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THE COMMUNICATION COMPLEXITY OF SET INTERSECTION
AND MULTIPLE EQUALITY TESTING⇤

DAWEI HUANG† , SETH PETTIE‡ , YIXIANG ZHANG§ , AND ZHIJUN ZHANG§

Abstract. In this paper we explore fundamental problems in randomized communication com-
plexity such as computing SetIntersection on sets of size k and EqualityTesting between vectors of
length k. Sağlam and Tardos [Proceedings of the 54th Annual IEEE Symposium on Foundations
of Computer Science, 2013, pp. 678–687] and Brody et al. [Algorithmica, 76 (2016), pp. 796–845]
showed that for these types of problems, one can achieve optimal communication volume of O(k)
bits, with a randomized protocol that takes O(log⇤ k) rounds. They also proved that this is one
point along the optimal round-communication trade-o↵ curve. Aside from rounds and communica-
tion volume, there is a third parameter of interest, namely the error probability perr, which we write
2�E . It is straightforward to show that protocols for SetIntersection or EqualityTesting need to send
at least ⌦(k + E) bits, regardless of the number of rounds. Is it possible to simultaneously achieve
optimality in all three parameters, namely O(k + E) communication and O(log⇤ k) rounds? In this
paper we prove that there is no universally optimal algorithm, and we complement the existing
round-communication trade-o↵s [M. Sağlam and G. Tardos, Proceedings of the 54th Annual IEEE
Symposium on Foundations of Computer Science, 2013, pp. 678–687; J. Brody et al., Algorithmica,
76 (2016), pp. 796–845] with a new trade-o↵ between rounds, communication, and probability of
error. In particular, any protocol for solving multiple EqualityTesting in r rounds with failure proba-
bility perr = 2�E has communication volume ⌦(Ek

1/r). We present several algorithms for multiple
EqualityTesting (and its variants) that match or nearly match our lower bound and the lower bound
of [M. Sağlam and G. Tardos, Proceedings of the 54th Annual IEEE Symposium on Foundations
of Computer Science, 2013, pp. 678–687; J. Brody et al., Algorithmica, 76 (2016), pp. 796–845].
Lower bounds on EqualityTesting extend to SetIntersection for every r, k, and perr (which is trivial);
in the reverse direction, we prove that upper bounds on EqualityTesting for r, k, perr imply similar
upper bounds on SetIntersection with parameters r + 1, k, and perr. Our original motivation for
considering perr as an independent parameter came from the problem of enumerating triangles in
distributed (CONGEST) networks having maximum degree �. We prove that this problem can be
solved in O(�/ logn+log log�) time with high probability 1�1/poly(n). This beats the trivial (de-
terministic) O(�)-time algorithm and is superior to the Õ(n1/3) algorithm of [Y. Chang, S. Pettie,
and H. Zhang, Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms,
2019, pp. 821–840; Y. Chang and T. Saranurak, Proceedings of the ACM Symposium on Principles
of Distributed Computing, 2019, pp. 66–73] when � = Õ(n1/3).

Key words. communication complexity, set disjointness, distributed triangle detection, lower
bounds

AMS subject classifications. 94A05, 68R05, 60Cxx

DOI. 10.1137/20M1326040

1. Introduction. Communication complexity was defined by Yao [45] in 1979
and has become an indispensible tool for proving lower bounds in models of compu-
tation in which the notions of parties and communication are not direct. See, e.g.,
books and monographs [40, 38, 34] and surveys [15, 35] on the subject. In this paper
we consider some of the most fundamental and well-studied problems in this model,
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such as SetDisjointness, SetIntersection, ExistsEqual, and EqualityTesting. Let us briefly
define these problems formally since the terminology is not completely standard.
SetDisjointness and SetIntersection. In the SetDisjointness problem Alice and Bob

receive sets A ⇢ U and B ⇢ U where |A|, |B|  k and must determine whether
A \ B = ;. Define SetDisj(k, r, perr) to be the minimum communication
complexity of an r-round randomized protocol for this problem that errs with
probability at most perr. We can assume that |U | = O(k2/perr) without loss
of generality.1 The input to the SetIntersection problem is the same, except
that the parties must report the entire set A \ B. Define SetInt(k, r, perr)
to be the minimum communication complexity of an r-round protocol for
SetIntersection.

EqualityTesting and ExistsEqual. In the EqualityTesting problem Alice and Bob hold
vectors x 2 U

k and y 2 U
k and must determine, for each index i 2 [k],

whether xi = yi or xi 6= yi. A potentially easier version of the problem,
ExistsEqual (aka BlockEquality and OR-Equality [11, 26]), is to determine if
there exists at least one index i 2 [k] for which xi = yi. Define Eq(k, r, perr)
to be the randomized communication complexity of any r-round protocol
for EqualityTesting that errs with probability perr, and 9Eq(k, r, perr) the
corresponding complexity of ExistsEqual. Once again, we can assume that
|U | = O(k/perr) without loss of generality.

Mehlhorn and Schmidt [36] proved that the deterministic complexity of Exists-
Equal is ⌦(k logU), and in fact the trivial one-round algorithm is optimal for all four
problems [34]. Thus, researchers have focused on the randomized communication
complexity of these problems [28, 39, 31, 21, 18, 37, 12, 41, 11, 6, 27]. Most prior
work analyzed the relationship between round complexity and communication volume
and either treated perr as a constant or dependent on k (e.g., 1/ poly(k)) or considered
the regime when perr = 1/2 � ✏ is close to chance guessing [6, 27]. In this paper we
view perr = 2�E as independent of k and close to zero.

History. H̊astad and Wigderson [28] gave an O(log k)-round protocol for
SetDisjointness in which Alice and Bob communicate O(k) bits, which matched an
⌦(k) lower bound of Kalyanasundaram and Schnitger [31]; see also [39, 12, 18]. Feder
et al. [21] proved that EqualityTesting can be solved with O(k) communication by an
O(
p
k)-round protocol that errs with probability exp(�

p
k). Nikishkin [37] later im-

proved their round complexity and error probability to log k and exp(�k/polylog(k)),
respectively. Improving [28], Sağlam and Tardos [41] gave an r-round protocol for
SetDisjointness that uses O(k log(r) k) communication, where log(r) is the r-fold it-
erated logarithm function. For r = log⇤ k the error probability of this protocol is
exp(�

p
k), coincidentally matching [21]. In independent work, Brody et al. [11] gave

r-round and O(r)-round protocols for ExistsEqual and SetIntersection, respectively,
that use O(k log(r) k) communication and err with probability 1/ poly(k).

Sağlam and Tardos [41] were the first to show that this O(k log(r) k) round ver-
sus communication trade-o↵ is optimal, using a combinatorial round-elimination tech-
nique. In particular, this lower bound even applies to an ExistsEqual protocol with con-
stant error probability. Independently, Brody et al. [10, 11] established the same lower
bound trade-o↵ for ExistsEqual, assuming the error probability is at most 1/ poly(k).
Brody et al. [11] also introduced a randomized reduction from SetIntersection to

1Before the first round of communication, pick a pairwise independent h : U 7! [O(k2/perr)]
and check whether h(A) \ h(B) = ; with error probability perr/2. Thus, having SetDisj depend
additionally on |U | is somewhat redundant, at least when |U | is large.
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676 D. HUANG, S. PETTIE, Y. ZHANG, AND Z. ZHANG

Table 1
Upper and lower bounds on SetDisjointness, SetIntersection, EqualityTesting, and ExistsEqual.

Via trivial reductions, lower bounds on ExistsEqual extend to all four problems, and upper bounds on
SetIntersection extend to all four problems. From Theorem 1, the upper bounds on SetIntersection and
SetDisjointness follow from those of EqualityTesting and ExistsEqual, respectively, +1 round of com-
munication. The log-star function is defined as log⇤(x) = min{i : log(i)(x)  1}, e.g., log⇤(k/E) = 0
if E � k.

Problem Commun. Rounds Error Prob. Notes

EqualityTesting O(k) O(
p
k) exp(�

p
k) [21]

EqualityTesting O(k) log k exp
⇣
� k

polylog(k)

⌘
[37]

SetDisjointness O(k) O(log k) Constant [28]

SetDisjointness O(k log(r) k) r � exp(�
p
k) [41]

ExistsEqual r

SetIntersection
O(k log(r) k)

O(r)
1/ poly(k) [11]

ExistsEqual

SetDisjointness
O(k + Ek

1/r) r + log⇤(k/E)

EqualityTesting

and
[SetIntersection]

O(k + Ek
1/r · log r 2�E

new

+Er log r)
r + log⇤(k/E) [+1]

O(k + E) log k

Lower Bounds

SetDisjointness ⌦(
p
k) 1 Constant [2]

SetDisjointness ⌦(k) 1 Constant [31]

SetDisjointness ⌦(✏k) 1 1/2� ✏ [6, 27]

ExistsEqual ⌦(k log(r) k) r Constant [41]

ExistsEqual ⌦(k log(r) k) r 1/ poly(k) [11]

ExistsEqual ⌦(Ek
1/r) r 2�E

new

EqualityTesting, which errs with probability exp(�Õ(
p
k)), i.e., it cannot be applied

when the desired total error probability perr is su�ciently small.
One consequence of [31] is that solving SetDisjointness with success probability

1/2+ ✏ (i.e., slightly better than chance) requires ⌦(✏2n) communication. Braverman
and Moitra [6] improved this to ⌦(✏n). See Göös and Watson [27] for a generalized
form of this lower bound.

Related work. EqualityTesting is the problem of simultaneously solving k indepen-
dent instances of equality, which fits within the direct sum/direct product framework
of many results in communication complexity. However, the existing results on di-
rect sums and amortized communication complexity are largely inapplicable to our
setting. Braverman and Rao [7] and Braverman [5] bound the amortized communica-
tion cost of a problem in terms of its information cost (O(1) in the case of equality).
However, their error parameter ⇢ is fixed (as k ! 1) and reflects the probability
that the protocol errs on each individual coordinate. It does not seem possible to
extend these results to variable ⇢ = ⇢(k); see [5, Remark 6.2] and [43, Remark 3.3].
See [21, 3] for general lower bounds on direct sum problems. Direct product theo-
rems are typically of the following form. If a protocol has success probability at most
2/3 using communication C, then solving n independent instances with Cn commu-
nication has success probability exponentially small in n. See Klauck [32] for such
a direct product theorem specifically for SetDisjointness. See Braverman et al. [8]
for a weaker ⌦̃(C

p
n) lower bound applicable to any function and Jain, Pereszlényi,

and Yao [30] for a bounded-round direct product theorem applicable to any func-
tion. These results do not imply any new lower bounds on EqualityTesting or related
problems.
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1.1. Contributions. First, we observe that a simple deterministic reduction
shows that, up to one round of communication, SetIntersection is equivalent to Equal-

ityTesting for any perr, and SetDisjointness is equivalent to ExistsEqual for any perr.
Theorem 1 is proved in Appendix A; it is inspired by the randomized reduction of
Brody et al. [11].

Theorem 1. For any parameters k � 1, r � 1, and perr = 2�E, it holds that

Eq(k, r, perr)  SetInt(k, r, perr), SetInt(k, r + 1, perr)  Eq(k, r, perr) + ⇣,

9Eq(k, r, perr)  SetDisj(k, r, perr), SetDisj(k, r + 1, perr)  9Eq(k, r, perr) + ⇣,

where ⇣ = O(k + logE).

Second, we prove that in any of the four problems, it is impossible to simultane-
ously achieve communication volume O(k + E) in O(log⇤ k) rounds for all k, perr =
2�E . Specifically, any r-round protocol needs ⌦(Ek

1/r) communication. Whereas
the implication of [41, 11] is that optimal O(k) communication is possible only with
⌦(log⇤ k) rounds, the implication of our work is that optimal communication O(k+E)
is possible only with ⌦(log k) rounds, whenever E � k.

We complement our lower bounds with matching or nearly matching upper bounds.
First, we show that in any EqualityTesting/ExistsEqual instance with E < k, one can,
with probability 1 � 2�⇥(E), reduce the e↵ective number of coordinates to E using
O(k) communication and log⇤(k/E) rounds. Thus, we can simplify the following
discussion by assuming that E � k.

We give four distinct protocols, the first of which solves EqualityTesting with
O(rEk

1/r) communication, which is optimal whenever r = O(1). The remaining
three protocols attempt to get rid of this extraneous r factor in di↵erent situations.
Our second protocol shows that it is possible to achieve O(Ek

1/r) complexity, but
for the slightly simpler problem of ExistsEqual. Our third protocol shows that with
O(r) rounds (instead of r rounds) it is possible to achieve O(Ek

1/r) communication.
In particular, absolutely optimal communication O(E) is possible with log k = O(r)
rounds.

Our first three protocols show that the optimal round-communication-error trade-
o↵ for EqualityTesting can be achieved whenever r = O(1) or r = ⌦(log k), or
for any r in the case of ExistsEqual. The remaining problem (EqualityTesting in
r rounds, r between !(1) and o(log k)) seems to be quite di�cult. Our fourth
protocol solves EqualityTesting with O(Ek

1/r log r + Er log r) communication, which
for r 2 [1, log k/ log log k] is dominated by the first term and therefore within a
log r  log log k factor of optimal. A close study of our second and fourth proto-
cols reveals a key distinction between EqualityTesting from ExistsEqual, which is only
relevant when the probability of error is quite small (e.g., E � k). It is plausible that
EqualityTesting is asymptotically harder than ExistsEqual for many values of r and,
for similar reasons, that SetIntersection is asymptotically harder than SetDisjointness.

Our original interest in SetIntersection came from distributed subgraph detection
in CONGEST

2 networks, which has garnered significant interest in recent years [14,
13, 29, 1, 19, 33, 23, 17, 25]. Izumi and LeGall [29] proved that triangle enumeration3

2In the CONGEST model there is a graph G = (V,E) whose vertices are identified with processors
and whose edges represent bidirectional communication links. Each vertex v does not know G

and is only initially aware of an O(logn)-bit ID(v), deg(v), and global parameters n � |V | and
� � maxu2V deg(u). Communication proceeds in synchronized rounds; in each round, each processor
can send a (di↵erent) O(logn)-bit message to each of its neighbors.

3Every triangle (3-cycle) in G must be reported by some vertex.
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requires ⌦(n1/3
/ log n) rounds in the CONGEST model and further showed that local

triangle enumeration4 requires ⌦(�/ log n) rounds in CONGEST, which can be as
large as ⌦(n/ log n).

The most natural way to solve (local) triangle enumeration is, for every edge
{u, v} 2 E(G), to have u and v run a two-party SetIntersection protocol in which
they compute N(u) \ N(v), where N(u) = {ID(x) | {u, x} 2 E(G)} and ID(x) 2
{0, 1}O(logn) is x’s unique identifier. Any r-round protocol with communication vol-
ume O(�) can be simulated in CONGEST in O(�/ log n + r) rounds since the mes-
sage size is O(log n) bits. However, to guarantee a global probability of success at
least 1 � 1/ poly(n), the failure probability of each SetIntersection instance must be
perr = 2�E , E = ⇥(log n), which is independent of �. Our communication com-
plexity lower bound suggests that to achieve this error probability, we would need
⌦((� + E�1/r)/ log n + r) CONGEST rounds, i.e., with r = log� we should not be
able to do better than O(�/ log n+ log�). We prove that (local) triangle enumera-
tion can actually be solved exponentially faster, in O(�/ log n+ log log�) CONGEST
rounds, without necessarily solving every SetIntersection instance.

Organization. The proof of Theorem 1 on the near-equivalence of SetIntersection/
SetDisjointness and EqualityTesting/ExistsEqual appears in Appendix A. Section 2 re-
views concepts from information theory and communication complexity. In section 3
we present new lower bounds for both EqualityTesting and ExistsEqual that incorpo-
rate rounds, communication, and error probability. Section 4 presents nearly matching
upper bounds for EqualityTesting and ExistsEqual, and section 5 applies them to the
distributed triangle enumeration problem. We conclude with some open problems in
section 6.

2. Preliminaries.

2.1. Notational conventions. The set of positive integers at most t is denoted
[t]. Random variables are typically written as capital letters (X,Y,M , etc.) and the
values they take on are lower case (x, y,m, etc.). The letters p, q, µ,D are reserved for
probability mass functions (p.m.f.). For example, D(x) denotes the probability that
X = x whenever X ⇠ D. The support supp(D) of a distribution D is the set of all x
for which D(x) > 0. If X ✓ supp(D), D(X ) =

P
x2X D(x).

Many of our random variables are vectors. If x is a k-dimensional vector and
I ✓ [k], xI is the projection of x onto the coordinates in I and xi is short for x{i}.
Similarly, if D is the p.m.f. of a k-dimensional random variable, DI is the marginal
distribution of D on the index set I ✓ [k].

Throughout the paper, log and exp are the base-2 logarithm and exponential
functions, and log(r) and exp(r) their r-fold iterated versions:

log(0)(x) = exp(0)(x) = x,

log(r)(x) = log(log(r�1)(x)),

exp(r)(x) = exp(exp(r�1)(x)).

The log-star function is defined to be log⇤(x) = min{r | log(r)(x)  1}. In particular,
log⇤(x) = 0 if x  1.

4Every triangle in G must be reported by at least one of the three constituent vertices. Izumi
and LeGall [29] only stated the ⌦(n/ logn) lower bound but it can also be expressed in terms of �.
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2.2. Information theory. The most fundamental concept in information the-
ory is Shannon entropy. The Shannon entropy of a discrete random variable X is
defined as

H(X) = �
X

x2supp(X)

Pr[X = x] log Pr[X = x].

Since there may be cases in which di↵erent distributions are defined for the “same”
random variable, we use H(p) in place of H(X) if X is drawn from a p.m.f. p. We also
write H(↵), ↵ 2 (0, 1), to be the entropy of a Bernoulli random variable with success
probability ↵. In general, we freely use a random variable and its p.m.f. interchange-
ably.

The joint entropy H(X,Y ) of two random variables X and Y is simply

H(X,Y ) = �
X

x2supp(X)

X

y2supp(Y )

Pr[X = x ^ Y = y] log Pr[X = x ^ Y = y].

This notion can be easily extended to cases of more than two random variables. Here,
we state a well-known fact about joint entropy.

Fact 2.1. For any random variables X1, X2, . . . , Xn, their joint entropy is at
most the sum of their individual entropies, i.e., H(X1, X2, . . . , Xn) 

P
n

i=1 H(Xi).

The conditional entropy of Y conditioned on another random variable X, de-
noted H(Y | X), measures the expected amount of extra information required to fully
describe Y if X is known. It is defined to be

H(Y | X)

= H(X,Y )�H(X)

= �
X

x2supp(X)

Pr[X = x]
X

y2supp(Y )

Pr[Y = y | X = x] log Pr[Y = y | X = x]

� 0,

which can be viewed as a weighted sum of entropies of a number of conditional dis-
tributions.

Finally, the mutual information I(X ; Y ) between two random variables X and
Y quantifies the amount of information that is revealed about one random variable
through knowing the other one:

I(X ; Y )

= H(X)�H(X | Y )

= H(X) +
X

y2supp(Y )

Pr[Y = y]
X

x2supp(X)

Pr[X = x | Y = y] log Pr[X = x | Y = y].

2.3. Communication complexity. Let f(x, y) be a function over domain X ⇥
Y, and consider any two-party communication protocol Q(x, y) that computes f(x, y),
where one party holds x and the other holds y. The transcript of Q on (x, y) is defined
to be the concatenation of all messages exchanged by the two parties, in order, as they
execute on input (x, y). The receiver of the last message outputs the answer, which
is denoted Q(x, y). The communication cost of Q is the maximum transcript length
produced by Q over all possible inputs.

Let Qd be a deterministic protocol for f and suppose µ is a distribution over
X ⇥ Y. The distributional error probability of Qd with respect to µ is the probability
Pr(x,y)⇠µ[Qd(x, y) 6= f(x, y)]. For any 0 < ✏ < 1, the (µ, ✏)-distributional deterministic
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communication complexity of the function f is the minimum communication cost of
any protocol Qd that has distributional error probability at most ✏ with respect to µ.

A randomized protocol Qr(x, y, w) also takes a public random string w ⇠W as in-
put. The error probability of Qr is calculated as max(x,y)2X⇥Y Prw⇠W [Qr(x, y, w) 6=
f(x, y)]. The ✏-randomized communication complexity of f is the minimum commu-
nication cost of Qr over all protocols Qr with error probability at most ✏.

Yao’s minimax principle [44] is a common starting point for lower bound proofs in
randomized communication complexity. The easy direction of Yao’s minimax principle
states that the communication cost of the best deterministic protocol specific to any
particular distribution is at most the communication cost of any randomized protocol
on its worst case input.

Lemma 2.2 (Yao’s minimax principle [44]). Let f : X ⇥ Y 7! Z be the function
to be computed. Let Dµ,✏(f) be the (µ, ✏)-distributional deterministic communication
complexity of f , and let R✏(f) be the ✏-randomized communication complexity of f .
Then for any 0 < ✏ < 1/2,

max
µ

Dµ,✏(f)  R✏(f).

Therefore, to show a lower bound on the ✏-randomized communication complexity
of a function f , it su�ces to find a hard distribution µ on the input set and prove
a lower bound for the communication cost of any deterministic protocol that has
distributional error probability at most ✏ with respect to µ.

In this paper we consider randomized protocols for EqualityTesting, ExistsEqual,
SetIntersection, and SetDisjointness. The receiver of the last message issues the output,
which is a single bit in the case of the second and fourth problems, a vector in {=, 6=}k
in the case of EqualityTesting, and the set A \ B in the case of SetIntersection. A
protocol errs if any portion of its output is incorrect. (This is in contrast with
general direct sum theorems [7, 5], where, for example, an EqualityTesting protocol
would guarantee only that each individual component of the output vector is correct
with probability 1� perr.) Our lower bounds work for two-sided errors but our upper
bounds have only one-sided errors, e.g., in the case of EqualityTesting we may only
claim that a coordinate is “=” when the true answer is “6=” and never vice versa.

3. Lower bounds on ExistsEqual and EqualityTesting. In this section we
prove lower bounds on EqualityTesting and ExistsEqual. Theorem 2 obviously follows
directly from Theorem 3, but we prove them in that order nonetheless because The-
orem 2 is a bit simpler.

Theorem 2. Any r-round randomized protocol for EqualityTesting on vectors of
length k that errs with probability perr = 2�E requires at least ⌦(Ek

1/r) bits of com-
munication.

Theorem 3. Any r-round randomized protocol for ExistsEqual on vectors of length
k that errs with probability perr = 2�E requires at least ⌦(Ek

1/r) bits of communica-
tion.

Without any constraint on the number of rounds, EqualityTesting trivially requires
⌦(k) communication. ExistsEqual also requires ⌦(k) communication, through a small
modification to the SetDisjointness lower bounds [31, 39]. Even when k = 1, we
need at least ⌦(E) communication to solve EqualityTesting/ExistsEqual with error
probability 2�E [34]. Thus, we can assume that E = ⌦(k1�1/r), k1/r = ⌦(1), and
hence r = O(log k). For example, some calculations later in our proof hold when
r  (log k)/6. When proving Theorem 3, we will further assume E = ⌦(log k) when
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COMMUNICATION COMPLEXITY OF EQUALITY TESTING 681

r = 1, which is reasonable because of Sağlam and Tardos’ ⌦(k log(r) k) = ⌦(k log k)
lower bound [41].

3.1. Structure of the proof. We consider deterministic strategies for Exists-
Equal/EqualityTesting when Alice and Bob pick their input vectors independently from
the uniform distribution on [t]k, where t = 2cE and c = 1/2. Although the probability
of seeing a collision in any particular coordinate is small, it is still much larger than
the tolerable error probability (since c < 1), so it is incorrect to declare “ 6=” in every
coordinate without performing any communication.

We suppose, for the purpose of obtaining a contradiction, that there is a protocol
for EqualityTesting with error probability 2�E and communication complexity c

0
Ek

1/r,
where c

0 = c/100. The length of the jth message is lj , which could depend on the
parameters (E, r, k, etc.) and possibly in some complicated way on the transcript of
the protocol before round j.5

Our proof must necessarily consider transcripts of the protocol that are extremely
unlikely (occurring with probability close to 2�E) and also maintain a high level of
uncertainty about which coordinates of Alice’s and Bob’s vectors might be equal.
Consider the first message. Alice picks her input vector x 2 [t]k, which dictates the
first message m1. Suppose, for simplicity, that it betrays exactly l1/k < c

0
Ek

1/r�1

bits of information per coordinate of x. Before Bob can respond with a message m2

he must commit to his input, say, y. Most values of y result in “good” outcomes:
nearly all nonequal coordinates get detected immediately and the e↵ective size of the
problem is dramatically reduced. We are not interested in these values of y, only
very “bad” values. Let I1 be the first k1�1/r coordinates (or, more generally, k1�1/r

coordinates that m1 revealed below-average information about). With probability

about (2�c
0
Ek

1/r�1

)|I1| = 2�c
0
E , Bob picks an input y that is completely consistent

with Alice’s on I1, i.e., as far as he can tell yi = xi for every i 2 I1. Rather than
sample y uniformly from [t]k, we sample it from a “hybrid” distribution: yI1 is sampled
from the same distribution that m1 revealed about xI1

(forcing the above event to
happen with probability 1), and y[k]\I1 is sampled from Bob’s former distribution (in

this case, the uniform distribution on [t]k�|I1|), conditioned on the value of yI1 .
This process continues round by round. Bob’s message m2 betrays at most

l2/|I1| < c
0
Ek

2/r�1 bits of information on each coordinate of yI1 , and there must
be an index set I2 ⇢ I1 with |I2| = k

1�2/r such that, with probability around 2�c
0
E ,

it is completely consistent that xI2
= yI2 . Alice resamples her input so that this (rare)

event occurs with probability 1, generates m3, and continues.
At the end of this process |Ir| = k

1�r/r = 1, and yet Alice and Bob have revealed
less than the full cE bits of entropy about xIr and yIr . Regardless of whether they
report “=” or “6=” (on Ir), they are wrong with probability greater than 2�E . Are we
done? Absolutely not! The problem is that this strange process for sampling a possible
transcript of the protocol might itself only find transcripts that occur with probability
⌧ 2�E , making any conclusions we make about its (probability of) correctness moot.
Generally speaking, we need to show that Alice’s and Bob’s actions are consistent
with events that occur with probability � 2�E .

Let us first make every step of the above process a bit more formal. In reality the
inputs to Alice and Bob are fixed before the first round. However, it is much more

5In the context of ExistsEqual/EqualityTesting, it is natural to think about uniform-length mes-
sages, lj = c

0
Ek

1/r
/r, or lengths that decay according to some convergent series, e.g., lj /

c
0
Ek

1/r
/2j or lj / c

0
Ek

1/r
/j

2.
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useful to take the point of view of an external observer, who treats the inputs to Alice
and Bob as distributions over vectors, that evolve as messages are transmitted.

• Before the jth round of communication, the sender of the jth message’s input
is drawn from a discrete distribution bD(j�1) over [t]k. The receiver of the jth
message’s input is drawn from the distribution D(j�1). For example, when
j = 1, if Alice speaks first, then her initial distribution, bD(0), and Bob’s initial
distribution, D(0), are both uniform over [t]k.

• Before the jth round of communication both parties are aware of an index

set Ij�1 such that, informally, (i) the distributions D(j�1)
Ij�1

and bD(j�1)
Ij�1

are
very similar, and in particular, it is consistent that their inputs are identical
on Ij�1, and (ii) the messages transmitted so far reveal “average” or below-
average information about coordinates Ij�1. For example, I0 = [k] and it
is consistent with the empty transcript that Alice’s and Bob’s inputs are
identical on every coordinate.

• The jth message is a random variable Mj 2 {0, 1}lj . In order to pick an

mj according to the right distribution, the sender picks an input x ⇠ bD(j�1)

which, together with the history m1, . . . ,mj�1, determines mj . The sender
transmits mj to the receiver and promptly forgets x. The sender’s new dis-

tribution (i.e., bD(j�1), conditioned on Mj = mj) is called D(j).
• The distribution D(j) may reveal information about the coordinates Ij�1 in
an irregular fashion. We find a subset Ij ⇢ Ij�1 of coordinates, |Ij | = k

1�j/r,

for which the amount of information revealed by D(j)
Ij

is at most average.

The receiver of mj changes his input distribution to bD(j), which is defined

so that it basically agrees with D(j)
Ij

and the marginal distribution bD(j)
[k]\Ij ,

conditioned on the value selected by D(j)
Ij

, is identical to D(j�1)
[k]\Ij .

• The reason D(j)
Ij

and bD(j)
Ij

are not identical is due to two filtering steps. To

generate bD(j), we remove points from the support that have tiny (but non-
zero) probability, which may be too close to the error probability. Intuitively
these rare events necessarily represent a small fraction of the probability mass.
Second, we remove points from the support if the ratio of their probability
occurring under D(j) over D(j�1) is too high. Intuitively, we want to conclude
that if there is a high probability of an error occurring under D(j), then the
probability is also high under D(j�1) (and by unrolling this further, under
D(0)). This argument works only if the ratios are what we would expect,
given how much information is being revealed about these coordinates by

mj . As a result of these two filtering steps, D(j)
Ij

(xIj ) and bD
(j)
Ij

(xIj ) di↵er by

at most a constant factor, for any particular vector xIj 2 [t]|Ij |.

3.2. A lower bound on EqualityTesting. We begin with two general lemmas
about discrete probability distributions that play an important role in our proof.

Roughly speaking, Lemma 3.1 captures and generalizes the following intuition:
Suppose p is a high entropy distribution on some universe U and q is obtained from
p by conditioning on an event X ✓ U such that p(X ) is large, say, some constant
like 1/4. If p’s entropy is close to log |U |, then q’s entropy should not be much
smaller than that of p. As our proof goes on round by round, we will constantly
throw away part of the input distribution’s support to meet certain conditions. It is
Lemma 3.1 that guarantees that the input distributions continue to have relatively
high entropy.
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Lemma 3.2 comes into play because the error probability will be calculated back-
ward in a round-by-round manner. Suppose the old distribution (p) has no extremely
low probability point and the new distribution (q) has almost full entropy. Lemma 3.2
provides us with a useful tool to transfer a lower bound on the probability of any event
w.r.t. q to a lower bound on the same event w.r.t. p. It can be seen as a version of
Markov’s inequality for Kullback–Leibler divergences.

Variants of Lemmas 3.1 and 3.2 have appeared before. See, for example, [9, Claim
3.3] and [11, Lemma 3.8]. For completeness we include proofs in Appendix B.

Lemma 3.1. Let p and q be distributions defined on a universe of size 2s. Suppose
both of the following properties are satisfied:

(1) The entropy of p is H(p) � s� g, where g 2 [0, s).
(2) There exists ↵ 2 (0, 1) such that q(x)  p(x)/↵ holds for every value x 2

supp(q).
The entropy of q is lower bounded by

H(q) � s� g/↵�H(↵)/↵.

Lemma 3.2. Let p and q be distributions defined on a universe of size 2s. Suppose
both of the following properties are satisfied:

(1) The entropy of q is H(q) � s� g1, where g1 2 [0, s).
(2) There exists g2 � 0 such that p(x) � 2�s�g2 holds for every value x 2 supp(q).

Then, for any ↵ 2 (0, 1),

Pr
x⇠q


q(x)

p(x)
> 2g1/↵+g2�(1�↵) log(1�↵)/↵

�
 ↵.

We are now ready to begin the proof of Theorem 2 proper. We sample a transcript
m1,m2, . . . ,mr one message at a time. Before mj is transmitted the sender’s input

is drawn from bD(j�1) and the receiver’s input is drawn from D(j�1). We assume that
at this moment the transcript satisfies Invariant 3.3 (below), which says, informally,
that the distributions bD(j�1) and D(j�1) are very similar and that the parties do not
know much about each other’s inputs on coordinates Ij�1, where |Ij�1| = k

1�(j�1)/r.
Through round j the parties’ input distributions evolve as follows. Let µ(mj) be

the probability that mj is transmitted next, conditioned on m1, . . . ,mj�1. Condi-
tioned on mj , the sender’s distribution becomes D(j)[mj ], denoted D(j) if mj is clear
from context. The receiver examines mj and then changes their distribution to be
bD(j) so that it basically matches D(j) when projected onto Ij and has few very low
probability points. This will be explained in detail later.

Roadmap. Our goal is to show that there is a large set Mj of messages where Mj

depends on the transcript m1, . . . ,mj�1 up to round j, such that after appending any

mj 2Mj to the transcript, D(j) and bD(j) continue to satisfy Invariant 3.3. Lemma 3.4
defines a set of messages M0

j
with µ(M0

j
) � 1/2 whose entropy-reduction on indices

in Ij�1 is about what we would expect, and Lemma 3.5 shows that a subset Mj ⇢M0
j

of those messages with µ(Mj) � 1/4 allows us to find an index set Ij ✓ Ij�1 with

the right properties. After describing the procedure for constructing bD(j), Lemma 3.6
proves that Invariant 3.3 is satisfied after round j if mj 2Mj . Lemma 3.7 bounds

the ratio bD(j)(x)/D(j�1)(x), repeated applications of which allow us to deduce lower
bounds on the error probability before round 1 (when the inputs are uniform in [t]k) as
a function on the error probability after round r. Putting it all together, Lemmas 3.8
and 3.9 derive lower bounds on the error probability of EqualityTesting and ExistsEqual

protocols, respectively, that use too little communication.
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Invariant 3.3. After round j 2 [0, r] the partial transcript is m1, . . . ,mj, which

determines the values {lj0 , bD(j0)
,D(j0)

, Ij0}j0j. The index set Ij ✓ [k] satisfies all of
the following:

(1) |Ij | = k
1�j/r.

(2) Each value xIj 2 [t]|Ij | satisfies bD(j)
Ij

(xIj )  4 · D(j)
Ij

(xIj ).

(3) Each nonempty subset I 0 ✓ Ij satisfies

H( bD(j)
I0 ) �

 
cE �

jX

u=1

16j�u+1
lu

k1�(u�1)/r
� 22j

!
|I 0|.

In accordance with our informal discussion in section 3.1, Ij is a subset of indices
on which both parties have learned little information about each other from the partial
transcript m1, . . . ,mj . Invariant 3.3(2) ensures that the two parties draw their inputs
after the jth round from similar distributions. Invariant 3.3(3) is the most important
property. It says that the information revealed by bD(j) about I

0 is roughly what
one would expect, given the message lengths l1, . . . , lj . Note that the uth message
conveys information about |Iu�1| = k

1�(u�1)/r indices so the average information-
per-index should be lu/k

1�(u�1)/r. The factor 16j�u+1 and the extra term 22j come
from Lemma 3.1, which throws away part of the input distribution in each round,
progressively distorting the distributions in minor ways.

To begin our induction, at round j we find a large fractionM0
j
of possible messages

mj that reveal little information about the sender’s input, projected onto Ij�1. This
is possible because the length of the message lj = |mj | reflects an upper bound on
the expected information gain. This idea is formalized in Lemma 3.4.

Lemma 3.4. Fix j 2 [1, r] and suppose Invariant 3.3 holds for m1, . . . ,mj�1.
Then there exists a subset of messages M0

j
with µj(M0

j
) � 1/2 such that each message

mj 2M0
j
satisfies

H(D(j)
Ij�1

[mj ]) �
 
cE � 2

jX

u=1

16j�u
lu

k1�(u�1)/r
� 2 · 22j�1

!
|Ij�1|.

Proof. Let M0
j
contain all messages mj satisfying the above inequality and M0

j

be its complement. Suppose, for the purpose of obtaining a contradiction, that the
conclusion of the lemma is not true, i.e., µj(M0

j
) = ↵ > 1/2. Then the entropy of

bD(j�1)
Ij�1

can be upper bounded as follows:

H( bD(j�1)
Ij�1

)

= I( bD(j�1)
Ij�1

; Mj) +
X

mj2(M0
j[M0

j)

µj(mj)H(D(j)
Ij�1

[mj ])

 H(Mj) +
X

mj2(M0
j[M0

j)

µj(mj)H(D(j)
Ij�1

[mj ]).

The steps above follow from the definition if I(· ; ·) and the fact that I(X ; ·)  H(X).
Since H(Mj)  |Mj | = lj , we have

 lj +
X

mj2M0
j

µj(mj)H(D(j)
Ij�1

[mj ]) +
X

mj2M0
j

µj(mj)H(D(j)
Ij�1

[mj ])
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and from the definition of M0
j
,

< lj + (1� ↵)cE|Ij�1|+ ↵

 
cE � 2

jX

u=1

16j�u
lu

k1�(u�1)/r
� 2 · 22j�1

!
|Ij�1|

= lj +

 
cE � 2↵

jX

u=1

16j�u
lu

k1�(u�1)/r
� 2↵ · 22j�1

!
|Ij�1|

<

 
cE �

j�1X

u=1

16j�u
lu

k1�(u�1)/r
� 22j�1

!
|Ij�1|.

The last line follows because ↵ > 1/2, which contradicts Invariant 3.3(3) at index
j � 1.

After the jth message mj is sent, the next step is to identify a set of coordinates Ij
such that D(j) still reveals little information about Ij and every subset of Ij , since we
need this property to hold for Ij+1, . . . , Ir in the future, all of which are subsets of Ij .
We also want Ij not to contain many low probability points w.r.t. D(j�1), since this
may stop us from applying Lemma 3.2 later on. These two constraints are captured
by parts (2) and (1), respectively, of Lemma 3.5.

Lemma 3.5. Fix j 2 [1, r] and suppose Invariant 3.3 holds for m1, . . . ,mj�1.
Then there exists a subset of messages Mj ✓M0

j
(from Lemma 3.4) with µj(Mj) �

1/4 such that for each message mj 2 Mj, there exists a subset Ij ✓ Ij�1 of size
|Ij | = k

1�j/r satisfying both of the following properties:

1. Pr
xIj⇠D(j)

Ij

[D(j�1)
Ij

(xIj ) < (4t)�|Ij |/32]  1/2.

2. Each nonempty subset I 0 ✓ Ij satisfies

H(D(j)
I0 ) �

 
cE � 4

jX

u=1

16j�u
lu

k1�(u�1)/r
� 4 · 22j�1

!
|I 0|.

Proof. We first prove that for each message mj 2M0
j
(from Lemma 3.4), there

exists a subset J0 ✓ Ij�1 of size |J0| � |Ij�1|/2 such that each nonempty subset
I
0 ✓ J0 satisfies part (2) of the lemma. Suppose J1, J2, . . . , Jw are disjoint subsets of

Ij�1, each of which violates the inequality of part (2), whereas none of the subsets of
J0 = Ij�1 \ (

S
w

v=1 Jv) do. Using Fact 2.1 and the definition of Jv, we upper bound

the entropy of D(j)
Ij�1

as follows:

H(D(j)
Ij�1

) 
wX

v=0

H(D(j)
Jv

)

< cE|J0|+
wX

v=1

 
cE � 4

jX

u=1

16j�u
lu

k1�(u�1)/r
� 4 · 22j�1

!
|Jv|

= cE|Ij�1|� 4|Ij�1 \ J0|
 

jX

u=1

16j�u
lu

k1�(u�1)/r
+ 22j�1

!
.

On the other hand, from Lemma 3.4, having mj 2M0
j
guarantees that

H(D(j)
Ij�1

) �
 
cE � 2

jX

u=1

16j�u
lu

k1�(u�1)/r
� 2 · 22j�1

!
|Ij�1|.
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The two inequalities above are consistent only if |Ij�1 \J0|  |Ij�1|/2, or equivalently
|J0| � |Ij�1|/2. Thus, J0 exists with the right cardinality, as claimed.

Now suppose, for the purpose of obtaining a contradiction, that the lemma is
false. For every mj 2M0

j
there is a corresponding index set J0 whose subsets satisfy

part (2) of the lemma. If the lemma is false, that means there is a subset M00
j
✓M0

j

of “bad” messages with µj(M00
j
) > 1/4 such that, for each mj 2 M00

j
, none of the�|J0|

|Ij |
�
choices for Ij ✓ J0 satisfy part (1) of the lemma. (Remember that J0 depends

on mj but the lower bound on |J0| � |Ij�1|/2 is independent of mj .) Consider the
following summation:

Z =
X

Ij✓Ij�1 :

|Ij |=k
1�j/r

X

xIj2[t]|Ij | :

D(j�1)

Ij
(xIj )< (4t)�|Ij |/32

D(j�1)
Ij

(xIj ).

We can easily upper bound Z as follows:

Z <

✓
|Ij�1|
|Ij |

◆
· t|Ij | · (4t)

�|Ij |

32
=

✓
|Ij�1|
|Ij |

◆
2�2|Ij |�5

.

Invariant 3.3(2) relates D(j�1) and bD(j�1), which lets us lower bound Z:

Z � 1

4

X

Ij✓Ij�1 :

|Ij |=k
1�j/r

X

xIj2[t]|Ij | :

D(j�1)

Ij
(xIj )< (4t)�|Ij |/32

bD(j�1)
Ij

(xIj ).

By definition, bD(j�1) is a convex combination of the D(j)[mj ] distributions, weighted
according to µj(·). Hence, the expression above is lower bounded by

� 1

4

X

Ij✓Ij�1 :

|Ij |=k
1�j/r

X

xIj2[t]|Ij | :

D(j�1)

Ij
(xIj )< (4t)�|Ij |/32

X

mj2M00
j

µj(mj) · D(j)
Ij

[mj ](xIj )

and rearranging sums,

� 1

4

X

mj2M00
j

µj(mj)
X

Ij✓J0 :

|Ij |=k
1�j/r

X

xIj2[t]|Ij | :

D(j�1)

Ij
(xIj )< (4t)�|Ij |/32

D(j)
Ij

[mj ](xIj ).

By definition, for every mj 2M00
j
and every choice of Ij ✓ J0, part (1) of the lemma

is violated. Continuing with the inequalities,

>
1

4

X

mj2M00
j

µj(mj) ·
✓
|J0|
|Ij |

◆
· 1
2

>
1

32

✓
|Ij�1|/2

|Ij |

◆
.

The last line follows since µj(M00
j
) > 1/4. This contradicts the upper bound on Z

whenever k1/r is at least some su�ciently large constant.
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The receiver of mj constructs a new distribution bD(j) in two steps. After fixing

Ij , we construct eD(j) by combining D(j�1) and D(j), filtering out some points in the

space whose probability mass is too low. We then construct bD(j) from eD(j) and D(j�1)

by filtering out points that occur under eD(j) with substantially larger probability than
they do under D(j�1).

Formally, suppose Invariant 3.3 holds for m1, . . . ,mj�1. For each message mj 2
Mj (from Lemma 3.5), let Ij be selected to satisfy both properties of Lemma 3.5.

Define the probability mass of a vector x 2 [t]k under eD(j) as follows:

eD(j)(x) =

8
><

>:

0 if D(j�1)
Ij

(xIj ) <
(4t)�|Ij |

32 ;
D(j)

Ij
(xIj )

�1

· D(j�1)(x)

D(j�1)

Ij
(xIj )

otherwise,

where �1 is

�1 = Pr
xIj⇠D(j)

Ij


D(j�1)

Ij
(xIj ) �

(4t)�|Ij |

32

�
.

In other words, we discard a 1 � �1 fraction of the distribution D(j), but ignoring
this e↵ect, the projection of eD(j) onto Ij has the same distribution as D(j) onto Ij ,

and conditioned on the value of xIj , the distribution eD(j) (projected onto [k]\Ij) is

identical to D(j�1). We derive bD(j) from eD(j) with a similar transformation.

bD(j)(x) =

8
>><

>>:

0 if
eD(j)
Ij

(xIj )

D(j�1)

Ij
(xIj )

> 2�j ;

eD(j)
Ij

(xIj )

�2

· D(j�1)(x)

D(j�1)

Ij
(xIj )

otherwise,

where �2 and �j are defined to be

�2 = Pr
xIj⇠ eD(j)

Ij

2

4
eD(j)
Ij

(xIj )

D(j�1)
Ij

(xIj )
 2�j

3

5 ,

�j =

 
jX

u=1

lu

✓
16j�u+1

k1�(u�1)/r

◆
+ (16 · 22j�1 + 6)

!
|Ij |+ 6


jX

u=1

lu

✓
16

k1/r

◆j�u+1

+ 22j · |Ij |+ 6.

The proofs of Lemmas 3.6 and 3.7 use several simple observations about eD(j) and
bD(j):

1. Lemma 3.5(1) states that �1 � 1/2. Lemma 3.5(2) lower bounds the entropy

of D(j)
Ij

. We apply Lemma 3.1 to D(j)
Ij

and eD(j)
Ij

(taking the roles of p and q,

respectively) with parameter ↵ = 1/2  �1 and obtain the following lower

bound on the entropy of eD(j)
Ij

:

H( eD(j)
Ij

) �
 
cE � 8

jX

u=1

16j�u
lu

k1�(u�1)/r
� 8 · 22j�1 � 2

!
|Ij |.
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2. We can then apply Lemma 3.2 to D(j�1)
Ij

and eD(j)
Ij

(taking the roles of p and

q, respectively) with parameters

g1 =

 
8

jX

u=1

16j�u
lu

k1�(u�1)/r
+ (8 · 22j�1 + 2)

!
|Ij |,

g2 = 2|Ij |+ 5,

and ↵ = 1/2.

Since g1/↵+g2�(1�↵) log(1�↵)/↵ = �j , we conclude that �2 � 1�↵ = 1/2.

Thus, for each value xIj 2 supp( bD(j)
Ij

),

(3.1) bD(j)
Ij

(xIj ) =
eD(j)
Ij

(xIj )

�2
=

D(j)
Ij

(xIj )

�1�2
 4 · D(j)

Ij
(xIj ).

Lemma 3.6 completes the inductive step by lower bounding the entropy of bD(j)
I0 for

every nonempty subset I 0 ✓ Ij . To put it another way, it ensures that the coordinates
in Ij remain almost completely unknown to both parties.

Lemma 3.6. Fix j 2 [1, r] and suppose Invariant 3.3 holds for m1, . . . ,mj�1.
Then, for each message mj 2 Mj (from Lemma 3.5), Invariant 3.3 also holds for
m1, . . . ,mj.

Proof. Due to Lemma 3.5 and (3.1), the first two properties of Invariant 3.3 are
satisfied. For each nonempty subset I

0 ✓ Ij , the third property of Invariant 3.3 can
be derived from the second property of Lemma 3.5 and an application of Lemma 3.1

to D(j)
I0 and bD(j)

I0 (taking the roles of p and q, respectively) with parameter ↵ = 1/4
as follows:

H( bD(j)
I0 ) �

 
cE � 16

jX

u=1

16j�u
lu

k1�(u�1)/r
� 16 · 22j�1 � 4

!
|I 0|

�
 
cE �

jX

u=1

16j�u+1
lu

k1�(u�1)/r
� 22j

!
|I 0|.

Aside from maintaining Invariant 3.3 round by round, another important part of
our proof is to compute the error probability. Lemma 3.7 shows how the error prob-
abilities of two consecutive rounds are related after our modification to the protocol.
More importantly, it also illustrates the reason to bound the pointwise ratio between
eD(j)
Ij

and D(j�1)
Ij

.

Lemma 3.7. Fix a round j 2 [1, r] and suppose Invariant 3.3 holds for m1, . . . ,

mj�1. Fix any specific message mj 2 Mj (from Lemma 3.5). Define p to be the
probability of error, when the protocol begins after round j with the inputs drawn from
D(j) and bD(j), respectively. Then the probability of error is at least 2��j�1

p when the
inputs are instead drawn from D(j) and D(j�1), respectively.

Proof. From the definition of bD(j), for each value x 2 supp( bD(j)), we have

(3.2)
bD(j)(x)

D(j�1)(x)
=

eD(j)
Ij

(xIj )

�2D(j�1)
Ij

(xIj )
 2�j

�2
 2�j+1

.

This concludes the proof.
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Finally, with all lemmas proved above, we have reached the point to calculate the
initial error probability.

Lemma 3.8. Recall that c = 1/2, c0 = c/100. Fix any r 2 [1, (log k)/6] and
E � 100k1�1/r

/c. Suppose the initial input vectors are drawn independently and
uniformly from [t]k, where t = 2cE. Then the error probability of the EqualityTesting

protocol, perr, is greater than 2�E.

Proof. First suppose Invariant 3.3 holds for m1, . . . ,mr and consider the situation
after the final round, where the inputs are drawn from D(r) and bD(r), respectively.

Notice that Ir is a singleton set, so the entropy of bD(r)
Ir

can be lower bounded as
follows.

H( bD(r)
Ir

) � cE �
rX

u=1

16r�u+1
lu

k1�(u�1)/r
� 22r Invariant 3.3(3)

= cE � 16

k1/r

rX

u=1

lu

✓
16

k1/r

◆r�u

� 22r

� cE � 16

k1/r

rX

u=1

lu � 22k1�1/r
k
1/r � 26 due to r  (log k)/6

� cE � 16c0E � 22k1�1/r
>

cE

2
because

P
r

u=1 lu  c
0
Ek

1/r.

From the lower bound on the entropy of bD(r)
Ir

, we can easily show that there

exists no value xIr such that bD(r)
Ir

(xIr ) = ↵ > 3/4. If there were such a value, then

the entropy of bD(r)
Ir

can also be upper bounded as

H( bD(r)
Ir

)  ↵ log
1

↵
+ (1� ↵) log

t

1� ↵

<
cE

4
+ ↵ log

1

↵
+ (1� ↵) log

1

1� ↵
<

cE

2
,

contradicting the lower bound on H( bD(r)
Ir

).
After all r rounds of communication, the receiver of the last message has to make

the decision on Ir, either “=” or “ 6=,” depending only on his own input on xIr . Define
X0 ✓ [t] to be the subset of values xIr such that the protocol outputs “ 6=” on Ir after

r rounds of communication, and let X1 = [t] \ X0 and � = bD(r)
Ir

(X0). Let x
0
Ir

be the
other party’s value at index Ir. The protocol errs if xIr = x

0
Ir
2 X0 (a false “ 6=” on

Ir) or if xIr 6= x
0
Ir

and xIr 2 X1 (a false “=” on Ir). Thus, the final error probability
is at least

X

xIr2X0

bD(r)
Ir

(xIr )D
(r)
Ir

(xIr ) +
X

xIr2X1

bD(r)
Ir

(xIr )
⇣
1�D(r)

Ir
(xIr )

⌘

=
X

xIr2X0

bD(r)
Ir

(xIr )D
(r)
Ir

(xIr ) +
X

xIr2X1

bD(r)
Ir

(xIr )
X

x0
Ir

6=xIr

D(r)
Ir

(x0
Ir
).
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By Invariant 3.3(2), this is

� 1

4

X

xIr2X0

bD(r)
Ir

(xIr )
2 +

1

4

X

xIr2X1

bD(r)
Ir

(xIr )
X

x0
Ir

6=xIr

bD(r)
Ir

(x0
Ir
)

=
1

4

X

xIr2X0

bD(r)
Ir

(xIr )
2 +

1

4

X

xIr2X1

bD(r)
Ir

(xIr )
⇣
1� bD(r)

Ir
(xIr )

⌘

� 1

4

X

xIr2X0

bD(r)
Ir

(xIr )
2 +

1

16

X

xIr2X1

bD(r)
Ir

(xIr ).

The previous line follows from bD(r)
Ir

(xIr )  3/4. By the convexity of x2 we have

� �
2

4t
+

1� �

16
� 1

4t
.

This result also meets the simple intuition that when the inputs to the two parties
are almost uniformly random and no communication is allowed, the best strategy
would be guessing “not equal” regardless of the actual input.

Finally, we are ready to transfer the error probability back round by round. From
Lemmas 3.5 through 3.7, the error probability w.r.t. D(j) and bD(j) di↵ers from the
error probability w.r.t. D(j�1) and bD(j�1) by at most a 4 · 2�j+1 = 2�j+3 factor. In
particular, Lemmas 3.5 and 3.6 say that the jth messagemj satisfies Invariant 3.3 with
respect to transcript m1, . . . ,mj with probability at least 1/4, provided Invariant 3.3
holds for m1, . . . ,mj�1, and Lemma 3.7 says the error probabilities under the two
measures di↵er by a 2�j+1 factor for any such mj . Repeating this for each j 2 [1, r],
we conclude that the initial error probability perr is lower bounded by

perr �
1

4t
· exp

0

@�3r �
rX

j=1

�j

1

A = exp

0

@�cE � 2� 3r �
rX

j=1

�j

1

A > 2�E

since

cE + 2 + 3r +
rX

j=1

�j

 cE + 2 + 3r + 6r +
rX

j=1

jX

u=1

lu

✓
16

k1/r

◆j�u+1

+
rX

j=1

22j |Ij |.

Rearranging sums, we have

 cE + 11r +
rX

u=1

16lu
k1/r

rX

j=u

✓
16

k1/r

◆j�u

+22k1�1/r
rX

j=1

✓
22

k1/r

◆j�1

 cE + 11r +
32

k1/r

rX

u=1

lu + 44k1�1/r
.

The last step follows from k
1/r � 26 since r  (log k)/6. Because

P
r

u=1 lu  c
0
Ek

1/r,
we have

 cE +
11cE

100
+

32cE

100
+

44cE

100
< E.
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Proof of Theorem 2. Lemma 3.8 actually shows that given integers k � 1 and
r  (log k)/6, any r-round deterministic protocol for EqualityTesting on vectors of
length k that has distributional error probability perr = 2�E with respect to the
uniform input distribution on [t]k, where t = 2cE , requires at least ⌦(Ek

1/r) bits
of communication. Notice that the additional assumption E � 100k1�1/r

/c always
makes sense since there is a trivial ⌦(k) lower bound on the communication complex-
ity of EqualityTesting, regardless of r. Thus, Theorem 2 follows directly from Yao’s
minimax principle.

3.3. A lower bound on ExistsEqual. The proof of Theorem 3 is almost the
same as that of Theorem 2, except for the final step, namely Lemma 3.8, in which we
first compute the final error probability after all r rounds of communication and then
transfer it backward round by round using Lemma 3.7. The problem with applying
the same argument to ExistsEqual protocols is that the receiver of the last message
may be able to announce the correct answer, even though it knows little information
about the inputs on the single coordinate Ir.

In order to prove Theorem 3, first notice that Lemma 3.4 through Lemma 3.7
also hold perfectly well for ExistsEqual protocols as no modification is required in
their proofs. Therefore, it is su�cient to prove the following Lemma 3.9, which is an
analogue of Lemma 3.8 for ExistsEqual. It is based mainly on Markov’s inequality.

Lemma 3.9. Recall that c = 1/2, c0 = c/100. Consider an execution of a de-
terministic r-round ExistsEqual protocol, r 2 [1, (log k)/6], on input vectors drawn
independently and uniformly from [t]k, where t = 2cE. Here E � 100k1�1/r

/c if r > 1
and E � (100 log k)/c otherwise. Then the protocol errs with probability perr > 2�E.

Proof. Similarly to the proof of Lemma 3.8, we first consider the situation after
the final round; fix the transcript m1, . . . ,mr. The receiver of mr now makes a
Boolean decision for ExistsEqual based on every coordinate of his input x. Let X0 ✓
[t]k be the subset of values x such that the protocol outputs “no” (there exists no
coordinate where the two vectors are equal) after seeing transcript m1, . . . ,mr, and
let X1 = [t]k \ X0. The protocol may have false negatives on X0 and false positives
on X1. We only consider false negatives in which the vectors agree on coordinate Ir.
Thus, the error probability at this moment is at least

X

x2X0

bD(r)(x)D(r)
Ir

(xIr ) +
X

x2X1

bD(r)(x)

0

@1�
X

y2N (x)

D(r)(y)

1

A ,(3.3)

where N (x) = {y 2 [t]k | there exists some i 2 [k] such that xi = yi} is the subset of
input vectors that agree with x on at least one coordinate. There are two di�cul-
ties with (3.3). The first is that we do not know anything about X0 and X1. The
second is that we are really interested in the initial probability of error, before m1 is
transmitted, not the error under bD(r) and D(r).

Our first task is to lower bound the second term of (3.3). Consider the following
summation Z0 over all transcripts m1, . . . ,mr in which mj 2Mj (from Lemma 3.5)
and all x 2 [t]k. Recall that Mj and µj depend on m1, . . . ,mj�1.

Z0 =
X

m12M1

µ1(m1)
X

m22M2

µ2(m2) · · ·
X

mr2Mr

µr(mr)
X

x2[t]k

bD(r)(x)
X

y2N (x)

D(r)(y).
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From the proof of Lemma 3.7 (equation (3.2)), we can upper bound Z0 as follows:

Z0 
X

m12M1

µ1(m1) · · ·
X

mr2Mr

µr(mr)
X

x2[t]k,
y2N (x)

2�r+1 · D(r�1)(x) · D(r)(y).

Notice that �r and D(r�1) are independent of the choice of mr, hence by rearranging
sums, this is equal to

=
X

m12M1

µ1(m1)

· · ·
X

mr�12Mr�1

µr�1(mr�1)
X

x2[t]k,
y2N (x)

2�r+1 · D(r�1)(x)
X

mr2Mr

µr(mr) · D(r)(y).

By definition, bD(r�1) is a convex combination of the D(r)[mr] distributions, weighted
according to µr(·). Hence, the expression above is upper bounded by


X

m12M1

µ1(m1) · · ·
X

mr�12Mr�1

µr�1(mr�1)
X

x2[t]k,
y2N (x)

2�r+1 · D(r�1)(x) · bD(r�1)(y).

By the symmetry of x and y, this is equal to

=
X

m12M1

µ1(m1) · · ·
X

mr�12Mr�1

µr�1(mr�1)
X

x2[t]k,
y2N (x)

2�r+1 · bD(r�1)(x) · D(r�1)(y).

We repeat the same argument for rounds r � 1 down to 1, upper bounding Z0 by

 exp

0

@r +
rX

j=1

�j

1

A ·
X

x2[t]k,
y2N(x)

bD(0)(x) · D(0)(y)  exp

0

@r +
rX

j=1

�j

1

A · k
t
.

The last inequality above follows from a union bound since, under the initial distribu-
tions bD(0)

,D(0), each of the k coordinates is equal with probability 1/t. Recall that
E � 100k1�1/r

/c when r > 1 and E � (100 log k)/c otherwise. Hence, using the same
argument as that in the proof of Lemma 3.8, we can further bound this as

 20.83cE · 20.02cE · 2�cE = 2�0.15cE

since

r+
rX

j=1

�j  7r+
rX

j=1

jX

u=1

lu

✓
16

k1/r

◆j�u+1

+
rX

j=1

22j |Ij | 
7cE

100
+
32cE

100
+
44cE

100
=

83cE

100
,

and k  (cE/100)r/(r�1)  (cE/100)2  20.02cE when r > 1 and k  20.01cE other-
wise.
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We now want to narrow our attention to transcripts that both satisfy Invariant 3.3
and terminate with

P
x2[t]k

bD(r)(x)
P

y2N (x) D(r)(y) not much larger than its expec-
tation. Fix a partial transcript (m1, . . . ,mj) through round j such that mj0 2Mj0

holds for every j
0  j. Define Zj as follows:

Zj =
X

mj+12Mj+1

µj+1(mj+1) · · ·
X

mr2Mr

µr(mr)
X

x2[t]k

bD(r)(x)
X

y2N (x)

D(r)(y).

By Markov’s inequality, there exists a subset of messages cM1 ✓M1 with µ1(cM1) �
µ1(M1)/2 � 1/8 such that each message m1 2 cM1 satisfies Z1  2Z0/µ1(M1) 
8Z0 since µ1(M1) � 1/4 from Lemma 3.5. Similarly, conditioned on any specific

m1 2 cM1, by Markov’s inequality, there exists a subset of messages cM2 ✓ M2

with µ2(cM2) � µ2(M2)/2 � 1/8 such that each message m2 2 cM2 satisfies Z2 
2Z1/µ2(M2)  82Z0. In general, conditioned on any specific partial transcript

m1, . . . ,mj�1 such that mj0 2 cMj0 holds for every j
0
< j, there exists a subset

of messages cMj ✓ Mj with µj(cMj) � µj(Mj)/2 � 1/8 such that each message

mj 2 cMj satisfies Zj  8jZj .

After repeating the same argument r times, we get cM1, . . . ,
cMr in sequence. For

any sampled transcript m1, . . . ,mr such that mj 2 cMj for all j  r, we have

Zr =
X

x2[t]k

bD(r)(x)
X

y2N (x)

D(r)(y)  8rZ0  23r · 2�0.15cE  2�0.12cE  1

4

as r  cE/100 and cE � 100. Further, one more application of Markov’s inequality
shows that there exists a subset of values X 0 ✓ [t]k with bD(r)(X 0) = ↵ � 1/2 such
that

P
y2N (x) D(r)(y)  1/2 holds for every x 2 X 0.

As a result, we can now lower bound the final error probability as follows. Define
� = bD(r)(X0 \ X 0).

X

x2X0

bD(r)(x)D(r)
Ir

(xIr ) +
X

x2X1

bD(r)(x)

0

@1�
X

y2N (x)

D(r)(y)

1

A

�
X

x2(X0\X 0)

bD(r)(x)D(r)
Ir

(xIr ) +
X

x2(X1\X 0)

bD(r)(x)

0

@1�
X

y2N (x)

D(r)(y)

1

A

� 1

4

X

x2(X0\X 0)

bD(r)(x) bD(r)
Ir

(xIr ) +
X

x2(X1\X 0)

bD(r)(x)

0

@1�
X

y2N (x)

D(r)(y)

1

A.

The previous step follows from Invariant 3.3(2). By the definition of X 0, we have

� 1

4

X

x2(X0\X 0)

bD(r)(x) bD(r)
Ir

(xIr ) +
1

2

X

x2(X1\X 0)

bD(r)(x).

In order to minimize the above expression, we can now assume without loss of gener-
ality that the partition between X0\X 0 and X1\X 0 depends solely on xIr as only the

relative magnitude of bD(r)
Ir

(xIr )/4 and 1/2 matters. Continuing, from the convexity
of x2,

� �
2

4t
+

↵� �

2
� ↵

2

4t
� 1

16t
.
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Finally, we are ready to transfer the error probability back in exactly the same
manner as we did in the proof of Lemma 3.8. Using a similar argument, the existence
of cMj guarantees that

perr �
1

16t
· exp

0

@�4r �
rX

j=1

�j

1

A = exp

0

@�cE � 4� 4r �
rX

j=1

�j

1

A > 2�E

since

cE + 4 + 4r +
rX

j=1

�j  cE +
14cE

100
+

32cE

100
+

44cE

100
< E.

Proof of Theorem 3. Similarly to the proof of Theorem 2, Theorem 3 follows from
Lemma 3.9 and a direct application of Yao’s minimax principle.

4. New protocols for EqualityTesting and ExistsEqual. In this section, we
attempt to prove that our ⌦(Ek

1/r) lower bound is tight for EqualityTesting. We
manage to attain this bound in several situations but fail to achieve it for every value
of E, k, r.

First of all, the ⌦(Ek
1/r) bound is binding only when it is at least ⌦(k), which

is necessary even when E is constant [31, 39, 18]. In Theorem 8 we give a log⇤(k/E)-
round protocol that reduces the e↵ective dimension of the problem from k to at most
E with O(k) communication and basically lets us proceed under the assumption that
E � k. (Note that if E � k initially, log⇤(k/E) = 0.)

In Theorem 9 we give a simple protocol for EqualityTesting with communication
O(rEk

1/r) when E � k. According to Theorem 2 this is optimal when r = O(1).
All of our remaining protocols aim to eliminate or reduce this seemingly unnecessary
factor of r. In Theorem 10 we prove that ExistsEqual can be solved with O(Ek

1/r)
communication, for any r and E � k, and Theorem 11 shows the same communication
can be attained for EqualityTesting, but with O(r) rounds rather than r. In particular,
Theorems 8, 10, and 11 imply that EqualityTesting/ExistsEqual can be solved with
absolutely optimal communication O(k + E) in log k rounds, which is also round-
optimal according to Theorems 2 and 3. However, Theorems 2, 9, and 11 leave the
precise complexity of EqualityTesting open when E � k and r is between !(1) and
o(log k).

Theorem 12 is our most sophisticated upper bound, in many ways. It proves that
EqualityTesting can be solved using O(Ek

1/r log r+Er log r) communication when E �
k. When r � log k/ log log k the first term is dominant, and the protocol comes within
a log r  log log k factor of Theorem 2’s lower bound. Taken together, these theorems
highlight a potential complexity separation between ExistsEqual and EqualityTesting

and between SetDisjointness and SetIntersection in the low error probability regime.
Theorems 4–7 follow by combining the dimension reduction of Theorem 8 with

Theorems 9–12.

Theorem 4. There exists a (log⇤(k/E) + r)-round randomized protocol for
EqualityTesting on vectors of length k that errs with probability perr = 2�E, using
O(k + rEk

1/r) bits of communication.

Theorem 5. There exists a (log⇤(k/E) + r)-round randomized protocol for
ExistsEqual on vectors of length k that errs with probability perr = 2�E, using O(k +
Ek

1/r) bits of communication.
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Theorem 6. There exists a (log⇤(k/E) + O(r))-round randomized protocol for
EqualityTesting on vectors of length k that errs with probability perr = 2�E, using
O(k + Ek

1/r) bits of communication.

Theorem 7. There exists a (log⇤(k/E)+r)-round randomized protocol for Equal-
ityTesting on vectors of length k that errs with probability perr = 2�E, using O(k +
Ek

1/r log r + Er log r) bits of communication.

Remark 1. The log⇤(k/E) terms in the round complexity of Theorems 4–7 are
not absolute. They can each be replaced with max{0, log⇤(k/E) � log⇤(C)}, at the
cost of increasing the communication by O(Ck).

Remark 2. By applying Theorem 1 to Theorems 4–7 we obtain SetDisjointness/
SetIntersection protocols with the same communication complexity, but with one more
round of communication. In the case of SetDisjointness (Theorem 1 + Theorem 5), it is
straightforward to skip the reduction of Theorem 1 and solve the problem directly with
O(k+Ek

1/r) communication in (r+log⇤(k/E)) rounds. However, we do not see how to
avoid Theorem 1’s extra round of communication when solving SetIntersection. That
is, the SetIntersection protocols implied by Theorems 1, 4, and 7 use (log⇤(k/E)+r+1)
rounds.

4.1. Overview and preliminaries. We start by giving a generic protocol for
EqualityTesting. The protocol uses a simple subroutine for ExistsEqual/EqualityTesting
when k = 1. Suppose Alice and Bob hold x, y 2 U = {0, 1}l, respectively. Alice picks
a random w 2 {0, 1}l from the shared random source and sends Bob x̌ = hx,wi mod 2,
where h·, ·i is the inner product operator. Bob computes y̌ = hy, wi mod 2 and declares
“x = y” i↵ x̌ = y̌. Clearly, Bob never errs if x = y; it is straightforward to show that
the probability of error is exactly 1/2 when x 6= y. We call this protocol an inner
product test and x̌, y̌ test bits. A b-bit inner product test on x and y refers to b

independent inner product tests on x and y.
At the beginning of phase j, j � 1, Alice and Bob agree on a subset Ij�1 of

coordinates on which all previous inner product tests have passed. In other words,

they have refuted the potential equality xi

?
= yi for all i 2 [k]\Ij�1. Each coordinate

i 2 Ij�1 represents either an actual equality (xi = yi) or a false positive (xi 6= yi). At
the beginning of the protocol, I0 = [k]. In phase j, we perform lj independent inner
product tests on each coordinate in Ij�1 and let Ij ✓ Ij�1 be the remaining coordi-
nates that pass all their respective inner product tests. Notice that each coordinate
in Ij�1 corresponding to equality will always pass all the tests and enter Ij , while
those corresponding to inequalities will only enter Ij with probability 2�lj . At the
end of the protocol, we declare all coordinates in Ir equal and all other coordinates
not equal.

This finishes the description of the generic EqualityTesting protocol. Theorems 4–
12 all build on the framework of the generic protocol, instantiating its steps in di↵erent
ways.

4.1.1. A protocol for exchanging test bits. For EqualityTesting, it is possible
that a constant fraction of the coordinates are actually equalities, which makes |Ij | =
⇥(k) for every j. The naive implementation would explicitly exchange all lj |Ij�1| test
bits and use ⌦(kE) bits of communication in total. All the test bits corresponding to
equalities are “wasted” in a sense.

For our application, it is important that the communication volume that Alice
and Bob use to exchange their test bits in phase j be proportional to the number of
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false positives in Ij�1, instead of the size of Ij�1. We will use a slightly improved
version of a protocol of Feder et al. [21] for exchanging the test bits.

Imagine packing the test bits into vectors x̂, ŷ 2 B
|Ij�1| where B = {0, 1}lj .

Lemma 4.1 shows that Alice can transmit x̂ to Bob, at a cost that depends on an
a priori upper bound on the Hamming distance dist(x̂, ŷ), i.e., the number of the
coordinates in Ij�1 where they di↵er.

Lemma 4.1 (cf. Feder et al. [21]). Suppose Alice and Bob hold length-K vectors
x, y 2 B

K , where B = {0, 1}L. Alice can send one O(dL+d log(K/d))-bit message to
Bob, who generates a string x

0 2 B
K such that the following holds. If the Hamming

distance dist(x, y)  d, then x = x
0; if dist(x, y) > d, then there is no guarantee.

Proof. Define G = (V,E) to be the graph on V = B
K such that {u, v} 2 E i↵

dist(u, v)  2d. The maximum degree inG is clearly at most� =
�
K

2d

�
·22Ld since there

are
�
K

2d

�
ways to select the 2d indices and 22Ld ways to change the coordinates at those

indices so that there are at most 2d di↵erent coordinates. Let � : V 7! [�] be a proper
�-coloring of G. Alice sends �(x) to Bob, which requires log� = O(dL+d log(K/d))
bits. Every string in the radius-d ball around y (w.r.t. dist) is colored di↵erently since
they are all at distance at most 2d; hence if dist(x, y)  d, Bob can reconstruct x

without error.

Corollary 4.2. Suppose at phase j, it is guaranteed that the number of false
positives in Ij�1 is at most kj�1. Then phase j can be implemented with O(kj�1lj +
kj�1 log(k/kj�1)) bits in two rounds.

Finally, a naive implementation of the protocol requires 2r rounds if the generic
protocol has r phases. In fact, the protocol can be compressed into exactly r rounds in
the following way. At the beginning, both parties agree that I0 = [k]. Alice generates
her l1|I0| test bits x̂(1) for phase 1 and communicates them to Bob; Bob first generates
his own test bits ŷ(1) for phase 1 and determines I1, then generates l2|I1| test bits ŷ(2)
for phase 2 and transmits both ŷ

(1) and ŷ
(2) to Alice. Alice computes I1, generates

x̂
(2), computes I2, generates x̂

(3), and then sends x̂
(2) and x̂

(3) to Bob, and so on.
There is no asymptotic increase in the communication volume.

4.1.2. Reducing the number of false positives. Our protocols for Equal-

ityTesting and ExistsEqual are divided into two parts. The goal of the first part is
to reduce the number of false positives from at most k to at most E; if E � k, we
can skip this part. The details of this part are very similar to Sağlam and Tardos’s
SetDisjointness protocol [41].

Theorem 8. Let (x, y) be an instance of ExistsEqual with |x| = |y| = k. In
log⇤(k/E) rounds, we can reduce this to a new instance (x0

, y
0) of ExistsEqual where

|x0| = |y0|  E, using O(k) communication. The failure probability of this protocol is
at most 2�(E+1).

For EqualityTesting, we can reduce the initial instance to a new instance (x0
, y

0)
such that the Hamming distance dist(x0

, y
0)  E, with the same round complexity,

communication volume, and error probability.

Proof. We first give the protocol for ExistsEqual, then apply the necessary changes
to make it work for EqualityTesting.

The protocol for ExistsEqual uses our generic protocol and imposes a strict upper
bound kj on |Ij |. Whenever |Ij | exceeds this upper bound, we halt the entire protocol
and answer yes (there exists a coordinate where the input vectors are equal). We
start by setting the parameters kj and lj for any j 2 [1, log⇤(k/E)] as follows:
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k0 = k,

kj = max

⇢
k

2j�1 exp(j)(2)
, E

�
,

lj = 3 + exp(j�1)(2).

Note that it is reasonable to assume kj > E before the last phase, since whenever we
find kj  E, we can simply terminate the protocol prematurely after phase j, and our
goal would be achieved.

Now suppose the input vectors share no equal coordinates. We know that |Ij�1| 
kj�1 at the beginning of phase j. The probability of any particular coordinate in Ij�1

passing all tests in phase j is exactly pj = exp(�lj). Thus, the expected size of Ij is
at most

kj�1pj =
k

2j�2 exp(j�1)(2)
· 1

23 exp(j)(2)
 k

2j+2 exp(j)(2)
 kj

8
.

Recall the statement of the usual Cherno↵ bound.

Fact 4.3 (see [20]). Let X =
P

n

i=1 Xi, where each Xi is an independent and
identically distributed Bernoulli random variable. Letting µ = E[X], the following
inequality holds for any � > 0:

Pr[X � (1 + �)µ] 
✓

e
�

(1 + �)1+�

◆µ

.

In our case Xi = 1 i↵ the ith coordinate in Ij�1 survives to Ij . By linearity of
expectation, µ  kj/8. Setting � = kj/µ� 1 � 7, we have

Pr[X � kj ] = Pr[X � (1 + �)µ] 
✓

e
�

(1 + �)1+�

◆ kj
1+�

<

✓
e
7

88

◆kj/8

< 2�1.7kj .

Hence, the probability that there are at least kj coordinates remaining after phase j

is at most 2�1.7kj  2�1.7E , and the probability this happens in any phase is at mostP
j
2�1.7kj  2�(E+1). Notice that when x and y share at least one equal coordinate,

the error probability of this protocol is 0 because if it fails to reduce the number
of coordinates to E it (correctly) answers yes. The communication volume of the
protocol is asymptotic to

X

j

lj |Ij�1| 
X

j

ljkj�1 =
X

j

O(k/2j) = O(k).

For EqualityTesting, we use the same kj as an upper bound on the number of
false positives in Ij , instead of the size of Ij . Since the number of false positives is at
most k at the beginning, we can still use the same argument to show that with the
same choice of kj and lj , after log⇤(k/E) phases, the number of false positives is at
most E with error probability 2�(E+1). By Lemma 4.1, the number of bits we need
to exchange in phase j is O(kj�1lj + kj�1 log(k/kj�1)). Notice that log(k/kj�1) =
j � 2 + exp(j�2)(2) = O(log lj), so the total communication volume is still O(k).

In all of our protocols, we first apply Theorem 8 to reduce the number of coor-
dinates (in the case of ExistsEqual) or false positives (in the case of EqualityTesting)
to be at most E. This requires no communication if E � k to begin with. Hence,
with log⇤(k/E) extra rounds and O(k) communication, we will assume henceforth
that all instances of ExistsEqual have k  E and all instances of EqualityTesting have
dist(x, y)  E.
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4.2. A simple EqualityTesting protocol. In light of Theorem 8, we can assume
that the input vectors to EqualityTesting are guaranteed to di↵er in at most k0 =
min{k,E} coordinates.

Theorem 9. Fix any k � 1, E � 1, and r 2 [1, (log k0)/2], where k0 = min{k,E}.
There exists a randomized protocol for EqualityTesting length-k vectors x, y with Ham-

ming distance dist(x, y)  k0 that uses r rounds, O(k+rEk
1/r
0 ) bits of communication,

and errs with probability perr = 2�(E+1).

Proof. We instantiate the generic protocol. The parameter lj is the number of test
bits generated per coordinate of Ij�1 in phase j. The parameter kj is an upper bound
on the number of false positives surviving in Ij (with high probability 1� 2�⇥(E)).

kj = k
1�j/r

0 ,

lj = 4Ek
j/r�1
0 .

Now fix a phase j 2 [1, r] and suppose at the beginning of phase j that the number
of false positives in Ij�1 is at most kj�1. By assumption this holds for j = 1. The
probability that at least kj false positives survive phase j is upper bounded by

✓
kj�1

kj

◆
2�kj lj 

✓
ekj�1

kj

◆kj

2�kj lj
�
n

k

�

�
en

k

�k

 22kj log(kj�1/kj)�kj lj e  k
1/r
0 = kj�1

kj
due to r  log k0

2

 2�2E log kj�1

kj
 kj�1

kj
= k

1/r
0  lj

4 .

Thus, by a union bound, the number of false positives surviving phase j is strictly less
than kj , for all j 2 [1, r], with probability at least 1 � 2�(E+1). In particular, there
are no false positives at the end since kr = 1.

Meanwhile, by Lemma 4.1, the total communication volume is O(k + rEk
1/r
0 )

since

rX

j=1

kj�1lj = 4rEk
1/r
0 ,

and

rX

j=1

kj�1 log
k

kj�1
= k0

r�1X

j=0

1

k
j/r

0

✓
log

k

k0
+ log kj/r0

◆

 2k0 log
k

k0
+ k0

r�1X

j=0

log kj/r0

k
j/r

0

k
1/r
0 � 22 due to r  log k0

2

= O(k) k
1/r
0 � 22 and k0  k.

Proof of Theorem 4. Applying Theorems 8 and 9 in sequence, we obtain a (log⇤

(k/E) + r)-round randomized protocol for EqualityTesting on vectors of length k that
errs with probability perr = 2�E and uses O(k + rEmin{k,E}1/r) bits of commu-
nication. When E � k the protocol is obtained directly from Theorem 9 and uses

D
ow

nl
oa

de
d 

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMMUNICATION COMPLEXITY OF EQUALITY TESTING 699

O(rEk
1/r) communication. When E < k the communication implied by Theorems 8

and 9 is O(k + rE
1+1/r) = O(k + rEk

1/r).6

4.3. An optimal ExistsEqual protocol.

4.3.1. Overview of the protocol. In this section, we show that we can obtain
a (log⇤(k/E)+ r)-round, O(k+Ek

1/r)-bit protocol for ExistsEqual. This matches the
lower bound of Theorem 3, asymptotically, when E � k. Theorem 8 covers dimension
reduction in log⇤(k/E) rounds, so we assume without loss of generality that E � k

and we have exactly r rounds.
Suppose the inputs x and y share no equal coordinates. Imagine writing down all

the possible results of the inner product tests in a matrix A of dimension (E+log k)⇥k,
where Aq,i is “=” if xi, yi pass the qth inner product test and “6=” otherwise. By a
union bound, with probability 1� 2�E , each column contains at least one “ 6=.” Now
consider the area above the first “ 6=” in each column. The probability that this area
is at least E0 is, by a union bound, at most

(4.1)

✓
E

0 + k � 1

k � 1

◆
2�E

0
< exp(k log(e(E0 + k)/k)� E

0).

For E
0 = E + O(k log(E/k)) = O(E), this probability is ⌧ 2�E . In our analysis

it su�ces to consider a situation where an adversary can decide the contents of A,
subject to the constraint that its error budget (the area above the curve defined by the
first “ 6=” in each column) never exceeds E0 = O(E). The notion of an error budget is
also essential for analyzing the EqualityTesting protocols of Sections 4.4 and 4.5.

In the jth phase, j � 1, our protocol exposes the fragment of A consisting of the
next lj rows of columns in Ij�1. The set Ij consists of those columns without any
“6=” exposed so far. The communication budget for phase j is equal to lj |Ij�1|. In the
worst case, the first exposed value in each column of Ij�1 \ Ij is “6=,” so the adversary
spends at least lj |Ij | of its error budget in phase j.

If we witness at least one “ 6=” in every column, we can correctly declare there
does not exist an equal coordinate and answer no. Otherwise, if the adversary has
not exceeded his error budget but there is some column without any “ 6=,” we answer
yes. If the adversary ever exhausts his error budget, we terminate the protocol and
answer yes. Recall that the notion of an error budget tacitly assumed that x and y

di↵er in every coordinate. It is important to note that if they do not di↵er in every
coordinate, the protocol answers correctly with probability 1, regardless of whether
the protocol halts prematurely or not. Thus, there is nothing to prove in this case and
it is fine to measure the error budget expended as if Alice’s and Bob’s inputs di↵er
in all coordinates. The probability that the error budget is exhausted when x and y

di↵er in all coordinates (causing the algorithm to incorrectly answer yes) is ⌧ 2�E ,
according to (4.1).

4.3.2. Analysis. In this section we give a formal proof to the following theorem.

Theorem 10. Fix any k � 1, E � k, and r 2 [1, (log k)/2]. There exists an
r-round randomized protocol for ExistsEqual on vectors of length k that errs with prob-
ability perr = 2�(E+1), using O(Ek

1/r) bits of communication.

6It appears as if rE1+1/r is an improvement over rEk
1/r when E < k, but this is basically an

illusion. In light of Remark 1, we can always dedicate log⇤(k/E) � 2 rounds to the first part and
r + 2 rounds to the second part while increasing the communication by O(k). When E � k

1�1/r,
rE

1+1/r = ⌦((r + 2)Ek
1/(r+2)), meaning there is no clear benefit to using the rE

1+1/r expression.
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700 D. HUANG, S. PETTIE, Y. ZHANG, AND Z. ZHANG

Proof. The number of tests per coordinate in phase j is lj :

lj = 2Ek
j/r�1

.

Define Ej =
P

j

j0=1 lj0 |Ij0 | to be the portion of the error budget spent in phases 1
through j. We can express the asymptotic communication cost of the protocol in
terms of the error budget as follows:

rX

j=1

lj |Ij�1|  l1|I0|+ k
1/r

rX

j=2

lj�1|Ij�1| lj = k
1/r

lj�1.

 2Ek
1/r + Er�1k

1/r definition of Er�1.

Recall that the protocol terminates immediately after phase j if Ej � E
0, which

indicates Er�1 < E
0. Hence, the total cost is bounded by

 (2E + E
0)k1/r = O(Ek

1/r).

The protocol can err only if x and y di↵er in every coordinate. In this case, there
are two possible sources of error. The first possibility is that the protocol answers yes
because |Ir| � 1. By a union bound, this happens with probability at most

k2�
Pr

j=1
lj  k2�lr = k2�2E

.

The second possibility is that the protocol terminates prematurely and answers
yes if Ej � E

0 for some j 2 [1, r]. The probability of this event occuring is also
⌧ 2�E ; see (4.1). This concludes the proof.

Proof of Theorem 5. Theorem 5 follows directly by combining Theorems 8
and 10.

4.4. A log k-round-communication optimal EqualityTesting protocol.
Suppose we want a communication optimal EqualityTesting protocol using O(k + E)
bits. When E � k we need r = ⌦(log k) rounds, by Theorem 2. In this section, we
give a protocol for EqualityTesting that uses O(r) rounds (rather than r) and O(Ek

1/r)
bits of communication, assuming E � k. Observe that when r = ⇥(log k), there is no
(asymptotic) di↵erence between r rounds and O(r) rounds as this only influences the
leading constant in the communication volume.

4.4.1. Overview of the protocol. The protocol uses the concept of an error
budget introduced in section 4.3. To shave the factor r o↵ the communication volume,
we cannot a↵ord to use Ek

j/r�1 test bits for each coordinate that participates in phase
j. Consequently, we cannot guarantee with high probability (say, 1�2�⇥(E)) that the
number of false positives in Ij is less than k

1�j/r. The protocol uses a “backtracking”
strategy that has been applied elsewhere, e.g., in the Feige et al. [22] binary search
algorithm using unreliable comparisons.

Our protocol needs to be able to respond to the rare event that the number of
false positives in Ij is larger than kj . Notice that this type of error cannot be detected
in the first j phases and is not easily detectable in the following phases. The danger
in the number of false positives in Ij exceeding kj is that when the test bits for phase
j+1 are exchanged using Lemma 4.1, the protocol may silently fail, with all test bits
potentially corrupted.

To address these challenges, Alice and Bob each keep a history of all the test bits
they have generated so far. They also keep a history of the test bits they have received
from the other party, which may have been corrupted. Define TA and TB to be the
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COMMUNICATION COMPLEXITY OF EQUALITY TESTING 701

true history of the test bits generated by Alice and Bob, respectively. Define T
(A)
B

to be what Alice believes Bob’s history to be, and define T
(B)
A

analogously. Observe

that if every invocation of Lemma 4.1 succeeds, then TA = T
(B)
A

and TB = T
(A)
B

.
To detect inconsistencies, after Alice and Bob generate and exchange their test

bits for phase j, they accumulate their views of the history into strings T (A) = TA �
T

(A)
B

and T
(B) = T

(B)
A
� TB , respectively, where � is the concatenation operator, and

verify that T (A) = T
(B) with a certain number of inner product tests. This is called

a history check. If the history check passes, they can proceed to phase j + 1. If the
history check fails, then the results of phase j are junk, and we can infer that one
of two types of low probability events occurred in phase j � 1. The first possibility
is that the test bits at phase j � 1 were exchanged successfully (and consequently,
the history check succeeded), but Ij�1 contains more than kj�1 false positives. The
second possibility is that Alice’s and Bob’s histories were already inconsistent at phase
j � 1, but the phase-(j � 1) history check failed to detect this. Notice that Alice and
Bob cannot detect which of these types of errors occurred. In either case, we must
undo the e↵ects of phases j and j � 1 and restart the protocol at the beginning of
phase j � 1. It may be that the history check then fails at the re-execution of phase
j� 1, in which case we would continue to rewind to the beginning of phase j� 2, and
so on. Being able to rewind multiple phases is important because we do not know
which phase su↵ered the first error.

Both parties maintain an empirical error meter E
00 that measures the sum of

logarithms of probabilities of low probability (error) events that have been detected.
If the error meter ever exceeds the error budget E0 = ⇥(E) we terminate the protocol,
which we show occurs with probability ⌧ 2�E . Thus, the process above (proceeding
iteratively with phases, undoing and redoing them when errors are detected) must
end by either successfully completing phase r or exceeding the error budget.

If Alice and Bob successfully finish phase r, we are still not done. This is because
an error can happen in the later phases but we do not have su�ciently high (1�2�E)
confidence that they all succeeded. To build this confidence, Alice and Bob do inner
product tests on the whole history, gradually increasing their number until ⇥(E) tests
have been done. If one of these history checks fails, we increase the error meter E

00

appropriately and rewind the protocol to a suitable phase j in the first stage of the
protocol.

Let us make every step of this protocol more quantitatively precise.
• The protocol has two stages, the refutation stage (in which potential equalities
are refuted) and the verification stage, each consisting of a series of phases.
Although the refutation stage logically precedes the verification stage, because
phases can be undone, an execution of the protocol may oscillate between
refutation and verification multiple times.

• The refutation stage is similar to the protocol in section 4.2 except Alice and
Bob will verify whether the messages conveyed by Lemma 4.1 are successfully
received with further inner product tests. The budget of phase j is

Bj =
Ek

1/r
0

min{j2, r} .

Observe that the sum of budgets,
P

r

j0=1 Bj0 , is O(Ek
1/r
0 ). Thus, in phase j,

we perform lj = Bj/kj�1 independent inner product tests on each coordinate
in Ij�1 and exchange test bits with a Hamming distance of kj�1. That is, we
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702 D. HUANG, S. PETTIE, Y. ZHANG, AND Z. ZHANG

are working under the assumption (perhaps false) that there are kj�1 false
positives still in Ij�1. As usual, I0 is initially [k] and

k0  E,

kj  k
1�j/r

0 .

All histories TA, TB , T
(A)
B

, T
(B)
A

are initially empty, and the error meter E00 is
initially zero.

• Phase j has two steps, the test step and the history check step. In the test step,
Alice and Bob conduct inner product tests as in section 4.2, i.e., they generate
lj test bits for each coordinate in Ij�1 and exchange them using Lemma 4.1,
assuming their Hamming distance is at most kj�1. Alice appends the test
bits she generates onto the history TA and appends the test bits she receives

from Bob onto T
(A)
B

. Bob does likewise. In the history check step, they use
Bj independent inner product tests to check whether T

(A) = T
(B), where

T
(A) = TA � T (A)

B
, and T

(B) = T
(B)
A
� TB . The history check fails if they

detect inequality and passes otherwise. Since Bj is, in general, less than E,
we are still skeptical of history checks that pass.

• If the history check for phase j passes, Alice and Bob proceed to phase j +
1, or proceed to the verification stage if j = r. Otherwise, an error has
been detected: either the number of false positives in Ij�1 is at least kj�1,
or the history check at phase j � 1 mistakenly passed. The latter occurs
with probability exp(�Bj�1) and we show the former occurs with probability

exp(�3k�1/r
0 Bj�1/4). Not knowing which occurred, we increment the error

meter E
00 by k

�1/r
0 Bj�1/2 due to a union bound. If E00 exceeds the error

budget E
0 = cE, then we halt, where c � 2 is a suitable constant. Otherwise

we retract the e↵ects of phases j and j � 1 and continue the protocol at
the beginning of phase j � 1, with “fresh” random bits so as not to recreate
previous errors.

• Observe that after phase r of the refutation stage, each coordinate in Ir has
passed only about Br/kr�1 = E/r inner product tests, which is not high
enough. Before the verification stage begins, Alice and Bob each generate E

0

test bits for each coordinate in Ir and append them to T
(A) and T

(B). (This
can be viewed as a degenerate instantiation of Lemma 4.1 with d = 0, which
requires no communication.) If there are no false positives in Ir, these test
bits must be identical.

• In the verification stage the phases are indexed in reverse order: r, r�1, . . . , 1.
In each successive phase j, Alice and Bob test the equality T

(A) = T
(B) with

Bj independent inner product tests. This process stops if it passes a total of
E

0 tests, in which case they report that x and y are equal on Ir and not equal
on [k]\Ir, or some verification phase j detects that T (A) 6= T

(B). In this case,
we know verification phases r, r� 1, . . . , j + 1 passed in error and that there
must also have been an error in refutation phase r. Therefore, Alice and Bob

increment E00 by k
�1/r
0 Br/2 +

P
r

j0=j+1 Bj0 and halt if E00 � E
0. If not, they

rewind the execution of the protocol to phase j of the refutation stage and
continue.

Algorithm 1 recapitulates this description in the form of pseudocode from the
perspective of Alice. Here TA[j, i] refers to the sequence of Alice’s test bits in TA for
the ith coordinate produced in the most recent execution of phase j, and TA[j1 · · · j2, ·]
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refers to the test bits generated from phase j1 to phase j2. Phase r + 1 refers to the
E

0 ⇥ |Ir| test bits generated between the refutation and verification stages. T (A)[j, i]

refers to the concatenation of TA[j, i] and T
(A)
B

[j, i].

4.4.2. Analysis. To prove Theorem 6, it su�ces to prove the following Theo-
rem 11.

Theorem 11. Fix any k � 1, E � 1, and r 2 [1, (log k0)/6], where k0 =
min{k,E}. There exists a randomized protocol for EqualityTesting length-k vectors

x, y with Hamming distance dist(x, y)  k0 that uses O(r) rounds, O(k +Ek
1/r
0 ) bits

of communication, and errs with probability perr = 2�(E+1).

The protocol of Lemma 4.1 fails if Bob does not generate the correct x0 = x, which
indicates that the precondition is not met, i.e., dist(x, y) > d. Refutation phase j fails
if the condition in line 27 is not satisfied and the else branch at line 37 is executed in
order to resume the protocol from phase j � 1. Similarly, we say verification phase j

fails if the condition in line 45 is not satisfied, which also indicates the else branch at
line 49 is executed and the protocol is resumed from refutation phase j.

We begin the proof by showing that the extra communication caused by redoing
some of the refutation/verification phases is properly covered by the total error budget.
The following two lemmas actually prove that the error budget spent so far is correctly
lower bounded in line 38 and line 50, and then Lemma 4.6 upper bounds the total

number of extra phases by O(r) and the overall extra communication by O(k+Ek
1/r
0 ).

Lemma 4.4. Fix any j 2 [2, r]. If phase j of the refutation stage fails, then the
outcome of the most recent execution of phase j� 1 happened with probability at most

exp(�k�1/r
0 Bj�1/2).

Proof. Recall that there are two types of errors at phase j � 1. If the (j � 1)th
history check erroneously passed, this occurred with probability exp(�Bj�1). The
probability that more than kj�1 false positives survive in Ij�1 is less than

Algorithm 1. An EqualityTesting protocol for Theorem 11 (from the perspective of
Alice).

1: procedure EqualityTesting . main procedure
2: I0  [k]
3: k0  min{k,E} . initial bound on Hamming distance
4: E

0  cE . error budget
5: E

00  0 . error meter
6: for j  1, . . . , r do

7: Bj  
Ek

1/r
0

min{j2, r} . phase j communication budget

8: kj  k
1�j/r

0 . ideal upper bound on Hamming distance
9: lj  Bj/kj�1 . tests per coordinate

10: end for
11: Refutation(1)
12: Verification(r)
13: Output equal on coordinates Ir and not equal on [k]\Ir
14: end procedure
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Algorithm 1. An EqualityTesting protocol for Theorem 11 (from the perspective of
Alice) (cont.).

15: procedure InnerProductTest(w,b)
16: perform b independent inner product tests on w and return the test bits
17: end procedure

18: procedure Refutation(j) . phase j of the refutation stage
19: TA[j, ·] ? . Clear test bits for phase j

20: for all i 2 Ij�1 do
21: TA[j, i] InnerProductTest(xi, lj)
22: end for
23: send TA[j, ·] to Bob and receive T

(A)
B

[j, ·] from Bob via Lemma 4.1

24: T
(A)[j, ·] TA[j, ·] � T (A)

B
[j, ·]

25: T̂
(A)  InnerProductTest(T (A)[1 · · · j, ·], Bj)

26: send T̂
(A) to Bob and receive T̂

(B) from Bob directly
27: if T̂

(A) = T̂
(B) then . passed history check

28: Ij  {i 2 Ij�1 | TA[j, i] = T
(A)
B

[j, i]} . all coords. not yet refuted
29: if j < r then
30: Refutation(j + 1)
31: else
32: T

(A)[r + 1, ·] ?
33: for all i 2 Ir do
34: T

(A)[r + 1, i] InnerProductTest(xi, E
0)

35: end for
36: end if
37: else
38: E

00  E
00 + k

�1/r
0 Bj�1/2, and terminate if E00 � E

0
. update error meter

39: Refutation(j � 1)
40: end if
41: end procedure

42: procedure Verification(j) . phase j of the verification stage
43: T̂

(A)  InnerProductTest(T (A)[·, ·], Bj)

44: send T̂
(A) to Bob and receive T̂

(B) from Bob directly
45: if T̂

(A) = T̂
(B) then

46: if
P

r

j0=j
Bj0 < E

0 then . insu�ciently confident to halt
47: Verification(j � 1)
48: end if
49: else . error detected
50: E

00  E
00 + k

�1/r
0 Br/2 +

P
r

j0=j+1 Bj0 , and terminate if E00 � E
0
. update

error meter
51: Refutation(j) . rewind protocol to phase j

52: Verification(r)
53: end if
54: end procedure
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✓
k0

kj�1

◆
2�kj�1lj�1 

✓
ek0

kj�1

◆kj�1

2�kj�1lj�1

�
n

k

�

�
en

k

�k

 22kj�1 log(k0/kj�1)�kj�1lj�1 e  k
1/r
0  k0

kj�1

due to r  log k0

6

 2�3lj�1kj�1/4,

where the last step follows from the inequality

2 log
k0

kj�1
= 2(j � 1) log k1/r0

 8j�1 log k1/r0

4(j � 1)2
because 8x3  8x for x 2 N

 k
(j�1)/r
0

4(j � 1)2
log k1/r0  k

1/r
0

8 due to k
1/r
0 � 26

 Bj�1

4kj�2
definition of Bj�1

=
lj�1

4
definition of lj�1.

Combining the above two cases, by a union bound, the outcome of the most
recent execution of phase j � 1 of the refutation stage happens with probability

at most exp(�Bj�1) + exp(�3lj�1kj�1/4) = exp(�Bj�1) + exp(�3k�1/r
0 Bj�1/4) 

exp(�k�1/r
0 Bj�1/2), as claimed.

Lemma 4.5. Fix any j 2 [1, r]. If phase j of the verification stage fails, then the
outcomes of the most recent execution of phases r, r � 1, . . . , j + 1 of the verification
stage and phase r of the refutation stage happened with overall probability at most

exp(�k�1/r
0 Br/2�

P
r

j0=j+1 Bj0).

Proof. Notice that the failure of verification phase j means all previous verification
phases r, r� 1, . . . , j +1 failed to detect an inconsistency in the history, which occurs
with probability exp(�

P
r

j0=j+1 Bj0). Meanwhile, the inconsistency is caused by an
error of some type in refutation phase r, which, according to Lemma 4.4, occurs with

probability at most exp(�k�1/r
0 Br/2). Therefore, the outcomes of the most recent

execution of verification phases r, r � 1, . . . , j + 1 and refutation phase r happened

with overall probability at most exp(�k�1/r
0 Br/2�

P
r

j0=j+1 Bj0).

Lemma 4.6. Algorithm 1 executes O(r) extra refutation/verification phases and

uses O(k + Ek
1/r
0 ) extra bits of communication.

Proof. We first consider the total number of extra phases. Each failure of refuta-

tion phase j uses at least k�1/r
0 Bj�1/2 � E/(2r) of the error budget and causes the

re-execution of two phases, namely j � 1 and j. Similarly, each failure of verification

phase j uses k
�1/r
0 Br/2 +

P
r

j0=j+1 Bj0 � (r � j + 1)E/(2r) of the error budget and
causes the re-execution of 2(r� j+1) phases. Thus, the total number of extra phases
is at most 4cr = O(r), where the error budget E0 = cE.

Turning to the overall extra communication, notice that phase j of the refutation
stage has communication volume O(Bj + kj�1 log(k/kj�1)) and phase j of the veri-
fication stage has communication volume O(Bj). For any j 2 [2, r], also notice that

Bj�1/Bj  j
2
/(j � 1)2  4  k

1/r
0 . Thus, the communication caused by each failure
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is at most O(k1/r0 ) times the error budget spent by that failure, if we temporarily
ignore the kj�1 log(k/kj�1) term.

In order to upper bound the communication contributed by the kj�1 log(k/kj�1)
term, observe that refutation phase j can only be repeated O(j2) times before the
error budget is exhausted. Thus, the overall extra communication is upper bounded

by O(k + Ek
1/r
0 ) since

O(k1/r0 ) · E0 +
rX

j=1

O(j2) · kj�1 log
k

kj�1

= O(k1/r0 ) · E0 + k0

rX

j=1

O(j2)

k
(j�1)/r
0

✓
log

k

k0
+ log k(j�1)/r

0

◆

= O(k1/r0 ) · E0 + k0 log
k

k0

rX

j=1

O(j2)

k
(j�1)/r
0

+ k0

rX

j=1

O(j2) · log k(j�1)/r
0

k
(j�1)/r
0

= O(k + Ek
1/r
0 ).

The last step follows from the fact that k1/r0 � 26 and k0  k.

Now we are ready to prove Theorem 11.

Proof of Theorem 11. If there are no errors, Algorithm 1 has at most 2r phases

and uses O(
P

r

j=1(Bj+kj�1 log(k/kj�1))) = O(k+Ek
1/r
0 ) communication, where each

phase can be implemented in O(1) rounds. Together with Lemma 4.6, we have shown

that it is an O(r)-round randomized EqualityTesting protocol using O(k+Ek
1/r
0 ) bits

of communication. Thus, it su�ces to calculate the error probability of the protocol.
Consider a possible execution of the protocol, i.e., the sequence of the refuta-

tion/verification phases that are performed. It can be represented by a unique 0-1
string of length at most 4cr + 2r (by the proof of Lemma 4.6) such that each “1”
corresponds to a failed phase. In particular, each execution of the protocol that ter-
minates prematurely because E

00 � E
0 is represented as a 0-1 string, which occurs

with probability at most 2�E
0
, by Lemmas 4.4 and 4.5. Hence the overall probability

of terminating prematurely is 24cr+2r · 2�E
0
.

An error can also be caused by at least one false positive surviving all E0 indepen-
dent inner product tests generated after refutation phase r. The probability of this
happening is at most k02�E

0
. The last possible source of error is that all verification

phases fail to detect the inequality T
(A) 6= T

(B). According to line 46, the probability
of this happening is at most 2�E

0
. Hence, the overall probability of error is upper

bounded by
24cr+2r · 2�E

0
+ k02

�E
0
+ 2�E

0
= poly(k0)2

�E
0
,

which is at most 2�E for, say, E0 = 2E. This concludes the proof.

Proof of Theorem 6. Theorem 6 subsequently follows by applying Theorems 8
and 11 in sequence.

4.5. A more e�cient EqualityTesting protocol. Theorem 10 demonstrates
that the ⌦(Ek

1/r) lower bound can be attained for ExistsEqual. Let us highlight a key
property of the protocol that arises naturally in ExistsEqual but is di�cult to e�ciently
recreate in EqualityTesting. In the first round Alice generates about l1 = E/k

1�1/r

test bits per coordinate and sends them to Bob. Since there is no possibility of
reporting yes (9i.xi = yi) in error, Bob can operate under the assumption that for all
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i.xi 6= yi. Therefore, if he finds that |I1| = �1k
1�1/r, he can infer that the adversary

has expended a �1 fraction of his error budget and adaptitvely choose the length of
his message to be �1Ek

1/r, i.e., we are e↵ectively charging k
1/r bits of communication

to each of the �1E units of error just spent by the adversary. In Theorem 10 this
adaptivity happens transparently: the length of the jth message depends directly on
the fraction �j�1 of the error budget expended by the adversary in round j � 1, even
though �j�1 is not ever named as a parameter of the algorithm.

A key di↵erence between ExistsEqual and EqualityTesting is that in the latter, the
adversary can e↵ectively hide how much of its error budget it has expended. Consider
the state of Bob after receiving the first message from Alice. If he finds that |I1| = k/2,
there is no way to tell how many false positives are contained in I1 and how many
are true positives. In the worst case the number of false positives could be as high
as k1�1/r. We cannot optimistically assume the false positive number is lower,7 and
continually using the pessimistic bound leads to O(rEk

1/r) communication. It seems
that any optimal algorithm must detect and adapt to the fraction of the error budget
spent by the adversary.

Theorem 12. Fix any k � 1, E = ⌦(1), and r 2 [1, (log k0)/2], where k0 
min{k,E}. There exists a randomized protocol for EqualityTesting length-k vectors x, y

with Hamming distance dist(x, y)  k0 that uses r rounds, O(k+Ek
1/r
0 log r+Er log r)

bits of communication, and errs with probability perr = 2�(E+1).

The remainder of this section constitutes a proof of Theorem 12.
Define E0 = 7E to be the error budget of the adversary, i.e., it is allowed to make

up to E
0 inner product tests pass on unequal coordinates.

Round 1. Initially I0 = [k] is guarante to contain at most k0 unequal coordinates.

Alice generates l1 = E
0
k
1/r�1
0 test bits for each coordinate in I0 and transmits them

to Bob using Lemma 4.1 with a Hamming distance of d = k0. (We show later that the
k0 log(k/k0) terms in this protocol contribute negligibly to the overall communication;

thus, for the time being we measure the cost as k0l1 = E
0
k
1/r
0 .) Bob sets I1 to be the

subset of I0 that pass all inner product tests.
Round 2. Due to the adversary’s error budget, the number of false positives in

I1 is at most
k1 = E

0
/l1 = k

1�1/r
0 .

Suppose the true number of false positives in I1 is

k
⇤
1 = �

0
1k1 = �

0
1k

1�1/r
0 ,

meaning the adversary just spent a �
0
1 fraction of his total error budget. Bob cannot

measure �
0
1, but he can send a message to Alice that allows her to estimate �

0
1. Bob

invokes Lemma 4.1 log r times. For i 2 [1, log r], Bob generates the next l(i)2 test bits

for coordinates in I1 so that Alice can recover them up to a Hamming distance of k(i)1 ,
where

l2k1 = 2E0
k
1/r
0 ,

l
(i)
2 = l2 · 2i�1

,

k
(i)
1 = k1/2

i�1
.

7Invoking Lemma 4.1 with a Hamming distance d that is too small can result in an undetected
failure of the protocol.
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Clearly invocation i will succeed if k(i)1 � k
⇤
1 and may fail if k(i)1 < k

⇤
1 . In order to

detect which invocations of Lemma 4.1 succeed, Bob supplements each with a ⇥(E)-
bit hash of the test bits generated. Thus, with probability 1 � 2�⇥(E), Lemma 4.1
has no silent failures.

Round 3 onward. Suppose that Alice detects that the invocations of Lemma 4.1

with Hamming distances k(1)1 , . . . , k
(i⇤)
1 succeed but the one with k

(i⇤+1)
1 fails (or that

i
⇤ = log r). Alice estimates �0

1 by

�1 = 2�i
⇤
.

Observe that if i⇤ < log r (the (i⇤ + 1)th invocation of Lemma 4.1 fails), then

k
⇤
1 � k

(i⇤+1)
1 = 2�i

⇤
· k1�1/r

0

and consequently, �1  �
0
1. On the other hand, if i⇤ = log r, then �1 = 1/r, whereas

�
0
1 may be close to zero. Either way, we have

�1  �
0
1 + 1/r.

Since every false positive in I2 has successfully passed l
(i⇤)
2 inner product tests, we

can conclude that the maximum number of false positives remaining in I2 is

k2 =
E

0

l
(i⇤)
2

=
E

0

2E0k
1/r
0 · 2i⇤�1/k1

=
k1

k
1/r
0 2i⇤

= �1k
1�2/r
0 .

As before, k⇤2 = �
0
2k2 is the true number of false positives in I2, where �

0
2 2 [0, 1] is

currently unknown. In the third round Alice selects l3 (see below) and invokes the

test bit exchange protocol (Lemma 4.1) with l
(i)
3 = l32i�1 test bits per coordinate

and Hamming distance k
(i)
2 = k2/2i�1, in parallel for all i 2 [1, log r]. The overall

communication volume is k2l3 log r, and we select l3 such that this is linear in the
(estimated) error budget spent by the adversary in round one, i.e.,

k2l3 log r = �1E
0
k
1/r
0 log r

and therefore
l3 = �12E

0
k
1/r
0 /k2 = 2E0

/k
1�3/r
0

is independent of �1.
All the bounds above were specialized to Round 3 but apply to round j by rein-

dexing appropriately. In particular, the receiver of the (j � 1)th message estimates
�
0
j�2 = k

⇤
j�2/kj�2 by

�j�2 = 2�i
⇤
 �

0
j�2 + 1/r

and sets

kj�1 = �j�2k
1�(j�1)/r
0 ,

lj = 2E0
/k

1�j/r

0 ,

then invokes Lemma 4.1 log r times in parallel with parameters l
(i)
j

= lj2i�1 and

k
(i)
j�1 = kj�1/2i�1 to send the jth message. It remains to bound the total communi-

cation and the probability of error.
Communication volume. With the extra ⇥(E)-bit hash, the cost of each invoca-

tion of Lemma 4.2 with parameters d, L is O(E+dL+d log(k/d)). There are at most
log r invocations per round and r rounds, so the total contributed by the first term is
O(Er log r). The total contributed by the second term is
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k0l1 +
rX

j=2

log rX

i=1

k
(i)
j�1l

(i)
j

= E
0
k
1/r
0 + log r ·

rX

j=2

kj�1lj

= E
0
k
1/r
0 + 2E0

k
1/r
0 log r ·

0

@1 +
rX

j=3

�j�2

1

A

 E
0
k
1/r
0 + 2E0

k
1/r
0 log r ·

0

@1 +
rX

j=3

(�0
j�2 + 1/r)

1

A

 E
0
k
1/r
0 + 6E0

k
1/r
0 log r

0

@
X

j�3

�
0
j�2 < 1

1

A

= E
0
k
1/r
0 (6 log r + 1).

Next we bound the third term. For any j � 2, we have

log rX

i=1

k
(i)
j�1 log(k/k

(i)
j�1)

=
log rX

i=1

kj�1

2i�1
log

2i�1
k

kj�1

= kj�1 log
k

kj�1

log rX

i=1

1

2i�1
+ kj�1

log rX

i=1

i� 1

2i�1

= O(kj�1 log(k/kj�1)).

Therefore, it su�ces to consider only the first invocation of Lemma 4.1 from each
round. Now we bound the total across all rounds. For the first two rounds we have
k0 log k/k0  k and k1 log k/k1  k, so we start counting from round j = 3.

rX

j=3

kj�1 log
k

kj�1

=
r�1X

j=2

�j�1k
1�j/r

0 log
k

�j�1k
1�j/r

0


r�1X

j=2

�j�1k

log k
j/r

�j�1

kj/r

 k

r�1X

j=2

log kj/r

kj/r
+ k

r�1X

j=2

�j�1 log
1

�j�1

kj/r
�j  1

 k

r�1X

j=2

log kj/r

kj/r
+

k

e

r�1X

j=2

1

kj/r

= O(k) k
1/r � 2.
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In conclusion, the total communication cost is O(k + Ek
1/r
0 log r + Er log r).

Error probability. We now show that protocol errs with probability less than
2�(E+1). If we use a 2E-bit hash of the test bits in each invocation of Lemma 4.1 the
probability that any failed invocation goes unnoticed is at most

r log r · 2�2E
.

The algorithm works correctly so long as k
⇤
j
 kj for every j, which holds whenever

the adversary does not exceed his error budget E
0. The probability that the error

budget is exceeded is, by a union bound, at most
✓
E

0 + k0 � 1

k0 � 1

◆
2�E

0
 exp(k0 log (e(E

0 + k0)/k0)� E
0),

which is less than 2�3E when E
0 = 7E � 7k0. Finally, every unequal coordinate is

ultimately subject to lr = 2E0 inner product tests, and the probability that any goes
undetected is at most k02�2E0

. The total error probability is therefore at most

r log r · 2�2E + 2�3E + k02
�2E0

⌧ 2�(E+1)
.

This concludes the proof of Theorem 12.

5. Distributed triangle enumeration. One way to solve local triangle enu-
meration in the CONGEST model is to execute, in parallel, a SetIntersection protocol
across every edge of the graph, where the set associated with a vertex is a list of
its neighbors. Since there are at most �n/2 edges, we need the SetIntersection error
probability to be 2�E , E = ⇥(log n), in order to guarantee a global success probabil-
ity of 1� 1/ poly(n). Our lower bound says any algorithm taking this approach must
take ⌦((�+E�1/r)/ log n+ r) rounds since each round of CONGEST allows for one
O(log n)-bit message. The hardest situation seems to be when � = E = ⇥(log n), in
which case the optimum choice is to set r = log�, making the triangle enumeration
algorithm run in O(log�) = O(log log n) time. In Theorem 13 we show that it is pos-
sible to handle this situation exponentially faster, in O(log log�) = O(log log log n)
time, and, in general, to solve local triangle enumeration [29] in optimal O(�/ log n)
time so long as � > log n log log log n.

Theorem 13. Local triangle enumeration can be solved in a CONGEST network
G = (V,E) with maximum degree � in O(�/ log n+log log�) rounds with probability
1� 1/ poly(n). This is optimal for all � = ⌦(log n log log log n).

Proof. The algorithm consists of min{log log�, log log log n} phases. The goal of
the first phase is to transform the original triangle enumeration problem into one with
maximum degree �1 < (log n)o(1), in O(log⇤ n) rounds of communication. The goal of
every subsequent phase is to reduce the maximum degree from �0 

p
log n to

p
�0,

in O(1) rounds of communication. Thus, the total number of rounds is O(log log�)
rounds if the first round is skipped and O(log⇤ n + log log(�1)) = O(log log log n)
otherwise.

Phase 1. Suppose � �
p
log n. Each vertex u is identified with the set Au =

{ID(v) | {v, u} 2 E} having size �. For each {u, v} 2 E we reduce SetIntersection to
EqualityTesting by applying Theorem 1, then run the two-party EqualityTesting proto-
col of Theorem 4, with k = max{�, log n}, r = log⇤ n, and E = r

�1
k
1�1/r. (That is,

if � < log n we imagine padding each set to size log n with dummy elements.) One
undesirable property of this protocol is that it can fail “silently” if the preconditions
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of Lemma 4.1 are not met. When the Hamming distance between two strings exceeds
the threshold d, Bob generates a garbage string x

0 6= x but fails to detect this. To
rectify this problem, we change the Lemma 4.1 protocol slightly: Alice sends the color
�(x) of her string, as well as an O(log n)-bit hash h(x). Bob reconstructs x0 as usual
and terminates the protocol if h(x) 6= h(x0). Clearly the probability of an undetected
failure (i.e., x 6= x

0 but h(x) = h(x0)) is 1/ poly(n). Define G1 = (V,E1) such that
{u, v} 2 E1 i↵ the SetIntersection protocol over {u, v} detected a failure. In other
words, with high probability, all triangles in G have been discovered, except for those
contained entirely inside G1. The probability that any particular edge appears in

E1 is 2�E = 2�k
1�1/ log

⇤ n
/ log⇤

n and independent of all other edges. In particular, if
� � (log n)1+1/ log⇤

n, then no errors occur, with probability 1 � 1/ poly(n). Define
�1 to be the maximum degree in G1. Thus,

Pr
⇥
�1 � (log n)2✏

⇤

 n ·
✓

�

(log n)2✏

◆
·
�
2�E

�(logn)2✏

✏ = 1/r = 1/ log⇤ n

 n · exp
�
O((log n)2✏ log log n) � ✏(log n)1�✏ · (log n)2✏

�

 1/ poly(n).

Phases 2 and above. Suppose that at some round, we have detected all triangles
except for those contained in some subgraph G

0 = (V,E0) having maximum degree
�0

<
p
log n. Express �0 as (log n)� , where � < 1/2. We execute the EqualityTesting

protocol of Theorem 9 with k = �0, r = 2, and E = C(log n)1��/2 for a su�ciently
large constant C. Note that 1 � �/2 > �, so E > k, as required by Theorem 9. The
protocol takes O(Ek

1/2
/ log n+ r) = O(1) rounds since the communication volume is

O(Ek
1/2) = O(log n) and r = 2. Let G

00 be the subgraph of G0 consisting of edges
whose protocols detected a failure and �00 be the maximum degree in G

00. Once again,

Pr
h
�00 � (log n)�/2

i

 n ·
✓

�0

(log n)�/2

◆
·
�
2�E

�(logn)�/2

 n · exp
⇣
O((log n)�/2 log log n) � C(log n)1��/2 · (log n)�/2

⌘

 1/ poly(n).

Thus, once � 
p
log n, log log�  log log log n� 1 of these two-round phases su�ce

to find all remaining triangles in G.

Theorem 13 depends critically on the duality between edges and SetIntersection

instances and between edge endpoints and elements of sets. In particular, when an
execution of a SetIntersection over {u, v} is successful, this e↵ectively removes {u, v}
from the graph, thereby removing many occurrences of ID(u) and ID(v) from adjacent
sets.

Consider a slightly more general situation where we have a graph of arboricity
� (but unbounded �), witnessed by a given acyclic orientation having out-degree at
most �. Redefine the set Au to be the set of out-neighbors of u.

Au = {ID(v) | {u, v} 2 E with orientation u! v}.

By definition |Au|  �. Because the orientation is acyclic, every triangle on {x, y, z}
is (up to renaming) oriented as x! y, x! z, y ! z. Thus, it will only be detectable
by the SetIntersection instance associated with {x, y}.
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Theorem 14. Let G = (V,E) be a CONGEST network equipped with an acyclic
orientation with out-degree at most �. We can solve local triangle enumeration on G

in O(�/ log n+ log �) time.

Proof. We apply Theorem 1 to reduce each SetIntersection instance to an Equal-

ityTesting instance, then apply Theorem 6 with E = ⇥(log n) and r = log � to solve
each with O(� + E�

1/r) = O(� + E) communication in O((� + E)/ log n + r) =
O(�/ log n+ log �) time. Note that the dependence on � here is exponentially worse
than the dependence on � in Theorem 13.

It may be that G is known to have arboricity �, but an acyclic orientation is
unavailable. The well-known “peeling algorithm” (see [16] or [4]) computes a C�

orientation in O(logC n) time for C su�ciently large, say, C � 3. Using this algorithm
as a preprocessing step, we can solve local triangle enumeration optimally when � =
⌦(log2 n).

Theorem 15. Let G = (V,E) be a CONGEST network having arboricity � (with
no upper bound on �). Local triangle enumeration can be solved in optimal O(�/ log n)
time when � = ⌦(log2 n) and sublogarithmic time O(log n/ log(log2 n/�)) otherwise.

Proof. The algorithm computes a � · � orientation in O(log� n) time and then
applies Theorem 14 to solve local triangle enumeration in O(��/ log n + log(��))
time. The only question is how to set �. If � = ⌦(log2 n) we set � = 3, making the
total time O(�/ log n), which is optimal [29]. Otherwise we choose � to balance the
log� n and ��/ log n terms, so that

� log � = log2 n/�.

Thus, the total running time is slightly sublogarithmic O(log n/ log(log2 n/�)). Specif-
ically, it is O(log n/ log log n) whenever � < log2�✏

n.

6. Conclusions and open problems. We have established a new three-way
trade-o↵ between rounds, communication, and error probability for many fundamental
problems in communication complexity such as SetDisjointness and EqualityTesting.
Our lower bound is largely incomparable to the round-communication lower bounds
of [41, 11] and stylistically very di↵erent from both [41] and [11]. We believe that our
method can be extended to recover Sağlam and Tardos’s [41] trade-o↵ (in the constant
error probability regime), but with a more “direct” proof that avoids some technical
di�culties arising from their round-elimination technique. It is still open whether
EqualityTesting can be solved in r rounds with precisely O(Ek

1/r) communication
and error probability 2�E

< 2�k. Our algorithms match this lower bound only when
r = O(1) or r = ⌦(log k), or for any r when solving the easier ExistsEqual problem.

We developed some CONGEST algorithms for triangle enumeration that employ
two-party SetIntersection protocols. It is known that this strategy is suboptimal
when � � n

1/3 [13, 14]. However, for the local triangle enumeration problem,8 our
O(�/ log n+ log log�) algorithm is optimal [29] for every � = ⌦(log n log log log n).
Whether there are faster algorithms for triangle detection9 is an intriguing open prob-
lem. It is known that one-round LOCAL algorithms must send messages of ⌦(� log n)
bits deterministically [1] or ⌦(�) bits randomized [23]. Even for two-round triangle
detection algorithms, there are no nontrivial communication lower bounds known.

8Every triangle must be reported by one of its three constituent vertices.
9At least one vertex must announce there is a triangle; there is no obligation to list them all.
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Appendix A. Reductions and near equivalences. Brody et al. [11] proved
that SetIntersection on sets of size k is reducible to EqualityTesting on vectors of length
O(k), at the cost of one round and O(k) bits of communication. However, the reduc-
tion is randomized and fails with probability at least exp(�Õ(

p
k)). This is the

probability that when k balls are thrown uniformly at random into k bins, some bin
contains !(

p
k) balls.

Recall the statement of Theorem 1:

Eq(k, r, perr)  SetInt(k, r, perr), SetInt(k, r + 1, perr)  Eq(k, r, perr) + ⇣,

9Eq(k, r, perr)  SetDisj(k, r, perr), SetDisj(k, r + 1, perr)  9Eq(k, r, perr) + ⇣,

where ⇣ = O(k + log log p�1
err). In other words, under any error regime perr, the

communication complexity of SetIntersection and EqualityTesting is the same, up to one
round and O(k+ log log p�1

err) bits of communication, and the same relationship holds
between SetDisjointness and ExistsEqual. The proof is inspired by the probabilistic
reduction of Brody et al. [11] but uses succinct encodings of perfect hash functions
rather than random hash functions.

Proof of Theorem 1. The leftmost inequalities have been observed before [41, 11].
Given inputs x, y to ExistsEqual or EqualityTesting, Alice and Bob generate sets A =
{(1, x1), . . . , (k, xk)} and B = {(1, y1), . . . , (k, yk)} before the first round of communi-
cation and then proceed to solve SetIntersection or SetDisjointness on (A,B). Knowing
A \ B or whether A \ B = ; clearly allows them to determine the correct output of
EqualityTesting or ExistsEqual on (x, y).

The reverse direction is slightly more complicated. Let (A,B) be the instance of
SetIntersection or SetDisjointness over a universe U with size at most |U | = O(k2/perr).
Alice examines her set A, and picks a perfect hash function h : U 7! [k] for A, i.e.,
h is injective on A. (This can be done in O(k) time, in expectation, using only
private randomness. In principle Alice could do this step deterministically, given
su�cient time.) Most importantly, h can be described using O(k+log log |U |) = O(k+
log log p�1

err) bits [42], using a variant of the Fredman–Komlós–Szemerédi [24] two-level
perfect hashing scheme.10 Alice sends the O(k + log log p�1

err)-bit description of h to
Bob. Bob calculates Bj = B \ h

�1(j) and responds to Alice with the distribution
|B0|, |B1|, . . . , |Bk�1|, which takes at most 2k bits. They can now generate an instance
of equality testing where the k equality tests are the pairs A0⇥B0, A1⇥B1, . . . , Ak�1⇥
Bk�1. By construction, Aj = A \ h

�1(j) is a one-element set. There is clearly a 1-1

10We sketch how the encoding of h works, for completeness. First, pick a function h
0 : U 7! [O(k2)]

that is collision-free on A. Fredman, Komlós, and Szemerédi [24] proved that a function of the form
h
0(x) = (ax mod p) mod O(k2) works with constant probability, where p = ⌦(k2 log |U |) is prime

and a 2 [0, p) is random. Pick another function h⇤ : [O(k2)] 7! [k] that has at most twice the expected

number of collisions on A, namely 2 ·
�
k

2

�
/k < k, and partition A into k buckets Aj = A\h

�1
⇤ (j). The

sizes |A0|, |A1|, . . . , |Ak�1| can be encoded with 2k bits. We now pick O(log k) pairwise independent
hash functions h1, h2, . . . , hO(log k) : [O(k2)] 7! [O(k2)]. For each bucket Aj , we define h(j) to be the

function with the minimum i for which h(j)(x) = hi(x) mod |Aj |2 is injective on Aj . In order to
encode which function h(j) is (given that h1, . . . , hO(log k) are fixed and that |Aj | is known), we simply

need to write i in unary, i.e., using the bit-string 0i�11. This takes less than 2 bits per j in expectation
since each hi is collision-free on Aj with probability at least 1/2. Combining h

0
, h⇤, |A0|, . . . , |Ak�1|

and h(0), . . . , h(k�1) into a single injective function from U 7! [O(k)] is straightforward and done
exactly as in [24]. By marking which elements in this range are actually used (O(k) more bits),
we can generate the perfect h : U 7! [k] whose range has size precisely k. Encoding h

0 takes
O(log k+ log log |U |) bits and encoding h⇤ takes O(log k) bits. The distribution |A0|, . . . , |Ak�1| can
be encoded with 2k bits. The functions h1, . . . , hO(log k) can be encoded in O(log2 k) bits and the
functions h(0), . . . , h(k�1) with less than 2k bits in expectation.
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correspondence between equal pairs and elements in A \B. We have Bob speak first
in the EqualityTesting/ExistsEqual protocol; thus, the overhead for this reduction is
just one round of communication and O(k + log log p�1

err) bits.

Appendix B. Section 3 proofs.

B.1. Proof of Lemma 3.1.

Proof of Lemma 3.1. Let X be the whole universe. From our assumptions, the
entropy of q can be lower bounded as

H(q) =
X

x2X
q(x) log

1

q(x)

and since
P

x2X q(x) = 1, this is

=
1

↵

X

x2X
↵q(x) log

1

↵q(x)
+ log↵

� 1

↵

X

x2X


p(x) log

1

p(x)
� (p(x)� ↵q(x)) log

1

p(x)� ↵q(x)

�
+ log↵.

The previous step follows from Assumption 2 and the fact that x log x�1+y log y�1 �
(x+ y) log(x+ y)�1 for any x, y � 0. Continuing, by Assumption 1,

� 1

↵

"
s� g �

X

x2X
(p(x)� ↵q(x)) log

1

p(x)� ↵q(x)

#
+ log↵,

and by the concavity of logarithm,

� 1

↵


s� g � (1� ↵) log

2s

1� ↵

�
+ log↵

= s� g

↵
+

1� ↵

↵
log(1� ↵) + log↵ = s� g

↵
� H(↵)

↵
.

B.2. Proof of Lemma 3.2. Recall the Kullback–Leibler divergence (also known

as relative entropy) is defined to be DKL(qkp) =
P

x
q(x) log q(x)

p(x) , where supp(q) ✓
supp(p). That is, it is the expected value of log q(x)

p(x) when x ⇠ q. This lemma bounds

the probability that log q(x)
p(x) deviates too far from its expectation. It is syntactically

similar to Markov’s inequality, but note that Markov’s inequality is inapplicable as
log q(x)

p(x) is not nonnegative.

Proof of Lemma 3.2. Define X0 to be

X0 = {x 2 supp(q) | q(x)/p(x)  2g1/↵+g2�(1�↵) log(1�↵)/↵}

and X1 = supp(q) \ X0. Suppose, for the purpose of obtaining a contradiction, that
the conclusion of the lemma is false, i.e., q(X1) = ↵0, for some ↵0 > ↵. Notice that
for each value x 2 X1, Assumption 2 implies that

(B.1) q(x) > p(x) · 2g1/↵+g2�(1�↵) log(1�↵)/↵ � 2�s+g1/↵�(1�↵) log(1�↵)/↵
.
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Then we can upper bound the entropy of q as follows:

H(q) =
X

x2X0

q(x) log
1

q(x)
+
X

x2X1

q(x) log
1

q(x)

<

X

x2X0

q(x) log
1

q(x)
+ ↵0


s� g1

↵
+

1� ↵

↵
log(1� ↵)

�
;

the previous step follows from (B.1). By the concavity of logarithm, this is

 (1� ↵0) log
2s

1� ↵0
+ ↵0


s� g1

↵
+

1� ↵

↵
log(1� ↵)

�

= s� ↵0

↵
· g1 + ↵0


1� ↵

↵
log(1� ↵)� 1� ↵0

↵0
log(1� ↵0)

�

< s� g1,

where the last step follows from the monotonicity of (1 � ↵) log(1 � ↵)/↵. This
contradicts Assumption 1.
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[30] R. Jain, A. Pereszlényi, and P. Yao, A direct product theorem for two-party bounded-round
public-coin communication complexity, Algorithmica, 76 (2016), pp. 720–748, https://doi.
org/10.1007/s00453-015-0100-0.

[31] B. Kalyanasundaram and G. Schnitger, The probabilistic communication complexity of set
intersection, SIAM J. Discrete Math., 5 (1992), pp. 545–557, https://doi.org/10.1137/
0405044.

[32] H. Klauck, A strong direct product theorem for disjointness, in Proceedings of the 42nd ACM
Symposium on Theory of Computing (STOC), 2010, pp. 77–86, https://doi.org/10.1145/
1806689.1806702.

[33] J. H. Korhonen and J. Rybicki, Deterministic subgraph detection in broadcast CONGEST,
in Proceedings of the 21st International Conference on Principles of Distributed Systems
(OPODIS), LIPIcs Leibniz Int. Proc. Inform. 95, Schloss Dagstuhl Leibniz-Zentrum Infor-
matik, Wadern, 2018, pp. 4:1–4:16.

[34] E. Kushilevitz and N. Nisan, Communication Complexity, Cambridge University Press, Cam-
bridge, UK, 1997.

[35] L. Lovasz, Communication Complexity: A Survey, Technical Report TR-204-89, Computer
Science Department, Princeton University, Princeton, NJ, 1989.

D
ow

nl
oa

de
d 

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1145/3293611.3331618
https://doi.org/10.1145/3293611.3331618
https://doi.org/10.1145/1855118.1855133
https://doi.org/10.1007/978-3-642-32512-0_44
https://doi.org/10.1137/S0097539792235864
https://doi.org/10.1145/100216.100230
https://doi.org/10.1145/3210377.3210401
https://doi.org/10.1145/3210377.3210401
https://doi.org/10.1145/828.1884
https://doi.org/10.1007/s00037-018-0166-6
https://doi.org/10.4086/toc.2016.v012a009
https://doi.org/10.4086/toc.2007.v003a011
https://doi.org/10.1145/3087801.3087811
https://doi.org/10.1007/s00453-015-0100-0
https://doi.org/10.1007/s00453-015-0100-0
https://doi.org/10.1137/0405044
https://doi.org/10.1137/0405044
https://doi.org/10.1145/1806689.1806702
https://doi.org/10.1145/1806689.1806702


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMMUNICATION COMPLEXITY OF EQUALITY TESTING 717

[36] K. Mehlhorn and E. M. Schmidt, Las Vegas is better than determinism in VLSI and dis-
tributed computing, in Proceedings of the 14th Annual ACM Symposium on Theory of
Computing (STOC), 1982, pp. 330–337, https://doi.org/10.1145/800070.802208.

[37] V. Nikishkin, Amortized communication complexity of an equality predicate, in Proceedings
of the 8th International Computer Science Symposium in Russia (CSR), Lecture Notes
in Comput. Sci. 7913, Springer, New York, 2013, pp. 212–223, https://doi.org/10.1007/
978-3-642-38536-0 19.

[38] A. Rao and A. Yehudayoff, Communication Complexity, unpublished manuscript.
[39] A. A. Razborov, On the distributional complexity of disjointness, Theoret. Comput. Sci., 106

(1992), pp. 385–390, https://doi.org/10.1016/0304-3975(92)90260-M.
[40] T. Roughgarden, Communication complexity (for algorithm designers), Found. Trends

Theoret. Comput. Sci., 11 (2016), pp. 217–404, https://doi.org/10.1561/0400000076.
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