD⇤
out(ui, Ri+1), v, f⇤, j)

Input: The dual representation VD⇤
out =

VD⇤
out(ui, Ri+1) of a Voronoi diagram, a cen-

troid f⇤ in VD⇤
out with face f on vertices y0, y1, y2,

which are in the Voronoi cells of s0, s1, s2, an index
j 2 {0, 1, 2}, and a vertex v 2 Rout

i+1 that does not lie
on the site-centroid-site chord C? = ���������!sjyjyj�1sj�1.

Output: True if v lies to the right of C?, and False
otherwise.

1: Rt the ancestor of Ri s.t. v /2 Rt, v 2 Rt+1. C is
the projection of C? onto Rout

t
.

2: if the left/right relationship between Rout
t

and C? =
���������!sjyjyj�1sj�1 is known then

3: return stored True/False answer.
4: end if
5: (qj , xj) first and last @Rt-vertices on shortest sj-

yj path.
6: (qj�1, xj�1) first and last @Rt-vertices on short-

est sj�1-yj�1 path.
7: if C1 = C2 = ; then
8: return True if v is to the right of the C3-chord���������!xjyjyj�1xj�1, or False otherwise.
9: end if

10: P 0
1 PieceSearch(Rt, qj , xj , v)

11: C1 MaximalChord(Rt, qj , xj , P 0
1,?)

12: I1 the clockwise interval of hole @Rt occluded by
C1 from vantage v.

13: e edge joining first two elements of I1.
14: Pe AdjacentPiece(Rt, qj�1, e)
15: P 0

2 PieceSearch(Rt, qj�1, xj�1, v)
16: C2 MaximalChord(Rt, qj�1, xj�1, P 0

2, Pe)
17: I2 the clockwise interval of hole @Rt occluded by

C2 from vantage v.
18: C3 single chord in C3, if any.
19: I3 the clockwise interval of hole @Rt occluded by

C3 from vantage v.
20: ` index such that I` covers e, and |I`| is maxi-

mum.
21: if v is to the right of C` and ` 2 {1, 3} or v is to the

left of C` and ` = 2 then
22: return True
23: end if
24: return False

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2531

D
ow

nl
oa

de
d

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

(a) (b) (c)

Figure 8: The intervals I1, I2, I3 are represented as pink circular arcs. The edge e is the first edge of I1 in a
clockwise walk around the hole bounded by @Rt in Rout

t
. (Note that in this drawing the hole on @Rt is the infinite

face. Thus, a clockwise walk around @Rt looks like a counter-clockwise walk in the plane.) In (a) C2 exists and
C3 is eligible since I3 � I2 � I1. In (b) C2 exists, but C3 occludes an interval I3 that does not contain e, so C2 is
an eligible chord. In (c) C2 is Null, and C3 does not occlude e from v, so C1 is the only eligible chord. (In the
figure I3 ⇢ I1 but it could also be as in (b), with I3 disjoint from I1.)

Pe 2 PRt
qj�1

with e on its boundary. Using PieceSearch

again we find P 0
2 2 PRt

qj�1
contained in P2, and using

MaximalChord again, we find the maximal chord C2 2
C2 that occludes Pe from vantage P 0

2, and hence from
vantage v as well. Observe that since all chords in C2
are vertex-disjoint from C1, if C2 6= Null then C2 must
occlude a strictly larger interval I2 � I1 of @Rt. (If C2 is
Null then I2 = ;.) It may be that C1 and C2 are both
not on the boundary of P , but the only way that could
occur is if C3 2 C3 occludes a superset of I1 and I2 on
the boundary @Rt. We check whether v lies to the right
or left of C3 and let I3 be the interval of @Rt occluded
by C3 from vantage v. If I3 does not cover e, then we
cannot conclude that C3 is superior than C1/C2. Thus,
we find the chord C` 2 {C1, C2, C3} that covers e and
maximizes |I`|. C` must be on the boundary of P , so
the left-right relationship between v and C? is exactly
the same as the left-right relationship between v and C`,
if ` 2 {1, 3}, and the reverse of this relationshp if ` = 2
since chords in C2 have the opposite orientation as their
subpath counterparts in C?. Figure 8 illustrates how `
could take on all three values.

4.4.3 Side Queries. Lemma 4.3 explains how we
test whether v is to the right or left of a chord, which
is used in both PieceSearch and ChordIndicator.

Lemma 4.3. For any C 2 C1 [C2 [C3 and v not on C,
we can test whether v lies to the right or left of C in
O( log log n) time, using parts (A) and (E) of the data
structure.

Proof. There are several cases.
Case 1. Suppose that C = ��!c0c1 2 C1 [C2 cor-

responds to the shortest path from c0 to c1 in Rout
t

,
c0, c1 2 @Rt. Let c00, c

0
1 be pendant vertices attached

to c0, c1 embedded inside the face of Rout
t

bounded by
@Rt. The shortest c00-v and c00-c

0
1 paths branch at some

point. We ask the MSSP structure (part (A)) for the
least common ancestor, w, of v and c01 in the shortcut-
ted SSSP tree rooted at c00. This query also returns
the two tree edges ev, ec01 leading to v and c01, respec-
tively. Let ew be the edge connecting w to its parent.9

If the clockwise order around w is ew, ec01 , ev then v lies
to the right of ��!c0c1; otherwise it lies to the left. Note
that if the shortest c00-c

0
1 and c00-v paths in G branch

at a point in Rout
t+1, then w will be the nearest ancestor

of the branchpoint on @Rt+1 and one or both of ev, ec01
may be “shortcut” edges in the MSSP structure. See
Figure 9(a) for a depiction of this case.

Case 2. Now suppose C = ���������!xjyjyj�1xj�1 is the one

chord in C3. Consider the following distance function d̂
for vertices in z 2 Rout

t
: d̂(z) = min{distG(ui, xj) +

distRout
t

(xj , z), distG(ui, xj�1) + distRout
t

(xj�1, z)}. Ob-
serve that the terms involving ui are stored in part (E)
and, if z 2 Rout

t
\Rt+1, the other terms can be queried

in O( log log n) time using part (A). It follows that the

9
The purpose of adding c

0
0, c

0
1 is to make sure all three edges

ew, ev , ec01
exist. The vertices c

0
0, c

0
1 are not represented in the

MSSP structure. The edges (c
0
0, c0) and (c1, c

0
1) can be simulated

by inserting them between the two boundary edges on @Rt

adjacent to c0 and c1, respectively.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2532

D
ow

nl
oa

de
d

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

(a) (b) (c)

Figure 9: (a) The chord C 2 C1[C2 corresponds to a shortest path, which may pass through Rout
t+1, in which case it

is represented in the MSSP structure with shortcut edges (solid, angular edges). (b) The chord C = ���������!xjyjyj�1xj�1

is in C3, and f lies in Rout
t
\Rt+1. This is handled similarly to (a). (c) Here f lies in Rout

t+1, x̂j , x̂j�1 are the last
@Rt+1 vertices on the sj-yj and sj�1-yj�1 paths. If the shortest x0

j
-x̂j and x0

j
-v paths branch, we can answer the

query as in (b). If x0
j
-x̂j is a prefix of x0

j
-v, ev = (x̂j , v̂), and v̂ 2 @Rt+1, then we can use the clockwise order of

x̂j , v̂, x̂j�1 around the hole on @Rt+1 to determine whether v lies to the right of C. (Not depicted: the case when
v̂ 62 @Rt+1.)

shortest path forest w.r.t. d̂ has two trees, rooted at xj

and xj�1. Using part (A) of the data structure we com-

pute d̂(v), which reveals the j? 2 {j, j � 1} such that v
is in xj? ’s tree. At this point we break into two cases,
depending on whether f is in Rout

t
\ Rt+1, or in Rout

t+1.
We assume j? = j without loss of generality and depict
only this case in Figure 9(b,c).

Case 2a. Suppose that f is in Rout
t
\ Rt+1. Let

y0
j
be a pendant vertex attached to yj embedded inside

f and let x0
j
be a pendant attached to xj embedded

in the face on @Rt. The shortest x0
j
-y0

j
and x0

j
-v paths

diverge at some point. We query the MSSP structure
(part (A)) to get the least common ancestor w of y0

j

and v and the three edges ey0
j
, ev, ew around w, then

determine the left/right relationship as in Case 1. (If
j? = j � 1 then we would reverse the answer due to the
reversed orientation of the xj�1-yj�1 subpath w.r.t. C.)
Once again, some of ey0

j
, ev, ew may be shortcut edges

between @Rt+1-vertices or artificial pendant edges. See
Figure 9(b)

Case 2b. Now suppose f lies in Rout
t+1. We get

from part (E) the last vertices x̂j , x̂j�1 2 @Rt+1 that
lie on the sj-yj and sj�1-yj�1 shortest paths. We ask
the MSSP structure of part (A) for the least common
ancestor w of x̂j and v in the shortcutted SSSP tree
rooted at x0

j
, and also get the three incident edges

ex̂j , ev, ew. The edges ev and ew exist and are di↵erent,
but ex̂j may not exist if w = x̂j , i.e., if v is a descendant
of x̂j . If all three edges {ex̂j , ev, ew} exist we can
determine whether v lies to the right of C as in Case
1 or 2a.

Case 2b(i). Suppose w = x̂j and ex̂j does not
exist. Let ev = (x̂j , v̂). If v̂ 2 @Rt+1 then ev represents

a path that is completely contained in Rout
t+1. Thus, if

we walk clockwise around the hole of Rout
t+1 on @Rt+1

and encounter x̂j , v̂, x̂j�1 in that order then v lies to
the right of C, and if we encounter them in the reverse
order then v lies to the left of C. See Figure 9(c).

Case 2b(ii). Finally, suppose v̂ 62 @Rt+1 and ev =
(x̂j , v̂) is a normal edge in G. Redefine ex̂j to be the
first edge on the path from x̂j to yj .10 Now we can
determine if v is to the right of C by looking at the
clockwise order of ew, ev, ex̂j around x̂j .

As pointed out in Remark 4.1, Lemma 2.1 does not
immediately imply that Line 6 of SitePathIndicator
and Line 1 of PieceSearch can be implemented ef-
ficiently. Gawrychowski et al.’s [19] implementa-
tion of PointLocate requires MSSP access to Rout

t
,

whereas part (A) only lets us query vertices in Rout
t
\

Rt+1. Gawrychowski et al.’s algorithm is identical to
CentroidSearch, except that Navigation is done di-
rectly with MSSP structures. Suppose we are currently
at f⇤ in the centroid decomposition, with yj , sj defined
as usual. Gawrychowski’s algorithm finds j minimizing
!(sj)+distRout

t
(sj , v) using three distance queries to the

MSSP structure, then decides whether the s0
j
-v shortest

path is a prefix of the s0
j
-y0

j
shortest path, and if not,

which direction it branches in.11 If f is in Rout
t
\ Rt+1

we can proceed exactly as in Gawrychowski et al. [19]. If

10
We could store ex̂j

in part (E) of the data structure but

that is not necessary. If e0, e1 are the edges adjacent to x̂j on

the boundary cycle of @Rt+1, then we can use any member of

{e0, e1}\{ew} as a proxy for ex̂j
.

11
s
0
j , y

0
j being pendant vertices attached to sj , yj , as in

Lemma 4.3.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2533

D
ow

nl
oa

de
d

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

not, we retrieve from part (E) the last vertex x̂ of @Rt+1

on the sj-yj shortest path, use x̂ in lieu of y0
j
for the LCA

queries, and tell whether the s0
j
-v path branches to the

right exactly as in Lemma 4.3, Case 2b.

5 Analysis

This section constitutes a proof of the claims of The-
orem 1.1 concerning space complexity and query time;
refer to Appendix C in the full version for an e�cient
construction algorithm.

Combining Lemmas 2.1 and 2.2 (see Section 4.4.3),
PointLocate runs in O( log n log log n) time. To-
gether with Lemma 4.3 it follows that PieceSearch
also takes O( log n log log n) time. SitePathIndicator
uses PointLocate, the MSSP structure, and O(1)-time
tree operations on TRi

q
and the ~r-division like least

common ancestors and level ancestors [21, 4, 5, 20].
Thus SitePathIndicator also takes O( log n log log n)
time. The calls to MaximalChord and AdjacentPiece
in ChordIndicator take O(log n log log n) time by
Lemma 4.2, and testing which side of a chord v lies
on takes O( log log n) time by Lemma 4.3. The bot-
tleneck in ChordIndicator is still PieceSearch, which
takes O( log n log log n) time. The only non-trivial
parts of Navigation are calls to SitePathIndicator and
ChordIndicator, so it, too, takes O( log n log log n)
time.

An initial call to CentroidSearch (Line 5 of
Dist) generates at most log n recursive calls to
CentroidSearch, culminating in the last recursive call
making 1 or 2 calls to Dist with the “i” parameter in-
cremented. Excluding the cost of recursive calls to Dist,
the cost of CentroidSearch is dominated by calls to
Navigation, i.e., an initial call to CentroidSearch costs
log n · O( log n log log n) = O( log2 n log log n) time.
Let T (i) be the cost of a call to Dist(ui, v, Ri). In the
worst case that t = m� 1, we have

T (m� 1) = O( log log n)

T (i) = 2T (i+ 1) +O( log2 n log log n)

It follows that the time to answer a distance query is
T (0) = O(2m ·  log2 n log log n).

The space complexity of each part of the data
structure is as follows. (A) is O(mn1+1/m+1/) by
Lemma 2.1 and the fact that ri+1/ri = n1/m. (B)
is O(mn1+1/(2m)) since

p
ri+1/ri = n1/(2m). (C)

is O(mn) since
P

i
n/ri · (

p
ri)2 = O(mn). (D) is

O(mn log n) by Lemma 4.2, and (E) is O(m) times the
space cost of (B) and (C), namely O(m2n1+1/(2m)). The
bottleneck is (A).

We now explain how m, can be selected to achieve
the extreme space and query complexities claimed The-

orem 1.1. To optimize for query time, pick  = m to
be any function of n that is !(1) and o(log log n). Then
the query time is

O(2m log2 n log log n) = log2+o(1) n

and the space is

O(mn1+1/m+1/) = n1+o(1).

To optimize for space, choose  = log n and m to be a
function that is !(log n/ log log n) and o(log n). Then
the space is

O(mn1+1/m+1/) = o(n1+1/m log2 n)

= n · 2o(log logn) · log2 n

= n log2+o(1) n,

and the query time

O(2m log2 n log log n) = 2o(logn) log3 n log log n

= no(1).

References

[1] Ittai Abraham and Cyril Gavoille. On approximate
distance labels and routing schemes with a�ne stretch.
In Proceedings of the 25th International Symposium on

Distributed Computing (DISC), volume 6950 of Lecture
Notes in Computer Science, pages 404–415, 2011.

[2] Rachit Agarwal. The space-stretch-time tradeo↵ in
distance oracles. In Proceedings of the 22nd European

Symposium on Algorithms (ESA), volume 8737 of Lec-
ture Notes in Computer Science, pages 49–60, 2014.

[3] Srinivasa Rao Arikati, Danny Z. Chen, L. Paul Chew,
Gautam Das, Michiel H. M. Smid, and Christos D.
Zaroliagis. Planar spanners and approximate shortest
path queries among obstacles in the plane. In Proceed-

ings 4th Annual European Symposium on Algorithms

(ESA), volume 1136 of Lecture Notes in Computer Sci-

ence, pages 514–528, 1996.
[4] Michael A. Bender and Martin Farach-Colton. The

LCA problem revisited. In Proceedings of the 4th

Latin American Symposium on Theoretical Informatics

(LATIN), volume 1776 of Lecture Notes in Computer

Science, pages 88–94. Springer, 2000.
[5] Michael A. Bender and Martin Farach-Colton. The

level ancestor problem simplified. Theor. Comput. Sci.,
321(1):5–12, 2004.

[6] Gerth Stølting Brodal, Pooya Davoodi, and S Srinivasa
Rao. Path minima queries in dynamic weighted trees.
In Proceedings 12th Int’l Symposium on Algorithms

and Data Structures (WADS), volume 6844 of Lecture
Notes in Computer Science, pages 290–301, 2011.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2534

D
ow

nl
oa

de
d

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

[7] Sergio Cabello. Many distances in planar graphs.
Algorithmica, 62(1-2):361–381, 2012.

[8] Sergio Cabello. Subquadratic algorithms for the diam-
eter and the sum of pairwise distances in planar graphs.
ACM Trans. Algorithms, 15(2):21:1–21:38, 2019.

[9] Panagiotis Charalampopoulos, Pawe l Gawrychowski,
Shay Mozes, and Oren Weimann. Almost optimal
distance oracles for planar graphs. In Proceedings of the

51st Annual ACM Symposium on Theory of Computing

(STOC), pages 138–151, 2019.
[10] Danny Z. Chen and Jinhui Xu. Shortest path queries

in planar graphs. In Proceedings of the 32nd Annual

ACM Symposium on Theory of Computing (STOC),
pages 469–478, 2000.

[11] Vincent Cohen-Addad, Søren Dahlgaard, and Chris-
tian Wul↵-Nilsen. Fast and compact exact distance
oracle for planar graphs. In Proceedings 58th Annual

IEEE Symposium on Foundations of Computer Science

(FOCS), pages 962–973, 2017.
[12] Paul F. Dietz. Fully persistent arrays. In Proceedings

of the First Workshop on Algorithms and Data Struc-

tures (WADS), volume 382 of Lecture Notes in Com-

puter Science, pages 67–74, 1989.
[13] Martin Dietzfelbinger, Anna R. Karlin, Kurt

Mehlhorn, Friedhelm Meyer auf der Heide, Hans
Rohnert, and Robert Endre Tarjan. Dynamic perfect
hashing: Upper and lower bounds. In Proceedings of

the 29th Annual IEEE Symposium on Foundations of

Computer Science (FOCS), pages 524–531, 1988.
[14] Hristo Djidjev. On-line algorithms for shortest path

problems on planar digraphs. In Proceedings of

the 22nd International Workshop on Graph-Theoretic

Concepts in Computer Science (WG), volume 1197 of
Lecture Notes in Computer Science, pages 151–165,
1996.

[15] James R. Driscoll, Neil Sarnak, Daniel Dominic
Sleator, and Robert Endre Tarjan. Making data struc-
tures persistent. J. Comput. Syst. Sci., 38(1):86–124,
1989.

[16] Je↵ Erickson, Kyle Fox, and Luvsandondov Lkham-
suren. Holiest minimum-cost paths and flows in sur-
face graphs. In Proceedings of the 50th Annual ACM

Symposium on Theory of Computing (STOC), pages
1319–1332, 2018.

[17] Jittat Fakcharoenphol and Satish Rao. Planar graphs,
negative weight edges, shortest paths, and near linear
time. J. Comput. Syst. Sci., 72(5):868–889, 2006.

[18] Greg N. Frederickson. Fast algorithms for shortest
paths in planar graphs, with applications. SIAM J.

Comput., 16(6):1004–1022, 1987.
[19] Pawel Gawrychowski, Shay Mozes, Oren Weimann,

and Christian Wul↵-Nilsen. Better tradeo↵s for exact
distance oracles in planar graphs. In Proceedings of

the 29th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 515–529, 2018.
[20] Torben Hagerup. Still simpler static level ancestors.

CoRR, abs/2005.11188, 2020.
[21] Dov Harel and Robert Endre Tarjan. Fast algorithms

for finding nearest common ancestors. SIAM J. Com-

put., 13(2):338–355, 1984.
[22] Monika Rauch Henzinger and Valerie King. Random-

ized fully dynamic graph algorithms with polylogarith-
mic time per operation. J. ACM, 46(4):502–516, 1999.

[23] Donald B. Johnson. E�cient algorithms for shortest
paths in sparse networks. J. ACM, 24(1):1–13, 1977.

[24] Ken-ichi Kawarabayashi, Philip N. Klein, and Chris-
tian Sommer. Linear-space approximate distance ora-
cles for planar, bounded-genus and minor-free graphs.
In Proceedings of the 38th Int’l Colloquium on Au-

tomata, Languages and Programming (ICALP), vol-
ume 6755 of Lecture Notes in Computer Science, pages
135–146, 2011.

[25] Ken-ichi Kawarabayashi, Christian Sommer, and
Mikkel Thorup. More compact oracles for approximate
distances in undirected planar graphs. In Proceedings

of the 24th ACM-SIAM Symposium on Discrete Algo-

rithms (SODA), pages 550–563, 2013.
[26] Philip Klein. Preprocessing an undirected planar

network to enable fast approximate distance queries.
In Proceedings of the 13th ACM-SIAM Symposium on

Discrete Algorithms (SODA), pages 820–827, 2002.
[27] Philip N. Klein. Multiple-source shortest paths in pla-

nar graphs. In Proceedings of the 16th Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA),
pages 146–155, 2005.

[28] Philip N. Klein, Shay Mozes, and Christian Sommer.
Structured recursive separator decompositions for pla-
nar graphs in linear time. In Proceedings of the 45th

Annual ACM Symposium on Theory of Computing

(STOC), pages 505–514, 2013.
[29] Richard J. Lipton and Robert Endre Tarjan. Applica-

tions of a planar separator theorem. SIAM J. Comput.,
9(3):615–627, 1980.

[30] Yaowei Long and Seth Pettie. Planar distance
oracles with better time-space tradeo↵s. CoRR,
abs/2007.08585, 2020.

[31] Gary L. Miller. Finding small simple cycle separators
for 2-connected planar graphs. J. Comput. Syst. Sci.,
32(3):265–279, 1986.

[32] Shay Mozes and Christian Sommer. Exact distance
oracles for planar graphs. In Proceedings of the

23rd ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 209–222, 2012.
[33] Yahav Nussbaum. Improved distance queries in planar

graphs. In Proceedings 12th Int’l Workshop on Algo-

rithms and Data Structures (WADS), pages 642–653,
2011.

[34] Mihai Patrascu and Liam Roditty. Distance oracles
beyond the Thorup-Zwick bound. SIAM J. Comput.,
43(1):300–311, 2014.

[35] Neil Sarnak and Robert Endre Tarjan. Planar point
location using persistent search trees. Commun. ACM,
29(7):669–679, 1986.

[36] Daniel Dominic Sleator and Robert Endre Tarjan. A
data structure for dynamic trees. J. Comput. Syst.

Sci., 26(3):362–391, 1983.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2535

D
ow

nl
oa

de
d

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

[37] Christian Sommer. Shortest-path queries in static
networks. ACM Computing Surveys, 46(4):1–31, 2014.

[38] Christian Sommer, Elad Verbin, and Wei Yu. Distance
oracles for sparse graphs. In Proceedings of the 50th

IEEE Symposium on Foundations of Computer Science

(FOCS), pages 703–712, 2009.
[39] Mikkel Thorup. Compact oracles for reachability and

approximate distances in planar digraphs. J. ACM,
51(6):993–1024, 2004.

[40] Mikkel Thorup and Uri Zwick. Approximate distance
oracles. J. ACM, 52(1):1–24, 2005.

[41] Christian Wul↵-Nilsen. Algorithms for planar graphs

and graphs in metric spaces. PhD thesis, PhD thesis,
University of Copenhagen, 2010.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2536

D
ow

nl
oa

de
d

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

