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We present improved distributed algorithms for variants of the triangle !nding problem in the CONGEST
model. We show that triangle detection, counting, and enumeration can be solved in Õ (n1/3) rounds us-
ing expander decompositions. This matches the triangle enumeration lower bound of Ω̃(n1/3) by Izumi
and Le Gall [PODC’17] and Pandurangan, Robinson, and Scquizzato [SPAA’18], which holds even in
the CONGESTED-CLIQUE model. The previous upper bounds for triangle detection and enumeration in
CONGEST were Õ (n2/3) and Õ (n3/4), respectively, due to Izumi and Le Gall [PODC’17].

An (ϵ,ϕ)-expander decomposition of a graph G = (V ,E) is a clustering of the vertices V = V1 ∪ · · · ∪Vx
such that (i) each cluster Vi induces a subgraph with conductance at least ϕ and (ii) the number of inter-
cluster edges is at most ϵ |E |. We show that an (ϵ,ϕ)-expander decomposition with ϕ = (ϵ/ logn)2O (k ) can
be constructed in O (n2/k · poly(1/ϕ, logn)) rounds for any ϵ ∈ (0, 1) and positive integer k . For example,
a (1/no (1) , 1/no (1) )-expander decomposition only requires no (1) rounds to compute, which is optimal up to
subpolynomial factors, and a (0.1, 1/poly logn)-expander decomposition can be computed in O (nγ ) rounds,
for any arbitrarily small constant γ > 0.

Our triangle !nding algorithms are based on the following generic framework using expander decompo-
sitions, which is of independent interest. We !rst construct an expander decomposition. For each cluster, we
simulate CONGESTED-CLIQUE algorithms with small overhead by applying the expander routing algorithm
due to Gha"ari, Kuhn, and Su [PODC’17] Finally, we deal with inter-cluster edges using recursive calls.
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1 INTRODUCTION
We consider triangle !nding problems in distributed networks. We focus on the CONGEST model
of distributed computing, where the underlying distributed network is represented as an undi-
rected graph G = (V ,E). Each vertex corresponds to a computational device and each edge corre-
sponds to a bi-directional communication link. It is common in the literature to assume that each
vertex v ∈ V initially knows some global parameters such as the number of vertices n = |V |, the
maximum degree ∆ = maxv ∈V deg(v ), and the diameter D = diameter(G ). In this article, we only
require each vertex to know n = |V |. Each vertexv has a distinct Θ(logn)-bit identi!er ID(v ). The
computation proceeds according to synchronized rounds. In each round, each vertexv can perform
unlimited local computation, and may send a distinctO (logn)-bit message to each of its neighbors.
Throughout the article, we only consider the randomized variant of CONGEST, where each vertex
is allowed to generate unlimited local random bits, but there is no global randomness.

Many variants of the triangle !nding problem have been studied in the literature [1, 9, 11, 17,
18, 24, 32, 52].

Triangle Detection. Each vertex v reports a bit bv , and ∨
v bv = 1 if and only if the graph

contains a triangle.
Triangle Counting. Each vertex v reports a number tv , and ∑

v tv is exactly the total number
of triangles in the graph.

Triangle Enumeration. Each vertex v reports a list Lv of triangles, and ⋃
v Lv contains

exactly those triangles in the graph.
Local Triangle Enumeration. It may be desirable that every triangle be reported by one of

the three participating vertices. It is required that Lv only contain triangles involving v .

All of these problems can be solved in exactly one round of communication if there is no no
limit on bandwidth: every vertex v simply announces its neighborhood N (v ) to all neighbors. It
is the bandwidth constraint of CONGEST that makes these problems non-trivial.

Whereas many graph optimization problems studied in the CONGEST model are intrinsically
“global” (i.e., require at least diameter rounds) [2, 21, 22, 25, 26, 29, 38], the triangle !nding problem
is somewhat unusual in that it can, in principle, be solved using only locally available information.

The Congested Clique Model. The CONGESTED-CLIQUE model is a variant of CONGEST that
allows all-to-all communication. Each vertex initially knows its adjacent edges and the set of ver-
tex IDs, which we can assume w.l.o.g. is {1, . . . , |V |}. In each round, each vertex transmits n − 1
O (logn)-bit messages, one addressed to each vertex in the graph.

Intuitively, the CONGEST model captures two constraints in distributed computing: locality and
bandwidth, whereas the CONGESTED-CLIQUE model only focuses on the bandwidth constraint.
This di"erence makes the two models behave very di"erently. For instance, the minimum spanning
tree (MST) problem can be solved in O (1) rounds in CONGESTED-CLIQUE [34, 49], but its round
complexity is Θ̃(D +

√
n) in CONGEST [20, 41, 54, 58].1

1The notations Õ ( ·), Θ̃( ·), and Ω̃( ·) hide any factor polylogarithmic in n.
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One of the main reasons that some problems can be solved e$ciently in CONGESTED-CLIQUE
is the routing algorithm of Lenzen [42]. As long as each vertex v is the source and the desti-
nation of at most O (n) messages, we can deliver all messages in O (1) rounds. Using this rout-
ing algorithm [42] as a communication primitive, many parallel algorithms can be transformed
into e$cient CONGESTED-CLIQUE algorithms [9]. For example, consider the distributed ma-
trix multiplication problem, where the input matrices are distributed to the vertices such that the
ith vertex initially knows the ith row. The problem can be solved in CONGESTED-CLIQUE in
Õ (n1/3) rounds over semirings, or n1−(2/ω )+o (1) = o(n0.158) rounds over rings [9], where ω < 2.373
is the exponent for matrix multiplication. As a consequence, Triangle Detection can be solved in
n1−(2/ω )+o (1) = o(n0.158) rounds in CONGESTED-CLIQUE [9].

Distributed Routing in Almost Mixing Time. A uniform lazy random walk moves a token around
an undirected graph by iteratively applying the following process for some number of steps: with
probability 1/2 the token stays at the current vertex and otherwise it moves to a uniformly random
neighbor. In a connected graph G = (V ,E), the stationary distribution of a lazy random walk is
π (u) = deg(u)/(2|E |).

Informally, the mixing time τmix (G ) of a connected graph G is the minimum number of lazy
random walk steps needed to get within a negligible distance of the stationary distribution.

De!nition 1 (Mixing Time [27]). Let ps
t (v ) be the probability that after t steps of a lazy random

walk starting at s , the walk lands at v . The mixing time τmix (G ) is the minimum t such that for all
s ∈ V and v ∈ V , we have |ps

t (v ) − π (v ) | ≤ π (v )/|V |.
Gha"ari, Kuhn, and Su [27] proved that if each vertex v is the source and the destination

of at most deg(v ) messages, then all messages can be routed to their destinations in τmix (G ) ·
2O (
√

log n log log n) rounds in CONGEST. The 2O (
√

log n log log n) factor has recently been improved by
Gha"ari and Li [28] to 2O (

√
log n) . This implies that many problems that can be solved e$ciently in

the CONGESTED-CLIQUE can also be solved e$ciently in CONGEST, but only if τmix (G ) is small.
In particular, MST can be solved in τmix (G ) · 2O (

√
log n) rounds in CONGEST [28], bypassing the

Ω̃(
√
n) lower bound for general graphs [54].

At this point, a natural question to ask is whether or not this line of research [27, 28] can be
extended to a broader class of graphs without any conductance guarantee (e.g., the general graphs).
The main contribution of this article is to show that this is in fact doable through the use of dis-
tributed expander decompositions.

Informally, an expander decomposition removes a small fraction of the edges so that the remain-
ing connected components have high conductance. In this article, we present the !rst no (1)-round
distributed expander decomposition algorithm in CONGEST. Based on this tool, we show that the
Triangle Enumeration problem can be solved in near-optimal round complexity Õ (n1/3), as fol-
lows. We !rst construct an expander decomposition. For each high conductance component of the
decomposition, we simulate a modi!ed version of the CONGESTED-CLIQUE Triangle Enumer-
ation algorithm of Dolev et al. [17] with small overhead by applying the routing algorithm due
to Gha"ari, Kuhn, and Su [27], and then we deal with triangles consisting solely of inter-cluster
edges using recursion.

1.1 Distributed Triangle Finding
In this article, we show that Triangle Detection, Enumeration, and Counting can be solved in
Õ (n1/3) rounds in CONGEST, matching the Ω(n1/3/ logn) lower bound [32, 52] up to a poly-
logarithmic factor. To our knowledge, this is the only non-trivial problem whose CONGEST and
CONGESTED-CLIQUE complexities coincide, up to Õ (1) factors.
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Theorem 1. Triangle Detection, Enumeration, and Counting can be solved in Õ (n1/3) rounds in
CONGEST, w.h.p.

This result is achieved by a combination of several techniques, including our new distributed
expander decomposition algorithm, a variant of the multi-commodity routing scheme of Refer-
ences [27, 28], and an adaptation of the CONGESTED-CLIQUE Triangle Enumeration algorithm
of Dolev et al. [17] to CONGEST networks with small mixing time.

Prior Work. Dolev, Lenzen, and Peled [17, Remark 1] showed that Triangle Enumeration can be
solved deterministically inO (n1/3/ logn) rounds in CONGESTED-CLIQUE. Censor-Hillel et al. [9]
presented an algorithm for Triangle Detection and Counting in CONGESTED-CLIQUE that takes
n1−(2/ω )+o (1) = o(n0.158) rounds via a reduction to matrix multiplication. Izumi and Le Gall [32]
showed that in CONGEST, the Detection and Enumeration problems can be solved in Õ (n2/3) and
Õ (n3/4) rounds, respectively. They also proved that in both CONGEST and CONGESTED-CLIQUE,
the Enumeration problem requires Ω(n1/3/ logn) rounds, improving an earlier Ω(n1/3/ log3 n)
bound of Pandurangan et al. [52].

Izumi and Le Gall [32] proved a large separation between the complexity of the Enumeration
and Local Enumeration problems. If triangles must be reported by a participating vertex, then
Ω(n/ logn) time is necessary (and su$cient) in CONGEST/CONGESTED-CLIQUE. More gen-
erally, the lower bound on Local Enumeration is Ω(∆/ logn) when the maximum degree is ∆.
However, very little is known about the complexity of triangle detection. Abboud et al. [1] proved
that deterministic 1-round triangle detection algorithms must transmit Ω(∆ logn) bits, whereas
Fischer et al. [24] proved that randomized 1-round algorithms must transmit Ω(∆) bits. Neither
result precludes a 2-round algorithm transmitting Õ (1) bits, independent of ∆.

1.2 Distributed Expander Decompositions
Before we proceed, we review some graph terminology. For each vertexv , letN (v ) denote the set of
neighbors ofv . We also write N k (v ) = {u ∈ V | dist(u,v ) ≤ k }. Note that N 1 (v ) = N (v ) ∪ {v}. The
terms dist(u,v ), N (v ), and N k (v ) depend on the underlying graphG, which appears subscripted if
not clear from context. Throughout the article,m = |E | denotes the number of edges in the original
communication network G = (V ,E).

Conductance. Consider a graph G = (V ,E). For a vertex subset S , we write Vol(S ) to denote∑
v ∈S deg(v ). By default, the degree is with respect to the original graph G. We write S̄ = V \ S ,

and let ∂(S ) = E (S, S̄ ) be the set of edges e = {u,v} with u ∈ S and v ∈ S̄ . The conductance of a cut
(S, S̄ ) is de!ned as Φ(S ) = |∂(S ) |/min{Vol(S ),Vol(S̄ )}. For the special case of S = ∅ and S = V , we
set Φ(S ) = 0. A cut (S, S̄ ) of conductance ϕ is also called a ϕ-sparse cut. The conductance ΦG of a
graph G is the minimum value of Φ(S ) over all vertex subsets S with 0 < |S | < |V |. We have the
following relation [33] between the mixing time τmix (G ) and conductance ΦG :

Θ

(
1

ΦG

)
≤ τmix (G ) ≤ Θ !

"
logn
Φ2

G

#
$ .

Balance. De!ne the balance bal(S ) of a cut S by bal(S ) = min{Vol(S ),Vol(S̄ )}/Vol(V ). We say
that S is a most-balanced cut of G of conductance at most ϕ if bal(S ) is maximized among all cuts
of G with conductance at most ϕ.

Subgraph Notation. Let S be a vertex set. Denote by E (S ) the set of all edges with both endpoints
in S . We write G[S] to denote the subgraph induced by S , and we write G{S } to denote the graph
resulting from adding degV (v ) − degS (v ) self-loops to each vertexv inG[S]. As in Reference [61],
self-loops are regarded as contributing one to the degree, not two, and hence every v ∈ S has the
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same degree in both G and G{S }. Observe that we always have

Φ(G{S }) ≤ Φ(G[S]).

Expander Decompositions. An (ϵ,ϕ)-expander decomposition of a graph G = (V ,E) is de!ned as
a partition of the vertex set V = V1 ∪ · · · ∪Vx satisfying the following conditions:

• For each cluster Vi , we have Φ(G{Vi }) ≥ ϕ.
• The number of inter-cluster edges ( |∂(V1) | + · · · + |∂(Vx ) |) /2 is at most ϵ |E |.

It is well known that any graph can be decomposed into connected components of conductance
Ω(ϵ/ logn) after removing at most an ϵ-fraction of the edges [4, 35, 53, 62, 66], and this bound is
tight: after removing any constant fraction of the edges in a hypercube, some remaining component
must have conductance at most O (1/ logn) [3].

The expander decomposition has a wide range of applications, and it has been applied to solving
linear systems [65], unique games [4, 55, 66], minimum cut [36], and dynamic algorithms [48].

A major contribution of this article is the following result.

Theorem 2. Let ϵ ∈ (0, 1) and k be a positive integer. An (ϵ,ϕ)-expander decomposition with ϕ =

( log n
ϵ )2O (k ) can be constructed in n2/k · ( log n

ϵ )2O (k )
= n2/k · poly( 1

ϕ , logn) rounds, w.h.p.

We emphasize that the number of rounds does not depend on the diameter ofG. There is a trade-
o" between the two parameters ϵ and ϕ. For example, an (ϵ,ϕ)-expander decomposition with ϵ =

2− log1/3 n and ϕ = 2− log2/3 n can be constructed in nO (1/ log log n) rounds by setting k = O (log logn)
in Theorem 2. If we are allowed to have ϵ = 0.1 and spend O (n0.1) rounds, then we can achieve
ϕ = Ω(1/poly logn).

Prior Work. In the centralized setting, the !rst polynomial time algorithm for constructing an
(ϵ,ϕ)-expander decomposition is given by Kannan, Vempala, and Vetta [35], where ϵ = Õ (ϕ), and
was further studied in many other subsequent works [5, 50, 51, 53, 57, 64, 66].

Spielman and Teng [63, 64] improved the runtime to Õ (m/poly(ϕ)), for a weaker variant of the
expander decompositions with ϵ = 1/poly(ϕ, logn). In their variant, each part Vi may not induce
an expander, but it is guaranteed to be contained in some unknown expander in the sense that there
is someWi ⊇ Vi for which ΦG {Wi } ≥ ϕ. Although this guarantee su$ces for some applications [15,
37], others [14, 48] crucially require that each part of the decomposition induces an expander.

Nanongkai and Saranurak [47] and Wul"-Nilsen [67] independently gave a fast decomposi-
tion algorithm without weakening any guarantees, as in References [63, 64]. The algorithm of
Reference [47] !nds a (ϕ logO (k ) n,ϕ)-expander decomposition in time Õ (m1+1/k ). Although the
trade-o" is worse in Reference [67], their high-level approaches are in fact the same. They gave
the same black-box reduction from constructing an expander decomposition to !nding a nearly
most balanced sparse cut. Our distributed algorithm for Theorem 2 also follows this high-level
approach.

Most recently, Saranurak and Wang [57] gave a (Õ (ϕ),ϕ)-expander decomposition algorithm
with running time Õ (m/ϕ). This is optimal up to a polylogarithmic factor when ϕ ≥ 1/poly log(n).
We do not use their approach, as their trimming step appears to be inherently sequential and
challenging to parallelize or make distributed.

2 DISTRIBUTED TRIANGLE ENUMERATION
The goal of this section is to prove Theorem 1 using Theorem 2. The proof of Theorem 1 is in
Section 2.2, and it uses Theorem 4.
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Theorem 1. Triangle Detection, Enumeration, and Counting can be solved in Õ (n1/3) rounds in
CONGEST, w.h.p.

In Section 2.1, we review the routing algorithm of Gha"ari, Kuhn, and Su [27] and describe
the adjustments that we need. In Section 2.2, we show how to adapt the randomized variant of
the Triangle Enumeration CONGESTED-CLIQUE algorithm of Dolev, Lenzen, and Peled [17] to
high conductance graphs in CONGEST. Combined with our distributed expander decomposition
algorithm, this proves Theorem 1. In Section 2.3, we extend the result of Section 2.2 to enumeration
of general subgraphs.

2.1 Routing in High Conductance Graphs
Consider the following multi-commodity routing problem. Given a set of routing requests where
each vertex v is a source or a destination for at most deg(v ) messages of O (logn) bits, the goal is
to deliver all messages to their destinations. Gha"ari, Khun, and Su [27] showed that this routing
problem can be solved in 2O (

√
log n log log n) ·O (τmix) rounds. This was later improved to 2O (

√
log n) ·

O (τmix) by Gha"ari and Li [28].

Theorem 3 ([27, 28]). Consider a graph G = (V ,E) and a set of point-to-point routing requests,
each given by the IDs of the corresponding source-destination pair. If each vertex v is the source and
the destination of at most deg(v ) messages, then there is a randomized distributed algorithm that
delivers all messages in τmix (G ) · 2O (

√
log n) rounds, w.h.p., in the CONGEST model.

Whether the 2O (
√

log n) factor of Theorem 3 can be improved is an intriguing open question. A
straightforward generalization of Theorem 3 shows that when v is the source/destination of at
most M · deg(v ) messages, all can be delivered in M · τmix (G ) · 2O (

√
log n) rounds.

Here, we observe that when M is polynomial in n, it is actually possible to reduce the no (1)

overhead to Õ (1) by modifying the Gha"ari-Kuhn-Su [27] algorithm. This below discussion does
not seem to apply to the Gha"ari-Li algorithm [28].

The routing algorithm of Reference [27] has two parts: a pre-processing routine that builds a
hierarchical routing structure, and a routing routine that routes an ensemble of messages. The
overall round complexity of 2O (

√
log n log log n) ·O (τmix) is a result of balancing these two parts when

M = O (1), as follows.

Parameters: The parameter k is a positive integer that speci!es the depth of the hierarchical
routing structure. De!ne β =m1/k , wherem is the total number of edges.

Pre-processing Time: The algorithm for building the hierarchical routing structure consists
of two parts, having complexities kβ · (logn)O (k ) · τmix [27, Lemma 3.2] and O (kβ2 logn ·
τmix) [27, Lemma 3.3], respectively.

Routing Time: After building the hierarchical routing structure, a routing task can be solved
in (logn)O (k ) · τmix rounds [27, Lemma 3.4]. More generally, it takes M · (logn)O (k ) · τmix
rounds if each vertex v is a source or a destination of at most M · deg(v ) messages.

The parameter k can be chosen as any positive integer. In Reference [27] they used k =
Θ(

√
logn/ log logn) to balance the pre-processing time and the routing time to show that the

routing task can be solved in 2O (
√

log n log log n) ·O (τmix) rounds. This round complexity was later
improved to 2O (

√
log n) ·O (τmix) in Reference [28], but unlike Reference [27], the algorithm of Ref-

erence [28] does not admit a trade-o" as above, due to their special treatment of the base layerG0 of
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the hierarchical routing structure. In Reference [28], G0 is a random graph with degree 2O (
√

log n) ,
and simulating one round in G0 already costs 2O (

√
log n) ·O (τmix) rounds in the original graph G.

In our Triangle Enumeration application the parameter M = Θ(n1/3) is polynomial in n, which
means it is advantageous to set k = 12 and β =m1/12 < n1/6. Under this parameterization both the
pre-processing and routing stages take Õ (n1/3 · τmix) rounds. This will lead to a Triangle Enumer-
ation algorithm taking Õ (n1/3) rounds rather than n1/3+o (1) rounds.

Remark 1. The claim of Theorem 3 appears to be unproven for arbitrary ID-assignments (Hsin-
Hao Su, personal communication, 2018), but is true for well-behaved ID-assignments, which we
illustrate can be computed e$ciently in CONGEST. In References [27, 28] each vertex v ∈ V sim-
ulates deg(v ) virtual vertices in a random graph G0, which is negligibly close to one drawn from
the Erdős-Rényi distribution G (2m,p) for some p. Presumably the IDs of v’s virtual vertices are
(ID(v ), 1), . . . , (ID(v ), deg(v )). It is proven [27, 28] that e"ecting a set of routing requests in G0

takes 2O (
√

log n) rounds in G0; however, to translate a routing request ID(x ) ! ID(y) in G to G0, it
seems necessary to map it (probabilistically) to (ID(x ), i ) ! (ID(y), j ), where i, j are chosen uni-
formly at random from [1, deg(x )] and [1, deg(y)], respectively. (This is important for the global
congestion guarantee that y’s virtual vertices receive roughly equal numbers of messages from all
sources.) This seems to require that x know how to compute deg(y) or an approximation thereof
based on ID(y). Arbitrary ID-assignments obviously do not betray this information.

Lemma 1. In O (D + logn) rounds we can compute an ID-assignment V → {1, . . . , |V |} and other
information such that ID(u) < ID(v ) implies *log deg(u)+ ≤ *log deg(v )+, and any vertex u can lo-
cally compute *log deg(v )+ for any v .

Proof. Build a BFS tree from an arbitrary vertex x inO (D) rounds. In a bottom-up fashion, each
vertex in the BFS tree calculates the number of vertices v in its subtree having *log deg(v )+ = i ,
for i = 0, . . . , *log(n − 1)+. This takes O (D + logn) rounds by pipelining. At this point the root
x has the counts n0, . . . ,n *log(n−1)+ for each degree class, where n =

∑
i ni . It partitions up the

ID-space so that all vertices in class-0 get IDs from [1,n0], class-1 from [n0 + 1,n0 + n1], and so
on. The root broadcasts the numbers n0, . . . ,n *log(n−1)+ , and disseminates the IDs to all vertices
according to their degrees. (In particular, the root gives each child logn intervals of the ID-space,
which they further subdivide, sending logn intervals to the grandchildren, etc.) With pipelining
this takes another O (D + logn) rounds. Clearly knowing n0, . . . ,n *log(n−1)+ and ID(v ) su$ce to
calculate *log deg(v )+. !

Lemma 1 gives us a well-behaved ID-assignment to apply the routing algorithm of Reference
[27]. It is also useful in our Triangle Enumeration application. Roughly speaking, vertices with
larger degrees also have more bandwidth in the CONGEST model and therefore should be respon-
sible for learning about larger subgraphs and enumerating more triangles.

Theorem 1 is proved by running the Triangle Enumeration/Counting algorithm of Theorem 4
on the clusters of O (poly logn) mixing time in an expander decomposition. As the diameter D of
a graph is at most the mixing time of the graph, the term O (D) in the complexity of of Lemma 1
does not appear in the complexity of Theorems 1 and 4.

2.2 Triangle Enumeration
In this section, we prove Theorem 4. Because of the way we add self-loops in the de!nition of
G∗ = G{S }, we have degG∗ (v ) = degG (v ) for every v ∈ S in Theorem 4. In particular, the total
number of edges in G∗ is equal to the number of edges in G with at least one endpoint in S . For
the special case of S = V , we have G∗ = G.
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Theorem 4. Let G∗ = G{S } for some vertex subset S . In the CONGEST model, all triangles in G
having at least two vertices in S can be counted and enumerated, w.h.p., in τmix (G∗) · Õ (n1/3) rounds.
The algorithm only sends messages along the edges incident to S in G.

We !rst show how to prove Theorem 1 by combining our distributed expander decomposition
algorithm with Theorem 4.

Proof of Theorem 1. Applying our distributed expander decomposition algorithm (Theo-
rem 2), we construct an (ϵ,ϕ)-expander decomposition V = V1 ∪ · · · ∪Vx with ϵ = 1/2 and ϕ =
1/Θ(poly logn) in Õ (n1/3) rounds by selecting k = 6. The mixing time τmix of each cluster G{Vi }
is at most O ( log n

ϕ2 ) = O (poly logn). We then apply the Triangle Enumeration/Counting algorithm
of Theorem 4 to each cluster G{Vi }, in parallel, taking Õ (n1/3) ·O (τmix) = Õ (n1/3) rounds. At this
point all triangles have been enumerated, except for those contained entirely in E ′, the set of inter-
cluster edges. We enumerate the remaining triangles by calling the algorithm recursively on E ′.
Since |E ′ | ≤ ϵm =m/2, the total complexity of all recursive calls is Õ (n1/3) · logm = Õ (n1/3). !

Overview. The remainder of this section constitutes a proof of Theorem 4. We begin with
an overview of the Triangle Enumeration algorithm of Dolev, Lenzen, and Peled [17] for the
CONGESTED-CLIQUE. Partition the vertex set V into n1/3 parts of equal size V1 ∪ · · · ∪Vn1/3 .
For each triangle, there exist three indices 1 ≤ i ≤ j ≤ k ≤ n1/3 such that the triangle belongs to
the subgraph induced by Vi ∪Vj ∪Vk . Since there are less than n such triples (i, j,k ), we can as-
sociate each triple (i, j,k ) with a vertex v , and such a vertex v will be responsible for listing all
triangles inVi ∪Vj ∪Vk . The number of edges in this subgraph induced byVi ∪Vj ∪Vk is at most
( |Vi ∪Vj ∪Vk |

2 ) = O (n4/3). With Lenzen’s routing algorithm [42], it takes only O (n1/3) rounds for
each vertex to learn all the information it needs.

To adapt this algorithm to high conductance CONGEST networks, we have to replace Lenzen’s
routing algorithm [42] with the routing algorithm of Gha"ari, Kuhn, and Su [27], which has a
more stringent requirement that the number of messages sent from/received by v is O (deg(v )).
For comparison, Lenzen’s routing algorithm allows each vertex to be a source and a destination
for O (n) messages.

Other than one easy case, we show that if we partition the vertices randomly, then the number
of edges in the graph induced by any Vi ∪Vj ∪Vk can be upper bounded by O (m/n2/3) with high
probability. By having the workload assigned to a vertex proportional to its degree, we show that
all triangles can be listed by invoking the routing algorithm of Gha"ari, Kuhn, and Su [27] with a
message load of O (n1/3) · deg(v ) on each vertex v .

We !rst describe the algorithm behind Theorem 4 and then analyze it in Lemmas 2–5. To solve
Triangle Enumeration and Counting simultaneously, our algorithm ensures that each triangle with
at least two vertices in S is reported by exactly one vertex in V .

Low Degree Vertices. The !rst step of the algorithm for Theorem 4 is to deal with the low degree
vertices. Recall that degG∗ (v ) = degG (v ) for each v ∈ S . De!ne

S∗ =
{
v ∈ S &&& degG∗ (v ) ≥ n1/3 log2 n

}
.

Each v ∈ S \ S∗ can list all triangles involving v by learning all edges in E (N (v )) as follows:
v transmits N (v ) to all its neighbors, and then each neighbor u ∈ N (v ) transmits N (u) ∩ N (v )
to v . This process clearly !nishes in Õ (n1/3) rounds, and it can be executed in parallel for all
v ∈ S \ S∗. To ensure that each triangle T = {x ,y, z} is reported by exactly one vertex, we let the
vertex v ∈ T ∩ S with the minimum ID(v ) be the one responsible for reporting T .
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In the subsequent discussion, we focus on the set of vertices S∗ and the set of edges

E∗ =
{
e = {u,v} ∈ E && {u,v} ∩ S∗ " ∅}.

That is, E∗ is the set of edges with at least one endpoint in S∗, and all remaining triangles yet to be
listed are in E∗. To avoid double counting, triangles that are completely within E∗ are not reported
in the algorithm above.

We write m∗ = |E∗ |. Note that the parameter n = |V | still denotes the number of vertices in the
underlying network G.

The Easy Case. We check whether any vertex v! ∈ V has

degE∗ (v
!) ≥ ζ

def
=

m∗

10n1/3 logn
.

If so, then we apply the routing algorithm of Gha"ari, Kuhn, and Su [27] on G∗ ∪ {v!} to send
all m∗ edges E∗ to v!. Observe that if v! is adjacent to S , but not in S , then the mixing time
of G∗ ∪ {v!} di"ers from that of G∗ by at most a constant factor. If v! ∈ S , then degG∗ (v

!) ≥
degE∗ (v ) ≥ ζ . Ifv! # S , then the degree ofv! inG∗ ∪ {v!} is still at least degE∗ (v ) ≥ ζ . Therefore,
we can send these m∗ edges E∗ to v! by applying the routing algorithm of Reference [27], which
takes Õ (τmix (G∗ ∪ {v!}) ·m∗/ζ ) = Õ (τmix (G∗) · n1/3) rounds. Thereafter,v! can report all triangles
in E∗.

Thus, in the analysis of the following steps, we may assume that the maximum degree in E∗

among all vertices in V is at mostm∗/(10n1/3 logn).

Vertex Classes. De!ne δ
def
= 2 *log(m∗/n)+ . For each v ∈ S∗, de!ne kv to be the real number such

that degG (v ) = degG∗ (v ) = kv · δ . Call v a class-0 vertex if kv ∈ [0, 1/2) and a class-i vertex if kv ∈
[2i−2, 2i−1). We use the fact that

∑

v ∈S∗ : kv ≥1/2
2kv =

∑

v ∈S∗
2kv −

∑

v ∈S∗ : kv <1/2
2kv

>
∑

v ∈S∗
2kv − n, because |S∗ | ≤ |V | = n,

≥ n

m∗

∑

v ∈S∗
degG∗ (v ) − n, because δ ≤ m∗

n
,

≥ 2n − n, because degG∗ (v ) ≥ degE∗ (v ),

= n.

By applying Lemma 1 to reassign IDs, we may assume that the ID-space of S∗ is {1, . . . , |S∗ |} and
that any vertex can compute the class of v , given ID(v ).

Randomized Partition. Our algorithm is a randomized adaptation of the CONGESTED-CLIQUE
algorithm of Reference [17] discussed above. We partition the vertex set V into V1 ∪ · · · ∪Vn1/3

locally, without communication. Each vertex v ∈ V selects an integer rv ∈ [1,n1/3] uniformly at
random, joinsVrv , and transmits rv to its immediate neighbors in S∗. We allocate the (less than) n
triads

T =
{
(j1, j2, j3) | 1 ≤ j1 ≤ j2 ≤ j3 ≤ n1/3}

to the vertices in S∗ in the following way. Enumerate the vertices in increasing order of ID. If v is
class-0, then skip v . If v is class-i , i ≥ 1, then kv < 2i−1/δ . Allocate to v the next 2i/δ ≥ 2kv triads
from T , and stop whenever all triads are allocated.
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In view of how vertex classes are de!ned, Lemma 1 guarantees that each vertexv ∈ S∗ knows the
class of all vertices in S∗, and can therefore perform this allocation locally, without communication.

A vertexv ∈ V that is assigned a triad (j1, j2, j3) is responsible for learning the set of all edges in(
E (Vj1 ,Vj2 ) ∪ E (Vj2 ,Vj3 ) ∪ E (Vj1 ,Vj3 )

)
∩ E∗ and reporting those triangles (x1,x2,x3) with xk ∈ Vjk

with these edges. It is clear that each triangle in E∗ is reported by exactly one vertex.
Transmitting Edges. Every vertexv ∈ S∗ knows the IDs of all its neighbors and which part of the

vertex partition they are in. For eachv ∈ S∗, each incident edge {v,u}, and each index r ∗ ∈ [1,n1/3],
v transmits (v,u), rv , and ru to the unique vertex x ∈ S∗ handling the triad on {ru , rv , r ∗}. Observe
that the total message volume is exactly Θ(m∗n1/3).

We analyze the behavior of this algorithm in the CONGEST model, where the last step is im-
plemented by applying the routing algorithm of Reference [27] to G∗, modi!ed as in Section 2.1.

Lemma 2. Consider a graph with m̄ edges and n̄ vertices. We generate a subsetW by letting each
vertex joinW independently with probabilityp. Suppose that the maximum degree is ∆ ≤ m̄p/20 log n̄
and p2m̄ ≥ 400 log2 n̄. Then, with probability at least 1 − 10(log n̄)/n̄5, the number of edges in the
subgraph induced byW is at most 6p2m̄.

Proof. For an edge ei , de!ne xi = 1 if both two endpoints of edge ei joinW , otherwise xi = 0.
Then X =

∑m̄
i=1 xi is the number of edges in the subgraph induced by W . We have E[X ] = p2m̄,

and by Markov’s inequality,

Pr[X ≥ 6E[X ]] = Pr[X c ≥ (6E[X ])c ] ≤ 1
6c

E[X c ]
p2cm̄c ,

where c = 5 log n̄ is a parameter.

E[X c ] =
∑

i1, ...,ic ∈[1,m̄]
E


c∏

j=1
xi j


=

2c∑

k=2
fk · pk ,

where fk is the number of choices {i1, . . . , ic ∈ [1,m̄]} such that the number of distinct endpoints
in the edge set {ei1 , . . . , eic } is exactly k .

We project (i1, . . . , ic ) to a vector 〈k1, . . . ,kc 〉 ∈ {0, 1, 2}c , where kj indicates the number of end-
points of ei j that overlap with the endpoints of the edges {ei1 , . . . , ei j−1 }. Note that 2c −∑

kj is the
number of distinct endpoints in the edge set {ei1 , . . . , eic }. We !x a vector 〈k1, . . . ,kc 〉 and count
how many choices of (i1, . . . , ic ) project to this vector.

Suppose that the edges ei1 , . . . , ei j−1 are !xed. We bound the number of choices of ei j as follows.
If kj = 0, then the number of choices is clearly at most m. If kj = 1, then the number of choices
is at most (2c ) (pm̄/20 log n̄), since one of its endpoints (which overlaps with the endpoints of the
edges ei1 , . . . , ei j−1 ) has at most 2c choices, and the other endpoint (which does not overlap with
the endpoints of the edges ei1 , . . . , ei j−1 ) has at most ∆ ≤ m̄p/20 log n̄ choices. If kj = 2, then the
number of choices is at most (2c )2.

Based on the above calculation, we upper bound fk as follows. In the calculation, x is the number
of indices j such that kj = 1, and y is the number of indices j that kj = 2. Note that ( c

x ) ( c − x
y ) < 3c

is the number of distinct vectors 〈k1, . . . ,kc 〉 realizing the given parameters c , x , and y. We bound
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fk as follows:

fk ≤
∑

x + y ≤ c
2c − x − 2y = k

m̄c−x−y
(
c

x

) (
c − x
y

) ( 2cpm̄
20 log n̄

)x

(4c2)y

≤
∑

x + y ≤ c
2c − x − 2y = k

m̄c 3c
( 2cp

20 log n̄

)x (
4c2

m̄

)y

≤
∑

x + y ≤ c
2c − x − 2y = k

(3m̄)c
( 2cp

20 log n̄

)x+2y

(∗)

≤ c (3m̄)c
( 2cp

20 log n̄

)2c−k

.

The third inequality (*) is due to the factp2m̄ ≥ 400 log2 n̄, which implies (2cp/20 log n̄)2 ≥ (4c2/m̄).
Using the fact that 2c

20 log n̄ ≤ 1/2, we upper bound E[X c ] as follows:

E[X c ] ≤
2c∑

k=2
fk · pk

= c (3m̄)cp2c
2c∑

k=2

(
2c

20 log n̄

)2c−k

< 2c (3m̄)cp2c .

Therefore, since c = 5 log n̄,

Pr[X ≥ 6E[X ]] ≤ 1
6c

E[X c ]
p2cm̄c ≤

2c3c

6c ≤ 10 log n̄
n̄5 .

Note that the failure probability can be ampli!ed to Õ (n̄−t ) for any constant t by setting c = t log n̄
and using di"erent constants in the statement of the lemma. !

We apply Lemma 2 to bound the size of the subgraphs induced by two parts of the vertex
partition.

Lemma 3. With probability at least 1 − 1/n4, we have |E (Vj1 ,Vj2 ) ∩ E∗ | ≤ 6 max{m∗/n2/3,
100 log2 n} for all j1, j2 ∈ [1,n1/3].

Proof. Recall that eachv ∈ V joins the setVi with probability 1/n1/3. Thus, the probability that
a vertex v ∈ V is inVj1 ∪Vj2 is at most p = 2n−1/3. Note that for the case of j1 = j2, the probability
is n−1/3, which is less then p.

We apply Lemma 2 to the subgraph induced by E∗. We use the parameters m̄ = max{m∗,
100n2/3 log2 n} ≥ m∗ and n̄ = n with sampling probability p = 2n−1/3 and W = Vj1 ∪Vj2 . By as-
sumption, the maximum degree of the subgraph induced by E∗ is at most m∗/(10n1/3 logn) ≤
m̄p/(20 log n̄), since otherwise we go to the easy case.

For the casem∗ < 100n2/3 log2 n, in the analysis, we can add virtual edges to the graph so that the
total number of edges equals m̄. This is possible without violating the maximum degree constraint
∆ ≤ m̄p/(20 log n̄).

Our choice of parameters satis!es the inequalityp2m̄ ≥ 400 log2 n̄ needed in Lemma 2, and hence
we have Pr[|E (Vj1 ,Vj2 ) ∩ E∗ | > 6m̄/n2/3] ≤ 10 log n

n5 . Note that |E (Vj1 ∪Vj2 ) ∩ E∗ | ≥ |E (Vj1 ,Vj2 ) ∩ E∗ |.
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By a union bound over all n2/3 choices of j1 and j2, the stated upper bound holds everywhere,
with probability at least 1 − 1/n4. !

Lemma 4. With probability at least 1 − 1/n4, each vertexv ∈ S∗ receivesO (degG∗ (v ) · n1/3) edges.

Proof. Consider any vertex v ∈ S∗. If kv < 1/2, then v receives no message; otherwise v is
responsible for between 2kv and 4kv triads, and v collects the edge set E (Vj1 ,Vj2 ) for at most 12kv
pairs ofVj1 andVj2 . By Lemma 3, |E (Vj1 ,Vj2 ) ∩ E∗ | = O (max{m∗/n2/3, log2 n}) for all j1, j2 ∈ [1,n1/3]
with probability at least 1 − 1/n4.

Note thatm∗ is a trivial upper bound on the number of edges v receives. Ifm∗ < n1/3 degG∗ (v ),
then we are done already. In the subsequent discussion, we assumem∗ ≥ n1/3 degG∗ (v ). Our choice
of kv implies kv = Θ(degG∗ (v ) · n/m∗), and so v receives

O

(
max

{
m∗

n2/3 , log2 n

})
· 12kv = O

(
max

{
degG∗ (v ) · n1/3, degG∗ (v ) · n

m∗
· log2 n

})

≤ O
(
max

{
degG∗ (v ) · n1/3,n2/3 log2 n

})
≤ O

(
degG∗ (v ) · n1/3) .

messages, w.h.p. The !rst inequality is due to the assumptionm∗ ≥ n1/3 degG∗ (v ), and the second
inequality is due to the fact that degG∗ (v ) ≥ n1/3 log2 n for each v ∈ S∗. !

Lemma 5. Each vertex v ∈ S∗ sends O (degG∗ (v ) · n1/3) edges with probability 1.

Proof. Each v ∈ S∗ is responsible for sending its degE∗ (v ) ≤ degG (v ) = degG∗ (v ) incident
edges in G, and each is involved in exactly n1/3 triads. !

Lemmas 2–5 show that the message volume sent to/from every vertex is close to its expectation.
By applying the routing algorithm of Reference [27] and Lemma 1, all messages can be routed in
Õ (n1/3) rounds. This concludes the proof of Theorem 4.

2.3 Subgraph Enumeration
In this section, we show that Theorem 4 can be extended to enumerating all s-vertex subgraphs in
Õ (n(s−2)/s ) rounds. Note that the Ω(n1/3/ logn) lower bound for Triangle Enumeration on Erdős-
Rényi graphs G (n, 1/2) [32] can be generalized to an Ω(n(s−2)/s/ logn) lower bound for enumerat-
ing s-vertex cliques; see Reference [24]. This implies that Theorem 5 is nearly optimal on G (n, 1/2)
for enumerating s-vertex cliques. We note that Theorem 5 is obviously not optimal for certain s-
vertex subgraphs. For example, all star graphs can be listed trivially without communication.

Theorem 5. Let s = O (1) be any constant. Given a connected graph G of n vertices, we can list all
s-vertex subgraphs of G in τmix (G ) · Õ (n(s−2)/s ) rounds, w.h.p., in the CONGEST model.

It has been shown in Reference [17] that listing all s-vertex subgraphs of G can be done in
O (n(s−2)/s/ logn) rounds in the deterministic CONGESTED-CLIQUE model. This result, together
with the routing algorithm of Gha"ari, Kuhn, and Su [27], does not immediately imply Theorem 5,
since deg(v ) could be much less than n.

Theorem 5 is proved in such a way that is almost the same as that of Theorem 4, and so we only
highlight the di"erence. Let G = (V ,E), n = |V |, andm = |E |.

Similarly, we assume the maximum degree is ∆ ≤ m/(10n1/s logn), since otherwise we are in
the easy case, where we can route all the information to one vertex v! in Õ (n1/s ) ≤ Õ (n(s−2)/s )
rounds, and we are done after that.
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We partition V into n1/s subsets V1, . . . ,Vn1/s . Instead of considering triads, here we consider
s-tuples: {(i1, . . . , is ) | 1 ≤ i1 ≤ · · · ≤ is ≤ n1/s }. After v learns the edge set ⋃

j1, j2∈[1,s] E (Vi j1
,Vi j2

),
it has ability to list all s-vertex subgraphs in which the jth vertex is in Vi j . We prove a variant of
Lemma 3, as follows.

Lemma 6. W.h.p., |E (Vi ,Vj ) | = O (m/n2/s ) for all i, j ∈ [1,n1/s ].

Proof. We set p = 2n−1/s . Recall that the maximum degree is at most m/
(
10n1/s logn

)
≤

mp/20 logn, and we also have p2m = Ω(n1−2s ) 1 400 log2 n, as m ≥ n − 1. The lemma follows by
applying Lemma 2 and using the same analysis in the proof of Lemma 3. !

Proof of Theorem 5. Here, we only consider the round complexity to deliver all messages.
Consider a vertex v ∈ V . If kv < 1/2, then v receives no message. Otherwise v is responsible
for between 2kv and 4kv s-tuples, and v collects E (Vi ,Vj ) for at most 4s2kv pairs (Vi ,Vj ). By
Lemma 6, w.h.p., |E (Vi ,Vj ) | = O (m/n2/s ) for all i, j. Hence, the number of edgesv receives is at most
O (m/n2/s ) · 4s2kv = O (deg(v ) · n(s−2)/s ), since s = O (1) is a constant and kv = Θ(deg(v ) · n/m).

Note that each vertex v sends at most O (deg(v )n(s−2)/s ) messages, since for each incident edge
e of v , there are at most O (n(s−2)/s ) s-tuples involving e . By applying the routing algorithm of
Gha"ari, Kuhn, and Su [27], all messages can be delivered in Õ (τmix (G ) · n(s−2)/s ) rounds, w.h.p. !

3 DISTRIBUTED EXPANDER DECOMPOSITION
Our Triangle Enumeration algorithm depends on being able to compute a (1/2, 1/poly logn)-
expander decomposition in Õ (n1/3) rounds. The goal of this section is to prove Theorem 2 (restated
below), which o"ers a tradeo" between (ϵ,ϕ) and round complexity.

Theorem 2. Let ϵ ∈ (0, 1) and k be a positive integer. An (ϵ,ϕ)-expander decomposition with ϕ =

( log n
ϵ )2O (k ) can be constructed in n2/k · ( log n

ϵ )2O (k )
= n2/k · poly( 1

ϕ , logn) rounds, w.h.p.

The most straightforward approach for constructing an expander decomposition of a graph
G = (V ,E) is as follows. Find a ϕ-sparse cut S . If such a cut S does not exist, then return V as
a part in the partition. Otherwise, recurse on both sides G{S } and G{V − S }, and so the edges in
E (S,V − S ) become inter-cluster edges. To see the correctness, once the recursion stops at G{U }
for some U , we know that ΦG {U } ≥ ϕ. Also, the total number of inter-cluster edges is at most
O (mϕ logn), because (i) each inter-cluster edge can be charged to edges in the smaller side of
some ϕ-sparse cut and (ii) each edge can be on the smaller side of the cut at most logm times.

This straightforward approach has two e$ciency issues: (i) checking whether a ϕ-sparse cut
exists is not known to be solvable by a fast distributed algorithm and is in fact NP-hard [45], (ii)
a ϕ-sparse cut S can be very unbalanced and hence the recursion depth can be as high as Ω̃(n).
Thus, even if we ignore the time spent on !nding cuts, the round complexity due to the recursion
depth is already too high.

To handle these two issues, an approach taken by the authors of References [47, 57, 62, 67] is as
follows. First, they use approximate sparse cut algorithms, which either !nd some ϕ ′-sparse cut or
certify that there is no ϕ-sparse cut where ϕ ′ 1 ϕ. Second, they !nd a cut with some guarantee
about the balance of the cut, i.e., the smaller side of the cut should be su$ciently large.

The proof of Theorem 2 is based on the following approach, also taken in References [47, 67],
which requires an e$cient algorithm for computing a nearly most balanced sparse cut. Intuitively,
given that we can !nd a nearly most balanced sparse cut e$ciently, the recursion depth should be
made very small, since a major source of ine$ciency in the approach above is that the cuts found
can be very imbalanced. This intuition can be made formal using the ideas in the centralized setting
from Nanongkai and Saranurak [47] and Wullf-Nilsen [67].
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Our main technical contribution is twofold. First, we exhibit the !rst distributed algorithm for
computing a nearly most balanced sparse cut, which is the key algorithmic tool underlying the
proof of Theorem 2. Second, to obtain a fast distributed algorithm, we must modify the centralized
approach of References [47, 67] to construct an expander decomposition. In particular, we need to
run a low diameter decomposition [43, 46] whenever we encounter a graph with high diameter, as
our distributed algorithm for !nding a nearly most balanced sparse cut is fast only on graphs with
low diameter.

Remark 2. Kuhn and Molla [40, Theorem 3] previously claimed that their sparse cut algorithm
also outputs a nearly most balanced sparse cut, but this claim turns out to be incorrect (Anisur
Rahaman Molla, personal communication, 2018). The high level reason is as follows. They showed
a distributed implementation for !nding a single sweep cut. However, this cut does not guarantee
any balancedness. This issue was known in the centralized setting. Indeed, it is shown since the
’90s that a sweep cut de!ned by the second eigenvector of the Laplacian gives an approximate
sparsest cut with no balance guarantee and the cut can be computed in near-linear time.2 Algo-
rithms for !nding approximately most balanced sparsest cuts in near-linear time was not known
until the nibble algorithm by Spielman and Teng [62], which outputs a union of many sweep cuts.
Intuitively, a reason that one needs to take a union of several cuts is that the most balanced sparsest
cut might be a disjoint union of many small cuts.

3.1 Sparse Cut Computation
Our distributed nearly most balanced sparse cut algorithm is a distributed implementation of a
modi!ed version of the sequential algorithm of Spielman and Teng [62]. The algorithm of Ref-
erence [62] involves Õ (m) sequential iterations of Nibble with a random starting vertex on the
remaining subgraph. Roughly speaking, the procedure Nibble aims at !nding a sparse cut by sim-
ulating a bounded-length random walk. The idea is that if the starting vertex v belongs to some
sparse cut S , then it is likely that most of the probability mass will be trapped inside S . We show
that Õ (m) simultaneous iterations of an approximate version of Nibble with a random starting
vertex can be implemented e$ciently in CONGEST in O (poly(1/ϕ, logn)) rounds, where ϕ is the
target conductance.

Theorem 6 (Nearly Most Balanced Sparse Cut). Given a parameter ϕ = O (1/ log5 n), there
is an O (D · poly(logn, 1/ϕ))-round algorithm A that achieves the following w.h.p.

• Suppose Φ(G ) ≤ ϕ and de!ne b to be bal(S ), where S is the most-balanced cut of G with
conductance at most ϕ. The algorithm A is guaranteed to return a cut C with balance
bal(C ) ≥ min{b/2, 1/48} and conductance Φ(C ) = O (ϕ1/3 log5/3 n).

• Whenever Φ(G ) > ϕ, the algorithmA either returnsC = ∅ or returns a cutC with conductance
Φ(C ) = O (ϕ1/3 log5/3 n), but with no guarantee on bal(C ).

The proof of Theorem 6 is deferred to Section 4. The problem of !nding a sparse cut in the
distributed setting has been studied prior to this work. Given that there is a ϕ-sparse cut and
balance b, the algorithm of Das Sarma, Molla, and Pandurangan [59] !nds a cut of conductance
at most Õ (

√
ϕ) in Õ ((n + (1/ϕ))/b) rounds in CONGEST. The round complexity was later im-

proved to Õ (D + 1/(bϕ)) by Kuhn and Molla [40]. These prior works have the following drawbacks:

2The power method for computing an approximate second eigenvector is shown in Reference [39]. The analysis that the
sweep cut based on the second eigenvector is an approximate sparsest cut is implicit in Reference [60] and explicit in
Reference [35].
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(i) their running time depends on b, which can be as small as O (1/n) and (ii) their output cuts are
not guaranteed to be nearly most balanced.

3.2 Low Diameter Decomposition
The runtime of our distributed sparse cut algorithm (Theorem 6) is proportional to the diameter. To
avoid running this algorithm on a high diameter graph, we employ a low diameter decomposition
to cluster the current graph into components of small diameter.

Algorithm of Miller, Peng, and Xu. The low diameter decomposition algorithm of Miller, Peng,
and Xu [46] can be implemented in CONGEST e$ciently. Given a parameter β ∈ (0, 1), their al-
gorithm decomposes the graph into clusters of diameter O ( log n

β ) in O ( log n
β ) rounds such that the

number of inter-cluster edges is at most β |E |. Roughly, their algorithm is to let each vertex v
sample δv ∼ Exponential(β ), β ∈ (0, 1), and then v is assigned to the cluster of u that minimizes
dist(u,v ) − δu . A similar approach has been applied to construct a network decomposition [6, 23,
43].

An issue of the above algorithm is that the guarantee on the number of inter-cluster edges
holds only in expectation. In sequential or parallel computation models, we can simply repeat the
procedure several times and keep the best clustering. However, there is no way to choose the
globally best execution in CONGEST without taking diameter time. It is possible to to achieve this
guarantee with high probability at the cost of increasing the round complexity and the diameter of
the clusters from O ( log n

β ) to O (poly(logn, 1/β )); see Reference [12].

Algorithm of Rozhon and Gha"ari. For our application, the sole purpose of the diameter require-
ment for clusters is to enable e$cient communication within each cluster, and so it su$ces to
consider the following relaxed requirement: for each cluster Vi , there is a Steiner tree Ti of diame-
terO (poly(logn, 1/β )) containing all vertices inVi and possibly other vertices such that each edge
in the graph belongs to at most O (poly(logn, 1/β )) Steiner trees.

This relaxed version of low diameter decomposition can be constructed deterministically in
O (poly(logn, 1/β )) rounds using the approach of Rozhon and Gha"ari [56], with minor modi-
!cations. The di"erence is that in the decomposition of Reference [56] the clusters are required
to be non-adjacent. To separate the clusters, they allow a small constant fraction of vertices to be
removed. In our setting, it is the edges, not the vertices, that are removed to separate the clusters.

We present a brief description of the algorithm of Reference [56], with the small modi!cations
that we need. Suppose each vertex is initially equipped with a distinct ID of b = O (logn) bits.
At the beginning, each vertex v hosts a cluster C = {v} whose identi!er ID(C ) is initialized to
ID(v ). This trivial clustering already satis!es the diameter requirement, but it does not meet the
requirement on the number of inter-cluster edges.

The algorithm works in b phases. In each phase, the clustering will be updated, and during the
process at most β/b fraction of edges will be removed from the graph, and so the total number of
removed edges is at most β |E |. The induction hypothesis speci!es that at the end of the ith phase,
for any two clusters C1 and C2 such that ID(C1) and ID(C2) have di"erent i-bit su$x, there is no
edge connecting C1 and C2.

Thus, the goal of the ith phase is to achieve the following. For any !xed (i − 1)-bit su$x Y ,
separate all clusters whose ID is of the form (· · · 0Y ) (called blue clusters) from those whose ID
of the form (· · · 1Y ) (called red clusters). The ith phase of the algorithm consists of k = (b/β ) ·
O (logn) iterations in which blue clusters may acquire new members and red clusters lose members.

In each such iteration, each vertex in a red cluster that is adjacent to one or more blue clusters
requests to join any one of the blue clusters. Now consider a blue clusterC . De!ne E1 to be the set
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of edges inside C and let E2 be the set of new edges that would be added to C if all join requests
were accepted. There are two cases:

(1) if |E1 | = 0 or |E2 |/|E1 | > β/b, then all of C’s join requests are accepted;
(2) otherwise, all edges in E2 are removed from the graph.

After k = log1+β/b m = O ((b/β ) · logn) iterations, all red clusters are separated from all blue clus-
ters, since it is impossible for a blue cluster to enter Case 1 for all k iterations.

Whenever a blue clusterC enters Case 1, each new memberv ofC is attached toC’s Steiner tree
by including an edge {v,u} ∈ E2 joining it to an existing member u of C . Therefore, the diameter
of the !nal Steiner tree will be O (kb) = O ( log3 n

β ), and each edge belongs to at most b = O (logn)
Steiner trees. The algorithm can be implemented in O (poly(logn, 1/β )) rounds.

We summarize the discussion as a theorem.

Theorem 7 (Low-diameter Decomposition [56]). Given a parameter β ∈ (0, 1), there is
a deterministic algorithm that decomposes the vertex set V into clusters V = V1 ∪ · · · ∪Vx in
O (poly(logn, 1/β )) rounds satisfying the following conditions.

• The number of inter-cluster edges is at most β |E |.
• Each cluster Vi is associated with a Steiner tree Ti such that the leaf vertices of Ti is Vi . The

diameter of Ti is O
(

log3 n
β

)
. Each edge e ∈ E belongs to at most O (logn) Steiner trees.

We employ Theorem 7 in our distributed expander decomposition algorithm. We can also use
the algorithm of Miller, Peng, and Xu [46], which is more e$cient and o"ers a better guarantee
on the diameter of clusters. However, as the guarantee on the number of inter-cluster edges of the
algorithm of Reference [46] only holds in expectation, if we use this algorithm instead of Theorem 7
in our distributed expander decomposition algorithm, then the guarantee on the number of inter-
cluster edges of the output expander decomposition will also be in expectation.

3.3 Main Algorithm
We are now in a position to describe the main algorithm for distributed expander decomposition,
which is based on the approach of References [47, 67] with the aforementioned sparse cut (Theo-
rem 6) and low diameter decomposition (Theorem 7) algorithms.

For the sake of convenience, we let

h(θ ) = Θ
(
θ 1/3 log5/3 n

)

be an increasing function associated with Theorem 6 such that when we run the nearly most
balanced sparse cut algorithm of Theorem 6 with conductance parameter θ , if the output subsetC
is non-empty, then it has Φ(C ) ≤ h(θ ). We note that

h−1 (θ ) = Θ
(
θ 3/ log5 n

)
.

Let ϵ ∈ (0, 1) and k ≥ 1 be the parameters speci!ed in Theorem 2. We de!ne the following param-
eters that are used in our algorithm for Theorem 2.

Nearly Most Balanced Sparse Cut: We de!ne ϕ0 = O (ϵ3/ log8 n) in such a way that when we
run the nearly most balanced sparse cut algorithm with this conductance parameter, any
non-empty output C must satisfy Φ(C ) ≤ h(ϕ0) = ϵ/6

log (n
2 )

. For each 1 ≤ i ≤ k , we de!ne
ϕi = h−1 (ϕi−1).
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Low Diameter Decomposition: The parameter β = O (ϵ2/ logn) for the low diameter decom-
position is chosen as follows. Set d = O (ϵ−1 logn) as the smallest integer such that
(1 − ϵ/12)d · 2

(
n
2
)
< 1. Then, we de!ne β = (ϵ/3)/d .

We show that an (ϵ,ϕ)-expander decomposition can be constructed in O (n2/k ·
poly(1/ϕ, logn)) rounds, with conductance parameter ϕ = ϕk = (ϵ/ logn)2O (k ) . We will later
see that ϕ = ϕk is the smallest conductance parameter we ever use for applying the nearly most
balanced sparse cut algorithm.

Algorithm. Our algorithm has two phases. In the algorithm there are three places where we
remove edges from the graph, and they are tagged with Remove-j, for 1 ≤ j ≤ 3, for convenience.
Whenever we remove an edge e = {u,v}, we add a self-loop at both u and v , and so the degree of
a vertex never changes throughout the algorithm. We never remove self-loops.

At the end of the algorithm, V is partitioned into connected components V1, . . . ,Vx induced by
the remaining edges. To prove the correctness of the algorithm, we will show that the number of
removed edges is at most ϵ |E |, and ΦG {Vi } ≥ ϕ for each component Vi .

Phase 1.
The input graph is G = (V ,E).

(1) Run the low diameter decomposition algorithm (Theorem 7) with parameter β on G.
Remove all inter-cluster edges (Remove-1).

(2) For each clusterU of the low diameter decompositionV = V1 ∪ · · · ∪Vx , run the nearly
most balanced sparse cut algorithm (Theorem 6) with parameter ϕ0 on G{U }. Let C be
the output subset.
(a) If C = ∅, then the subgraph G∗ = G{U } quits Phase 1.
(b) If C " ∅ and Vol(C ) ≤ (ϵ/12) Vol(U ), then the subgraph G∗ = G{U } quits Phase 1

and enters Phase 2.
(c) Otherwise, remove the cut edges E (C,U \C ) (Remove-2), and then we recurse on

both sides G{C} and G{U \C} of the cut.

We emphasize that we do not remove the cut edges in Step 2b of Phase 1.
Lemma 7. The depth of the recursion of Phase 1 is at most d .

Proof. Suppose there is still a cluster U entering the depth d + 1 of the recursion of Phase 1.
Then according to the threshold for Vol(C ) speci!ed in Step 2b, we infer that Vol(U ) ≤ (1 −
ϵ/12)d Vol(V ) < 1 by our choice of d , which is impossible. !

Phase 2.
The input graph is G∗ = G{U }. De!ne τ

def
= ((ϵ/6) · Vol(U ))1/k . De!ne the sequence: m1

def
=

(ϵ/6) · Vol(U ), andmi
def
= mi−1/τ , for each 1 < i ≤ k + 1. Initialize L ← 1 andU ′ ← U . Repeatedly

do the following procedure.
• Run the nearly most balanced sparse cut algorithm (Theorem 6) with parameter ϕL on

G{U ′}. Let C be the output subset. Note that ΦG {U ′ } (C ) ≤ ϕL−1.
—If C = ∅, then the subgraph G{U ′} quits Phase 2.
—If C " ∅ and Vol(C ) ≤ mL/(2τ ), then update L ← L + 1.
—Otherwise, update U ′ ← U ′ \C , and remove all edges with one or both endpoints in C

(Remove-3).
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Intuitively, in Phase 2, we keep calling the nearly most balanced sparse cut algorithm to !nd a
cutC and remove it. If we !nd a cutC that has volume greater thanmL/(2τ ), then we are making
good progress. If Vol(C ) ≤ mL/(2τ ), then we learn that the volume of the most balanced sparse cut
of conductance at most ϕL is at most 2 ·mL/(2τ ) =mL/τ =mL+1 by Theorem 6, and so we move
on to the next level by setting L ← L + 1.

The maximum possible level L is k . Since by de!nitionmk/(2τ ) = 1/2 < 1, there is no possibility
to increase L to k + 1. Once we reach L = k , we will repeatedly run the nearly most balanced sparse
cut algorithm until we get C = ∅ and quit.

When we remove a cut C " ∅ in Phase 2, each u ∈ C becomes an isolated vertex with deg(u)
self-loops, as all edges incident to u have been removed, and so in the !nal decomposition V =
V1 ∪ · · · ∪Vx , we can have Vi = {u} for some i . We emphasize that we only do the edge removal
when Vol(C ) > mL/(2τ ). Lemma 8 bounds the volume of the cuts found during Phase 2.

Lemma 8. For each 1 ≤ i ≤ k , de!ne Ci as the union of all subsets C found in Phase 2 when L ≥ i .
Then Vol(Ci ) ≤ mi .

Proof. We !rst consider the case of i = 1. Observe that the graphG∗ = G{U } satis!es the prop-
erty that the most balanced sparse cut of conductance at mostϕ0 has balance at most 2(ϵ/12) = ϵ/6,
since otherwise it does not meet the condition for entering Phase 2. Note that all cuts we !nd dur-
ing Phase 2 have conductance at most ϕ0, and so the union of them C1 is also a cut of G∗ with
conductance at most ϕ0. This implies that Vol(C1) ≤ (ϵ/6) Vol(U ) =m1.

The proof for the case of 2 ≤ i ≤ k is exactly the same, as the condition for increasing L is to
have Vol(C ) ≤ mL/(2τ ). LetG ′ = G{U ′} be the graph considered in the iteration when we increase
L from i − 1 to i . The existence of such a cut C of G ′ implies that the most balanced sparse cut of
conductance at most ϕi−1 of G ′ has volume at most 2 Vol(C ) ≤ mi−1/τ =mi . Similarly, note that
all cuts we !nd when L ≥ i have conductance at most ϕi−1, and so the union of them Ci is also a
cut of G ′ with conductance at most ϕi−1. This implies that Vol(Ci ) ≤ mi . !

Conductance of Remaining Components. For eachu ∈ V , there are two possible ways foru to end
the algorithm:

• During Phase 1 or Phase 2, the output of the nearly most balanced sparse cut algorithm
on the cluster G{U } that u belongs to is C = ∅. In this case, U becomes a component Vi in
the !nal decomposition V = V1 ∪ · · · ∪Vx . If ϕ ′ is the conductance parameter used in the
nearly most balanced sparse cut algorithm, then Φ(G{Vi }) ≥ ϕ ′. Note that ϕ ′ ≥ ϕk = ϕ.

• During Phase 2, suppose u ∈ C and Vol(C ) > mL/(2τ ), where C is the output of the nearly
most balanced sparse cut algorithm. In this case, u itself becomes a component Vi = {u} in
the !nal decomposition V = V1 ∪ · · · ∪Vx . Trivially, we have Φ(G{Vi }) ≥ ϕ.

Therefore, we conclude that each component Vi in the !nal decomposition V = V1 ∪ · · · ∪Vx sat-
is!es that Φ(G{Vi }) ≥ ϕ.

Number of Removed Edges. There are three places in the algorithm where we remove edges. We
show that, for each 1 ≤ j ≤ 3, the number of edges removed due to Remove-j is at most (ϵ/3) |E |,
and so the total number of inter-cluster edges in the !nal decomposition V = V1 ∪ · · · ∪Vx is at
most ϵ |E |.

(1) By Lemma 7, the depth of recursion of Phase 1 is at most d . For each i ∈ [1,d] the number
of edges removed due to the low diameter decomposition algorithm during depth i of the
recursion is at most β |E |, according to Theorem 7. By our choice of β , the number of edges
removed due to Remove-1 is at most d · β |E | ≤ (ϵ/3) |E |.
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(2) For each edge e ∈ E (C,U \C ) removed due to the nearly most balanced sparse cut al-
gorithm in Phase 1, we charge the cost of the edge removal to some pairs (v, e ) in the
following way. If Vol(C ) < Vol(U \C ), for each v ∈ C , and for each edge e incident to v ,
then we charge the amount |E (C,U \C ) |/Vol(C ) to (v, e ); otherwise, for each v ∈ U \C ,
and for each edge e incident tov , we charge the amount |E (C,U \C ) |/Vol(U \C ) to (v, e ).
Note that each pair (v, e ) is charged at most log |E | times throughout the algorithm, and
the amount per charging is at most h(ϕ0). Therefore, the number of edges removed due
to Remove-2 is at most (log |E |) · h(ϕ0) · 2|E | ≤ (ϵ/3) |E | by our choice of ϕ0.

(3) By Lemma 8, the summation of Vol(C ) over all cuts C in G∗ = G{U } that are found and
removed during Phase 2 due to Remove-3 is at most m1 = (ϵ/6) Vol(U ). Therefore, the
number of edges removed due to Remove-3 is at most (ϵ/6) Vol(V ) = (ϵ/3) |E |.

Round Complexity. During Phase 1, each vertex participates in at most d = O (ϵ−1 logn) invoca-
tions of the nearly most balanced sparse cut algorithm and the low diameter decomposition algo-
rithm. By our choice of parameters β = O (ϵ2/ logn) and ϕ0 = O (ϵ3/ log8 n), the round complexity
of both algorithms are O (poly(1/ϵ, logn)), by Theorems 6 and 7.

Note that the low diameter decomposition algorithm of 7 guarantees that whenever we run the
nearly most balanced sparse cut algorithm on G{U }, the diameter D of the Steiner tree associated
with U is at most ( log3 n

β ) = O (poly(1/ϵ, logn)), and each edge e ∈ E belongs to at most O (logn)
Steiner trees.

For Phase 2, Lemma 8 guarantees that for each 1 ≤ i ≤ k the algorithm can stay at L = i for
at most 2τ iterations. If we neither increase L nor quit Phase 2 for 2τ iterations, then we have
Vol(CL ) > mL , contradicting Lemma 8. Therefore, the round complexity for Phase 2 can be upper
bounded by

2τ
k∑

i=1
O (poly(1/ϕi , logn)) ≤ O

(
n2/k · poly(1/ϕ, logn)

)
.

During Phase 2, it is possible that the graphG{U ′} becomes disconnected or has large diameter.
This does not cause any problems, since we can use the Steiner tree associated with G∗ = G{U }
for communication during a sparse cut computation, and its diameter is at most D = ( log3 n

β ) =
O (poly(1/ϵ, logn)).

4 DISTRIBUTED NEARLY MOST BALANCED SPARSE CUT
The goal of this section is the prove Theorem 6, which we restate below for convenience. Although
the parameter D in the theorem refers to the diameter of the graph G = (V ,E) under considera-
tion, the theorem applies to the setting where there is a Steiner tree T of diameter D that con-
tains all vertices in V and possibly some vertices outside of G, and all edges in T can be used for
communication.

Theorem 6 (Nearly Most Balanced Sparse Cut). Given a parameter ϕ = O (1/ log5 n), there
is an O (D · poly(logn, 1/ϕ))-round algorithm A that achieves the following w.h.p.

• Suppose Φ(G ) ≤ ϕ and de!ne b to be bal(S ), where S is the most-balanced cut of G with
conductance at most ϕ. The algorithm A is guaranteed to return a cut C with balance
bal(C ) ≥ min{b/2, 1/48} and conductance Φ(C ) = O (ϕ1/3 log5/3 n).

• Whenever Φ(G ) > ϕ, the algorithmA either returnsC = ∅ or returns a cutC with conductance
Φ(C ) = O (ϕ1/3 log5/3 n), but with no guarantee on bal(C ).

Journal of the ACM, Vol. 68, No. 3, Article 21. Publication date: May 2021.



21:20 Y.-J. Chang et al.

Overview. We will prove Theorem 6 by adapting the nearly most balanced sparse cut algorithm
of Spielman and Teng [62] to CONGEST in a white-box manner.3

The main idea of Spielman and Teng [62], which is based on the work of Lovász and
Simonovits [44], is as follows. Let S be a most-balanced sparse cut, then if we start a lazy ran-
dom walk from a random vertex v in S for a small number of steps, then it is likely that most of
the probably mass is con!ned in S . Moreover, if we arrange the vertices v1,v2, . . . ,vn in the order
of decreasing normalized probability mass p (v )/ deg(v ), then one of C = {v1,v2, . . . ,vi } will be a
sparse cut. This idea continues to work even if we truncate the random walk with a threshold 1/2b

that is approximately 1/Vol(C ). The procedure Nibble of Reference [62] is a realization of this
idea.

The cutC returned by Nibble might be much smaller than S , as S itself might be a disjoint union
of several small sparse cuts. Spielman and Teng [62] showed that a sparse cut C with Vol(C ) =
Ω(Vol(S )) can be found by running Nibble sequentially for Õ ( |E) iterations with a random starting
vertex v and a random truncation threshold b on the remaining part of the graph. The !nal cut C
is the union of all cuts found.

The procedure Nibble of Reference [62] itself is not suitable for a distributed implementation, so
we consider an approximate version of Nibble (Section 4.2) that can be e$ciently implemented in
CONGEST (Section 4.5). The nearly most balanced sparse cut algorithm of Spielman and Teng [62]
involves doing Õ ( |E |) iterations of Nibble with a random starting vertex on the remaining sub-
graph. We will show that this sequential process can be parallelized at the cost of worsening the
conductance guarantee by a polylogarithmic factor (Section 4.4).

Terminology. Given a parameter ϕ ∈ (0, 1), We de!ne the following functions as in Reference
[62]:

"
def
=

⌈log |E |⌉ ,

t0
def
= 49 ln( |E |e2)/ϕ2,

f (ϕ)
def
=

ϕ3

144 ln2 ( |E |e4)
,

γ
def
=

5ϕ
7 · 7 · 8 · ln( |E |e4)

,

ϵb
def
=

ϕ

7 · 8 · ln( |E |e4)t02b .

LetA be the adjacency matrix of the graphG = (V ,E). We assume a 1-1 correspondence between
V and {1, . . . ,n}. In a lazy random walk, the walk stays at the current vertex with probability 1/2
and otherwise moves to a random neighbor of the current vertex. The matrix realizing this walk
can be expressed as M = (AD−1 + I )/2, where D is the diagonal matrix with (deg(1), . . . , deg(n))
on the diagonal.

Let pv
t be the probability distribution of the lazy random walk that begins at v and walks for

t steps. In the limit, as t → ∞, pv
t (x ) approaches deg(x )/(2|E |), so it is natural to measure pv

t (x )
relative to this baseline:

ϱv
t (x ) =

pv
t (x )

deg(x )
,

3There are many versions of Reference [62]; we refer to https://arxiv.org/abs/cs/0310051v9.
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Let f : V 5→ [0, 1] be any function. The truncation operation [f ]ϵ rounds f (x ) to zero if it falls
below a threshold that depends on deg(x ):

[f ]ϵ (x ) =

{
f (x ) if f (x ) ≥ 2ϵ deg(x ),
0 otherwise.

As in Reference [62], for any vertex set S , we de!ne the vector χS by χS (u) = 1 if u ∈ S and
χS (u) = 0 if u # S , and we de!ne the vector ψS by ψS (u) = deg(u)/Vol(S ) if u ∈ S and ψS (u) = 0
if u # S . In particular, χv is a probability distribution on V that has all its probability mass on the
vertex v , andψV is the degree distribution of V . That is, Prx∼ψV [x = v] = deg(v )/Vol(V ).

4.1 Nibble
We !rst review the Nibble algorithm of Reference [62], which computes the following sequence
of vectors with truncation parameter ϵb :

p̃v
t =

{
χv if t = 0,
[Mp̃v

t−1]ϵb otherwise.

We de!ne ϱ̃v
t (u) = p̃v

t (u)/ deg(u) as the normalized probability mass at u at time t . Due to trunca-
tion, for all u ∈ V and t ≥ 0, we have pv

t (u) ≥ p̃v
t (u) and ϱv

t (u) ≥ ϱ̃v
t (u).

We de!ne π̃v
t as a permutation of V such that

ϱ̃v
t (π̃v

t (1)) ≥ ϱ̃v
t (π̃v

t (2)) ≥ · · · ≥ ϱ̃v
t (π̃v

t ( |V |)).

That is, we order the vertices by their ϱ̃v
t -value, breaking ties arbitrarily, e.g., by comparing IDs.

We write π̃v
t (i . . . j ) to denote the set of vertices π̃v

t (x ) with i ≤ x ≤ j. For example, π̃v
t (1 . . . j ) is

the set of the top j vertices with the highest ϱ̃v
t -value.

Algorithm Nibble(G,v,ϕ,b)
For t = 1 to t0, if there exists an index 1 ≤ j ≤ |V | meeting the following conditions

(C.1) Φ(π̃v
t (1 . . . j )) ≤ ϕ.

(C.2) ϱ̃v
t (π̃v

t (j )) ≥ γ/Vol(π̃v
t (1 . . . j )).

(C.3) (5/6) Vol(V ) ≥ Vol(π̃v
t (1 . . . j )) ≥ (5/7)2b−1.

then return C = π̃v
t (1 . . . j ) and quit. Otherwise return C = ∅.

Note that the de!nition of Nibble(G,v,ϕ,b) is exactly the same as the one presented in Refer-
ence [62].

De!nition 2. De!ne Zu,ϕ,b as the subset of V such that if we start the lazy random walk from
v ∈ Zu,ϕ,b , then ϱv

t (u) ≥ 2ϵb for at least one of t ∈ [0, t0]. For any edge e = {u1,u2}, de!ne Ze,ϕ,b =
Zu1,ϕ,b ∪ Zu2,ϕ,b .

Intuitively, if v # Ze,ϕ,b , then e does not participate in Nibble(G,v,ϕ,b) and both endpoints
of e are not in the output C of Nibble(G,v,ϕ,b). In particular, v ∈ Ze,ϕ,b is a necessary condi-
tion for e ∈ E (C ), The following auxiliary lemma establishes upper bounds on Vol(Zu,ϕ,b ) and
Vol(Ze,ϕ,b ). This lemma will be applied to bound the amount of congestion when we execute mul-
tiple Nibble in parallel. Intuitively, if Vol(Ze,ϕ,b ) is small, then we can a"ord to run many instances
Nibble(G,v,ϕ,b) in parallel for random starting vertices v sampled from the degree distribution
ψV .
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Lemma 9. The following formulas hold for each vertex u and each edge e .

Vol(Zu,ϕ,b ) ≤ (t0 + 1)/(2ϵb ),

Vol(Ze,ϕ,b ) ≤ (t0 + 1)/ϵb .

In particular, these two quantities are both upper bounded by O (ϕ−52b log3 |E |).
Proof. Recall that superscript is used to indicate the starting vertex of the lazy random walk.

We write Zu,ϕ,b,t = {v ∈ V | ϱv
t (u) ≥ 2ϵb }. Then Vol(Zu,ϕ,b ) ≤ ∑t0

t=0 Vol(Zu,ϕ,b,t ). Thus, to prove
the lemma, if su$ces to show that Vol(Zu,ϕ,b,t ) ≤ 1/(2ϵb ). This inequality follows from the fact
that ϱv

t (u) = ϱu
t (v ), as follows:

1 =
∑

v ∈V
pu

t (v )

≥
∑

v ∈V : ϱu
t (v )≥2ϵb

pu
t (v )

≥
∑

v ∈V : ϱu
t (v )≥2ϵb

2ϵb · deg(v )

=
∑

v ∈V : ϱv
t (u )≥2ϵb

2ϵb · deg(v )

= 2ϵb · Vol(Zu,ϕ,b,t ).

The fact that ϱv
t (u) = ϱu

t (v ) has been observed in
Reference [62] without a proof. For the sake of completeness, we will show a proof of this
fact. An alternative proof can be found in Reference [11, Lemma 3.7]. In the following calculation,
we use the fact that D−1MD = D−1 (AD−1 + I )D/2 = (D−1A + I )/2 = M6:

ϱv
t (u) = χ6u D

−1Mt χv

= χ6u (D−1MD)t (D−1χv )

= χ6u (M6)t (D−1χv )

= (D−1χv )6Mt χu

= χ6v D
−1Mt χu

= ϱu
t (v ).

Finally, recall that ϵb = Θ( ϕ
t02b ln |E | ) and t0 = Θ( ln |E |

ϕ2 ), and so

Vol(Ze,ϕ,b ) ≤ 2(t0 + 1)/(2ϵb ) = O (ϕ−52b log3 |E |).
!

Lemma 10 lists some crucial properties of Nibble. In subsequent discussion, for any given subset
S ⊂ V , the subset Sд ⊆ S and the partition Sд =

⋃"
b=1 S

д
b are de!ned according to Lemma 10.

Lemma 10 (Analysis of Nibble). For each ϕ ∈ (0, 1], and for each subset S ⊂ V satisfying

Vol(S ) ≤ 2
3 · Vol(V ) and Φ(S ) ≤ 2f (ϕ),

there exists a subset Sд ⊆ S with the following properties. First, Vol(Sд ) ≥ Vol(S )/2. Second, Sд is par-
titioned into Sд =

⋃"
b=1 S

д
b such that if a lazy random walk is initiated at anyv ∈ Sд

b with truncation
parameter ϵb , the following are true.
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(1) The set C returned by Nibble(G,v,ϕ,b) is non-empty.
(2) Let λ > 1/5 be a number. For any 1 ≤ t ≤ t0 and j satisfying ϱ̃v

t (π̃v
t (j )) ≥

λγ/Vol(π̃v
t (1 . . . j )), we have Vol(π̃v

t (1 . . . j ) ∩ S ) ≥ (1 − 1
5λ ) Vol(π̃v

t (1 . . . j )). In par-
ticular, the set C returned by Nibble(G,v,ϕ,b) satis!es Vol(C ∩ S ) ≥ (4/7)2b−1.

Proof. The !rst condition follows from Reference [62, Lemma 3.1]. The second condi-
tion follows from the proof of Reference [62, Lemma 3.14]. To see that the set C re-
turned by Nibble(G,v,ϕ,b) satis!es Vol(C ∩ S ) ≥ (4/7)2b−1, observe that by (C.3), the set
C satis!es Vol(C ) ≥ (5/7)2b−1. Setting λ = 1, (C.2) implies that Vol(C ∩ S ) ≥ (1 − 1

5 ) Vol(C ) ≥
(4/5) (5/7)2b−1 = (4/7)2b−1. !

To put it another way, Lemma 10(1) says that there exist 1 ≤ t ≤ t0 and 1 ≤ j ≤ |V | such that
(C.1)–(C.3) are met; Lemma 10(2) says that if t and j satisfy (C.2), then the set π̃v

t (1 . . . j ) has high
overlap with S . The reason that we allow a general value of λ in Lemma 10(2) is that we will use
it with λ " 1 to analyze a modi!ed version of Nibble in Section 4.2.

Intuitively, the set Sд represents the “core” of S in the sense that Nibble(G,v,ϕ,b) is guaranteed
to return a sparse cutC ifv ∈ Sд

b . Recall that (C.1) and (C.3) in the description of Nibble(G,v,ϕ,b)
guarantees that the cut C has conductance at most ϕ and has volume at most (5/6) Vol(V ).

4.2 Approximate Nibble
The algorithm Nibble is not suitable for a distributed implementation, since it has to go over all
possible j. We provide a modi!ed version of Nibble that only considersO (ϕ−1 log(Vol(V ))) choices
of j for each t . The cost of doing so is that we have to relax the conditions slightly.

For any !xed t , we de!ne the sequence (ji ) as follows. De!ne jmax to be the largest index w.r.t. π̃v
t

for which p̃v
t (jmax) > 0. In the base case j1 = 1. Once j1, . . . , ji−1 are de!ned, if ji−1 < jmax, then ji

is de!ned to be

ji = max
{
ji−1 + 1, arg max1≤j≤jmax

(Vol(π̃v
t (1 . . . j )) ≤ (1 + ϕ) Vol(π̃v

t (1 . . . ji−1))
)}
.

Algorithm ApproximateNibble(G,v,ϕ,b)
For t = 1 to t0, we go over all O (ϕ−1 log(Vol(V ))) candidates j in the sequence (jx ). If jx = 1 or
jx = jx−1 + 1, then we test whether (C.1), (C.2), and (C.3) are met. Otherwise, we test whether
the following modi!ed conditions are met.

(C.1*) Φ(π̃v
t (1 . . . jx )) ≤ 12ϕ.

(C.2*) ϱ̃v
t (π̃v

t (jx−1)) ≥ γ/Vol(π̃v
t (1 . . . jx )).

(C.3*) (11/12) Vol(V ) ≥ Vol(π̃v
t (1 . . . jx )) ≥ (5/7)2b−1.

If some jx passes the test, then return C = π̃v
t (1 . . . jx ) and quit. Otherwise return C = ∅.

De!nition 3. Consider ApproximateNibble(G,v,ϕ,b). De!ne P∗ as the set of edges e such that
there exist at least one endpoint u of e and at least one number t ∈ [0, t0] with p̃v

t (u) > 0.

Intuitively, P∗ is the set of edges that participate in ApproximateNibble(G,v,ϕ,b). This notation
will be used in the analysis of the complexity of our distributed implementation.

Lemma 11 shows an additional property of the outputC of ApproximateNibble(G,v,ϕ,b) when
v is appropriately chosen. Note that if C is non-empty, it must have conductance at most 12ϕ and
volume at most (11/12) Vol(V ) in view of (C.1*) and (C.3*).
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Lemma 11 (Analysis of ApproximateNibble). For each 0 < ϕ ≤ 1/12, and for each subset S ⊂ V ,
satisfying

Vol(S ) ≤ 2
3 · Vol(V ) and Φ(S ) ≤ 2f (ϕ),

the output C of ApproximateNibble(G,v,ϕ,b) for any v ∈ Sb
д is non-empty and it satis!es

Vol(C ∩ S ) ≥ 2b−2.

Proof. We pick (t , j ) as the indices that satisfy (C.1)–(C.3), whose existence is guaranteed by
Lemma 10(1). Letv ∈ Sb

д . We select x in such a way that jx−1 < j ≤ jx . We will show that jx will pass
the test in ApproximateNibble(G,v,ϕ,b), and the output C = π̃v

t (1 . . . jx ) satis!es Vol(C ∩ S ) ≥
2b−2.

For the easy special case that j = ji for some i , the index ji is guaranteed to pass the test in
ApproximateNibble(G,v,ϕ,b), and we have Vol(C ∩ S ) ≥ (4/7)2b−1 > 2b−2 by Lemma 10.

Otherwise, the three indices jx−1 < j < jx satisfy the following relation:
Vol(π̃v

t (1 . . . jx−1)) ≤ Vol(π̃v
t (1 . . . j )) ≤ Vol(π̃v

t (1 . . . jx )) ≤ (1 + ϕ) Vol(π̃v
t (1 . . . jx−1)).

We !rst show that jx satis!es the three conditions (C.1*), (C.2*), (C.3*), and so it will pass the test in
ApproximateNibble(G,v,ϕ,b), and then we show that the output C satis!es Vol(C ∩ S ) ≥ 2b−2.

Condition (C.1*): We divide the analysis into two cases.
• Consider the case Vol(π̃v

t (1 . . . jx )) ≤ Vol(V )/2. We have |∂(π̃v
t (1 . . . jx )) | ≤ |∂(π̃v

t (1 . . . j )) |
+ ϕ Vol(π̃v

t (1 . . . jx )) ≤ 2ϕ Vol(π̃v
t (1 . . . j )) ≤ 2ϕ Vol(π̃v

t (1 . . . jx )). Hence,
Φ(π̃v

t (1 . . . jx )) = |∂(π̃v
t (1 . . . jx )) |/Vol(π̃v

t (1 . . . jx )) ≤ 2ϕ,
and so (C.1*) is met. In the above calculation, we use the fact that |∂(π̃v

t (1 . . . j )) | ≤
ϕ Vol(π̃v

t (1 . . . j )), which is due to the assumption that (t , j ) satis!es (C.1).
• Consider the case Vol(π̃v

t (1 . . . jx )) > Vol(V )/2. The last inequality in the following calcu-
lation uses the fact that Vol(V \ π̃v

t (1 . . . j )) ≥ (1/6) Vol(V ), which is due to the assumption
that (t , j ) satis!es (C.2).
Vol(V \ π̃v

t (1 . . . jx )) ≥ Vol(V \ π̃v
t (1 . . . j )) − ϕ Vol(π̃v

t (1 . . . jx ))

≥ Vol(V \ π̃v
t (1 . . . j )) − (1/12) Vol(π̃v

t (1 . . . jx )) ϕ ≥ 1/12
≥ Vol(V \ π̃v

t (1 . . . j )) − (1/12) Vol(V )

≥ Vol(V \ π̃v
t (1 . . . j ))/2. (∗)

We are ready to show that Φ(π̃v
t (1 . . . jx )) ≤ 12ϕ.

Φ(π̃v
t (1 . . . jx )) = |∂(π̃v

t (1 . . . jx )) |/Vol(V \ π̃v
t (1 . . . jx ))

≤ ϕ Vol(V \ π̃v
t (1 . . . j )) + ϕ Vol(π̃v

t (1 . . . j ))
Vol(V \ π̃v

t (1 . . . jx ))

≤ 6ϕ Vol(V \ π̃v
t (1 . . . j ))

Vol(V \ π̃v
t (1 . . . jx ))

Vol(π̃v
t (1 . . . j )) ≤ (5/6) Vol(V )

≤ 12ϕ . use (*)

Condition (C.2*):

ϱ̃v
t (π̃v

t (jx−1)) ≥ ϱ̃v
t (π̃v

t (j )) jx−1 ≤ j

≥ γ/Vol(π̃v
t (1 . . . j )) (t , j ) satis!es (C.2)

≥ γ/Vol(π̃v
t (1 . . . jx )). j ≤ jx
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Condition (C.3*):

(11/12) Vol(V ) > (5/6) (1 + ϕ) Vol(V ) ϕ ≤ 1/12
≥ (1 + ϕ) Vol(π̃v

t (1 . . . j )) (t , j ) satis!es (C.3)
≥ Vol(π̃v

t (1 . . . jx ))

≥ Vol(π̃v
t (1 . . . j )) j ≤ jx

≥ (5/7)2b−1. (t , j ) satis!es (C.3)
Lower Bound of Vol(C ∩ S ). First, observe that (C.2*) implies

ϱ̃v
t (π̃v

t (jx−1)) ≥ γ

Vol(π̃v
t (1 . . . jx ))

≥ γ

(1 + ϕ) Vol(π̃v
t (1 . . . jx−1))

=
(12/13)γ

Vol(π̃v
t (1 . . . jx−1))

.

By Lemma 10, we can lower bound Vol(C ∩ S ) as follows:
Vol(C ∩ S ) = Vol(π̃v

t (1 . . . jx ) ∩ S )

> Vol(π̃v
t (1 . . . jx−1) ∩ S )

≥
(
1 − 13

5 · 12

)
Vol(π̃v

t (1 . . . jx−1)) Lemma 10

≥
(
1 − 13

60

)
Vol(π̃v

t (1 . . . jx ))/(1 + ϕ)

≥
(
1 − 13

60

)
(5/7)2b−1/(1 + ϕ) (C.3*)

> 2b−2. ϕ ≤ 1/12
!

Recall that our goal is to design a distributed algorithm that !nds a nearly most balanced
sparse cut, so !nding a cut C with low conductance is not enough. Following the approach
of Reference [62], to !nd a nearly most balanced sparse cut, we will need to take the union
of the output of multiple instances of ApproximateNibble, and the goal of the analysis is to
show that the resulting vertex set has volume at least Vol(S )/2. This explains the reason why
we not only need to show that C " ∅ but also need to show a lower bound on Vol(C ∩ S ) in
Lemma 11.

4.3 Random Nibble
Next, we consider the algorithm RandomNibble which executes ApproximateNibble with a ran-
dom starting vertex v and a random parameter b. The de!nition of RandomNibble is exactly the
same as the corresponding one in Reference [62] except that we use ApproximateNibble instead
of Nibble.

Algorithm RandomNibble(G,ϕ)
Sample a starting vertexv ∼ ψV according to the degree distribution. Choose a number b ∈ [1, "]
with Pr[b = i] = 2−i/(1 − 2−" ). Execute ApproximateNibble(G,v,ϕ,b), and return the result C .

Recall that P∗ is the set of edges participating in the subroutine ApproximateNibble(G,v,ϕ,b),
as de!ned in De!nition 3. Note that E (C ) ⊆ P∗, where C is the output of RandomNibble(G,ϕ).

Lemma 12 (Analysis of RandomNibble). For each ϕ ∈ (0, 1/12], the output C of
RandomNibble(G,ϕ) satis!es the following:
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(1) Pr[e ∈ E (C )] ≤ Pr[e ∈ P∗] ≤ "(t0 + 1)ϵ−1
0 /Vol(V ) for each e ∈ E.

(2) E[Vol(C ∩ S )] ≥ Vol(S )
8 Vol(V ) for each subset S ⊂ V satisfying

Vol(S ) ≤ 2
3 · Vol(V ) and Φ(S ) ≤ 2f (ϕ).

Proof. The proof of E[Vol(C ∩ S )] ≥ Vol(S )
8 Vol(V ) follows from Lemma 11 and the proof of

Reference [62, Lemma 3.2]. An upper bound of Pr[e ∈ P∗] can be calculated using Lemma 9. More
speci!cally, observe that v ∈ Ze,ϕ,i is a necessary condition for e ∈ E (C ) for the case b = i , and so
we can upper bound Pr[e ∈ P∗] as follows:

Pr[e ∈ P∗] ≤
"∑

i=1
Pr[b = i] · Pr[v ∈ Ze,ϕ,i ]

≤
"∑

i=1
Pr[b = i] · Vol(Ze,ϕ,i )/Vol(V )

≤
"∑

i=1

2−i

1 − 2−"
· ((t0 + 1)/ϵi )/Vol(V ) Vol(Ze,ϕ,i ) ≤ (t0 + 1)/ϵi

<
"∑

i=1
(t0 + 1)ϵ−1

0 /Vol(V ) ϵi = ϵ0/2i

= "(t0 + 1)t0ϵ
−1
0 /Vol(V ),

where the second inequality follows from the fact that we sample a starting vertexv ∼ ψV accord-
ing to the degree distribution. !

4.4 Parallel Nibble
In Reference [62], roughly speaking, it was shown that a nearly most balanced sparse cut can be
found with probability 1 − p by sequentially applying Nibble with a random starting vertex for
O ( |E | log(1/p)) times on the remaining graph after removing the previous cuts. The !nal output is
then the union of all cuts found.

To facilitate an e$cient distributed implementation, we will do theseO ( |E | log(1/p)) sparse cut
computations in moderate-sized batches. Note that the naïve approach of doing all O ( |E | log(1/p))
RandomNibble in parallel on the graphG does not work, since the potentially high overlap between
the output subsets of di"erent executions of RandomNibble will destroy the required conductance
constraint.

Speci!cally, we consider the algorithm ParallelNibble, which involves a simultaneous ex-
ecution of a moderate number of ApproximateNibble. In the description of ParallelNibble,
we say that e participates in the subroutine RandomNibble(G,ϕ) if e ∈ P∗ for the subroutine
ApproximateNibble(G,v,ϕ,b) during the execution of RandomNibble(G,ϕ). We write

k
def
=

⌈
Vol(V )

"(t0 + 1)ϵ−1
0

⌉

in subsequent discussion.
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Algorithm ParallelNibble(G,ϕ)
For i = 1 to k , do RandomNibble(G,ϕ), in parallel. Let Ci be the result of the ith execution of
RandomNibble(G,ϕ). Let Ui =

⋃i
j=1Ci . If there exists an edge e participating in the subroutine

RandomNibble(G,ϕ) for more than w
def
= 10 9ln(Vol(V )): times, then return C = ∅. Otherwise

select i∗ ∈ [1,k] to be the highest index such that Vol(Ui∗ ) ≤ z
def
= (23/24) Vol(V ). ReturnC = Ui∗ .

In the statement of Lemma 13, we de!ne the function д by

д(ϕ,Vol(V ))
def
=

⌈
10w · "(t0 + 1)ϵ−1

0
⌉
= O (ϕ−5 log5 ( |E |)).

In particular, we have 10w Vol(V )/k ≤ д(ϕ,Vol(V )). The function д will also be used in the de-
scription and the analysis of Partition in the subsequent discussion.

Lemma 13 (Analysis of ParallelNibble). For each 0 < ϕ ≤ 1/12 the following is true for the
output C of ParallelNibble(G,ϕ).

(1) If C " ∅, then Φ(C ) ≤ 276wϕ.
(2) For each subset S ⊂ V satisfying

Vol(S ) ≤ 2
3 · Vol(V ) and Φ(S ) ≤ 2f (ϕ),

de!ne the random variable y as follows:

y =

{
Vol(S ), if Vol(C ) ≥ (1/24) Vol(V )
Vol(C ∩ S ), otherwise.

Then, E[y] ≥ k Vol(S )
10w Vol(V ) ≥

Vol(S )
д (ϕ,Vol(V )) .

Proof. We show that if the output subset C is non-empty, then we must have Φ(C ) ≤ 276wϕ.
By de!nition of ParallelNibble, if the output C is non-empty, then each edge e incident to C
is incident to at most w of these vertex sets C1, . . . ,Ci∗ . Therefore, Vol(C ) ≥ (1/w )

∑i∗
i=1 Vol(Ci ).

Using the fact that the output Ci of ApproximateNibble(G,v,ϕ,b) has Φ(Ci ) ≤ 12ϕ, we upper
bound |∂(C ) | as follows:

|∂(C ) | ≤
i∗∑

i=1
|∂(Ci ) |

≤
i∗∑

i=1
12ϕ Vol(Ci )

≤ 12wϕ Vol(C ).

The threshold z guarantees that Vol(V \C ) ≥ (1/23) Vol(C ), and so |∂(C ) | ≤ 12 · 23 ·wϕ Vol(V \
C ) = 276wϕ Vol(V \C ). We conclude that Φ(C ) ≤ 276wϕ.

Next, we analyze the random variable y. We !rst observe that if i∗ < k , then C = Ui∗ has
Vol(C ) ≥ (1/24) Vol(V ). This is because that each Ci must have Vol(Ci ) ≤ (11/12) Vol(V ) by
de!nition of ApproximateNibble. If Vol(Ui∗ ) < (1/24) Vol(V ), then Vol(Ui∗+1) < (1/24) Vol(V ) +
(11/12) Vol(V ) < (23/24) Vol(V ), contradicting the choice of i∗. Thus, for the case i∗ < k , we au-
tomatically have y = Vol(S ), which is the maximum possible value of y. In view of this, we can
lower bound E[y] as follows:

E[y] ≥ E[Vol(Uk ∩ S )] − Pr[B] · Vol(S ),
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where B is the event that there exists an edge participating in the subroutine RandomNibble(G,ϕ)
for more than w times. Note that B implies C = ∅, but not vise versa.

By Lemma 12, we know that E[Vol(Ci ∩ S )] ≥ Vol(S )
8 Vol(V ) , and this implies E[Vol(Uk ∩ S )] ≥

(1/w )
∑k

i=1 E[Vol(Ci ∩ S )] = k Vol(S )
8w Vol(V ) . Therefore, to obtain the desired bound E[y] ≥ k Vol(S )

10w Vol(V ) , it
remains to show that Pr[B] ≤ k

40w Vol(V ) .
If k = 1 ≤ w , then Pr[B] = 0. In what follows, we assume k ≥ 2, and this, together with the anal-

ysis of RandomNibble(G,ϕ) in Lemma 12, implies that for each invocation of RandomNibble(G,ϕ),
we have

Pr[e ∈ P∗] ≤ "(t0 + 1)ϵ−1
0 /Vol(V ) ≤ 2/k . (1)

Let e ∈ E. De!ne Xi = 1 if e participates in the ith RandomNibble(G,ϕ), and de!ne Xi = 0 other-
wise. SetX = ∑k

i=1 Xi . By Equation (1), we infer that E[X ] ≤ 2. By a Cherno" bound, Pr[X > w] ≤
exp(−2(w − 2)/3) ; (Vol(V ))−2. By a union bound over all edges e ∈ E, we infer that Pr[B] <
(Vol(V ))−1 ; k

40w Vol(V ) , as required. !

Intuitively, Lemma 13 shows that we only lose a factor ofO (logn) in conductance if we combine
the results of k parallel executions of RandomNibble(G,ϕ). We are now ready to present the algo-
rithm for !nding a nearly most balanced sparse cut, which involves executing ParallelNibble
sequentially for s = O (poly(1/ϕ, logn)) times on the remaining subgraph.

Algorithm (G,ϕ,p)
InitializeW0 = V . For i = 1 to s

def
= 4д(ϕ,Vol(V ))

⌈
log7/4 (1/p)

⌉
do the following.

(1) Execute ParallelNibble(G{Wi−1},ϕ). Let the output be Ci .
(2) SetWi =Wi−1 \Ci .
(3) If Vol(Wi ) ≤ (47/48) Vol(V ) or i = s , then return C =

⋃i
j=1Cj and quit.

Lemma 14 (Analysis of Partition). LetC be the output of Partition(G,ϕ), with 0 < ϕ ≤ 1/12.
Then the following holds:

(1) Vol(C ) ≤ (47/48) Vol(V ).
(2) If C " ∅, then Φ(C ) = O (ϕ log |V |).
(3) Furthermore, for each subset S ⊂ V satisfying

Vol(S ) ≤ 1
2 · Vol(V ) and Φ(S ) ≤ f (ϕ),

with probability at least 1 − p, at least one of the following holds:
(a) Vol(C ) ≥ (1/48) Vol(V ).
(b) Vol(S ∩C ) ≥ (1/2) Vol(S ).

Proof. This proof follows the approach of the proof of Reference [62, Theorem 3.3].

Proof of Condition 1. Let i ′ be the index such that the output subset C is ⋃i′
j=1Cj . Then, we

have Vol(C ) ≤ Vol(V \Wi′−1) + Vol(Ci′ ). Since the algorithm does not terminate at the (i ′ − 1)th
iteration, we have Vol(Wi′−1) > (47/48) Vol(V ), and so Vol(V \Wi′−1) ≤ (1/48) Vol(V ). By the al-
gorithm description of ParallelNibble, we have Vol(Ci′ ) ≤ (23/24) Vol(Wi′−1) ≤ (23/24) Vol(V ).
To summarize, we have Vol(C ) ≤ (1/48) Vol(V ) + (23/24) Vol(V ) = (47/48) Vol(V ).

Proof of Condition 2. Note that the sets C1, . . . ,Ci′ that constitute C = ⋃i′
j=1Cj are disjoint

vertex sets. We have |∂(C ) | ≤ ∑i′
j=1 |∂(Ci ) | ≤ O (ϕ log |V |) ∑i′

j=1 Vol(Ci ) = O (ϕ log |V |) · Vol(C ),

Journal of the ACM, Vol. 68, No. 3, Article 21. Publication date: May 2021.



Near-optimal Distributed Triangle Enumeration via Expander Decompositions 21:29

where the second inequality is due to Lemma 13. By Condition 1, we infer that Vol(V \C ) ≥
(1/47) Vol(C ), and so we also have |∂(C ) | ≤ O (ϕ log |V |) · Vol(V \C ). Hence, Φ(C ) = O (ϕ log |V |).

Proof of Condition 3. We focus on h
def
= 4д(ϕ,Vol(V )) consecutive iterations from i = x + 1

to i = x + h, for some index x . For each index j ∈ [1,h], we write Hj to denote the event that (i)
Vol(S ∩Wx+j−1) ≤ Vol(S )/2 or (ii) the algorithm ends prior to iteration i = x + j. We de!ne the
random variable Yj as follows:

Yj =



Vol(S )
2д (ϕ,Vol(V )) if Hj occurs (Case 1)
Vol(Wx+j−1 ∩ S ) if Vol(Cx+j ) ≥ (1/24) Vol(Wx+j−1) (Case 2)
Vol(Cx+j ∩ S ) otherwise (Case 3).

We claim that if Hj does not occur, then the preconditions of Lemma 13 are met for the cut S ′ =
S ∩Wx+j−1 in the graph G ′ = G{Wx+j−1} when we run ParallelNibble(G{Wx+j−1},ϕ) during the
(x + j )th iteration.

• We show that Vol(S ∩Wx+j−1) ≤ (2/3) Vol(Wx+j−1), as follows:

Vol(S ∩Wx+j−1) ≤ (1/2) Vol(V ) (since Vol(S ) ≤ Vol(V )/2)

< (1/2) (48/47) Vol(Wx+j−1)
(
since Vol(Wx+j−1) > (47/48) Vol(V )

)

< (2/3) Vol(Wx+j−1).

• We show that ΦG {Wx+j−1 } (S ) ≤ 2Φ(S ) ≤ 2f (ϕ,Vol(V )) ≤ 2f (ϕ,Vol(Wx+j−1)), where we
write f (ϕ, r ) to indicate the value of f (ϕ) when the underlying graph has volume r :

ΦG {Wx+j−1 } (S ) =
|E (S ∩Wx+j−1,Wx+j−1 \ S ) |

min{Vol(S ∩Wx+j−1),Vol(Wx+j−1 \ S )}

≤ |E (S,V \ S ) |
min{Vol(S ∩Wx+j−1),Vol(Wx+j−1 \ S )}

<
|E (S,V \ S ) |

(1/2) min{Vol(S ),Vol(V \ S )}
= 2Φ(S ).

The second inequality is explained as follows. We have Vol(S ∩Wx+j−1) > Vol(S )/2, since
Hj does not occur, and we also have

Vol(Wx+j−1 \ S ) ≥ Vol(V \ S ) − (1/48) Vol(V )

≥ Vol(V \ S ) − (1/24) Vol(V \ S ) (since Vol(V \ S ) ≥ (1/2) Vol(V ))

> Vol(V \ S )/2.

Thus, we are able to use Lemma 13 to infer that that

E[Yj | Hj ] ≥
Vol(S ∩Wx+j−1)

д(ϕ,Vol(Wx+j−1))
>

Vol(S )

2д(ϕ,Vol(V ))
.

In the calculation, we use the two inequalities д(ϕ,Vol(V )) ≥ д(ϕ,Vol(Wx+j−1)) and Vol(S ∩
Wx+j−1) > Vol(S )/2, where the latter is due to Hj . Combining E[Yj | Hj ] > Vol(S )

2д (ϕ,Vol(V )) with the
trivial bound E[Yj | Hj ] = Vol(S )

2д (ϕ,Vol(V )) , we conclude that

E[Yj ] ≥
Vol(S )

2д(ϕ,Vol(V ))
.
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We write Y =
∑h

j=1 Yj , and we have E[Y ] ≥ 2 Vol(S ) in view of the above, as we recall h =
4д(ϕ,Vol(V )). We claim that we always haveY ≤ 4 Vol(S ). We may writeY = Y 1 + Y 2 + Y 3, where
Y i considers the part of Y due to Case i in the de!nition of Yj . It is clear that Y 1 ≤ h · Vol(S )

2д (ϕ,Vol(V )) =

2 Vol(S ). We claim thatY 2 ≤ Vol(S ) by observing that Case 2 can only occur at most once. Suppose
Case 2 occurs at iteration i = x + j. Then Vol(Cx+j ) ≥ (1/24) Vol(Wx+j−1) > (1/48) Vol(Wx+j−1),
which implies Vol(Wx+j ) ≤ (47/48) Vol(Wx+j−1) ≤ (47/48) Vol(V ), and so the algorithm termi-
nates. For Case 3, we have Y 3 ≤ ∑h

j=1 Vol(Cx+j ∩ S ) ≤ Vol(S ). In view of the above, we have

(Vol(S )/2)Pr[Y < (1/2) Vol(S )] + 4 Vol(S ) (1 − Pr[Y < (1/2) Vol(S )]) ≥ E[Y ] ≥ 2 Vol(S ),

and this implies Pr[Y < (1/2) Vol(S )] ≤ 4/7. We argue that Y ≥ (1/2) Vol(S ) implies that either
Condition 3a or Condition 3b holds. If Case 1 ever occurs, then the algorithm terminates before
the last iteration i = s , and so we must have Vol(C ) ≥ (1/48) Vol(V ). Similarly, if Case 2 ever occurs,
we automatically have Vol(C ) ≥ (1/48) Vol(V ). If Cases 1 and 2 never occur for all j ∈ [1,h], then
we have Vol(C ∩ S ) ≥ Y > (1/2) Vol(S ).

We divide all s iterations into 9log7/4 (1/p): intervals of length h = 4д(ϕ,Vol(V )), and apply the
above analysis to each of them. We conclude that with probability at least 1 − (4/7)

⌈
log7/4 (1/p )

⌉
≥

1 − p, there is at least one interval satisfying Y ≥ (1/2) Vol(S ). In other words, with probability at
least 1 − p, either Condition 3a or Condition 3b holds. !

4.5 Distributed Implementation
In this section, we show that the algorithm Partition(G,ϕ) can be implemented to run in O (D ·
poly(logn, 1/ϕ)) rounds in CONGEST. We do not make e"ort in optimizing the round complexity.

Notation. In this section, the input graph G = (V ,E) is often a subgraph of the underlying com-
munication network (i.e., the input graph), and so |V | may be much smaller than n, the number
of vertices in the input graph. Nonetheless, we express the round complexity in terms of n, since
the allowable error probability is 1/poly(n), independent of |V |. Furthermore, we may be able to
broadcast information to all vertices in G by communicating along edges in some larger network
G ′. The parameter D refers to the diameter of G ′, not G. (The decompositions from Section 3.2
endow each subgraph G with a Steiner tree that uses edges outside of G, with the guarantee that
the congestion along any edge is O (logn).)

Lemma 15 (Implementation of ApproximateNibble). Suppose v initially knows that it is the
starting vertex. The algorithm ApproximateNibble(G,v,ϕ,b) can be implemented to run inO ( log4 n

ϕ5 )

rounds. Only the edges in P∗ participate in the computation. By the end of the algorithm, each vertex
u knows whether or not u ∈ C , w.h.p.

Proof. First, the calculation of p̃v
t (u) and ϱ̃v

t (u) for each 0 ≤ t ≤ t0 for each vertex u ∈ V can
be done in t0 = O ( log n

ϕ2 ) rounds.
Next, we have to go over all O ( log n

ϕ ) choices of x and all O ( log n
ϕ2 ) choices of t to see if there is

a pair (t , jx ) meeting the required four conditions. More speci!cally, given t and x , our task is the
following.

Search for jx and π̃v
t (1, . . . , jx ). Once jx−1 < jmax is computed, jx is de!ned to be max{jx−1 +

1, j∗}, where

j∗ = arg max1≤j≤jmax

(Vol(π̃v
t (1 . . . j )) ≤ (1 + ϕ) Vol(π̃v

t (1 . . . jx−1))
)
.
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We then need to compute the set π̃v
t (1, . . . , jx ). This can be done in O (t0 logn) = O ( log2 n

ϕ2 ) rounds
via a “random binary search” on the vertex setU containing all vertices u with p̃v

t (u) > 0. For the
sake of presentation, we rank all vertices u1, . . . ,u |U | by the ordering π̃v

t . Note that each ui does
not know its rank i , and we cannot a"ord to compute the rank of all vertices in U .

We maintain two indices L and R that control the search space. Initially, L ← 1 and R ← jmax.
In each iteration, we pick one vertex ui from {uL, . . . ,uR } uniformly at random, and calculate
Vol(π̃v

t (1, . . . , i )). This can be done in O (t0) rounds. More speci!cally, we build a spanning tree T
of the edge set P∗ rooted atv , and use only this tree for communication. It is clear that the subgraph
induced by P∗ is connected and has diameter O (t0). To sample a vertex from the set {uL, . . . ,uR }
uniformly at random, we !rst do a bottom-up traversal to let each vertexu in the tree compute the
number of vertices in {uL, . . . ,uR } that are within the subtree rooted at u. Using this information,
we can sample one vertex from {uL, . . . ,uR } uniformly at random by a top-down traversal.

If Vol(π̃v
t (1, . . . , i )) < (1 + ϕ) Vol(π̃v

t (1 . . . jx−1)), then we update L ← i; if Vol(π̃v
t (1, . . . , i )) =

(1 + ϕ) Vol(π̃v
t (1 . . . jx−1)), we update L ← i and R ← i; otherwise, we update R ← i − 1. We are

done when we reach L = R.
In each iteration, with probability 1/2 the rank of the vertex we sample lies in the middle half

of [L,R], and so the size of search space [L,R] is reduced by a factor of at least 3/4. Thus, within
O (logn) iterations, we have L = R, and S j (qt ) = {u1, . . . ,uj } with j = L = R. The round complexity
of this procedure is O (t0 logn) = O ( log2 n

ϕ2 ).

Checking (C.1)–(C.3) or (C.1*)–(C.3*). Given the index jx and the subset π̃v
t (1, . . . , jx )), it is

straightforward to check whether these conditions are met in O (t0) rounds.

Round Complexity. To summarize, we go over allO ( log n
ϕ ) choices of x and allO ( log n

ϕ2 ) choices of
t , and for each pair (t ,x ), we have to spendO ( log2 n

ϕ2 ) rounds. Therefore, the total round complexity
is O ( log4 n

ϕ5 ). !

Lemma 16 (Implementation of ParallelNibble). The algorithm ParallelNibble(G,ϕ) can
be implemented to run in O (D logn + log5 n

ϕ5 ) rounds in CONGEST.

Proof. The implementation of ParallelNibble(G,ϕ) has three parts.
Generation of ApproximateNibble Instances. The !rst part is to generate all k instances of

ApproximateNibble(G,v,ϕ,b), where the starting vertex v ∼ ψV is sampled according to the de-
gree distribution, and b ∈ [1, "] is sampled with Pr[b = i] = 2−i/(1 − 2−" ).

This task can be solved in O (D + logn) rounds, as follows. We build a BFS tree rooted at an
arbitrary vertex x . For each vertex v , de!ne s (v ) as the sum of deg(u) for each u in the subtree
rooted at v . In O (D) rounds, we can let each vertex v learn the number s (v ) by a bottom-up
traversal of the BFS tree.

We let the root vertex x sample the parameter b for all k instances of ApproximateNibble.
Denote Ki as the number of instances with b = i . At the beginning, the root x stores Ki amount
of i-tokens. Let L = Θ(D) be the number of layers in the BFS tree. For j = 1, . . . ,L, the vertices of
layer j do the following. When an i-token arrives atv , the i-token disappears atv with probability
deg(v )/s (v ) andv locally generates an instance of ApproximateNibble with starting vertexv and
parameter b = i; otherwise,v passes the i-token to a child u with probability s (u )

s (v )−deg(v ) . Thoughv
might need to send a large amount of i-tokens to u, the only information v needs to let u know is
the number of i-tokens. Thus, for each i , the generation of all Ki instances of ApproximateNibble
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with a random starting vertex can be done in L rounds. Using pipelining, we can do this for all i
in O (D + logn) rounds, independent of k .

Simultaneous Execution of ApproximateNibble. The second part is to run all k instances of
ApproximateNibble simultaneously. If there is an edge e participating in more thanw = O (logn)
of them, then the two endpoints of e broadcast a special message # to everyone else to notify
them to terminate the algorithm withC = ∅, and the broadcasting takes D rounds. Otherwise, this
task can be done inO (logn) ·O ( log4 n

ϕ5 ) = O ( log5 n
ϕ5 ) rounds in view of Lemma 15. Overall, the round

complexity is O (D + log5 n
ϕ5 ).

Selection of i∗ and C = Ui∗ . In the description of the algorithm ParallelNibble(G,ϕ), we as-
sume that all ApproximateNibble instances are indexed from 1 to k . However, in a distributed
implementation, we cannot a"ord to do this. What we can do is to let the starting vertexv of each
ApproximateNibble instance locally generate a randomO (logn)-bit identi!er associated with the
ApproximateNibble instance. We say that an ApproximateNibble instance is the ith instance if
its identi!er is ranked ith in the increasing order of all k identi!ers. With these identi!ers, we can
now use a random binary search to !nd i∗ and calculate C = Ui∗ in O (D logn) rounds w.h.p.

Round Complexity. To summarize, the round complexity for the three parts are O (D + logn),
O (D + log5 n

ϕ5 ), and O (D logn). Thus, the total round complexity is O (D logn + log5 n
ϕ5 ). !

Lemma 17 (Implementation of Partition). The algorithm Partition(G,ϕ,p) with p =

1/poly(n) can be implemented to run in O ( D log7 n
ϕ5 +

log11 n
ϕ10 ) rounds in CONGEST.

Proof. This lemma follows immediately from Lemma 16, as Partition(G,ϕ) consists of

s = O (д(ϕ,Vol(V )) log(1/p)) = O

( log6 n

ϕ5

)

iterations of ParallelNibble (with p = 1/poly(n)), where each of them costs O (D logn + log5 n
ϕ5 )

rounds (Lemma 16), and so the total round complexity is O ( D log7 n
ϕ5 +

log11 n
ϕ10 ). !

Now, we are ready to prove Theorem 6.

Proof of Theorem 6. The theorem follows from a re-parameterization of Lemma 14 (properties
of the partition) and Lemma 17 (runtime of the algorithm). !

5 CONCLUSION
In this article, we designed an e$cient distributed expander decomposition algorithm, and applied
it to the basic problem of detecting, counting, or enumerating triangles in Õ (n1/3) rounds. Our Tri-
angle Enumeration algorithm is optimal, up to polylogarithmic factors [32]. To our knowledge, this
is the only known non-trivial problem whose CONGEST and CONGESTED-CLIQUE complexities
(as a function of n) are essentially the same [17, 32].

5.1 Recent Developments
After the initial publication of this work in Reference [11, 12], some additional applications of
distributed expander decompositions have been discovered. Daga et al. [16] used our distributed
expander decomposition to obtain the !rst algorithm for computing the exact edge connectivity
of a graph using sublinear number of rounds.
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Eden et al. [19] demonstrated that distributed expander decompositions can be useful for sub-
graph enumeration beyond triangles. Distributed expander decompositions were used to enumer-
ate all 4-cliques in Õ (n5/6) rounds and all 5-cliques in Õ (n21/22) rounds. For any k-vertex subgraph
H , detecting whether a copy of H exists can be done in n2−Ω(1/k ) rounds, nearly matching the
n2−O (1/k ) lower bound in Reference [24]. Moreover, there is some !xed constant δ ∈ (0, 1/2) such
that for any k , an Ω(n1/2+δ ) CONGEST lower bound on 2k-cycle detection implies a new circuit
lower bound.

Censor-Hillel, Chang, Le Gall, and Leitersdorf [7, 8] improved the clique enumeration algorithms
of Eden et al. [19], showing that k-cliques can be enumerated in Õ (n(k−2)/k ) rounds for all k ≥ 4,
which is optimal up to a polylogarithmic factor.

Our Õ (n1/3)-round Triangle Enumeration algorithm is clearly not optimal when ∆ ; n1/3, as
the trivial algorithm can list all triangles in O (∆) rounds. Huang, Pettie, Zhang, and Zhang [30]
designed a Local Triangle Enumeration algorithm4 in O (∆/ logn + log log ∆) rounds with high
probability. This matches the Ω(∆/ logn) lower bound of Izumi and Le Gall [32] whenever ∆ >
logn log log logn.

Chang and Saranurak [13] recently considered the following relaxed variant of (ϵ,ϕ)-expander
decomposition: partition the edges E = E1 ∪ E2 ∪ · · · ∪ Ex ∪ E∗ in such a way that |E∗ | ≤ ϵ |E |
and the subgraphs G[E1],G[E2], . . . ,G[Ex ] are vertex-disjoint and have conductance at least ϕ.
They designed a randomized algorithm for computing such an expander decomposition with
ϕ = 1/poly(ϵ−1, logn) in poly(ϵ−1, logn) rounds and a deterministic algorithm computing the de-
composition with ϕ = poly(ϵ )2−O (

√
log n log log n) in poly(ϵ−1)2O (

√
log n log log n) rounds.

5.2 Open Problems
Many interesting problems are left open. In particular, the lower and upper bounds on Triangle
Enumeration di"er by a logc n factor, but c is huge, stemming from ine$ciencies in (i) the hierar-
chical routing structure of Reference [27] as modi!ed in Section 2.1, and (ii) our expander decom-
position algorithm. Improving the current state of the art of (i) and (ii) will lead to an improved
upper bound for Triangle Enumeration, as well as several other problems [16, 19, 27, 28].

The graph underlying the Ω(n1/3/ logn) lower bound [32, 52] for Triangle Enumeration is the
Erdős-Rényi random graph G (n,p) with p = 1/2. Hence, this lower bound does not rule out the
possibility of an n1/3−Ω(1)-round CONGEST algorithm for Triangle Enumeration on sparse graphs
(i.e.,m = o(n2)) or Triangle Detection on any class of graphs. In the CONGESTED-CLIQUE model,
e$cient algorithms for these two problems are already known: Triangle Detection can be solved in
n1−(2/ω )+o (1) = o(n0.158) rounds [9], and Triangle Enumeration on m-edge graphs can be solved in
O (1 +m/n5/3) rounds [10, 52]. If quantum bits are allowed, then, as Izumi, Le Gall, and Magniez [31]
showed, Triangle Detection can be solved in Õ (n1/4) rounds in CONGEST.
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