
The Visual Computer (2019) 35:1181–1191
https://doi.org/10.1007/s00371-019-01667-w

ORIG INAL ART ICLE

Example-based rapid generation of vegetation on terrain via
CNN-based distribution learning

Jian Zhang1 · Changbo Wang1 · Chen Li1 · Hong Qin2

Published online: 7 May 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Modeling large-scale vegetation on terrain is an important and challenging task in computer games,movie production and other
digital entertainment applications. In this work, we propose a novel example-based method for rapid generation of vegetation
in outdoor natural environments. Its central idea is to learn the vegetation distribution on terrain via deep convolution neural
networks.Wefirst use a pre-trained deep neural network to extract rich local information from the terrain pertinent to vegetation
distribution. Second, we produce the initial features of the target vegetation distribution based on patch matching and further
introduce a network that generates a vegetation density map based on the initial features. Third, during the synthesis stage, we
propose a procedural method to generate the vegetation distribution data corresponding to the terrain data. Our research work
confirms that the image features extracted by the pre-trained deep neural network could be utilized to explore the connection
between vegetation and terrain. We validate our new method over various outdoor scenes, including procedural generated
scenes and scenes with manual control on tree patterns. The experimental results demonstrate that our method can rapidly
produce new realistic scenes for outdoor natural environments, which relies on the mechanism of learning correlationship
between vegetation distribution and terrain data.

Keywords Vegetation modeling · Style transfer · Natural phenomena

1 Introduction andmotivation

Planting vegetation on existing terrain is a commonly
encountered task in 3D outdoor scene modeling for natural
phenomena. However, modeling large-scale vegetation with
classical popularly used modeling software demands a lot of
time andmanpower. A procedural modelingmethod is often-
times the first choice for natural scene modeling. Over the
past decades, researchers have successfully applied procedu-
ral modeling techniques to many scenarios, such as terrains
[36], cities [28], trees [37] and so on. Nonetheless, exploring
the rapid generation of vegetation distribution on terrains has
not been well studied with perfect solutions.

Typically, procedural techniques define a model con-
trolled by parameters, which allow effectively generating

B Changbo Wang
cbwang@sei.ecnu.edu.cn; cbwangcg@gmail.com

1 School of Computer Science and Software Engineering, East
China Normal University, Shanghai, China

2 Department of Computer Science, Stony Brook University,
Stony Brook, New York 11794-4400, USA

complex details. However, users will be facing difficulties
during parameter tuning in any procedural model, especially
for novice users. Existing game engines, such as Unity®,
usually provide vegetation brush for users to plant trees in an
interactive manner. But this interactive approach tends to be
time-consuming for large-scale scenes. Considering existing
difficulties, we seek a new data-driven approach for vegeta-
tion generation in this paper. Data-driven or example-based
methods employ data as input and are generally capable of
producing similar results rather rapidly with certain con-
straints (from a physical or artistic standpoint). In our new
method, the input data is a scene that has already been
planted; then, we can reasonably plant vegetation on the
new terrain. But how to measure ‘being-reasonable’ (i.e., the
reasonability) for any output result would need rigorously
mathematical tools in a quantitative fashion. From the bio-
logical perspective, the distribution of vegetation is usually
related to water, altitude, temperature, light, slope, etc. Here,
we consider the effect of terrain on vegetation distribution,
which is frequently the case for games or simulations. We do
not intend to enumerate all possible constraints (such as slope
or height) of terrain on vegetation distribution, because it is

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-019-01667-w&domain=pdf

1182 J. Zhang et al.

Fig. 1 An exemplar scene (top left) followed by three generated scenes. Given a simple terrain with manually planted trees, our method can catch
the correlation between the terrain and the trees and apply it on new terrains

almost impossible to guarantee that there are no omissions.
Inspired by the recent successes of deep learning techniques
on feature extraction, we choose to adopt neural networks for
extracting information from 3D scenes and then generating
new scenes.

In this paper, we present a novel example-based method
that takes exemplar scene as input and generates new vege-
tation scenes via deep neural networks (Fig. 1). To make full
use of the functionalities of neural networks, we treat a 3D
scene as a combination of heightmaps and vegetation density
maps.We observe that the low-level features extracted by the
VGG-Network are very relevant to our task. The correlation
between terrain and vegetation distribution can be optimized
with a Gram matrix of these features. Nonetheless, the opti-
mization method is time-consuming and the direct use of
available networks cannot produce precise local details. We
further devise a forward neural network to predict the result
with one feed-forward calculation. The key to this approach
is to fuse the features of the input images via patch matching.
After that we use a convolutional neural network (CNN) to
extract the target image from the fused features (see Fig. 2).
Training data would require special preparation for such a
special functional neural network, since terrain and vegeta-
tion always come in pairs. We feed height maps from NASA
SRTM as terrain training data. To obtain vegetation density
data corresponding to terrain data, we could rely on an algo-
rithm based onmultiple random transfer functions. Our main
contributions are highlighted as follows:

– We use the Gram matrix to characterize the correlation
between terrain and its vegetation distribution base on
the VGG-Network.

– Wedevelop an end-to-end network to generate vegetation
distribution rapidly.

– To train the network,wepropose amethod to dynamically
generate training data, which can be also used for model
evaluation and validation.

Directly benefiting from the aforementioned contributions,
our method could quickly generate new scenes based on the
given prototype scene, which can be used either in games or
simulations or as initial settings to be further refined.

2 Related works

Our work is closely related to procedural modeling and
inverse procedural modeling methods for vegetation gen-
eration. We also briefly review texture synthesis and style
transfer techniques, especially approaches based on deep
learning in recent years because of their great relevance to
this paper.

Procedural modeling Procedural modeling techniques [4]
offer rapid generation of vegetation and ecosystem. Deussen
et al. [10] described a framework to produce the vegeta-
tion density map which is determined by user editing or
ecosystem simulation. Their procedural model is driven by
L-system and contains ecological parameters such as shade
tolerance. Lane et al. [22] extended [10] to simulate the

123

Example-based rapid generation of vegetation on terrain via CNN-based distribution learning 1183

VGG
Encoder Synthesized scene

Exemplar scene

Extracted features

Generated distribution

Target terrain

Exemplar terrain

Exemplar vegetation
distribution

 Extraction

 Replace the local features
of target terrain with local
features of exemplar vegetation
by patches

 Combination

CNNFused features

Fig. 2 The framework of the proposed method

collective ecological behavior of vegetation, for example suc-
cession and clustering of plants. Modeling the interactive
behavior of plants with intuitive parameters was described in
[3]. Recently, ecosystem modeling techniques that consider
landscape elements such as water bodies and forests were
presented in [2,8,33]. Kohek et al. [20] proposed a framework
for large-scale forest construction and visualization which
combines volumetric modeling and level of detail based on
GPU.

Inverse procedural modeling Inverse procedural modeling
has received more and more attention in computer graphics
community [5,24,29,30,38]. Inverse procedural modeling,
deducing the rules and/or parameters needed by traditional
procedural modeling from the example inputs, has been suc-
cessfully applied to objects including trees [37], buildings
[43], cities [39], etc. They typically infer the composition of
a procedural model from the attributes of the input data or
run an existing model to produce expected results that sat-
isfy some criteria. Machine learning techniques have also
been used as components of procedural models [15,40,44].
Nishida et al. [27] proposed a set of regression CNN to esti-
mate parameters and executed procedural models to match
the user’s building sketch. Ritchie et al. [31] uses CNN to
help the procedural model making random choices and gen-
erate outputs with image constraints. Conditional generative
adversarial networks that take terrain features as input can
output convincing results [14]. The framework proposed in
[11], which is similar to us, synthesizes virtual worlds from
example scenes. They [11] focused on spatial statistics of
natural features, while we mainly consider the correlation
between local features.

Texture synthesis and style transfer Example-based texture
synthesis [9,42] produces high-resolution images similar to
examples. Gatys et al. [12] showed the possibility of using
deep neural networks (VGG-19 [35]) to extract multi-scale

features for texture synthesis. Follow-up study [13] has suc-
cessfully applied it to image style transfer. The Gram-based
optimization method [13] presented by Gatys et al. inspired
many subsequent studies [18,34,41] on style transfer, which
mainly focused on replacing the iterative optimization to
one feed-forward calculation. Recently, Chen et al. [6] pro-
posed a fast algorithm to transfer image style. They extracted
patches from the example images and matched them to the
result images, where the patches are computed with pre-
trained networks. Huang et al. [16] believed that style can
be represented by the normalized features. They success-
fully mapped the target image features to a new space with
parameters of the normalized style image and then trained
a network for prediction. These studies have motivated us
because we can regard the vegetation distribution as a kind
of ‘style.’ The most obvious difference between our method
and theirs is that we need to find the inter-features between
two images and they only capture intra-features of one
image.

3 Problem statement andmethod overview

Our goal is to obtain amodel that generates a reasonable veg-
etation distribution on a terrain from an exemplar scene with
planted vegetation, where the new distribution should sat-
isfy the correlation of the exemplar scene. In this article, we
present an end-to-end network, which is successfully trained
with online generated data, to solve the problem.

Here, we give the definition of 3D scene S as follows:

S = {T , V }, V = {v1, v2, ..., vn}, (1)

where T is the terrain height map and V is the collection
of distribution density map(s) of n type(s) of vegetation(s).
Given a 3D scene S1 = {T1, V1} and height map T2, we hope

123

1184 J. Zhang et al.

to generate new scene S2 = {T2, V2} similar to S1. That is
to say, the distribution of vegetation(s) on T2 should be as
reasonable as S1.

As shown in Fig. 2, we extract the height map and the veg-
etation map(s) from the given 3D scene. Typically there will
bemore than one species of vegetation on the terrain; here,we
only look into one vegetation for simplicity. The vegetation
map is generated based on the density of the local distri-
bution of plants on the terrain. To measure the correlation
between terrain and vegetation distribution, we try to calcu-
late the Grammatrix of these feature extracted by pre-trained
network (Sect. 4.1). Then, we can produce new distribution
through iteration optimization. We test it on different layers
of VGG-Network and find that low-level features are useful
for our task. However, Gram matrix does not ensure precise
details for generated results and the iterative optimization
method is slow, so we further seek a one feed-forward net-
work to compute the results. In Sect. 4.2, we propose an
U-Net like structure with an added preprocessing layer. The
preprocessing layer, taking the characteristics of the task,
swaps the input features locally to simplify the training task
of the neural network. The skip connection in our network
ensures that the local details are not lost during feed-forward.
Training data is specially prepared. For vegetation distribu-
tion images, we propose a procedural generation algorithm
to produce data correlated with the terrain data (detailed in
Sect. 4.3). In this way, we can obtain the model after iterative
training. To sum up, our model makes full use of the features
extracted by the pre-trained network and uses patchmatching
to obtain appropriate features, then compresses these fea-
tures into the domain of the density map through heuristic
training.

4 CNN-driven vegetation generation

In this section, we will present how to produce vegetation
layer on terrain from exemplar scenes. We use pre-trained
VGG-Network to extract rich information of the terrain
height map and vegetation distribution map. We further pro-
pose an end-to-end model to rapidly produce the vegetation
distribution. During the training stage, we rely on a proposed
algorithm to procedurally generate vegetation data.

4.1 Correlationship between terrain and vegetation

In general, the distribution of trees is always correlated with
the elevation and slope of topography in nature, which we
think is a kind of ‘style.’ Therefore, we treat the generation
of new scenes with similar styles from the exemplar scenes
as a problem of style transfer. Compared with the classical
method for style transfer, the most obvious difference is that
the style here cannot be described in only one image. Thus,

our first priority is to learn the style froma3Dscene.CNNhas
been proven to have powerful ability to extract image features
[21], including both low-level and high-level information.
Here, we use height maps to represent terrains, and density
maps to represent vegetation distributions on terrains (Fig. 2).
Inspired by [13], we adopt VGG-Network [35] to extract
information of terrains and vegetation distributions. Here,
the feature correlationship between terrain and vegetation is
denoted by Gram matrix G = [Gi j], where Gi j is the inner
product between terrain feature map i and vegetation feature
map j :

Gi j =
∑

k

Ft
ik · Fv

jk . (2)

Unlike in [13], here Ft and Fv are feature maps extracted
from two images by the VGG-Network, where Ft denotes
terrain features and Fv denotes vegetation features. VGG-
Network, composed of sequential convolutional layers and
pooling layers, is able to extract rich features from image.
As the neural layer gets deeper, the receptive field becomes
bigger and the features extracted by the VGG-Network get
more abstract. We use G to calculate the correlation between
terrain features and vegetation features.Meanwhile,we focus
on topography information such as height or slope, namely
low-level features that extracted with small receptive fields.
Therefore, we select the front part of the neural network to
learn the scene style. Experiments also show that it works on
the generation problem of terrain scene (Fig. 3).

Obtaining the abstract representation of the style, we can
use an iterative optimization approach to produce newscenes.
Let G1 and S2 denote the Gram matrix of the features of
exemplar scene S1 and the target scene G2, respectively. The
objective is calculated with mean square error:

Lglobal(S1, S2) = 1

(2MN)2
(G1 − G2)

2, (3)

where M and N denote the dimensions of the feature maps.
By minimizing Eq. 3 with L-BFGS [46], we can produce
vegetation distribution in a similar style of S1. As mentioned
above, deep neural network learns multi-scale features from
image. Here, we need low-level features, so we select layer
‘conv1_2’ (see Fig. 3 for a comparison of optimization results
with different layers).

4.2 End-to-endmodel structure

Theoptimizationmethod cannot produce precise local details
because the objective (Eq. 3) based on Gram matrix mainly
captures the overall correlation between terrain and vegeta-
tion distribution (Fig. 3). We propose to use a deep neural
networkQ to catch and produce the correlationship between

123

Example-based rapid generation of vegetation on terrain via CNN-based distribution learning 1185

Fig. 3 In the given exemplar scene (a, b), the trees grow above a certain altitude. To generate distribution map on new terrain c, The optimization
method performs best by using layer ‘conv1_2’

Fig. 4 Generation results of several iterations during training a direct
network. The test input is the same asFig. 3.Weuse theU-Net [32] struc-
ture to build the model and concatenate three images (i.e., the exemplar
terrain and vegetation and the target terrain) as input. As shown from
the figure, the model has a tendency to produce results similar to the
exemplar vegetation input (Fig. 3b)

Exemplar terrain Target terrainExemplar vegetation Fused features

11a1b 1c 1c

Fig. 5 Illustration of the function of the preprocessing layer. (1b) is the
nearest patch of (1a). Then, (1a) is replaced by (1c) (patch in the same
place as (1b))

terrain and vegetation distribution. To simplify the illustra-
tion,we consider only one type of vegetation on terrain. Then,
Q takes T1, V1 and T2 as input and outputs the vegetation
distribution layer V2 (see Sect. 3 for notations), which is a
unified end-to-end network.

An approach easy to fetch is introducing a straightforward
neural network and adopting Eq. 3 as the objective function.
However, we find that Eq. 3 is hard to optimize to an accept-
able situation directly and the training stage may get stuck
(Fig. 4). This network tends to output a vegetation distribu-
tion similar to V1.

In order to avoid the collapse of the model, we recom-
mend using a preprocessing layer Lpre over the model input,
which should facilitate the training of themodel. As shown in
Sect. 4.1, the low-level features learned by theVGG-Network

N

2
N

4N
8N 8N 4N

4N

2
N

N 3

Convolution + max-pooling

Convolution

Convolution + upsampling

Skip connection

N Number of filters (N=64)

Fig. 6 The proposed end-to-end architecture of CNN

is very helpful to solve the problem, thus preprocessing is
performed on the features extracted by the VGG-Network
instead of on original input images. We propose a patch
based method to replace the features of the target terrain
(see Fig. 5 for an intuitive illustration). This approach can
be implemented in parallel by using the convolution and the
transposed convolution. The procedure of Lpre is as follows:

– Let Ft
1(N ×M ×C) denotes the extracted features of the

exemplar terrain, where N , M , C are the image width,
the image height and the number of filters. Extract a set
of patches Ft

1,p(k × k ×C × (Nk × M
k)) from Ft

1, where
k is the patch size (we set k = 3 for our experiments).

– To compute the similarity between the patches and tar-
get terrain, we apply a convolution on features of target
terrain Ft

2 with Ft
1,p as filters:

η(Ft
2, F

t
1) = Ft

2 ⊗ Ft
1,p. (4)

To obtain the best matching patches, an argmax operation
is applied on the last axis of η(Ft

2, F
t
1):

η(Ft
2, F

t
1)

′ = argmax(η(Ft
2, F

t
1)). (5)

– Extract the patches Fv
1,p from the features of the exem-

plar vegetation Fv
1 in the same way as extracting Ft

1,p.
Then, we can get the reconstructed features by applying a
transposed convolution on η(Ft

2, F
t
1)

′
with Fv

1,p as filters.

The following part of Q is an U-Net [32] like structure
(Fig. 6). The goal of adopting the deep neural network is to
generate the vegetation map and to optimize the objective.
The structure of deep CNN mainly consists of three parts:

123

1186 J. Zhang et al.

– Convolution + max-pooling In the first half of the net-
work, each convolution layer is followed by a pooling
layer in order to reduce the dimensions of the features.
To enhance the nonlinear capability of the network, we
choose the max-pooling layer instead of the average-
pooling. We also use Relu [26] activation function after
each convolution layer for its strong nonlinearity and fast
calculation.

– Convolution + upsampling In the second half of the net-
work, each convolution layer is followed by a upsampling
layer in order to enlarge the size of the features. Typically
a convolution layer followed by an upsampling layer can
be replaced by a transposed convolution layer [45] with
stride of 2, but we find that our structure is already pro-
ducing fairly good results.

– Skip connection The use of pooling layers that keep the
number of filters unchanged leads to inevitable loss of
information, which is harmful to the image synthesis
problem [32]. Thus, we bring in skip connections to hold
the multi-scale features.

As shown in Fig. 2, after connecting a VGG-Network,
the preprocessing layer Lpre and the U-Net like network, Q
becomes a purely end-to-end structure. In Fig. 6, every con-
volution layer is connected to a batch normalization layer
[17] except for the last layer. In order to make the local fea-
tures of the generated distribution conform to the output of
Lpre, here we bring another objective L local as below:

L local =
∥∥∥Lpre(F

t
1, F

v
1 , Ft

2) − F̂v
2

∥∥∥
2
, (6)

where F̂v
2 defines the features extracted by VGG-Network of

Q’s output. Thus, the loss function that considers both global
similarity and local similarity is as below:

L total = L local + λLglobal, (7)

where λ is a hyperparameter that balances L local and Lglobal.
At training stage, we pass the input triplet (T1, V1, T2) into
Q and get the prediction V̂2; then, we can calculate the
loss (Eq. 7) through pre-trained VGG-Network. The VGG-
Network model is always fixed during training stage or
testing stage. Since we do not use any fully connected layer
and our preprocessing layer is composed of convolution oper-
ation and transposed convolution operation,Q can be applied
to images of arbitrary size at the testing stage.

4.3 Datasets and vegetation density data
generation

We use about 500 km × 500 km of real terrains from NASA
SRTMformodel training.Nowgiven a terrain imageTimg,we

need a corresponding vegetation image Vimg for our training.
A choice is to randomly choose another height map from the
terrain dataset as the vegetation image Vimg. However, actu-
ally we hope that the model can learn the ability to extract
the correlationship between terrain images and vegetation
images and the ability to generate new conformable vege-
tation images. There is obviously no reasonable connection
between the randomly selected Timg and Vimg. Using such
input data will make model optimization very difficult. Here,
we propose a method of procedurally generating vegetation
images to help model training.

Algorithm 1: Vegetation Density Data Generation
Input: the input terrain TN×M
Output: generated vegetation density map VN×M

1 VN×M ← 0N×M
2 Randomly select n(0 ≤ n ≤ δ) disjoint intervals

R : {r : [ra, rb]}n, 0 ≤ ra < rb ≤ 255
3 Randomly generate n functions F : { f (x)}n corresponding to R
4 foreach point Pi, j in TN×M do
5 if height(Pi, j) is in ri ∈ R then
6 Vi, j = fi (Pi, j)
7 end
8 end
9 return VN×M

Examine Algorithm 1, the main idea is to apply different
transformation functions to the different parts of the terrain.
We define the form of the transformation functions in Algo-
rithm 1 as follows:

f (x) = κ(μ1 · η(x) + μ2), (8)

where μ1 and μ2 are random numbers for perturbation pur-
pose. η(x) returns certain information at position x in terrain,
and κ(x) is the transfer function. In our implementation, η(x)
returns the normalized height or slope value at training stage,
and we set 6 alternative transfer functions (Table 1) for Algo-
rithm 1. During training, every time we randomly select an
exemplar terrain and a target terrain, and dynamically gener-
ate an exemplar vegetation image at the same time (see Fig. 7
for a intuitive illustration). In Algorithm 1, δ is a parameter
that limits the number of the functions and we set it to a small
value (5) for the consideration of performance.

Table 1 The alternative transfer functions used in Eq. 8

κ1(x) κ2(x) κ3(x) κ4(x) κ5(x) κ6(x)

x x2 x3 sin(x · π
2) ex − 1 c

κ6(x) is a constant function and c is a random number from 0 to 1 (for
instance κ6(x) = 0.5)

123

Example-based rapid generation of vegetation on terrain via CNN-based distribution learning 1187

Fig. 7 The source terrain (left) and the generated density map (right).
There are two transformation functions: f1(x) = e−0.2·height(x)+0.5 −
1(20 ≤ height(x) ≤ 100) and f2(x) = 0.2(150 ≤ height(x))

Fig. 8 Training curves of the loss

5 Implementation details and experimental
results

In this section, we detail the training setup and evaluate our
model with several scenes. We also perform quantitative per-
formance statistics with procedurally generated data.

5.1 Network training

We use keras [7] library, with TensorFlow [1] as backend,
as the framework to train our model. The training stage is
performed on a PC with NVIDIA GeForce GTX 1060 (6
GB) and Intel Core i7 CPU, running at 2.8GHz with 16 GB
RAM. We use Adam optimizer [19] with a learning rate of
10−4, and both the parameters β1 and β2 are set to 0.9. The
batch size is set to 8, i.e., at each iteration 24 input images
(128 × 128) are fed into the model. λ in Eq. 7 is set to 1 ×
10−3. In our implementation, the training takes roughly 4
hours for 1800 iterations. We always perform model testing
and parameters saving to disk after several iterations, which
slightly affects the time consumption. The convergence of
the training process is shown in Fig. 8.

5.2 Results and analysis

Experiments and Evaluation An obvious fact is that there
exists no ‘ground truth’ for the scene generation task raised

Fig. 9 Producing 4 plantings on the new 3 terrains. For better display
of robustness, we choose 3 terrains that look different

in this article, and it is hard to produce it even if there exists.
Although we have proposed an generation method in Algo-
rithm 1, it cannot cover all conditions. However, we can use
it to evaluate the capability of the model. In Fig. 9, we show
12 results generated by our model. The provided 4 vege-
tation density maps are generated by Algorithm 1, and the
expected images are generated through the same functions
and parameters. Our model is not exposed to these terrains
during training stage, but Fig. 9 has shown the power of our
example-based generation model. Examine Fig. 9, most of
the images are very similar to ground truth, except for Veg-
etation 4 over Terrain 3, which is slightly different.

To further test the model, we seek terrain properties that
themodel has not touched during the training stage. In nature,
the distribution of vegetation is usually closely related to
light. Figure 10 shows the test of the model in this regard.
We planted some trees in one direction on a simple terrain
(Fig. 10a), which can be done in a few minutes. Figure 10c,
e shows the results generated by the model on more com-
plex terrains. Figure 10a, c, e is all rendered in the same

123

1188 J. Zhang et al.

Fig. 10 The test over anisotropic features. One exemplar scene a fol-
lowed by 3 generated scene, where c and d are different perspectives
on the same scene (so does e and f)

direction, while Fig. 10d, f is in opposite directions for a
clearer comparison. The two scenes (second and third rows
in Fig. 10) showcase that our model is able to handle the
anisotropic features. Figure 10 also showcases that the user
can plant vegetation on a simple terrain and then use our
model to rapidly generate scenes on complex terrain, which
can significantly save manpower. We also test the effects of
reproducing on the same terrain (Fig. 10b).

Hydraulic erosion simulation can produce very convinc-
ing ridges with terrain. However, simulation with different
parameters and iteration numbers will result in various
behavior. We generate flow map by using the hydraulic ero-
sionmethod described in [25] and use ourmodel to reproduce
the flow map. Figure 11 showcases a comparison between
the physically based method and our model. Although our
model is not designed and trained to simulate hydraulic ero-
sion, its results are generally consistent with the physically
based method.

Ultimately, the approach in this article is for better and
faster generation of new scenarios. In Fig. 12, there are five
different types of vegetation in the exemplar scene (first
row).Weplant these vegetationwith consideration of heights,
slopes, sunlight and different distribution densities. The two
new scenes, produced in seconds, show sufficient fidelity
compared to the sample scene.

Fig. 11 The test over hydraulic erosion simulation. Given the terrain
(a) and flow map (d), we generate new flow maps (g) and (h) with the
terrain (b) and (c). e and f are produced with physically based method

Fig. 12 One exemplar scene followed by 2 generated scenes. The first
column is the aerial view, and the second column shows local details

123

Example-based rapid generation of vegetation on terrain via CNN-based distribution learning 1189

3

8

13

18

23

0 1 2 3 4 5 6 7 8 9

forward

...

1 2 3 4 5 6 7 8 9

VGG19 Encoder
iteration

Fig. 13 The comparison of the iterative optimization method (where
we only consider Eq. 3 as objective) and feed-forward method over
different layers of VGG-Network (the first three convolution blocks).
The ordinate of the line chart represents the MAE statistics (×100).
1 to 9 on the abscissa represent input image, ‘conv1_1,’ ‘conv1_2,’
‘conv2_1,’ ‘conv2_1,’ ‘conv3_1,’ ‘conv3_2,’ ‘conv3_3,’ and ‘conv3_4,’
respectively

Statistics In general because of the unquantifiable human
intention, it is difficult to measure an example-based gen-
erative model quantitatively. However, based on the data
generation method proposed in Algorithm 1, we can partly
test the model quantitatively. We simply use the mean abso-
lute error (MAE) to measure the model base on some
precomputed scenes, where the vegetation density ranges
from 0 to 1. We prepare 100 scenes by using Algorithm 1.
The terrains in these scenes are never seen in our training data
set. As showcased in Fig. 13, the end-to-end network is com-
prehensively superior to the iterative optimization approach.
The statistical results also show that low-level features are
more useful to our task than high-level features. That is intu-
itive as high-level features with bigger receptive fields are not
essential for the task in this paper. We also test the direct use
of the preprocessing layer tomanipulate the image itself. The
result is worse than usingVGG-Network, which also demon-
strates the robustness of VGG-Network. Figure 14 visually
shows the comparison of different layers.

We also document the performance of our model with
different patch size (Table 2). As presented in Sect. 4.2, patch
size directly affects the shapes of Ft

1,p, η(Ft
2, F

t
1) and other

tensors in the preprocessing layer. η(Ft
2, F

t
1) takes heaviest

memory footprint with a shape of (N×M×(Nk × M
k)). As the

preprocessing layer is based on convolution operation, patch
size here works like filter size in convolutional layers, and
it also affects MAE performance. Our model performs not
well when patch is set to 1, where the similarity computation
is based on pixel level.

Table 2 Themodel statistics onmemory usage andMAEwith different
patch size

Patch size 1 2 3 4 5 6

Memory (MB) 1085 276 124 76 51 39

MAE (%) 29.2 18.2 3.8 9.6 7.9 8.7

For better comparison, the memory cost is computed with tensors in the
preprocessing layer rather than the entire model

Limitations Our approach has some limitations. Firstly, our
method considers terrain constraints on vegetation distri-
bution but ignores other constraints such as temperature,
latitude, etc. This is because terrain is the most commonly
considered factor for vegetation distribution and our method
can be easily applied to solving other local constraints. How-
ever, our method is based on low-level features extracted by
pre-trained networks so we cannot take global constraints
into account. For example, we cannot solve the spatial radia-
tion effect of lakes or human buildings, and this may require
the introductionof newanisotropic objective functions for the
model. Another limitation is that the input terrain to model
cannot be too monotonous. If the user wants the model to
automatically plant trees at altitudes above 500m, the user
cannot provide exemplar terrain below 500m.Moreover, our
model requires more memory in the preprocessing layer than
general CNNmodel. The preprocessing layer splits the input
features into many patches and recombines them into new
convolution kernel, which takes up a lot of memory and
restricts model usage.

6 Conclusion and future works

This paper has introduced an example-based generation
method for the vegetation distribution on terrain. We pro-
posed a unified CNN-based model for producing reasonable
distribution with exemplar scenes, with a goal of catching the
correlationship between terrains and vegetation. Our model
utilizes the rich local features extracted by pre-trained CNN
and fuse input scene features to simplifymodel training. Dur-
ing the training stage, we procedurally generated vegetation
distribution data based on multiple random transfer func-
tions. The data generation algorithmwas also used for model

Fig. 14 The comparison of results that generated with different layers of VGG-Network. Given the exemplar scene (a, b), our model generates
new distributions on terrain c with layer ‘conv1_1,’ ‘conv1_2,’ ‘conv2_1,’ ‘conv3_1,’ and original input (’rgb’)

123

1190 J. Zhang et al.

evaluation and validation, where it employed different terrain
attributes for training and testing. The experimental results
show that our method could learn the correlation between
vegetation distribution and terrain and rapidly produce new
realistic scenes. Our work also suggested that features
learned by classical classification networks (e.g., VGG-19
in this paper) might work well for other types of tasks.

In the near future, we shall focus on considering more
constraints on vegetation distribution such as light, water,
latitude, etc. Moreover, we intend to explore more diversified
natural information including discrete or vectorial features,
for instance, buildings, rivers, lakes and road network. The
generation approach for vegetation distribution could also be
extended to generation of terrain textures or urban landscape
planning.

Acknowledgements The authors would like to especially thank all
reviewers for their sincere and thoughtful suggestions. This paper is par-
tially supported by National Natural Science Foundation of China (No.
61532002, 61672237) and National Science Foundation of USA (IIS-
1715985, IIS-1812606). The authors wish to thank the financial support
from the program of China Scholarship Council No. 201806140115.

Funding This study was funded by National Natural Science Founda-
tion ofChina (Nos. 61532002, 61672237),National Science Foundation
of USA (IIS-1715985, IIS-1812606) and China Scholarship Council
(No. 201806140115).

Compliance with ethical standards

Conflict of interest The authors declared that they have no conflict of
interest.

References

1. Abadi, M., et al.: TensorFlow: Large-scale machine learning on
heterogeneous systems (2015). URL https://www.tensorflow.org/.
Accessed 25 Aug 2018. Software available from tensorflow.org

2. Argudo, O., Andujar, C., Chica, A., Guérin, E., Digne, J., Pey-
tavie, A., Galin, E.: Coherent multi-layer landscape synthesis. Vis.
Comput. 33(6–8), 1005–1015 (2017)

3. Beneš, B., Andrysco, N., Štava, O.: Interactive modeling of virtual
ecosystems. In: Proceedings of the Fifth Eurographics conference
on Natural Phenomena, pp. 9–16. Citeseer (2009)

4. Benes, B., Deussen, O., Pirk, S., Chen, B., Mech, R., Ijiri, T.: Mod-
eling plant life in computer graphics. In: ACM SIGGRAPH 2016
Courses, SIGGRAPH ’16, pp. 18:1–18:180. ACM (2016)

5. Beneš, B., Št’ava, O., Měch, R., Miller, G.: Guided procedural
modeling. Comput. Graph. Forum 30(2), 325–334 (2011)

6. Chen,T.Q., Schmidt,M.: Fast patch-based style transfer of arbitrary
style. CoRR arXiv:1612.04337 (2016)

7. Chollet, F., et al.: Keras. (2015). https://keras.io. Accessed 25 Aug
2018

8. Cordonnier, G., Galin, E., Gain, J., Benes, B., Guérin, E., Peytavie,
A., Cani, M.P.: Authoring landscapes by combining ecosystem and
terrain erosion simulation. ACM Trans. Graph. 36(4), 134 (2017)

9. Darabi, S., Shechtman, E., Barnes, C., Goldman, D.B., Sen, P.:
Image melding: combining inconsistent images using patch-based
synthesis. ACM Trans. Graph. 31(4), 82:1–82:10 (2012)

10. Deussen, O., Hanrahan, P., Lintermann, B., Měch, R., Pharr,
M., Prusinkiewicz, P.: Realistic modeling and rendering of plant
ecosystems. In: Proceedings of the 25th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’98,
pp. 275–286. ACM (1998)

11. Emilien, A., Vimont, U., Cani, M.P., Poulin, P., Benes, B.: World-
brush: Interactive example-based synthesis of procedural virtual
worlds. ACM Trans. Graph. 34(4), 106 (2015)

12. Gatys, L.A., Ecker, A.S., Bethge, M.: Texture synthesis using
convolutional neural networks. In: Proceedings of the 28th Inter-
national Conference on Neural Information Processing Systems -
Volume 1, NIPS’15, pp. 262–270. MIT Press (2015). URL http://
dl.acm.org/citation.cfm?id=2969239.2969269. Accessed 11 Oct
2018

13. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using
convolutional neural networks. In: Proceedings of the IEEEConfer-
ence on Computer Vision and Pattern Recognition, pp. 2414–2423
(2016)

14. Guérin, E., Digne, J., Galin, E., Peytavie, A., Wolf, C., Benes,
B., Martinez, B.: Interactive example-based terrain authoring with
conditional generative adversarial networks. ACM Trans. Graph.
36(6), 228:1–228:13 (2017)

15. Huang, H., Kalogerakis, E., Yumer, E., Mech, R.: Shape synthesis
from sketches via procedural models and convolutional networks.
IEEE Trans. Vis. Comput. Graph. 23(8), 2003–2013 (2017)

16. Huang, X., Belongie, S.J.: Arbitrary style transfer in real-time with
adaptive instance normalization. CoRR arXiv:1703.06868 (2017)

17. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In: Proceedings
of the 32nd International Conference on International Confer-
ence on Machine Learning - Volume 37, ICML’15, pp. 448–456.
JMLR.org (2015)

18. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time
style transfer and super-resolution. In: European Conference on
Computer Vision, pp. 694–711. Springer (2016)

19. Kingma, D.P., Ba, J.: Adam: Amethod for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014)

20. Kohek, Š., Strnad, D.: Interactive large-scale procedural forest
construction and visualization based on particle flow simulation.
Comput. Graph. Forum 37(1), 389–402 (2018)

21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification
with deep convolutional neural networks. In: Advances in Neural
Information Processing Systems, pp. 1097–1105 (2012)

22. Lane, B., Prusinkiewicz, P.: Generating spatial distributions for
multilevel models of plant communities. In: Graphics interface,
vol. 2002, pp. 69–87. Citeseer (2002)

23. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan,
D., Dollár, P., Zitnick, C.L.: Microsoft coco: Common objects in
context. In: European Conference on Computer Vision, pp. 740–
755. Springer (2014)

24. Martinovic, A., Van Gool, L.: Bayesian grammar learning for
inverse procedural modeling. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 201–208
(2013)

25. Mei, X., Decaudin, P., Hu, B.: Fast hydraulic erosion simulation
and visualization on gpu. In: 15th Pacific Conference on Computer
Graphics and Applications, pp. 47–56. IEEE (2007). https://doi.
org/10.1109/PG.2007.15

26. Nair, V., Hinton, G.E.: Rectified linear units improve restricted
boltzmann machines. In: Proceedings of the 27th International
Conference on Machine Learning, pp. 807–814 (2010)

27. Nishida, G., Garcia-Dorado, I., Aliaga, D.G., Benes, B., Bousseau,
A.: Interactive sketching of urban procedural models. ACM Trans.
Graph. 35(4), 130 (2016)

123

https://www.tensorflow.org/
http://arxiv.org/abs/1612.04337
https://keras.io
http://dl.acm.org/citation.cfm?id=2969239.2969269
http://dl.acm.org/citation.cfm?id=2969239.2969269
http://arxiv.org/abs/1703.06868
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/PG.2007.15
https://doi.org/10.1109/PG.2007.15

Example-based rapid generation of vegetation on terrain via CNN-based distribution learning 1191

28. Parish, Y.I., Müller, P.: Procedural modeling of cities. In: Proceed-
ings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques, pp. 301–308. ACM (2001)

29. Ritchie, D., Jobalia, S., Thomas, A.: Example-based authoring of
procedural modeling programswith structural and continuous vari-
ability. Comput. Graph. Forum 37(2), 401–413 (2018)

30. Ritchie, D., Mildenhall, B., Goodman, N.D., Hanrahan, P.: Con-
trolling procedural modeling programs with stochastically-ordered
sequential monte carlo. ACM Trans. Graph. 34(4), 105 (2015)

31. Ritchie, D., Thomas, A., Hanrahan, P., Goodman, N.: Neurally-
guided procedural models: Amortized inference for procedural
graphics programs using neural networks. In: Advances in Neu-
ral Information Processing Systems, pp. 622–630 (2016)

32. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional
networks for biomedical image segmentation. In: International
Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 234–241. Springer (2015)

33. Samavati, F., Runions, A.: Interactive 3D content modeling for
digital earth. Vis. Comput. 32(10), 1293–1309 (2016)

34. Sendik, O., Cohen-Or, D.: Deep correlations for texture synthesis.
ACM Trans. Graph. 36(4), 161 (2017)

35. Simonyan, K., Zisserman, A.: Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556
(2014)

36. Smelik, R.M., De Kraker, K.J., Tutenel, T., Bidarra, R., Groenewe-
gen, S.A.: A survey of procedural methods for terrain modelling.
In: Proceedings of the CASA Workshop on 3D Advanced Media
In Gaming And Simulation, pp. 25–34 (2009)

37. Stava, O., Pirk, S., Kratt, J., Chen, B., Měch, R., Deussen, O.,
Benes, B.: Inverse procedural modelling of trees. Comput. Graph.
Forum 33(6), 118–131 (2014)

38. Talton, J.O., Lou, Y., Lesser, S., Duke, J., Měch, R., Koltun, V.:
Metropolis procedural modeling. ACM Trans. Graph. 30(2), 11
(2011)

39. Vanegas, C.A., Garcia-Dorado, I., Aliaga, D.G., Benes, B., Wad-
dell, P.: Inverse design of urban procedural models. ACM Trans.
Graph. 31(6), 168 (2012)

40. Wang,K., Savva,M., Chang, A.X., Ritchie, D.: Deep convolutional
priors for indoor scene synthesis. ACM Trans. Graph. 37(4), 70
(2018)

41. Wang, L., Wang, Z., Yang, X., Hu, S.M., Zhang, J.: Photographic
style transfer. Vis. Comput. pp. 1–15 (2018)

42. Wei, L.Y., Lefebvre, S., Kwatra, V., Turk, G.: State of the art in
example-based texture synthesis. In: Eurographics 2009, State of
the Art Report, EG-STAR, pp. 93–117. Eurographics Association
(2009)

43. Wu, F., Yan, D.M., Dong, W., Zhang, X., Wonka, P.: Inverse proce-
dural modeling of facade layouts. ACM Trans. Graph. 33(4), 121
(2014)

44. Yumer, M.E., Asente, P., Mech, R., Kara, L.B.: Procedural model-
ingusing autoencoder networks. In: Proceedings of the 28thAnnual
ACM Symposium on User Interface Software & Technology, pp.
109–118. ACM (2015)

45. Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional
networks formid and high level feature learning. In: Proceedings of
the 2011 International Conference on Computer Vision, pp. 2018–
2025. IEEE Computer Society (2011)

46. Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-bfgs-b:
Fortran subroutines for large-scale bound-constrained optimiza-
tion. ACM Trans. Math. Softw. 23(4), 550–560 (1997)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Jian Zhang is currently a Ph.D.
student of School of Computer
Science and Software Engineer-
ing, East China Normal Univer-
sity, China. He received his BE
degree in software engineering
from East China Normal Univer-
sity in 2014. His research interests
include procedural modeling and
sketch-based modeling.

Changbo Wang is a professor
of School of Computer Science
and Software Engineering, East
China Normal University, China.
He received his Ph.D. degree at
the State Key Lab. Of CAD &
CG, Zhejiang University in 2006,
and received BE degree in 1998
and ME degree in civil engineer-
ing in 2002, respectively, both
from Wuhan University of Tech-
nology. His research interests
include physically based model-
ing and rendering, computer ani-
mation and realistic image synthe-

sis, information visualization and others.

Chen Li is currently a Ph.D.
student of School of Computer
Science and Software Engineer-
ing, East China Normal Univer-
sity, China. He received his BE
degree in computer science from
Tianjin University in 2013. His
research interests include physi-
cally based animation and virtual
reality.

Hong Qin is a Full Professor of
Computer Science in Department
of Computer Science at State Uni-
versity of New York at Stony
Brook (Stony Brook University).
He received his BS (1986) degree
and his MS degree (1989) in Com-
puter Science from Peking Uni-
versity in Beijing, China. He
received his Ph.D. (1995) degree
in Computer Science from the Uni-
versity of Toronto. His research
interests include computer graph-
ics, geometric and physics-based
modeling, computer-aided design,

computer-aided geometric design, computer animation and simulation,
virtual environments and virtual engineering, and others.

123

http://arxiv.org/abs/1409.1556

	Example-based rapid generation of vegetation on terrain via CNN-based distribution learning
	Abstract
	1 Introduction and motivation
	2 Related works
	3 Problem statement and method overview
	4 CNN-driven vegetation generation
	4.1 Correlationship between terrain and vegetation
	4.2 End-to-end model structure
	4.3 Datasets and vegetation density data generation

	5 Implementation details and experimental results
	5.1 Network training
	5.2 Results and analysis

	6 Conclusion and future works
	Acknowledgements
	References

