
CooLSM: Distributed and Cooperative Indexing
Across Edge and Cloud Machines

Natasha Mittal
UC Santa Cruz

nmittal1@ucsc.edu

Faisal Nawab
UC Santa Cruz

fnawab@ucsc.edu

Abstract—We tackle one of the fundamental data manage-
ment challenges in edge-cloud computing, the problem of data
indexing. We propose Cooperative LSM (CooLSM), a distributed
Log-Structured Merge Tree that is designed to overcome the
unique challenges of edge-cloud indexing such as machine and
workload heterogeneity and the communication latency asymme-
try between the edge and the cloud. To tackle these challenges,
CooLSM deconstructs the LSM tree [23] into its basic parts.
This deconstruction allows a better distribution and placement
of resources across edge and cloud devices. For example, append-
specific functionality is managed at the edge to ensure appending
and serving data in real-time, whereas resource-intensive opera-
tions such as compaction and querying is managed at the cloud
where more compute resources are available.

Index Terms—data indexing, edge computing, cloud computing

I. INTRODUCTION

Cloud computing is based on data centers that are typically
far away from users and data sources. This restricts appli-
cations that require stringent real-time guarantees. Similarly,
relying solely on edge computing is not suitable due to the
lower capabilities and reliability of edge devices. To overcome
this dilemma, we consider an edge-cloud model, where the
data infrastructure spans both edge and cloud devices. The
edge-cloud model has the potential of advancing emerging
edge and Internet of Things (IoT) applications such as smart
cities and Industry 4.0, by supporting both real-time actions
at the edge and more complicated processing at the cloud.

In this paper, we propose Cooperative LSM (CooLSM), that
aims to provide one of the main building blocks of edge-
cloud data management systems, which is a distributed data
indexing system. Data indexing is the problem of managing
the storage and access to data. We build on Log-Structured
Merge (LSM) trees [19], which is among the most widely
used data indexing technologies. Its main design advantage
is that it enables fast-ingestion of data. Fast data ingestion
is important for edge and IoT applications, which influences
our decision to build on LSM trees. However, most LSM-
based technologies are designed to reside within a single
machine—and the distributed variants are designed for clusters
of neighboring machines. This limits the applicability of these
solutions to edge-cloud environments, where processing and
storage span both edge and cloud nodes across wide-area links.

CooLSM’s main design principle is to deconstruct the
monolithic structure of LSM trees into smaller basic com-

(a) Original Monolithic LSM Tree

L0

L1

L2

L3

L0

L1

L2

L3

(b) Current Distributed and

Replicated LSM Trees

Node 1

L0

L1

L2

L3

Node 2

L0

L1

L2

L3

Node 3

L0

L1

L2

L3

Node 4

L0

L1

(c) Deconstructed LSM Trees

with CooLSM

Ingestor 1

L2

L3

Compactor 1

Compactor 2

L0

L1

L2

L3

Reader 1

L2

L3 Snapshot
Ingestors

Edge and IoT Nodes

Cloud

(d) CooLSM in an Edge-Cloud

Environment

Queries/Analytics

Real-time

actions

Fig. 1. CooLSM

ponents. This deconstruction allows distributing and placing
components to maximize the potential and utility of edge and
cloud nodes. Additionally, the deconstruction allows elastically
scaling the resources for each component without affecting
the other components. Specifically, CooLSM—as shown in
Figure 1(c)—breaks down a LSM tree—Figure 1(a)—into
(1) Ingestors: nodes that receive the data to be added to the
index and requests to access the data, (2) Compactors: nodes
that handle the structuring and garbage collection of the index,
and (3) Readers: nodes that maintain recent snapshots of the
data to serve efficient analytics and complex read queries.
This deconstruction enables a distribution and placement of
nodes as shown in Figure 1(d) for an edge-cloud environment.
Ingestors are placed near sources of data to enable real-time
ingestion and actions. Ingestors forward data to compactors
and readers at the cloud to enable long-term storage and
management of more complex tasks such as garbage collection
and large read-only queries. Each component of CooLSM can
be placed on an independent machine and, thus, can be scaled
independently of other components. For example, if there are
a lot of analytics queries, the Reader components can be
scaled to be on more machines than Ingestor and Compactor
components.

One of the main challenges that we face in the paper is
the trade-off between consistency and performance. As we
deconstruct the LSM tree and distribute its components across
wide-area links, performing read and write operations while
maintaining linearizability [14] would require extensive coor-
dination and overhead. Our design is motivated by wanting to

420

2021 IEEE 37th International Conference on Data Engineering (ICDE)

978-1-7281-9184-3/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDE51399.2021.00043

20
21

 IE
EE

 3
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(I

C
D

E)
 |

97
8-

1-
72

81
-9

18
4-

3/
20

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
E5

13
99

.2
02

1.
00

04
3

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:45:17 UTC from IEEE Xplore. Restrictions apply.

support real-time operation, and therefore, we elect to weaken
consistency to improve performance. Specifically, we formu-
late two notions of consistency that relax linearizability to
allow us to achieve better performance while having a notion
of the consistency guarantees achieved. The first consistency
notion we introduce is Snapshot Linearizability, which aims
to model the potential inconsistency resulting from lazily
forwarding records to an offline reader. The second consistency
notion we introduce is the Linearizable+Concurrent model,
which aims to model the potential inconsistency that results
from having more than one Ingestor (i.e., more than one entry
point to the LSM tree.)

In the rest of the paper, we begin with presenting back-
ground (Section II). Then, we propose CooLSM design in
Section III. Section IV presents our experimental evaluation.
The paper concludes with a related work section (Section V)
and a summary (Section VI).

II. BACKGROUND

A. Target Applications

We are motivated to solve the performance challenges of
emerging IoT/edge applications [22]. Many of these emerging
applications require two types of access: low-latency access
for recent data and complex analytics for global data at
larger time ranges. This includes examples ranging from smart
city and Industry 4.0 to Virtual/Augmented Reality-based
mobile games and social networks. For example, a smart
city traffic application would employ Vehicle-to-Everything
(V2E) technology to allow vehicles to communicate with
their surroundings including pedestrians, traffic signals, and
other vehicles. Such an application exhibits local low-latency
access for operations to coordinate between vehicles and other
vehicles and pedestrians in intersections and highways. (A
notable example are technologies where hints from vehicles
are used for better utilization of highways and faster flow
in intersections.) Doing so requires fast local coordination as
it involves vehicles writing their data (e.g., which route they
are taking after this intersection) and others reading the data
of recent vehicles in their intersection. Also, this application
exhibits the need for more complex analytics to gain insights
from the collected data. For example, city planning and
monitoring agencies may want to study the traffic patterns
by asking queries about the commuting routes of cars and the
average delays they incur.

CooLSM aims to service such applications by providing
Ingestors that are distributed at various edge locations for local
time-critical actions. Also, CooLSM provides Compactors and
Readers at the cloud that are capable of answering more
complex queries. Although we present a single example—
of smart city traffic—due to space constraints, this pattern or
time-critical local action and complex analytics is exhibited in
many emerging edge/IoT applications.

B. LSM Trees

LSM-tree [23] is not an in-place data structure, where every
update is appended as a new entry rather than updating the

old entry. This design targets the sequential I/O nature of
the underlying disk which makes LSM-trees ideal for write-
intensive workloads.

An LSM-tree [23] is composed of components (also called
levels) L0, L1, . . . , Lk , where each component itself is a B+
tree. L0 resides in memory while all other components reside
on disk. The pages in components are typically called sstables.
When a component L is full, a rolling merge operation is
triggered to merge the contents of L into L+1. The rolling-
merge process is complex and modern LSM-tree variants
use various compaction techniques. Two common compaction
techniques are tiering and leveling. Tiering compaction merges
all the contents of two levels and writes the newly merged
content in the higher level. Leveling only compacts select
pages from one level and merge them with sstables they
overlap with in the next higher level.

In Figure 1(a), we show the basic structure of the LSM-
tree that we consider. It consists of four levels, L0 in memory,
and L1 to L3 in disk. Compaction in L0/L1 is done through
tiering, and compaction in the rest of the levels is done through
leveling. Following common practice, L0 and L1 have the
same size and a constant size ratio of 10 is used for higher
levels.

An insert operation is performed via the following steps:
• The key-value pair is appended to an in-memory

memtable where writes are buffered.
• If the memtable reaches its threshold size, the memtable

entries are sorted based on their keys and the memtable
is appended to L0.

• If L0 reaches its threshold size, this triggers a minor
compaction between L0 and L1.

• After the minor compaction, if the threshold of L1 is
exceeded, a major compaction is triggered. This continues
for higher levels.

III. COOLSM DESIGN

In this section, we present the design of CooLSM.

A. Design Overview and Motivation

Cooperative-LSM (CooLSM) is implemented by decon-
structing the monolithic structure of LSM trees to enhance
their scalability by utilizing the resources of multiple machines
in a more flexible way. CooLSM consists of three components:
• Ingestor node receives the write requests. It maintains

Levels L0 and L1 of the LSM tree.
• Compactor maintains the rest of the levels (L2 and L3)

and is responsible for major compaction.
• Reader (Backup) maintains a copy of the entire LSM

tree for recovery and read availability.
The advantages of CooLSM are: (1) Different components

can be placed across different machines (this includes Com-
pactor and Reader components that are separate and can be
placed on independent machines.), and (2) There can be more
than one instance of each component. Running more than one
instance for each component can enable various performance
advantages depending on the type of component:

421

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:45:17 UTC from IEEE Xplore. Restrictions apply.

• Increasing the number of Ingestors enables digesting data
faster as multiple ingestors are working in parallel.

• Increasing the number of Compactors enables offloading
compaction to more nodes and thus reduces the impact
of compaction on other functions.

• Increasing the number of readers increases read availabil-
ity.

Motivation in edge-cloud environments. Although the
advantages above are general to any deployment, we are
especially motivated by the advantages in edge-cloud systems.
CooLSM’s design flexibility allows scaling efficiently to the
heterogeneous and asymmetric environment of edge-cloud
systems. In particular, placing Ingestors close to data sources
at the edge allows scaling to the high-velocity data demand
of edge and IoT applications. Placing compactors at the cloud
enables offloading the compaction overhead away from data
sources and direct consumers while leveraging the compute
resources of the cloud. Placing Backups close to data sinks
and consumers allows faster and more interactive analytics
and read-only queries.

B. Architecture

The architecture of CooLSM is shown in Figure 1(c) and
an example of how it is deployed is shown in Figure 1(d).

In CooLSM, there might be one or more Ingestors. All
Ingestors are identical. They receive upsert and read opera-
tions for any key in the data range. Each Ingestor maintains a
separate levels L0 and L1. L0 contains pages of inserted key-
value pairs (that correspond to upsert commands.) Each page
represents a batch of inserted keys. Therefore, the keys across
pages are not unique or ordered. However, the keys within a
page are ordered before insertion to L0.

Each level  has a threshold, denoted L[i].threshold. When
the number of pages in L0 exceeds the threshold, then a
minor compaction is performed with L1. L0 has pages with
overlapping key-range while higher levels have pages with
non-overlapping key-range. When the number of pages in
L1 exceeds the threshold L[1].threshold, the Ingestor sends
the extra pages to one or more of the Compactors.

Like Ingestors, there might be one or more Compactors in
a CooLSM instance. Compactors might be partitioned or have
overlapping ranges. Each type of compactor scaling (parti-
tioned or overlapping) has its advantages and disadvantages
that we discuss later in this section. Each compactor receives
pages from Ingestors and maintains separate levels L2 and L3.
When pages are received from an Ingestor, a major compaction
of L2 is performed. If the threshold of L2 is exceeded, then
L2 is compacted with level L3.

Each backup node represents a snapshot of the state. The
backup can receive data from both Ingestors and Compactors
and incorporates the data in its state. Clients wishing to read
the state of the data can read from Backups, although they
might be lagging behind the most recent copies in the Ingestors
and Compactors.

In this section, we present the algorithms used to perform
insert and read operations in CooLSM. We follow an in-

cremental approach in presenting CooLSM design, beginning
with the design of CooLSM with a single Ingestor and one or
more partitioned Compactors. Later in the section we introduce
backups, overlapping Compactors and multiple Ingestors.

C. Core CooLSM (One Ingestor and Multiple Compactors)

Fig. 2. Core CooLSM (One Ingestor and Multiple Compactors)

This architecture (core CooLSM) assumes having only one
Ingestor and one or more partitioned Compactors. All upsert
and read operations are sent to the Ingestor. Each compactor
handles a mutually-exclusive range of the data.

1) Upsert Flow (Figure 2)
The following are the steps performed to insert a new key-

value pair to the index. First, the Ingestor batches all received
upsert operations. Once the batch reaches a threshold, the
Ingestor orders the key-value pairs in the batch and adds the
batch as a new table in L0. After the new table is added, the
Ingestor checks whether the threshold of the number of tables
(L[0].threshold) is exceeded. If it is, then the Ingestor initiates
a minor compaction process that compacts all the sstables in
L0 into the sstables in L1.

Minor compaction is a k-way merge operation across all
pages in L0 and L1. Specifically, the Ingestor sorts all the
key-value pairs in L0 and L1, removing any redundancies by
only keeping the most recent key-value pair of each key. Once
all the key-value pairs are sorted, they are divided into ordered
sstables, where the size of an sstable is predetermined. At this
point, all the pages in L0 and L1 are cleared, and the new
merged sstables are inserted to L1. This step is performed
atomically.

After finishing minor compaction, the Ingestor checks if the
threshold L[1].threshold is exceeded. If it is, then the Ingestor
picks the extra sstables that exceed the threshold and forwards
them to the appropriate Compactors. For each sstable, the
Ingestor checks if the range of key-value pairs falls within
one or more compactors, since compactors are partitioned
(we discuss compactors with overlapping ranges later in this
section.) If it falls within one Compactor, then it is forwarded
to it. Otherwise, the Ingestor divides the sstable into different
parts, where each part corresponds to a Compactor’s range and
then sends each part to its corresponding Compactor.

422

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:45:17 UTC from IEEE Xplore. Restrictions apply.

The Ingestor does not remove the forwarded sstable im-
mediately. Rather, it waits to hear an acknowledgment from
the compactor that the sstable is received and merged at the
compactor. This is important for the read operation that we
present later to ensure that no key-value pairs are temporarily
absent from the read path from the Ingestor to the Compactors.

When a Compactor receives sstables from an Ingestor, it
starts a major compaction process. Specifically, the com-
paction process affects sstables in L2 that overlaps with
the range of the received sstable—we will call these pages
L2.overlap. A k-way merge operation is performed between
the received sstables and the sstables overlapping with them
in L2. After the merge is performed, the resulting ordered
sstables are used to replace the L2.overlap pages in L2. This
step is performed atomically. Then, it checks whether the
number of sstables in L2 exceeds the threshold. If it does,
the extra pages in L2 are merged with the overlapping pages
in L3. Once the major compaction is done, the Compactor
notifies the Ingestor.

2) Read Flow
Read operations are sent to the Ingestor. The Ingestor

first checks the membtable and if not found, searches in
level L0 starting from the most-recent table to look for the
requested key. If it is found, the most recent key-value pair is
returned. Otherwise, the Ingestor looks in the sstables in L1.
If the key is found, then it is returned. Otherwise, the read
request is forwarded to the appropriate compactor based on
the compactor key-range.

When a compactor receives a read operation, it looks in its
sstables starting with the corresponding sstable in L2 and then
the corresponding sstable in L3. If the key is found, then it is
returned to the client. Otherwise, a negative acknowledgment
is sent back to the client.

Like many LSM variants, we use bloom filters [9] and
fence pointers to speed up the process of looking through the
sstables.

3) Safety
In this core architecture with one Ingestor and multiple

Compactors, CooLSM guarantees Linearizability [14]. Lin-
earizability is a guarantee that a data operation appears to
happen instantaneously at some time between its invocation
and return. An execution history Hn. represents a sequence
of operations that satisfies the illusion of instantaneous invo-
cations. An implication of linearizability is that if an operation
 starts after an operation b returns, then  must be logically
ordered after b.

The following is a proof sketch of the linearizability of core
CooLSM. In core CooLSM, upsert operations are handled one
operation at a time. The upsert is appended to a batch and then
an acknowledgment is sent back to the client. The time of an
upsert operation  in Hn. is between the start and return
time. Every past upsert operation is ordered before  in Hn.
and every future upsert operation is ordered after  in Hn..
When a read operation is performed, it is sent to the Ingestor.
Assume that the returned value is written by an operation c.

It is guaranteed that the time of operation c in Hn. is less
than the return time of the read operation since the upsert
is observed. Also, it is guaranteed that there is no other write
operation d with time that is larger than c in Hn. and smaller
than the start time of the read operation. Otherwise, CooLSM
would have observed that read. Therefore, the time of the read
operation in Hn. can be set as happening immediately after
c. With this timing of upsert and read operations, we show
that indeed there is an appearance of operations happening
instantaneously at some time between their invocation and
return.

D. Adding Backup Components

1) Overview

A backup node maintains a snapshot of the data maintained
by the compactors (the backup might also optionally maintain
data from the Ingestors as we will discuss later in this section).
The most recent key-value pairs might not be present in
the backup. However, backups serve an important role to
increase the read availability of CooLSM. Backups receive
updates about the state of the index via the Compactors.
Each Compactor, after each major compaction, forwards the
newly formed sstables to all the backup nodes. Each backup
node uses the newly received information to update its index.
Backup nodes have two levels only, L2 and L3, since they only
receive updates from Compactors. In the case there are more
than one partitioned Compactor, the backup receive updates
from all of them and integrate the sstables into one structure.

A client wishing to read from CooLSM has the option of
reading from one of the backup nodes. To do so, a read request
is sent to the backup and the backup serves it by checking the
sstables in L2 and then L3, similar to how a Compactor serves
a read request. The advantage of reading from the backup
node is that the read operation is not affecting the Ingestor
and Compactors directly. Therefore, the read operation is not
interfering with the ingestion and compaction processes and
would not lead to impacting their performance or be impacted
by their operation. This is particularly important for large reads
that are needed in analytics and complex read-only queries,
especially if these operations are interactive, requiring a fast
response.

2) Safety (Snapshot Linearizability)

The downside of reading from a backup node is the fresh-
ness of the read data. A backup node does not have the most
recent data that was not forwarded to it yet. This breaks the
safety of reads as they are no longer linearizable. This is a
trade-off between read-availability and consistency.

Although linearizability is not guaranteed if a client reads
from a backup, we formulate a weaker consistency guarantee
that is achieved when a client reads from a backup. We call
this guarantee snapshot linearizable. Snapshot linearizability
guarantees that for any two consecutive reads, r1 followed
by r2, that are reading the same object and are served from
the same backup node, then either of the following is true:
(1) the two read operations return the same value and the

423

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:45:17 UTC from IEEE Xplore. Restrictions apply.

value corresponds to a past write operation, or (2) r1 returns
the value written by 1 and r2 returns the value written by
2 and 1 <n. 2, where <n. is an ordering of the two
writes in the linearizable history Hn. of the main system (the
Ingestor and Compactors in our case.)

The notion of snapshot linearizability is useful to applica-
tions reading from the backup such as analytics and read-only
queries. The reason is that snapshot linearizability preserves
the notion of time progression of the updates. For example,
an application that is interested in observing the patterns in a
sequence of readings from an IoT device would still observe
a sequence of readings in their original order.

Reading from the CooLSM backup is snapshot linearizable
because the writes (sstables) are forwarded from each Com-
pactor in order. Therefore, the state of the backup reflects the
state of a compactor as it progresses in time. Note that this
guarantee is applicable to objects within the range of a single
Compactor. This is because with more than one Compactor,
some Compactor’s updates might be delayed in respect to
others.

3) Backups with L0 and L1

In the description above, we assume that only Compactors
forward data to Backup nodes. It is also possible to make
Ingestors forward data to backup nodes. The implication of
this change is that it makes the state of the backup more fresh
as it does not need to wait for the updates to trickle down to
the Compactors. The downside is that this modification leads
to the need for more coordination at the backup to make sure
that snapshot linearizability is achieved.

E. Multiple Overlapping Ingestors

Now, we consider the case of having more than one Ingestor
in a CooLSM deployment where they overlap in the key
ranges they handle1. The motivation for having more than one
Ingestor is to scale the ingestion process. For simplicity, we
consider a deployment of CooLSM with multiple Ingestors
and multiple partitioned Compactors but no Backups.

The design and algorithms for Ingestors and Compactors
are the same as presented in the core CooLSM design (Sec-
tion III-C). The only difference is that there could be more than
one Ingestor receiving upsert and read operations. Operations
to insert data are treated in the same way as core CooLSM. The
operations are batched, inserted to L0, and then get compacted
with sstables in L1 when the threshold of L0 is exceeded.
When L1’s threshold is exceeded, the sstables are sent to the
appropriate Compactors.

The implication of having multiple Ingestors is that there
could be multiple versions of the same key across different
Ingestors. Furthermore, the order of these multiple versions
might be forwarded to Compactors in an arbitrary order that
does not follow the linearizable order of insertions. Due to
these implications, the read process must be modified to read

1If the Ingestors’ key ranges are non-overlapping, then we consider the
Ingestors to be part of different data partitions, hence different instances of
CooLSM.

from multiple Ingestors and the consistency guarantees must
be revisited. We discuss these issues in the rest of this section.

1) Consistency Anomalies

To demonstrate the consistency anomalies that are intro-
duced with multiple Ingestors, consider an example with two
Ingestors, 1 and 2, and one Compactor, C1. Assume that two
independent clients sent upsert requests, where client 1 sent
o1 =upsert(x=1) to 1 and client 2 sent o2 =upsert(x=2)
to 2. The two upsert requests happened concurrently, and
we assume that there is no specialized time synchronization
hardware that would allow accurate time synchronization.

Anomaly 1. Consider the scenario of a read operation,
r1 =read(x), that is issued while both records for o1 and o2
are still in their corresponding Ingestors. The read operation
would be sent to both Ingestors, since the value of  could be
in any one of them. When both Ingestors return both values
for o1 and o2, the client cannot decide which one of the two
values is safe to read while maintaining linearizability.

Anomaly 2. Consider another scenario after one of the
Ingestors, 2, sends the compacted sstables that contains o2.
At this time, o1 is in 1 and o2 is in C1. If a read operation
is issued at this time, it will be sent to both Ingestors first. 1
would return o1 and 2 would forward it to C1, and finally
C1 would return o2. Although one of the returned records is
at an Ingestor and the other is at a Compactor, the client is
still unable to decide which one of the two values is safe to
read while maintaining linearizability.

Anomaly 3. The final scenario happens when 1 finally
sends o1 to C1 for a major compaction. When o1 is received,
C1 cannot decide which operation to garbage collect and
which operation to keep as it does not know which one is
more recent.

The previous scenarios show the anomalies that can occur
with two (or more) Ingestors. There are two ways of handling
the occurrence of such anomalies: (1) relaxing the consistency
guarantees, and (2) Introduce coordination across Ingestors.
We use the first approach to avoid the added overhead of
Ingestor-to-Ingestor coordination that can be significant in
our edge-cloud environment. In the following, we discuss
our relaxation of consistency guarantees to reason about the
behavior of CooLSM with multiple Ingestors.

2) Relaxing Consistency: Linearizable+Concurrent

We observe that the anomalies discussed above are due
to concurrent insert operations where a node cannot decide
which operation was performed first. Using timestamps is
infeasible in the absence of accurate time synchronization
across Ingestors—which is infeasible without expensive and
specialized hardware. However, it is possible to use existing
time synchronization technologies that guarantee loose-time
synchronization such as NTP [21]. These protocols can pro-
vide bounds on the time-difference between the timestamps
of events at different machines. These bounds can be used to
deduce if two events are either ordered (one of the two events
definitely happened before the other) or concurrent (loose-time

424

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:45:17 UTC from IEEE Xplore. Restrictions apply.

synchronization cannot decide which operation was first if the
timestamps are too close).

Specifically, if loose-time synchronization is deployed, each
event e can be timestamped with a timestamp te. Each
timestamp accuracy is bounded by some threshold δ, where the
accurate global timestamp of te—denoted tge—is somewhere
in the range te − δ < t

g
e < te + δ. Using this formula, if

the difference between two events timestamps is greater than
2.δ, then they can be ordered by their timestamps, i.e., if
t − tb ≥ 2.δ, then b <t , where <t is a global time
ordering.

Using this global time ordering, we can establish order
across the inserted items if the difference in their timestamps is
larger than 2.δ. What remains are data items that are inserted
with 2.δ time of each other. Ordering such inserts is infeasible
without additional coordination. To overcome the need for
additional coordination, we formulate the lack of ordering
between concurrent events in terms of a relaxed consistency
guarantee that we call Linearizable+Concurrent consistency:

Definition 1. (Linearizable+Concurrent) A history of read
and write operations is Linearizable+Concurrent if for any
two operations  and b where t − tb ≥ 2.δ, then  must
be logically ordered after b (Assuming that δ is the time
synchronization bound.)

With this new definition of Linearizable+Concurrent con-
sistency, we modify the Ingestor and Compactor algorithms
to guarantee it.

The first modification is when an upsert request is received.
The Ingestor timestamps the inserted key-value pair using the
loose-time synchronization service. The second modification
is that the Ingestor maintains the timestamp of the most recent
record that is sent to Compactors. This becomes useful during
the read operation to know whether it is needed to read from
the Compactors.

The read operation is modified to consist of two phases, a
phase asking the Ingestors and a phase asking the Compactors
if necessary. In the first phase, the read operation is sent
to one Ingestor that will act as the coordinator of the read.
This Ingestor will timestamp the read operation and forward
the request to other Ingestors. The read will be served as-of
the timestamp given at the coordinator—all nodes will ignore
values with higher timestamps.

Each Ingestor responds with the most recent record match-
ing the requested key as well as the timestamp of the most
recent record sent to the Compactors (tsc). The client, then,
decides whether it needs to ask Compactors for records. If
no records were received from Ingestors, then the client asks
the corresponding Compactors. If records were received from
Ingestors, then the client might still need to ask Compactors—
in case a more recent record was forwarded to Compactors. To
decide whether the client needs to ask Compactors, it uses the
received record with the highest timestamp (tsh) as well as the
lowest received tsc. If tsh− tsc ≥ 2.δ, then the client knows
that all the records in the Compactors are ordered before the
record with timestamp tsh. In such a case, the first phase

terminates and there is no need for the second phase to ask
the Compactors.

If the record was not found in all Ingestors or tsh− tsc <
2.δ, then the client enters the second phase and sends read
requests to the corresponding Compactors. Each Compactor
returns the most recent version of the requested key. After
finishing phase 1 (and phase 2 if it is needed), the client returns
the record with the highest timestamp.

The last modification is to ensure that a compaction process
does not garbage collect recent values. The reason for this
change is because an ongoing read operation will ignore
values with timestamps higher than the read timestamp. If
a compaction process garbage collects a value that would
have been the most recent value as of a read timestamp, then
the response would not be linearizable+concurrent. Therefore,
values can be garbage collected only if the new value has a
timestamp that is higher than the timestamp of any current or
future read operation.

Theorem 1. The modified CooLSM algorithms for multiple
Ingestors guarantee Linearizable+Concurrent consistency.

Proof. (Due to space constraints, we only include a proof
sketch.) To prove by contradiction, consider the case of two
operations o1 with timestamp ts1, and operation o2 with
timestamp ts2. Also, assume that ts2 − ts1 ≥ 2.δ. We now
show that for all possible cases, o2 is logically ordered after
o1:

• Both operations are writes: Because ts2 − ts1 ≥ 2.δ, it
is guaranteed that when o2 is received at its Ingestor that
o1 has already been received at its Ingestor. Therefore,
the state of the index is always going to reflect either the
state with o1 only or with both o1 and o2.

• o1 is a write and o2 is a read: The read operation
is guaranteed to be received after o1 is received at
its corresponding Ingestor. Otherwise, the timestamps
difference would not hold. Therefore, the read operation
is guaranteed to observe a state that includes adding o1
in its history.

• Both operations are reads: Any write that is observed
by o1 is also observed by o2. This is because o2 is
guaranteed to be received at each Ingestor after o1 has
been received.

• o1 is a read and o2 is a write: The read is received at each
Ingestor before the write. Additionally, the read ignores
any writes with timestamps higher than its timestamp.
Therefore, it never observes the state of o2.

F. Consistency-Performance Trade-off Discussion

A main component of the proposed algorithms above is the
consistency-performance trade-off that guided our new consis-
tency definitions and designs. In this section, we summarize
and discuss these consistency designs and provide an analysis
of their trade-offs in comparison to each other.

425

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:45:17 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SUMMARY OF CONSISTENCY DEFINITIONS IN COOLSM (MULTIPLE

COMPACTORS ARE ASSUMED IN ALL CASES).

Without Readers With Readers

1 Ingestor Linearizable
Snapshot

Linearizable
Multiple
Ingestors

Linearizable
+Concurrent

Snapshot
Linearizable+Concurrent

Table I summarizes the consistency definitions according
to the deployment. There are two factors that decides the
consistency level: whether there are 1 or more Ingestors, and
whether there are Readers. In all these cases, we assume that
there are 1 or more Compactors. In the following, we discuss
the motivation and justification of each consistency level.
Specifically, our goal is to retain as much consistency features
while ensuring that no excessive coordination overhead is
introduced.

The first case is with 1 Ingestor and no Readers (This
corresponds to the core design in Section III-C.) In this
case, we observe that although the Ingestor and Compactors
are distributed, it is possible to retain strong consistency
(linearizability) without additional excessive coordination.

The second case is with 1 Ingestor and with Readers (This
corresponds to the design in Section III-D.) The motivation
to add Readers is to allow users to query the database
without interfering with the on-going operation in Ingestors
and Compactors. Doing so is infeasible while maintaining
linearizability since it would require Readers to coordinate
with Ingestors and Compactors for all read operations. For
this reason, we proposed snapshot linearizability that would
relax linearizability to enable reading from Readers without
coordinating with the rest of the system. Snapshot lineariz-
ability, however, retains the consistency feature of reading
from a progressive snapshot of data, which is sufficient for
the correctness of many analytics workloads.
Analysis: snapshot isolation can be achieved by passively
receiving updates from Compactors without having to do any
further coordination in response to read requests. This means
that the only overhead that is introduced to existing nodes is
the overhead of propagating updates from Compactors to cor-
responding Readers. Because this can be done asynchronously,
its overhead is low (we present an evaluation of the overhead
of adding Readers in Section IV).

The third case is with multiple Ingestors and no Readers
(This corresponds to the design in Section III-E.) Adding
Ingestors allows scaling the ingestion of CooLSM and to
enable fast Ingestion at multiple locations. However, if we
want to maintain linearizability, these Ingestors would need
to coordinate which would prevent scaling performance and
would make latency high when Ingestor are at distant loca-
tions. For this reason, we propose relaxing consistency and
propose Linearizable+Concurrent, which allows concurrent
ingestion without coordination while retaining the consistency
and ordering of operations when they make to Compactors.
Analysis: Linearizable+Concurrent can be achieved by mul-

tiple Ingestors that do not coordinate with each other. The
only extra coordination overhead is for relatively small meta-
information that can be piggybacked in existing communi-
cation between Ingestors and Compactors. (Our evaluation
section shows experimental results of varying the number of
Ingestors.)

The fourth case is a composition of the second and
third cases (having Readers and multiple Ingestors). This
case is achieved by applying the changes in both Sec-
tion III-D and III-E. Because the changes needed for each
section are on different parts (supporting Readers requires
adding Readers and propagating changes from Compactors to
Readers and supporting multiple Ingestors requires changing
Ingestor-Compactor communication.) Applying both changes
would achieve a hybrid of both Snapshot Linearizability
and Linearizable+Concurrent that we call Snapshot Lineariz-
able+Concurrent. The justification and analysis of combining
these two guarantees is the union of their individual justifica-
tion and analysis as we describe for the cases 2 and 3 above.

Applications. The presented relaxed guarantees aim to al-
low the deconstruction and scaling of LSM components while
minimizing coordination between them. This is motivated by
edge/IoT applications with low-latency requirements (such as
ones we discuss in Section II-A.) The addition of Readers
(case 2 in Table I) is motivated by the need for efficient global
analytics in some of these applications. For example, a smart
city application, collecting data about traffic, would require
functionality to perform large queries across large areas (e.g.,
what is the number of accidents during the morning commute
in a certain highway.) Snapshot Linearizability allows such
queries to return consistent results as of a recent time in
the past, which is sufficient for such analytics queries. The
addition of multiple Ingestors is needed for scenarios where
there is a need for scaling data ingestion of local time-critical
requests or a need to have ingestors of overlapping data
at multiple distant locations (Case 3 in Table I). Lineariz-
able+Concurrent allows different Ingestors to operate without
having to coordinate with each other. For example, in the
smart city traffic application (Section II-A), the traffic sen-
sors/cameras might be distributed across a large metropolitan
area. To achieve fast ingestion and local response, Ingestors
must be distributed across the city and be able to ingest/process
data immediately without waiting to coordinate with other
nodes. Linearizable+Concurrent allows this performance goal
of recent data while retaining consistency and order of less-
recent data after making it to Compactors. Case 4 (Table I)
captures IoT/edge applications in the union of the discussed
cases above.

G. Overlapping Compactors

Up until now, we assumed non-overlapping Compactors,
i.e., each Compactor is responsible for a mutually-exclusive set
of keys. We anticipate that in most deployments, it is sufficient
to have non-overlapping Compactors. The reason is that they
would typically be hosted in the cloud where there are enough
resources and availability to perform fast reconfiguration—

426

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:45:17 UTC from IEEE Xplore. Restrictions apply.

to react to dynamic workload changes. (This is not the case
for Ingestors that would be at the edge and handle data in
a more time-sensitive manner that makes reconfiguration for
Ingestors relatively more disruptive than reconfiguration for
Compactors.)

Nonetheless, for completeness, we allow CooLSM to han-
dle multiple overlapping Compactors. Adding this support
requires small changes to the original design of read and write
operations that we presented in the previous sections. For write
operations, when an Ingestor forwards records to Compactors,
it chooses one of the overlapping Compactors arbitrarily—
potentially using a load balancing strategy—and forwards the
records to it. For read operations, an Ingestor forwards the
read operation to all Compactors that overlap with the key in
the read operation.

A complication that overlapping Compactors introduce is
in the case that there are backup nodes. With non-overlapping
Compactors, the backup relies on a single source for each
key, which makes it straight-forward to maintain a progressive
history. In the case of multiple Compactors, the Backup must
find a way to order overlapping records received from multiple
Compactors. In this work, we do not treat this problem as we
focus on the case with non-overlapping Compactors and leave
the details of the case of overlapping Compactors for future
work. However, a possible approach to enable Backup nodes
to order operations is to use sequence numbers if there is one
Ingestor or use timestamps if there are more than one Ingestor
and relax consistency for Backups in the same way we did with
multiple Ingestors.

H. Fault Tolerance

CooLSM is a distributed system that may face various fail-
ure scenarios such as dropped messages and machine failures
(that might manifest as timeouts when different nodes are
communicating with each other.) To overcome the complexi-
ties of handling dropped (and more generally, unordered and
delayed) messages, we use a communication framework that
guarantees the ordered delivery of messages while handling
network message drops, delays, and unordered messages. (We
use Google RPC which uses a variant of the TCP protocol.)
Handling machine failures is done by employing a recovery
mechanism to enable recovering a consistent, recent state of
operation after a failure. This includes both the data structure
and the meta-information used for coordination with other
nodes.

Another concern is ensuring continued operation during ma-
chine failures. Indexing technology and databases have lever-
aged prior work on high-availability and state-machine repli-
cation. Specifically, to make a component/node of CooLSM
resilient to failures, its state would be replicated to 2ƒ + 1
nodes, where ƒ is the number of failures to be tolerated. This
replication can be made in a consistent and efficient manner
using protocols like paxos [17]. For example, a Compactor
node would replicate each step of its operation to a set of
replicas, such as data received from Ingestors and compaction
operations. The Reader Component can be fitted to serve

this role of acting like a backup or a replica of a state-
machine replication instance. For example, a Compactor would
broadcast its changes to 2ƒ Readers (making the total with the
Compactor be 2ƒ+1 nodes) using a paxos process replicating
an ordered log of operation steps. If a failure occurs, one
of the Readers can assume the role of the Compactor via a
leader election process until the original Compactor recovers.
Similarly, this replication and leader election pattern can be
used to persist the state of Ingestors.

I. Reconfiguration

To react to changing workloads conditions, we need to per-
form reconfiguration. We use existing reconfiguration methods
used in distributed databases [16] [1] and adapts them to
our use case. The design of CooLSM where it is possible
to have overlapping Ingestors and Compactors enables elastic
reconfiguration via a three-step approach: (1) Expand, where
the node with the new configuration is added as an overlapping
component, (2) Migrate, where all requests and data are
migrated from the node with the old configuration to the node
with the new configuration, and (3) Detach, where the node
with the old configuration is retired after all the data and
requests have migrated to the node with the new configuration.

IV. EVALUATION

We present a performance evaluation of CooLSM in this
section. We conducted our experiments on Amazon AWS
datacenter in Virginia using t2.xlarge EC2 instances. Each
machine runs 64-bit Ubuntu Linux and have four 3.0 GHz
Intel Scalable Processors with 16 GB of RAM.

For each experiment, we have used two key ranges: 100K
and 300K. For the 100K key-range, L0 and L1 have 10
sstables, L2 has 100 sstables and L3 has 1000 sstables. For
the 300K key-range, L0 and L1 have 10 sstables, L2 has 300
sstables and L3 has 3000 sstables. For write experiments, a
batch size of 10K is used and for read experiments, a batch
size of 1K is used.

For edge-cloud experiments, we use five datacenters in
Amazon AWS. Virginia datacenter is the cloud where com-
pactors are placed. Ohio, California, Oregon and London are
used as edge locations where the Ingestor is placed.

A. CooLSM Write Performance

In this section, we present a set of experiments to test
the write performance of CooLSM by varying the number
of compactors. We include the performance of running
CooLSM as a monolithic system. In this case, an Ingestor
and a Compactor are colocated on the same machine and
connected in a monolithic design so that network overhead is
not incurred. The workload in this experiment is an all-write
workload. Figure 3 shows the results of these experiments
that are conducted in the Virginia data center.

In Figure 3(a), as the number of compactors increases, the
overall write latency of CooLSM reduces (50% reduction from
the monolithic case to having three compactors, followed by

427

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:45:17 UTC from IEEE Xplore. Restrictions apply.

Monolithic 2 3 4 5 6 7
Number of Compactors

10−1

100

101

La
te
 c
y (
m
s)

(a) Latency

100K
300K
RocksDB
LevelDB

Monolithic 2 3 4 5 6 7
Number of Compactors

102

103

104

Th
ro
ug

hp
ut
 (o

p/
s)

(b) Throughput

100K
300K
RocksDB
LevelDB

Fig. 3. The write performance of CooLSM while varying the number of
compactors

Percentile Value Measure Value
0.99 0.04ms Average 0.11ms
0.999 1.4ms Maximum 200ms
0.9999 100ms latency>50ms 10 ops

TABLE II
LATENCY STATISTICS WITH 1 INGESTOR AND 5 COMPACTORS

25% reduction from three to six compactors and 15% from
six to seven compactors). Note that the reduction in latency is
not significant after five compactors. This is because five in-
dependent compactors provide enough computation resources
to carry out the heavy compaction process (for both 100K and
300K), so introducing more compactors is not beneficial. For
the 300K key-range, the latency is higher than 100K key-range
as the compaction involves more sstables due to a bigger LSM
tree.

Detailed latency statistics about one of the cases (with 5
compactors) are shown in Table II. The percentile values show
that most requests are fast (99% are below 0.04ms) and that a
small fraction of requests take longer than 100ms. These are
requests that trigger compaction and thus experience a higher
latency. These are about 10 operations which take more than
50ms to complete.

The write throughput of CooLSM in Figure 3(b) increases
with the increase in the number of compactors. Since a bigger
LSM tree is being used for 300K key-range, compaction is
more resource-intensive, and as a result, the write throughput
is lower than the 100K key-range.

For reference, we also compare CooLSM performance
with two widely-used LSM-based systems: LevelDB2 and
RocksDB3 (we run both with configuration to persist and sync
to disk). These two systems offer more complex functionality
than our CooLSM system which affects the comparison.
Nonetheless, we aim to provide a reference point of existing
systems to better interpret the results of CooLSM. The results
show that the monolithic case of CooLSM is within millisec-
onds of the latency of the other two solutions. The positive
effect that is experienced with deconstructing CooLSM and
adding Compactors is a promising result that such an effect

2https://github.com/google/leveldb
3https://rocksdb.org/

might be observed if applied to other systems such as LevelDB
and RocksDB.

2 3 4 5 6 7
Number of Compactors

0.0

0.5

1.0

1.5

2.0

2.5

L2
 La

ten
cy

 (s
)

(a) L2 Compaction Latency

100K
300K

2 3 4 5 6 7
Number of Compactors

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L3
 La

ten
cy

 (s
)

(b) L3 Compaction Latency

100K
300K

Fig. 4. The compaction latency of CooLSM while varying the number of
compactors

Another set of write performance metrics that we analyze is
how L2 and L3 compaction latencies varies with the number
of compactors. In Figure 4, L2 and L3 compaction time
are following a similar pattern for both 100K and 300K
key ranges, with 300K taking more time. As the number of
Compactors increase, the stress on each Compactor decreases
leading to lower compaction latency. The magnitude of the
increase is significant, lowering the latency from seconds to
a few hundred milliseconds. The L3 compaction latency is
lower than the L2 compaction latency. This is because in each
cycle of major compaction, most of the incoming sstables are
compacted and absorbed at L2 and only a smaller number of
sstables overflow and get compacted in L3. This translates to
more work in L2 compaction in each major compaction cycle.

Compaction is the main source of performance stress to
the system, both in terms of computation and I/O. There-
fore, the latency of compaction reflects the stress on the
whole system and decreasing enables better scalability and
performance stability. Our distributed design enables some
degree of isolation between the compaction overhead and the
performance of the other components of the system. However,
since compactors communicate and coordinate with others,
compaction overhead still has an effect on the rest of the
system.

1 2 3 4 5
Number of Clients/Threads

0.1

0.2

0.3

0.4

0.5

0.6

0.7

La
ten

cy
 (m

s)

(a) Latency

Distributed Scaling
Co-located Scaling
Multi-threading Scaling

1 2 3 4 5
Number of Clients/Threads

8000

9000

10000

11000

12000

13000

Th
ro

ug
hp

ut
(o

p/s
)

(b) Throughput

Distributed Scaling
Co-located Scaling
Multi-threading Scaling

Fig. 5. CooLSM performance while increasing the number of clients

428

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:45:17 UTC from IEEE Xplore. Restrictions apply.

B. Scalability

In this set of experiments (Figure 5), we increase the number
of clients in three ways: (1) Distributed scaling, where each
client is placed on a separate machine colocated with an
independent Ingestor, (2) Colocated scaling, where all clients
are placed on the same machine and each client has its
own independent Ingestor that is also in the machine, (3)
multithreading scaling, where all clients are threads of the
same client program and they all share the same Ingestor.
The distributed and colocated scaling cases enable increasing
performance. This increase is more significant from 1 to 2
clients. Multithreading scaling, on the other hand, does not
scale with more clients. This indicates that one client is
capable of stressing one Ingestor. This is partly due to the
independence of the Ingestor that allows fast Ingestion, and
thus a client would be able to rapidly issue operations back-
to-back. This experiment also validates that scaling the number
of Ingestors has the potential of increasing performance and
overcoming stressed resources at the Ingestor.

C. CooLSM Read Performance

25 50 75
Read Workload (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

La
ten

cy
 (m

s)

(a) Latency with 2 Compactors

100K
300K

25 50 75
Read Workload (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

La
ten

cy
 (m

s)

(b) Latency with 5 Compactors

100K
300K

Fig. 6. The read latency of CooLSM (key-range = 100K and 300K) for two
and five compactors while varying the read percentage

In this section, we perform a set of experiments to test the
read performance of CooLSM without the backup server. We
conduct two sets of experiments, one with two compactors
(one compactor corresponds to the case of a monolithic
CooLSM) and the other with five compactors (five compactors
provide enough computational resources to conduct the com-
paction process for both 100K and 300K key ranges). We
used a mixed (both reads and upserts) workload for these
experiments where we vary the percentage of reads (25%, 50%
and 75%).

Figure 6 shows that CooLSM has a consistent read latency
of about 0.7 ms (per read operation) for both 100K and 300K
key ranges. This shows that using a larger LSM tree is not
affecting the read performance. This is because of the use
of fence pointers and Bloom filter. Fence pointers help in
narrowing down the search to one sstable and bloom filters test
if the key is present in the sstable. Also, varying the number
of compactors is not affecting the read latency as the Ingestor
directs the read request to only one compactor based on the
partitioning of the key-range across the compactors.

Fig. 7. The read performance of CooLSM (key-range = 100K and 300K) for
two and five compactors with and without backup server

Introducing a backup server improves the read latency of
CooLSM to about 0.6 ms (per read operation) as shown in
Figure 7. This is because the read request is directly sent
to the backup server instead of forwarding the request to
compactors via the Ingestor, which reduces the network time.
We emphasize that the main advantage of adding backup
nodes is to isolate the service of read operations from upsert
operations and to increase read availability. The lower read
latency—though not significant—is an added benefit.

Backup nodes can be also used for availability and fault-
tolerance (Section III-H). We performed an experiment where
a scenario of five Compactors are replicating their updates to
two backup nodes that act as replicas. This means that each
Compactor can tolerate a failure. The overhead of this added
communication to the Backup nodes increases the latency from
0.11ms to 0.17ms.

V
 Oh Cal Or L
Edge Locatio s

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

La
te
 c
y (
m
s)

(a) Late cy

100K
300K

V Oh Cal Or L
Edge Locatio s

0

1000

2000

3000

4000

5000

6000

7000

8000

Th
ro
ug

hp
ut
 (o

p/
s)

(b) Throughput

100K
300K

Fig. 8. The write performance of Edge-Cloud CooLSM (key-range = 100K
and 300K) with cloud at Virginia and edge node at five different locations
(Virginia, Ohio, Oregon, California, London)

D. Edge Performance

In this section, we perform experiments to test the write
performance of Edge-Cloud CooLSM. The cloud (comprising
of five compactors) is placed at Virginia and the edge (or
Ingestor) is placed at different locations, namely Virginia,
Ohio, California, Oregon and London. These locations are
chosen based on their distance to the cloud datacenter, with
Ohio being next to Virginia on the East Coast, California and

429

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:45:17 UTC from IEEE Xplore. Restrictions apply.

Real-Time WorkLoad
Client Location Ingestor Location Latency(ms)
In cloud In cloud 0.5584
California California 0.8393
California In cloud 122.485

TABLE III
PERFORMANCE OF REAL-TIME ACTIONS

2 4 6 8 10 12 14

Number of Exploration Requests

200

400

600

800

Cu
m
ula

tiv
e
La

te
nc
y (
m
s)

(a) Status updates & exploration

0 250 500 750 1000 1250 1500 1750 2000

Number of Records

1.4

1.5

1.6

1.7

1.8
Av

er
ag

e
La

te
nc
y (
m
s)

(b) Analysis

Fig. 9. Performance of the smart traffic benchmark.

Oregon on the West Coast and London in Europe.

Figure 8(a) shows the latency of write operations on the
Ingestor at the edge. In all cases, the latency is between 0.1ms
and 0.35ms. The reason for this low latency is that the write
is served from the close-by edge Ingestor which masks the
wide-area latency to the Compactors in the cloud. Although
the Ingestor at the edge masks the wide-area latency to the
cloud, this wide-area latency still impacts the performance of
the system. This impact is due to the additional asynchronous
communication and coordination overhead that affects the
write latency indirectly as the wide-area latency increases,
especially for compaction operations. For instance, the write
latency is lowest for Virginia because the edge (Ingestor) is
local to the cloud datacenter. The latency is also low in Ohio
as it is close to Virginia. As the distance from the edge to the
cloud increases, the latency also increases.

Figure 8(b) shows the throughput for the Edge-Cloud ex-
periment. Throughput results mimic the observations we made
for the latency numbers.

E. Real-Time and Mixed Workloads

In this section, we perform experiments to test the perfor-
mance of CooLSM while emulating the workload patterns of
real-life applications that we target (Section II-A). Specifically,
we design a benchmark of smart traffic application based on
the description we provide in Section II-A. In this application,
each car is a client, and cars are distributed across a large
metropolitan area. Each car has a record in the database that
represents its information and current location. Continuously,
the following operations are taking place in the benchmark:
(1) real-time action: this is a Vehicle-to-Everything (V2X)
task where cars in an intersection update their status to be read
by the other cars in the intersection. This action is emulated as
a sequence of a write to a data item  (that represents the car
or the intersection) followed immediately by a read by other
nearby vehicles and/or pedestrians. Table III shows the results

of running this operation. We test with three configurations
varying the location of the client and the Ingestor. The benefit
of CooLSM is that we can deploy the Ingestor close to the
client (in California in this case) while the rest of the system
is in the cloud (in Virginia in this case). The first row is a
reference result when all operation is happening at the cloud.
This represents the best-case performance. The second row
represents the CooLSM case where the Ingestor is placed close
to users. In this case, the latency is 0.84ms which is around
0.3ms higher than the best-case performance but still low
enough to support the stringent latency requirements for edge
and IoT applications. The last row represents the traditional
case, when the data system is in the cloud faraway from users.
In this case, the real-time action takes two lengthy round-trips
to the cloud (each round-trip is around 60ms), one to write the
update and another for other vehicles to read it. This shows
how placing the Ingestor at the edge is crucial to overcome
the high edge-cloud latency.
(2) Status updates and exploration: this is an exploration
task where a moving vehicle continuously performs two steps:
(i) write an update about its location and other information,
and (ii) read the information of vehicles that are now in its
vicinity. Step 1 is always a single write that is served at the
nearby Ingestor. Step 2 depends on the number of vehicles
nearby and system configuration. Some of these reads might
be served from the Ingestor if the updates were recent and
others would be served from the Compactors at the cloud. This
task shows an example of a non-time-critical operation that
may incur wide-area latency. Figure 9(a) shows the cumulative
latency of each update/exploration request sequence as a
function of the number of read requests (explorations) in
step 2. As the number of explorations increase, the latency
increases as well as a multiple of the number of needed
round-trip messages to the cloud. In some cases, these reads
can be batched, but in many applications, these reads need
to be interactive, where the keys of future reads depend on
the current read request, which is the case emulated in this
experiment.
(3) Analytics: this is an analytics task, where an analyst is
issuing queries to read the state of cars in a region of the
city. These queries are served from a Backup node that is
placed close to the analyst. The aim of this experiment to
show that analytics reads can be fast by placing a Backup
close to the analyst. Figure 9(b) shows the average latency
of a read operation in a query while varying the number
of read operations in the query. For small queries (less than
1000 records), the average read latency is between 1.45 and
1.85ms. As the query size becomes bigger, the average read
latency becomes close to 1.4ms. The reason for this is that
the associated overheads of initiating the query and making
the connection to the backup node are amortized by the large
number of read requests.

V. RELATED WORK

HBase [1] and BigTable [11] use size-tiered compaction,
which suffers from space amplification. LevelDB [2] and

430

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:45:17 UTC from IEEE Xplore. Restrictions apply.

RocksDB [4] use leveled compaction, which suffers from
high write amplification. RocksDB introduced Universal Com-
paction [5] in which sstables can overlap in key-range but
avoid overlap in time-ranges. Time-range compaction has
lower write amplification than key-range compaction, but it
suffers from high space amplification. Other solutions propose
reducing write amplification of LSM by changing the granu-
larity of compaction [20], [24]. Others leverage data skewness
and flush cold data while keeping hot data in memory [7],
[25]. Monkey [12] and Dostoevsky [13] provide a detailed
mathematical analysis of tuning LSM trees hyperparameters
to improve its performance.

WiscKey [18] and HashKV [10] store key-value pairs in
an append-only log while the LSM tree contains only keys
to reduce the memory footprint of LSM-trees. Atlas [15]
proposes to write the values onto a different set of servers and
replace the values originally in the KV pairs with references
(or pointers) to their respective locations in those servers.

SILK [8] uses the notion of balancing between the client
(read-write requests) and internal (compaction) operations of
LSM via I/O bandwidth allocation. To this end, a monitoring
tool is used to make the allocations. RocksDB provides an
auto-tuned rate limiter [3], which adapts the I/O bandwidth
to the amount of internal work left, thereby allocating more
bandwidth when there is more pending compaction.

We are motivated by the goal of offloading the compaction
process to separate servers to mask the overhead of compaction
from the rest of the system. Ahmad and Kemme [6] first in-
troduced this concept by adding dedicated compaction servers
to HBase, which performed compaction on behalf of region
servers. When a region server pushes data, it is written as a
new store file to HDFS. Since compaction servers are region
servers, they can directly access this data via HDFS. So, when
a region server is about to trigger compaction, the dedicated
compaction server will do the Compaction instead and write
back the compacted data to the HDFS itself, which can then
be accessed by the region server.

CooLSM extends the idea of using separate servers for
compaction beyond what was previously proposed [6]. Specif-
ically, instead of only adding a replica to perform compaction
(where the original server is still a monolithic LSM tree),
we deconstruct the whole LSM tree structure into three basic
components. Then, we study the implications of mixing and
matching between different variants of these basic components
as well as scaling each component individually.

VI. CONCLUSION

We propose CooLSM, a distributed edge-cloud indexing
system. CooLSM’s main innovation is the deconstruction of
LSM trees to allow better flexibility and scaling. In this
process we tackle challenges in the design and reasoning
about correctness as well as explore opportunities in allow-
ing scalable and elastic behavior of individual components.
Our evaluation results show that deconstructing the LSM
tree has performance benefits in terms of scaling ingestion,

compaction, and increasing read availability. Furthermore, we
show that it enables a more scalable solution for edge-cloud
systems where data spans edge and cloud resources across
wide-area links.

VII. ACKNOWLEDGEMENTS

This research is supported in part by the NSF under grant
CNS-1815212.

REFERENCES

[1] HBase. https://hbase.apache.org/.
[2] LevelDB. https://github.com/google/leveldb.
[3] Rate Limiter. https://github.com/facebook/rocksdb/wiki/rate-limiter.
[4] RocksDB: http://rocksdb.org/.
[5] Universal Compaction. https://github.com/facebook/rocksdb/wiki/universal-

compaction.
[6] M. Y. Ahmad and B. Kemme. Compaction management in distributed

key-value datastores. Proc. VLDB Endow., 8(8):850861, Apr. 2015.
[7] O. Balmau, D. Didona, R. Guerraoui, W. Zwaenepoel, H. Yuan,

A. Arora, K. Gupta, and P. Konka. TRIAD: Creating synergies between
memory, disk and log in log structured key-value stores. In USENIX
ATC, pages 363–375, 2017.

[8] O. Balmau, F. Dinu, W. Zwaenepoel, K. Gupta, R. Chandhiramoorthi,
and D. Didona. Silk: Preventing latency spikes in log-structured merge
key-value stores. In USENIX ATC, page 753766, 2019.

[9] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422426, July 1970.

[10] H. H. W. Chan, Y. Li, P. P. C. Lee, and Y. Xu. Hashkv: Enabling efficient
updates in KV storage via hashing. In USENIX ATC, pages 1007–1019,
2018.

[11] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed
storage system for structured data. In USENIX OSDI, 2006.

[12] N. Dayan, M. Athanassoulis, and S. Idreos. Monkey: Optimal navigable
key-value store. In ACM SIGMOD, pages 79–94, 2017.

[13] N. Dayan and S. Idreos. Dostoevsky: Better space-time trade-offs for
lsm-tree based key-value stores via adaptive removal of superfluous
merging. In ACM SIGMOD, pages 505–520, 2018.

[14] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463492,
July 1990.

[15] C. Lai, S. Jiang, L. Yang, S. Lin, G. Sun, Z. Hou, C. Cui, and J. Cong.
Atlas: Baidu’s key-value storage system for cloud data. In MSST, pages
1–14. IEEE Computer Society, 2015.

[16] A. Lakshman and P. Malik. Cassandra: A decentralized structured
storage system. SIGOPS Oper. Syst. Rev., 44(2):3540, Apr. 2010.

[17] L. Lamport. The part-time parliament. ACM Trans. Computer Systems,
16(2):133–169, May 1998.

[18] L. Lu, T. S. Pillai, H. Gopalakrishnan, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Wisckey: Separating keys from values in ssd-conscious
storage. ACM Trans. Storage, 13(1), Mar. 2017.

[19] C. Luo and M. J. Carey. Lsm-based storage techniques: a survey. The
VLDB Journal, 29(1):393–418, 2020.

[20] F. Mei, Q. Cao, H. Jiang, and J. Li. Sifrdb: A unified solution for write-
optimized key-value stores in large datacenter. In ACM SoCC, pages
477–489.

[21] D. L. Mills. Internet time synchronization: the network time protocol.
IEEE Transactions on communications, 39(10):1482–1493, 1991.

[22] F. Nawab. Wedgechain: A trusted edge-cloud store with asynchronous
(lazy) trust. In IEEE Int. Conf. Data Engineering (ICDE), 2021.

[23] P. ONeil, E. Cheng, D. Gawlick, and E. ONeil. The log-structured
merge-tree (lsm-tree). Acta Inf., 33(4):351385, June 1996.

[24] P. Raju, R. Kadekodi, V. Chidambaram, and I. Abraham. Pebblesdb:
Building key-value stores using fragmented log-structured merge trees.
In SOSP, 2017.

[25] H. Yoon et al. Mutant: Balancing storage cost and latency in lsm-tree
data stores. In SoCC, pages 162–173. ACM, 2018.

431

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:45:17 UTC from IEEE Xplore. Restrictions apply.

		2021-06-19T10:40:31-0400
	Preflight Ticket Signature

