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Abstract. In this paper we explore fundamental problems in randomized communication com-
plexity such as computing Setlntersection on sets of size k and EqualityTesting between vectors of
length k. Saglam and Tardos [Proceedings of the 54th Annual IEEE Symposium on Foundations
of Computer Science, 2013, pp. 678-687] and Brody et al. [Algorithmica, 76 (2016), pp. 796-845]
showed that for these types of problems, one can achieve optimal communication volume of O(k)
bits, with a randomized protocol that takes O(log* k) rounds. They also proved that this is one
point along the optimal round-communication trade-off curve. Aside from rounds and communica-
tion volume, there is a third parameter of interest, namely the error probability perr, which we write
2~ F Tt is straightforward to show that protocols for SetIntersection or EqualityTesting need to send
at least Q(k 4+ E) bits, regardless of the number of rounds. Is it possible to simultaneously achieve
optimality in all three parameters, namely O(k + E) communication and O(log* k) rounds? In this
paper we prove that there is no universally optimal algorithm, and we complement the existing
round-communication trade-offs [M. Saglam and G. Tardos, Proceedings of the 54th Annual IEEE
Symposium on Foundations of Computer Science, 2013, pp. 678—687; J. Brody et al., Algorithmica,
76 (2016), pp. 796-845] with a new trade-off between rounds, communication, and probability of
error. In particular, any protocol for solving multiple Equality Testing in 7 rounds with failure proba-
bility perr = 2~ F has communication volume Q(Ekl/r). We present several algorithms for multiple
EqualityTesting (and its variants) that match or nearly match our lower bound and the lower bound
of [M. Saglam and G. Tardos, Proceedings of the 54th Annual IEEE Symposium on Foundations
of Computer Science, 2013, pp. 678-687; J. Brody et al., Algorithmica, 76 (2016), pp. 796-845].
Lower bounds on EqualityTesting extend to SetlIntersection for every r, k, and perr (which is trivial);
in the reverse direction, we prove that upper bounds on EqualityTesting for r, k, perr imply similar
upper bounds on Setlntersection with parameters r + 1,k, and perr. Our original motivation for
considering perr as an independent parameter came from the problem of enumerating triangles in
distributed (CONGEST) networks having maximum degree A. We prove that this problem can be
solved in O(A/logn+loglog A) time with high probability 1 —1/poly(n). This beats the trivial (de-
terministic) O(A)-time algorithm and is superior to the O(n!/3) algorithm of [Y. Chang, S. Pettie,
and H. Zhang, Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms,
2019, pp. 821-840; Y. Chang and T. Saranurak, Proceedings of the ACM Symposium on Principles
of Distributed Computing, 2019, pp. 66-73] when A = O(n!/3).
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1. Introduction. Communication complexity was defined by Yao [45] in 1979
and has become an indispensible tool for proving lower bounds in models of compu-
tation in which the notions of parties and communication are not direct. See, e.g.,
books and monographs [40, 38, 34] and surveys [15, 35] on the subject. In this paper
we consider some of the most fundamental and well-studied problems in this model,
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such as SetDisjointness, SetIntersection, ExistsEqual, and Equality Testing. Let us briefly

define these problems formally since the terminology is not completely standard.

SetDisjointness and Setlntersection. In the SetDisjointness problem Alice and Bob
receive sets A C U and B C U where |A], |B| < k and must determine whether
AN B = (. Define SetDisj(k, 7, perr) to be the minimum communication
complexity of an r-round randomized protocol for this problem that errs with
probability at most pe,. We can assume that |U| = O(k?/perr) without loss
of generality.! The input to the Setlntersection problem is the same, except
that the parties must report the entire set A N B. Define SetInt(k,r, perr)
to be the minimum communication complexity of an r-round protocol for
Setlntersection.

Equality Testing and ExistsEqual. In the EqualityTesting problem Alice and Bob hold
vectors x € U* and y € UF and must determine, for each index i € [k],
whether x; = y; or x; # y;. A potentially easier version of the problem,
ExistsEqual (aka BlockEquality and OR-Equality [11, 26]), is to determine if
there exists at least one index i € [k] for which xz; = y;. Define Eq(k, 7, perr)
to be the randomized communication complexity of any r-round protocol
for EqualityTesting that errs with probability per, and JEq(k, T, perr) the
corresponding complexity of ExistsEqual. Once again, we can assume that
|U| = O(k/perr) without loss of generality.

Mehlhorn and Schmidt [36] proved that the deterministic complexity of Exists-
Equal is Q(klogU), and in fact the trivial one-round algorithm is optimal for all four
problems [34]. Thus, researchers have focused on the randomized communication
complexity of these problems [28, 39, 31, 21, 18, 37, 12, 41, 11, 6, 27]. Most prior
work analyzed the relationship between round complexity and communication volume
and either treated pe,, as a constant or dependent on k (e.g., 1/ poly(k)) or considered
the regime when pey = 1/2 — € is close to chance guessing [6, 27]. In this paper we
view perr = 27F as independent of k and close to zero.

History. Hastad and Wigderson [28] gave an O(logk)-round protocol for
SetDisjointness in which Alice and Bob communicate O(k) bits, which matched an
Q(k) lower bound of Kalyanasundaram and Schnitger [31]; see also [39, 12, 18]. Feder
et al. [21] proved that EqualityTesting can be solved with O(k) communication by an
O(Vk)-round protocol that errs with probability exp(—+v/k). Nikishkin [37] later im-
proved their round complexity and error probability to log k and exp(—k/ polylog(k)),
respectively. Improving [28], Saglam and Tardos [41] gave an r-round protocol for
SetDisjointness that uses O(klog(r) k) communication, where log(r) is the r-fold it-
erated logarithm function. For r = log* k the error probability of this protocol is
exp(—v'k), coincidentally matching [21]. In independent work, Brody et al. [11] gave
r-round and O(r)-round protocols for ExistsEqual and Setlntersection, respectively,
that use O(klog!" k) communication and err with probability 1/ poly(k).

Saglam and Tardos [41] were the first to show that this O(klog™ k) round ver-
sus communication trade-off is optimal, using a combinatorial round-elimination tech-
nique. In particular, this lower bound even applies to an ExistsEqual protocol with con-
stant error probability. Independently, Brody et al. [10, 11] established the same lower
bound trade-off for ExistsEqual, assuming the error probability is at most 1/ poly(k).
Brody et al. [11] also introduced a randomized reduction from Setlntersection to

1Before the first round of communication, pick a pairwise independent h : U + [O(k?/perr)]
and check whether h(A) N h(B) = 0 with error probability perr/2. Thus, having SetDisj depend
additionally on |U| is somewhat redundant, at least when |U| is large.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/01/21 to 35.3.105.140 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

676 D. HUANG, S. PETTIE, Y. ZHANG, AND Z. ZHANG

TABLE 1
Upper and lower bounds on SetDisjointness, Setlntersection, Equality Testing, and ExistsEqual.
Via trivial reductions, lower bounds on ExistsEqual extend to all four problems, and upper bounds on
Setintersection extend to all four problems. From Theorem 1, the upper bounds on SetIntersection and
SetDisjointness follow from those of Equality Testing and ExistsEqual, respectively, +1 round of com-
munication. The log-star function is defined as log*(z) = min{i : log(¥ (z) < 1}, e.g., log*(k/E) =0
if B> k.

Problem ‘ Commun. ‘ Rounds ‘ Error Prob. ‘ Notes

EqualityTesting | O(k) O(Vk) exp(—Vk) [21]

EqualityTesting | O(k) log k exp (7 m) 37]

SetDisjointness O(k) O(log k) Constant [28]

SetDisjointness O(klog(") k) r > exp(—Vk) [41]
_Bdstsqual | 54 10() k) r 1/ poly (k) [11]

Setlntersection O(r)

ExistsEqual O(k + EEY/T) r + log*(k/E)

SetDisjointness

Equality Testing O(k + EkY/T. logr | 4 4 log*(k/E) [+1] 2—FE new

and + Erlogr)

[Setlntersection] | O(k + E) log k

Lower Bounds

SetDisjointness Q(Vk) 00 Constant 2]

SetDisjointness Q(k) 00 Constant [31]

SetDisjointness Q(ek) 9] 1/2 —¢€ [6, 27]

ExistsEqual Q(klog™ k) r Constant [41]

ExistsEqual Q(klog(™ k) r 1/ poly (k) [11]

ExistsEqual Q(EEYT) r 2-F new

Equality Testing, which errs with probability exp(—O(vk)), i.e., it cannot be applied
when the desired total error probability pe,, is sufficiently small.

One consequence of [31] is that solving SetDisjointness with success probability
1/2 + € (i.e., slightly better than chance) requires (e?n) communication. Braverman
and Moitra [6] improved this to Q(en). See Géos and Watson [27] for a generalized
form of this lower bound.

Related work. EqualityTesting is the problem of simultaneously solving k indepen-
dent instances of equality, which fits within the direct sum/direct product framework
of many results in communication complexity. However, the existing results on di-
rect sums and amortized communication complexity are largely inapplicable to our
setting. Braverman and Rao [7] and Braverman [5] bound the amortized communica-
tion cost of a problem in terms of its information cost (O(1) in the case of equality).
However, their error parameter p is fixed (as k — o0) and reflects the probability
that the protocol errs on each individual coordinate. It does not seem possible to
extend these results to variable p = p(k); see [5, Remark 6.2] and [43, Remark 3.3].
See [21, 3] for general lower bounds on direct sum problems. Direct product theo-
rems are typically of the following form. If a protocol has success probability at most
2/3 using communication C, then solving n independent instances with Cn commu-
nication has success probability exponentially small in n. See Klauck [32] for such
a direct product theorem specifically for SetDisjointness. See Braverman et al. [8]
for a weaker (C'y/n) lower bound applicable to any function and Jain, Pereszlényi,
and Yao [30] for a bounded-round direct product theorem applicable to any func-
tion. These results do not imply any new lower bounds on EqualityTesting or related
problems.
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1.1. Contributions. First, we observe that a simple deterministic reduction
shows that, up to one round of communication, SetIntersection is equivalent to Equal-
ity Testing for any pe.,, and SetDisjointness is equivalent to ExistsEqual for any pe;.
Theorem 1 is proved in Appendix A; it is inspired by the randomized reduction of
Brody et al. [11].

THEOREM 1. For any parameters k > 1,7 > 1, and pere = 27 F, it holds that

Eq(k, 7, perr) < Setint(k, 7, perr), SetInt(k, 7 + 1, perr) < Eq(k, 7, Perr) + ¢,
3Eq(k, 7, perr) < SetDisj(k, 7, perr),  SetDisj(k, 7 + 1, pere) < 3EQq(F, 7, perr) + €,

where ( = O(k + log E).

Second, we prove that in any of the four problems, it is impossible to simultane-
ously achieve communication volume O(k + E) in O(log™ k) rounds for all k, peyy =
27F. Specifically, any r-round protocol needs Q(Ek'/") communication. Whereas
the implication of [41, 11] is that optimal O(k) communication is possible only with
Q(log™ k) rounds, the implication of our work is that optimal communication O(k+ E)
is possible only with Q(log k) rounds, whenever E > k.

We complement our lower bounds with matching or nearly matching upper bounds.
First, we show that in any EqualityTesting/ExistsEqual instance with F < k, one can,
with probability 1 — 2=9() reduce the effective number of coordinates to E using
O(k) communication and log*(k/FE) rounds. Thus, we can simplify the following
discussion by assuming that £ > k.

We give four distinct protocols, the first of which solves EqualityTesting with
O(rEkY") communication, which is optimal whenever r = O(1). The remaining
three protocols attempt to get rid of this extraneous r factor in different situations.
Our second protocol shows that it is possible to achieve O(Ek;l/ ™) complexity, but
for the slightly simpler problem of ExistsEqual. Our third protocol shows that with
O(r) rounds (instead of r rounds) it is possible to achieve O(Ek'/") communication.
In particular, absolutely optimal communication O(F) is possible with logk = O(r)
rounds.

Our first three protocols show that the optimal round-communication-error trade-
off for EqualityTesting can be achieved whenever » = O(1) or r = Q(logk), or
for any r in the case of ExistsEqual. The remaining problem (EqualityTesting in
r rounds, r between w(1l) and o(logk)) seems to be quite difficult. Our fourth
protocol solves Equality Testing with O(Ekl/T logr 4+ Erlogr) communication, which
for r € [1,logk/loglogk] is dominated by the first term and therefore within a
logr < loglogk factor of optimal. A close study of our second and fourth proto-
cols reveals a key distinction between Equality Testing from ExistsEqual, which is only
relevant when the probability of error is quite small (e.g., E > k). It is plausible that
EqualityTesting is asymptotically harder than ExistsEqual for many values of r and,
for similar reasons, that Setlntersection is asymptotically harder than SetDisjointness.

Our original interest in Setlntersection came from distributed subgraph detection
in CONGEST? networks, which has garnered significant interest in recent years [14,
13,29, 1, 19, 33, 23, 17, 25]. Izumi and LeGall [29] proved that triangle enumeration®

2In the CONGEST model there is a graph G = (V, E) whose vertices are identified with processors
and whose edges represent bidirectional communication links. Each vertex v does not know G
and is only initially aware of an O(logn)-bit ID(v), deg(v), and global parameters n > |V| and
A > maxy ey deg(u). Communication proceeds in synchronized rounds; in each round, each processor
can send a (different) O(logn)-bit message to each of its neighbors.

3Every triangle (3-cycle) in G must be reported by some vertex.
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requires Q(n'/?/logn) rounds in the CONGEST model and further showed that local
triangle enumeration® requires Q(A/logn) rounds in CONGEST, which can be as
large as Q(n/logn).

The most natural way to solve (local) triangle enumeration is, for every edge
{u,v} € E(G), to have u and v run a two-party Setlntersection protocol in which
they compute N(u) N N(v), where N(u) = {ID(x) | {u,z} € E(G)} and ID(z) €
{0,1}°90°gn) i5 2’s unique identifier. Any r-round protocol with communication vol-
ume O(A) can be simulated in CONGEST in O(A/logn + r) rounds since the mes-
sage size is O(logn) bits. However, to guarantee a global probability of success at
least 1 — 1/ poly(n), the failure probability of each SetIntersection instance must be
Perr = 27F, E = O(logn), which is independent of A. Our communication com-
plexity lower bound suggests that to achieve this error probability, we would need
Q((A 4 EAY7)/logn +r) CONGEST rounds, i.e., with » = log A we should not be
able to do better than O(A/logn + log A). We prove that (local) triangle enumera-
tion can actually be solved ezponentially faster, in O(A/logn + loglog A) CONGEST
rounds, without necessarily solving every Setlntersection instance.

Organization. The proof of Theorem 1 on the near-equivalence of Setlntersection/
SetDisjointness and Equality Testing/ExistsEqual appears in Appendix A. Section 2 re-
views concepts from information theory and communication complexity. In section 3
we present new lower bounds for both Equality Testing and ExistsEqual that incorpo-
rate rounds, communication, and error probability. Section 4 presents nearly matching
upper bounds for EqualityTesting and ExistsEqual, and section 5 applies them to the
distributed triangle enumeration problem. We conclude with some open problems in
section 6.

2. Preliminaries.

2.1. Notational conventions. The set of positive integers at most ¢ is denoted
[t]. Random variables are typically written as capital letters (X,Y, M, etc.) and the
values they take on are lower case (x,y, m, etc.). The letters p, q, 4, D are reserved for
probability mass functions (p.m.f.). For example, D(z) denotes the probability that
X = x whenever X ~ D. The support supp(D) of a distribution D is the set of all
for which D(z) > 0. If X C supp(D), D(X) = >, .+ D(x).

Many of our random variables are vectors. If x is a k-dimensional vector and
I C [k], =1 is the projection of x onto the coordinates in I and w; is short for z;.
Similarly, if D is the p.m.f. of a k-dimensional random variable, D is the marginal
distribution of D on the index set I C [k].

Throughout the paper, log and exp are the base-2 logarithm and exponential
functions, and log(r) and exp(™ their r-fold iterated versions:

log(o)(x) = exp(o) (x) ==,
log(r)(ac) = log(log(r_l)(x)),
exp(™ (z) = exp(exp" Y (x)).

The log-star function is defined to be log*(z) = min{r | log () < 1}. In particular,
log*(z) =0if 2 < 1.

4Every triangle in G must be reported by at least one of the three constituent vertices. Izumi
and LeGall [29] only stated the Q(n/logn) lower bound but it can also be expressed in terms of A.
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2.2. Information theory. The most fundamental concept in information the-
ory is Shannon entropy. The Shannon entropy of a discrete random variable X is
defined as

H(X)=- Y  Pr[X=a]logPr[X =a].
zesupp(X)
Since there may be cases in which different distributions are defined for the “same”
random variable, we use H(p) in place of H(X) if X is drawn from a p.m.f. p. We also
write H(a), o € (0, 1), to be the entropy of a Bernoulli random variable with success
probability «. In general, we freely use a random variable and its p.m.f. interchange-
ably.
The joint entropy H(X,Y) of two random variables X and Y is simply

HX,YV)=- Y > PrX=zAY =yllogPr[X =z AY =y].
zesupp(X) yesupp(Y)

This notion can be easily extended to cases of more than two random variables. Here,
we state a well-known fact about joint entropy.

Fact 2.1. For any random variables X1, Xa,...,Xn,, their joint entropy is at
most the sum of their individual entropies, i.e., H(Xq, Xo,...,X,) <> 0 H(X;).

The conditional entropy of Y conditioned on another random variable X, de-
noted H(Y | X), measures the expected amount of extra information required to fully
describe Y if X is known. It is defined to be

HY | X)

=H(X,Y) - H(X)

=— Z Pr[X = z] Z PrlY =y | X = a]logPr[Y =y | X = z]
zesupp(X) y€supp(Y)

=0,

which can be viewed as a weighted sum of entropies of a number of conditional dis-
tributions.

Finally, the mutual information I(X ; Y') between two random variables X and
Y quantifies the amount of information that is revealed about one random variable
through knowing the other one:

I(X;Y)
= H(X) - H(X | V)

=HX)+ Y. PrY=y] >  PrX==z|Y =y]logPr[X =2|Y =y
y€supp(Y) zEsupp(X)

2.3. Communication complexity. Let f(x,y) be a function over domain X’ x
Y, and consider any two-party communication protocol Q(z,y) that computes f(z,y),
where one party holds x and the other holds y. The transcript of @ on (x,y) is defined
to be the concatenation of all messages exchanged by the two parties, in order, as they
execute on input (z,y). The receiver of the last message outputs the answer, which
is denoted Q(x,y). The communication cost of @ is the maximum transcript length
produced by @Q over all possible inputs.

Let Qg be a deterministic protocol for f and suppose p is a distribution over
X x Y. The distributional error probability of Qg with respect to p is the probability
Prpyyoul@d(z,y) # f(z,y)]. Forany 0 < e < 1, the (i, €)-distributional deterministic
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communication complexity of the function f is the minimum communication cost of
any protocol @4 that has distributional error probability at most € with respect to u.

A randomized protocol Q- (z,y, w) also takes a public random string w ~ W as in-
put. The error probability of @, is calculated as max(, y)cxxy Pro~w[@r(z,y, w) #
f(z,y)]. The e-randomized communication complexity of f is the minimum commu-
nication cost of @, over all protocols @, with error probability at most e.

Yao’s minimaz principle [44] is a common starting point for lower bound proofs in
randomized communication complexity. The easy direction of Yao’s minimax principle
states that the communication cost of the best deterministic protocol specific to any
particular distribution is at most the communication cost of any randomized protocol
on its worst case input.

LEMMA 2.2 (Yao’s minimax principle [44]). Let f : X x Y +— Z be the function
to be computed. Let D, .(f) be the (u,€)-distributional deterministic communication
complezity of f, and let Rc(f) be the e-randomized communication complexity of f.
Then for any 0 < e < 1/2,

mI?XDM@(f) < Re(f)'

Therefore, to show a lower bound on the e-randomized communication complexity
of a function f, it suffices to find a hard distribution g on the input set and prove
a lower bound for the communication cost of any deterministic protocol that has
distributional error probability at most € with respect to p.

In this paper we consider randomized protocols for Equality Testing, ExistsEqual,
Setlntersection, and SetDisjointness. The receiver of the last message issues the output,
which is a single bit in the case of the second and fourth problems, a vector in {=, #}*
in the case of EqualityTesting, and the set A N B in the case of Setlntersection. A
protocol errs if any portion of its output is incorrect. (This is in contrast with
general direct sum theorems [7, 5], where, for example, an EqualityTesting protocol
would guarantee only that each individual component of the output vector is correct
with probability 1 — peyy.) Our lower bounds work for two-sided errors but our upper
bounds have only one-sided errors, e.g., in the case of EqualityTesting we may only

113 ”

claim that a coordinate is “=" when the true answer is “#£” and never vice versa.

3. Lower bounds on ExistsEqual and EqualityTesting. In this section we
prove lower bounds on EqualityTesting and ExistsEqual. Theorem 2 obviously follows
directly from Theorem 3, but we prove them in that order nonetheless because The-
orem 2 is a bit simpler.

THEOREM 2. Any r-round randomized protocol for Equality Testing on vectors of
length k that errs with probability pere = 2~ F requires at least Q(Ekl/r) bits of com-
munication.

THEOREM 3. Any r-round randomized protocol for ExistsEqual on vectors of length
k that errs with probability pey = 277 requires at least Q(Ekjl/r) bits of communica-
tion.

Without any constraint on the number of rounds, Equality Testing trivially requires
Q(k) communication. ExistsEqual also requires Q(k) communication, through a small
modification to the SetDisjointness lower bounds [31, 39]. Even when k = 1, we
need at least Q(F) communication to solve EqualityTesting/ExistsEqual with error
probability 27 [34]. Thus, we can assume that E = Q(k'~'/7), k'/7 = Q(1), and
hence r = O(logk). For example, some calculations later in our proof hold when
r < (logk)/6. When proving Theorem 3, we will further assume E = Q(log k) when

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/01/21 to 35.3.105.140 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COMMUNICATION COMPLEXITY OF EQUALITY TESTING 681

r = 1, which is reasonable because of Saglam and Tardos’ Q(klog'™ k) = Q(klog k)
lower bound [41].

3.1. Structure of the proof. We consider deterministic strategies for Exists-
Equal/Equality Testing when Alice and Bob pick their input vectors independently from
the uniform distribution on [¢t]¥, where t = 2°¥ and ¢ = 1/2. Although the probability
of seeing a collision in any particular coordinate is small, it is still much larger than
the tolerable error probability (since ¢ < 1), so it is incorrect to declare “#” in every
coordinate without performing any communication.

We suppose, for the purpose of obtaining a contradiction, that there is a protocol
for EqualityTesting with error probability 2~% and communication complexity ¢/ Ek'/",
where ¢/ = ¢/100. The length of the jth message is [;, which could depend on the
parameters (E,r, k, etc.) and possibly in some complicated way on the transcript of
the protocol before round j.?

Our proof must necessarily consider transcripts of the protocol that are extremely
unlikely (occurring with probability close to 27%) and also maintain a high level of
uncertainty about which coordinates of Alice’s and Bob’s vectors might be equal.
Consider the first message. Alice picks her input vector = € [t]*, which dictates the
first message m;. Suppose, for simplicity, that it betrays exactly I, /k < ¢/ EEY/71
bits of information per coordinate of x. Before Bob can respond with a message mo
he must commit to his input, say, y. Most values of y result in “good” outcomes:
nearly all nonequal coordinates get detected immediately and the effective size of the
problem is dramatically reduced. We are not interested in these values of y, only
very “bad” values. Let I; be the first '~/ coordinates (or, more generally, Ei-t/r
coordinates that m; revealed below-average information about). With probability
about (27C’Ek1/7‘71)”1| = 27<E Bob picks an input y that is completely consistent
with Alice’s on Iy, i.e., as far as he can tell y; = x; for every ¢« € I;. Rather than
sample y uniformly from [t]*, we sample it from a “hybrid” distribution: y;, is sampled
from the same distribution that m; revealed about xj, (forcing the above event to
happen with probability 1), and yp\ 7, is sampled from Bob’s former distribution (in
this case, the uniform distribution on [t]*~11]), conditioned on the value of ¥, .

This process continues round by round. Bob’s message mo betrays at most
loa/|I;| < ¢Ek?/7=1 bits of information on each coordinate of yr,, and there must
be an index set I, C I with |Is] = k'=2/7 such that, with probability around 2—c'E
it is completely consistent that zy, = yr,. Alice resamples her input so that this (rare)
event occurs with probability 1, generates mg, and continues.

At the end of this process |I.| = k'~"/" = 1, and yet Alice and Bob have revealed
less than the full cE bits of entropy about x;, and y;,. Regardless of whether they
report “=" or “#” (on I,.), they are wrong with probability greater than 2=, Are we
done? Absolutely not! The problem is that this strange process for sampling a possible
transcript of the protocol might itself only find transcripts that occur with probability
< 27F  making any conclusions we make about its (probability of) correctness moot.
Generally speaking, we need to show that Alice’s and Bob’s actions are consistent
with events that occur with probability > 27 F.

Let us first make every step of the above process a bit more formal. In reality the
inputs to Alice and Bob are fized before the first round. However, it is much more

5In the context of ExistsEqual/EqualityTesting, it is natural to think about uniform-length mes-
sages, l; = c’Ekl/T/r, or lengths that decay according to some convergent series, e.g., l; o
cEKYT /27 or 1; o< ¢! BV /52,
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useful to take the point of view of an external observer, who treats the inputs to Alice
and Bob as distributions over vectors, that evolve as messages are transmitted.

Before the jth round of communication, the sender of the jth message’s input
is drawn from a discrete distribution DU~ over [t]*. The receiver of the jth
message’s input is drawn from the distribution DU _1); For example, when
j = 1, if Alice speaks first, then her initial distribution, D(©), and Bob’s initial
distribution, D), are both uniform over [t]*.

Before the jth round of communication both parties are aware of an index
set I;_1 such that, informally, (i) the distributions D(J 11) and DIJ 71) are
very similar, and in particular, it is consistent that thelr inputs are identical
on I;_1, and (ii) the messages transmitted so far reveal “average” or below-
average information about coordinates I; ;. For example, Iy = [k]| and it
is consistent with the empty transcript that Alice’s and Bob’s inputs are
identical on every coordinate.

The jth message is a random variable M; € {0,1}%. In order to pick an
m; according to the right distribution, the sender picks an input x ~ DU-1)
which, together with the history my,...,m;_1, determines m;. The sender
transmits m; to the receiver and promptly forgets x. The sender’s new dis-
tribution (i.e., DU~Y | conditioned on M; = m;) is called D).

The distribution DY) may reveal information about the coordinates I;_y in
an irregular fashion. We find a subset I; C I;_; of coordinates, |I;| = k'=7/",

for which the amount of information revealed by D(j ) is at most average.

The receiver of m; changes his mput distribution to D( ) which is defined

©)

so that it basically agrees with D}’ ! and the marginal distribution 73[(;])\ I

conditioned on the value selected by D(] ) , is identical to D[(,i]_\}j

The reason Dg ) and Dg ) are not zdentzcal is due to two filtering steps. To

generate 5(j), we remove points from the support that have tiny (but non-
zero) probability, which may be too close to the error probability. Intuitively
these rare events necessarily represent a small fraction of the probability mass.
Second, we remove points from the support if the ratio of their probability
occurring under DY) over DU~ is too high. Intuitively, we want to conclude
that if there is a high probability of an error occurring under DY), then the
probability is also high under PU—1) (and by unrolling this further, under
D(O)). This argument works only if the ratios are what we would expect,
given how much information is being revealed about these coordinates by
m;. As a result of these two filtering steps, Dg )z 1,) and ﬁg )z 1,) differ by

at most a constant factor, for any particular vector z;, € [t]”ﬂ".

3.2. A lower bound on EqualityTesting. We begin with two general lemmas
about discrete probability distributions that play an important role in our proof.

Roughly speaking, Lemma 3.1 captures and generalizes the following intuition:
Suppose p is a high entropy distribution on some universe U and ¢ is obtained from
p by conditioning on an event X C U such that p(X) is large, say, some constant

like 1/4.

If p’s entropy is close to log |U|, then ¢’s entropy should not be much

smaller than that of p. As our proof goes on round by round, we will constantly
throw away part of the input distribution’s support to meet certain conditions. It is
Lemma 3.1 that guarantees that the input distributions continue to have relatively
high entropy.
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Lemma 3.2 comes into play because the error probability will be calculated back-
ward in a round-by-round manner. Suppose the old distribution (p) has no extremely
low probability point and the new distribution (¢) has almost full entropy. Lemma 3.2
provides us with a useful tool to transfer a lower bound on the probability of any event
w.r.t. ¢ to a lower bound on the same event w.r.t. p. It can be seen as a version of
Markov’s inequality for Kullback—Leibler divergences.

Variants of Lemmas 3.1 and 3.2 have appeared before. See, for example, [9, Claim
3.3] and [11, Lemma 3.8]. For completeness we include proofs in Appendix B.

LEMMA 3.1. Let p and q be distributions defined on a universe of size 2°. Suppose
both of the following properties are satisfied:

(1) The entropy of p is H(p) > s — g, where g € [0, s).

(2) There exists o € (0,1) such that q(xz) < p(x)/a holds for every value x €

supp(q)-
The entropy of q is lower bounded by

H(g) > s — g/a - H(a)/a.

LEMMA 3.2. Let p and q be distributions defined on a universe of size 2°. Suppose
both of the following properties are satisfied:

(1) The entropy of q is H(q) > s — g1, where g1 € [0, s).

(2) There exists g2 > 0 such that p(x) > 275792 holds for every value x € supp(q).
Then, for any « € (0,1),

pr |22 gor/ate-(-a)osti-a)/a| < 4

~q | p()
We are now ready to begin the proof of Theorem 2 proper. We sample a transcript
mi,Ma, ..., M, one message at a time. Before m; is transmitted the sender’s input

is drawn from D=1 and the receiver’s input is drawn from D=1, We assume that
at this moment the transcript satisfies Invariant 3.3 (below), which says, informally,
that the distributions DU~1 and DU—1 are very similar and that the parties do not
know much about each other’s inputs on coordinates I;_1, where |I;_;| = E1=G=nD/r,

Through round j the parties’ input distributions evolve as follows. Let p(m;) be
the probability that m; is transmitted next, conditioned on my,...,m;_;. Condi-
tioned on m;, the sender’s distribution becomes D) [m;], denoted DY) if m; is clear
from context. The receiver examines m; and then changes their distribution to be
DU) 5o that it basically matches DY) when projected onto I ; and has few very low
probability points. This will be explained in detail later.

Roadmap. Our goal is to show that there is a large set M of messages where M
depends on the transcript m1,...,m;_1 up to round j, such that after appending any
m; € M, to the transcript, DU and DY continue to satisfy Invariant 3.3. Lemma 3.4
defines a set of messages M with (M) > 1/2 whose entropy-reduction on indices
in I;_; is about what we would expect, and Lemma 3.5 shows that a subset M; C /\/l;
of those messages with pu(M;) > 1/4 allows us to find an index set I; C I;_; with
the right properties. After describing the procedure for constructing DU ), Lemma 3.6
proves that Invariant 3.3 is satisfied after round j if m; € M;. Lemma 3.7 bounds
the ratio ZS(j)(:r) /DU~ (z), repeated applications of which allow us to deduce lower
bounds on the error probability before round 1 (when the inputs are uniform in [t]¥) as
a function on the error probability after round r. Putting it all together, Lemmas 3.8
and 3.9 derive lower bounds on the error probability of Equality Testing and ExistsEqual
protocols, respectively, that use too little communication.
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INVARIANT 3.3. After round j € [0,7] the partial transcript is mq, ..., m;, which
determines the values {lj/7ﬁ(j/)’p(j/)’Ij/}j/gj, The index set I; C [k] satisfies all of
the following:

(1) || = &=/

(2) Each value xy, € [t]11] satisfies ﬁg)(wlj) <4. ’Dg)(x[j).

(3) Each nonempty subset I' C I, satisfies

. J 16j_u+1l, )
H(DY)) > <cE -3 T 22J> I
u=1

In accordance with our informal discussion in section 3.1, I; is a subset of indices
on which both parties have learned little information about each other from the partial
transcript mq, ..., m;. Invariant 3.3(2) ensures that the two parties draw their inputs
after the jth round from similar distributions. Invariant 3.3(3) is the most important
property. It says that the information revealed by DU about I’ is roughly what
one would expect, given the message lengths l;,...,l;. Note that the uth message
conveys information about |I,_;| = k'~ (“~1/" indices so the average information-
per-index should be [,,/k'~(“=1/" The factor 16/~%*! and the extra term 227 come
from Lemma 3.1, which throws away part of the input distribution in each round,
progressively distorting the distributions in minor ways.

To begin our induction, at round j we find a large fraction M; of possible messages
m; that reveal little information about the sender’s input, projected onto I;_;. This
is possible because the length of the message [; = |m;| reflects an upper bound on
the expected information gain. This idea is formalized in Lemma 3.4.

LEMMA 3.4. Fiz j € [1,r] and suppose Invariant 3.3 holds for ma,...,m;_1.
Then there exists a subset of messages M'; with pj(M’) > 1/2 such that each message
mj € M) satisfies

J i
j 16771, i
H(Dg),l[mj]) 2 (CE -2) Ty 22 1) 2 —1l-
u=1

Proof. Let ./\/l; contain all messages m; satisfying the above inequality and M;
be its complement. Suppose, for the purpose of obtaining a contradiction, that the
conclusion of the lemma is not true, i.e., p;(M’) = a > 1/2. Then the entropy of

252 ;1) can be upper bounded as follows:
i1
H(DY V)
i1 .
=1DY Vs M)+ Y p(mp)H(DY) [my])
mJG(MSUW)

SH(M)+ > pi(m)HDY) [my)).
m;€(M{UM))

The steps above follow from the definition if I(- ; -) and the fact that I(X ; -) < H(X).
Since H(M;) < |M;| =1;, we have

<L+ Y wm)HDY m)+ > p(my)HDY
m; EM} m;EM’
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and from the definition of W,
Io16i, -
<lj+(1—a)cE|_1|+a(cE-2) Ty 22 1T; 4|
u=1
I167u, ,
=1lj+ | cE- 2az T 202277 ) ||

71 gy
u i—1
(CE Zkl o 2% )Ij—ﬂ-

The last line follows because o > 1/2, which contradicts Invariant 3.3(3) at index
j—1 d

After the jth message m; is sent, the next step is to identify a set of coordinates I;
such that D) still reveals little information about I ; and every subset of I;, since we
need this property to hold for [;;1,...,I, in the future, all of which are subsets of I;.
We also want I; not to contain many low probability points w.r.t. DU since this
may stop us from applying Lemma 3.2 later on. These two constraints are captured
by parts (2) and (1), respectively, of Lemma 3.5.

LEMMA 3.5. Fiz j € [1,7] and suppose Invariant 3.3 holds for ma,...,m;_;.
Then there exists a subset of messages M; C M/, (from Lemma 3.4) with ju;(M;) >
1/4 such that for each message m; € M;, there exists a subset I; C I;_y of size
|I;| = k'=9/" satisfying both of the following properties:

L Pr, o o[DY V(er,) < (at)~1h1/32) < 1/2.
J I; 7

2. Each nonempty subset I' C I; satisfies

J —
167" :
H(DY)) > <cE 4Zk16(u 1l/7 4.22J—1> 1.

Proof. We first prove that for each message m; € M (from Lemma 3.4), there
exists a subset Jy C I;_q of size |Jo| > |I;—1]|/2 such that each nonempty subset
I' C Jy satisfies part (2) of the lemma. Suppose Ji, Ja, ..., J, are disjoint subsets of
I;_1, each of which violates the inequality of part (2), whereas none of the subsets of
Jo =1Ij—1\ (Us—; Ju) do. Using Fact 2.1 and the definition of .J,,, we upper bound

the entropy of Dg )71 as follows:

HDY ) <> H(DY)

G-
v=0

J _
167741, .
<cEJo|+Z<cE 4Zk1 o — 422 1) | T

j 16]_ulu j—1
ZCE‘IJ‘,1|—4|I]‘,1\JQ| Zm+22 .

u=1

On the other hand, from Lemma 3.4, having m; € ./\/l; guarantees that

J _
: 1671, -
H(DY ) > <cE—2§ S 222 1) 2.
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The two inequalities above are consistent only if |I;,_1 \ Jo| < |I;_1|/2, or equivalently
|Jo| > |Ij—1]/2. Thus, Jy exists with the right cardinality, as claimed.

Now suppose, for the purpose of obtaining a contradiction, that the lemma is
false. For every m; € M; there is a corresponding index set J; whose subsets satisfy
part (2) of the lemma. If the lemma is false, that means there is a subset M7 C M/,
of “bad” messages with p;(MJ) > 1/4 such that, for each m; € MY, none of the
(Il‘}fl‘) choices for I; C Jy satisfy part (1) of the lemma. (Remember that Jy depends

on m; but the lower bound on |Jy| > |I;—1|/2 is independent of m;.) Consider the
following summation:

-1
7= X% e
LiClj—a: ar e[l
—p-ir Y
=R D ey < a1 52

We can easily upper bound Z as follows:

7 < (-1l ,t|1j|_(4f)*”j' _ (M=l g=2i51-5
;1 32 ;] '

Invariant 3.3(2) relates DU~ and ﬁ(j_l), which lets us lower bound Z:
1 ~(—1
Zz3 3 > Dy a):

I;CIi_q: 11 .
II.]\;kjlflj/r e el
’ DYV (ary) < (at) 7111 /32

By definition, DU~Y is a convex combination of the DU)[m;] distributions, weighted
according to p;(-). Hence, the expression above is lower bounded by

Zi > > S wi(my) DY [yl (1)

BELo: el meMy
1= DYV (wry) < (41) 71131 /32

and rearranging sums,

ST wmy) > 3 DY [mj)(x1,).

m; M} s I-"gk‘f”,;/r i et
|Z;|= Dg.;—l)(;”j)< (4,5)*”_7’\/32

>

o~ =

By definition, for every m; € M’ and every choice of I; C Jo, part (1) of the lemma
is violated. Continuing with the inequalities,

> % > wilmy)- (||}]j||> %

m; GM;‘,

o L (Hial/zy
32\ |1

The last line follows since 11;(M//) > 1/4. This contradicts the upper bound on Z
whenever k'/” is at least some sufficiently large constant. 0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/01/21 to 35.3.105.140 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COMMUNICATION COMPLEXITY OF EQUALITY TESTING 687

The receiver of m; constructs a new distribution D@ in two steps. After fixing
I;, we construct D) by combining DU~ and DU, filtering out some points in the
space whose probability mass is too low. We then construct DU from DU and DU~V
by filtering out points that occur under DY) with substantially larger probability than
they do under DU—1),

Formally, suppose Invariant 3.3 holds for my,...,m;_;. For each message m; €
M; (from Lemma 3.5), let I; be selected to satisfy both properties of Lemma 3.5.

Define the probability mass of a vector x € [t]¥ under D) as follows:

- =11l
. 0 if DY (ay,) < WO
D(])(J?) = D(fi.)@lj) DU () th .
e . Dg’”(mj) otherwise,
where (1 is
) 171

51 — PI‘ ) ng_l)(m[

In other words, we discard a 1 — f3; fraction of the distribution DY), but ignoring
this effect, the projection of D) onto I; has the same distribution as D(J) onto I;,

and conditioned on the value of xj,, the distribution DU (projected onto [k]\I;) is
identical to DU~Y. We derive DY) from D) with a similar transformation.
53;)(I1j)

0 if — 497 5 97
7 ey 2

DD () = _
D (IE) Dg.)(fﬁlj) D(jfl)(x) th .
5 Dg_l)(mj) otherwise,
where 3, and y; are defined to be
DI (4 ;
/82 = Pr # < 275

g 1
:L’IjND;;.) D(] )( IJ)

167+

J
V= (Zlu (M) +(16- 2277 +6)> 1| + 6
u=1

! 16\
<>l (kl/r> +227 - |I;| + 6.
u=1

_ The proofs of Lemmas 3.6 and 3.7 use several simple observations about DY) and
D).
1. Lemma 3.5(1) states that 8, > 1/2. Lemma 3.5(2) lower bounds the entropy
of D(] ). We apply Lemma 3.1 to D ) and D(] ) (taking the roles of p and g,
respectlvely) with parameter a = 1 / 2 < fq and obtain the following lower
bound on the entropy of Dg ).

J j—u
50)) 1691, -
H(DY) > <cE 8§ =G —8.227"1 — 2| |I .
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2. We can then apply Lemma 3.2 to Dg_l) and 152) (taking the roles of p and
g, respectively) with parameters '

16
u i—1
82 kl—(u=1)/r +(8-22777 4 2) | 1],
g2 = 2|Ij\ +5,
and o = 1/2.
Since g1/a+g2—(1—a)log(l—a)/a = v;, we conclude that f; > 1—a = 1/2.
Thus, for each value xj, € supp(D( )),

5(j) Ty, D(j) Xy, )
b _PLL) e,
B2 B152 i

Lemma 3.6 completes the inductive step by lower bounding the entropy of ﬁgj, ) for
every nonempty subset I’ C I;. To put it another way, it ensures that the coordinates
in I; remain almost completely unknown to both parties.

LEMMA 3.6. Fiz j € [1,7] and suppose Invariant 3.3 holds for ma,...,m;_1.
Then, for each message m; € M; (from Lemma 3.5), Invariant 3.3 also holds for
mi,...,mj.

Proof. Due to Lemma 3.5 and (3.1), the first two properties of Invariant 3.3 are
satisfied. For each nonempty subset I’ C I, the third property of Invariant 3.3 can
be derived from the second property of Lemma 3.5 and an application of Lemma 3.1
to ng,) and Y/D\y,) (taking the roles of p and ¢, respectively) with parameter o = 1/4
as follows:

J _
s 1671, :
H(DY) > (cE 162 Sy 160227 —4> Id

L T W
> <cE Zkl T 22J> 17']. 0

Aside from maintaining Invariant 3.3 round by round, another important part of
our proof is to compute the error probability. Lemma 3.7 shows how the error prob-
abilities of two consecutive rounds are related after our modification to the protocol.
More importantly, it also illustrates the reason to bound the pointwise ratio between
DY and DYV,

LEMMA 3.7. Fiz a round j € [1,7] and suppose Invariant 3.3 holds for mq,...,
mj_1. Fir any specific message m; € M; (from Lemma 3.5). Define p to be the
probability of error, when the protocol begins after round j with the inputs drawn from
DY) and DY), respectively. Then the probability of error is at least 2~ ~'p when the
inputs are instead drawn from DY) and DUV | respectively.

Proof. From the definition of ﬁ(j), for each value = € supp(ﬁ(j)), we have

0 (5) .
D) Dy (xy, 27
(3.2) o) _ % <1 L
D(]_ )(Jf) ﬂgpgj_ )(.’E]J.) 52
This concludes the proof. 0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/01/21 to 35.3.105.140 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COMMUNICATION COMPLEXITY OF EQUALITY TESTING 689

Finally, with all lemmas proved above, we have reached the point to calculate the
initial error probability.

LEMMA 3.8. Recall that ¢ = 1/2,¢ = ¢/100. Fiz any r € [1,(logk)/6] and
E > 100/@1*1/’"/0. Suppose the initial input vectors are drawn independently and
uniformly from [t]¥, where t = 2°F. Then the error probability of the Equality Testing
protocol, perr, is greater than 27F.

Proof. First suppose Invariant 3.3 holds for my, ..., m, and consider the situation
after the final round, where the inputs are drawn from D(") and D), respectively.
Notice that I, is a singleton set, so the entropy of Dg) can be lower bounded as
follows.

(7‘) 16"~ u+1l , )
H(D;) > cE — Z = (a=)/r — 22 Invariant 3.3(3)
16 16\ .
u=1
16 ¢ 1-1/r 1/ 6
zcE—WZlu—%k kY™ > 2% due to r < (log k) /6
u=1
>cE — 16 E — 22k~ > % because > _ 1, < cEkYT.

From the lower bound on the entropy of D( ), we can easily show that there
exists no value zj,_ such that Dg) (z1.) = a > 3/4. If there were such a value, then

the entropy of Z/igi) can also be upper bounded as

~(r 1 t
H(Dgr)) < aloga + (1 —a)log =

E 1
<C—+a10g—+(1—a)log
!

<7
4 1l -« 2’

contradicting the lower bound on H(ﬁg))

After all r rounds of communication, the receiver of the last message has to make
the decision on I, either “=" or “#,” depending only on his own input on xj,. Define
Xo C [t] to be the subset of values x, such that the protocol outputs “#£” on I,. after
r rounds of communication, and let X; = [t] \ Xy and 5 = D(T)(Xo) Let 27 be the
other party’s value at index I,.. The protocol errs if x;, = 7, €X (a false “£A” on
I,) orif zy, # 27 and x;, € Ay (a false “=" on I,.). Thus, the final error probability
is at least

Z D(") D(") Z D T) (1 _ D(") (xl ))

r1, €Xo x1, €X)
S D)D) @)+ Y B@) Y DY
z1,€Xo rr, €Xy T#"Elr
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By Invariant 3.3(2), this is

rr,. €Xo xr1, €X1 z’I F#Tr,.
1 T T
=3 2 DY@y X D) (1D (@)
x7, €Xo rr, €X1
1 ~(r 1 ~(r
> > D)+ > D).
r1, €Xo T, €X1

The previous line follows from ZSX) (z1,) < 3/4. By the convexity of 2 we have

2 _
LB 1-B 1
_4t 16— 4t

This result also meets the simple intuition that when the inputs to the two parties
are almost uniformly random and no communication is allowed, the best strategy
would be guessing “not equal” regardless of the actual input.

Finally, we are ready to transfer the error probability back round by round. From
Lemmas 3.5 through 3.7, the error probability w.r.t. DY) and D) differs from the
error probability w.r.t. DU~1 and DU—Y by at most a 4 - 2%+ = 2%+3 factor. In
particular, Lemmas 3.5 and 3.6 say that the jth message m; satisfies Invariant 3.3 with
respect to transcript ms, ..., m; with probability at least 1/4, provided Invariant 3.3
holds for mq,...,m;j_1, and Lemma 3.7 says the error probabilities under the two
measures differ by a 271 factor for any such m;. Repeating this for each j € [1,7],
we conclude that the initial error probability pe,, is lower bounded by

1
perr_4 - exp —37“—2’7] = exp —cE—2—3r—Z% > F

Jj=1 Jj=1
since
cE+2+37°+ZWj
j=1
16 Jj—u+1 T )
<cE+2+3r+6r+ZZl (kw> +> 227|151,
j=1lu=1 j=1

Rearranging sums, we have

161, ju "L/ 22 \/7!
< cE+11r+Z T Z (kl/r> —|—22k1_1/7“z <k1/r>

Jj=1

< cE+11r + Zz + 44k

kT

The last step follows from k%7 > 26 since r < (log k)/6. Because > _; 1, < cEkKYT,
we have

11cE  32cE  44¢E
< (E E. 0
=BT T00 Y00 T 100 S
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Proof of Theorem 2. Lemma 3.8 actually shows that given integers £k > 1 and
r < (logk)/6, any r-round deterministic protocol for EqualityTesting on vectors of
length % that has distributional error probability per = 27 F with respect to the
uniform input distribution on [t]*, where t = 2¢F| requires at least Q(Ek/") bits
of communication. Notice that the additional assumption E > 100k -1/7 /c always
makes sense since there is a trivial Q(k) lower bound on the communication complex-
ity of EqualityTesting, regardless of . Thus, Theorem 2 follows directly from Yao’s
minimax principle. ]

3.3. A lower bound on ExistsEqual. The proof of Theorem 3 is almost the
same as that of Theorem 2, except for the final step, namely Lemma 3.8, in which we
first compute the final error probability after all  rounds of communication and then
transfer it backward round by round using Lemma 3.7. The problem with applying
the same argument to ExistsEqual protocols is that the receiver of the last message
may be able to announce the correct answer, even though it knows little information
about the inputs on the single coordinate I,.

In order to prove Theorem 3, first notice that Lemma 3.4 through Lemma 3.7
also hold perfectly well for ExistsEqual protocols as no modification is required in
their proofs. Therefore, it is sufficient to prove the following Lemma 3.9, which is an
analogue of Lemma 3.8 for ExistsEqual. It is based mainly on Markov’s inequality.

LEMMA 3.9. Recall that ¢ = 1/2,¢ = ¢/100. Consider an execution of a de-
terministic r-round ExistsEqual protocol, r € [1,(logk)/6], on input vectors drawn
independently and uniformly from [t]¥, where t = 2°F. Here E > 100k'=" Jc if r > 1
and E > (100logk)/c otherwise. Then the protocol errs with probability pey. > 27F.

Proof. Similarly to the proof of Lemma 3.8, we first consider the situation after
the final round; fix the transcript mq,...,m,. The receiver of m, now makes a
Boolean decision for ExistsEqual based on every coordinate of his input x. Let Xy C
[t]* be the subset of values z such that the protocol outputs “no” (there exists no
coordinate where the two vectors are equal) after seeing transcript ms,...,m,, and
let &3 = [t]* \ Ap. The protocol may have false negatives on X and false positives
on X;. We only consider false negatives in which the vectors agree on coordinate I,..
Thus, the error probability at this moment is at least

(3.3) S D@D (@) + > D) [1- ST DOy |,

TEX) TEX] yeN (z)

where N (z) = {y € [t]* | there exists some i € [k] such that x; = y;} is the subset of
input vectors that agree with z on at least one coordinate. There are two difficul-
ties with (3.3). The first is that we do not know anything about Xy and Xj. The
second is that we are really interested in the initial probability of error, before m; is
transmitted, not the error under D) and D).

Our first task is to lower bound the second term of (3.3). Consider the following
summation Zy over all transcripts mq,...,m, in which m; € M; (from Lemma 3.5)
and all z € [t]*. Recall that M, and u; depend on my,...,m;j_1.

Zy = Z pa(my) Z pa(me) - - Z (M) Z D Z D

m1EMy maEMo mrEM, xze[t]k yeN ()
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From the proof of Lemma 3.7 (equation (3.2)), we can upper bound Z, as follows:

Zy < Z ul(ml) . Z ,Ufr(mr) Z 2’Yr+1 . ’D(T—l)(x) . D(r) (y)

miEM; mr.EM, xe[t]k,
yeN (z)

Notice that 7, and D"~V are independent of the choice of m,., hence by rearranging
sums, this is equal to

= > mm)
miEM1
Yo memalmen) Yo 2D @) YT g (m) - DY (y),

mp_1EMy_1 me[t]k) mp.EM,
yeN (z)

By definition, D=1 i5 a convex combination of the D7) [m,.] distributions, weighted
according to u,(-). Hence, the expression above is upper bounded by

< N mm) - Y pea(meny) Y 2t DU () DO (y),

mypEM;y myp_1EM,_1 ze(t]®,
YyEN ()

By the symmetry of x and y, this is equal to

= Z pa(ma) - Z fr—1(mr—1) Z g+l plr= 1)($)'D(T_1)(y)~

m1EM; mr_1EMr_1 zet]®,
yeN (z)

We repeat the same argument for rounds » — 1 down to 1, upper bounding Z; by

T T
k
<exp(r+d 7] D DV@) DY) < e |r+d |
j=1 z€l*, j=1
yEN (z)

The last inequality above follows from a union bound since, under the initial distribu-
tions D(®), D) each of the k coordinates is equal with probability 1/t. Recall that
E > 100k'"" /c when r > 1 and E > (100log k) /c otherwise. Hence, using the same
argument as that in the proof of Lemma 3.8, we can further bound this as

< 20.83cE . 20.02CE X 2—CE _ 2—0.150E

since

Jj—u+1 r
7cE 32cE 44cFE 83cE
HZ% : 7T+ZZI (k;l/r) +222J|I =00 100 T 00~ 100

j=1lu=1

and k < (cE/100)"/=D < (¢E/100)? < 2902¢F when 7 > 1 and k < 2001¢F other-
wise.
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We now want to narrow our attention to transcripts that both satisfy Invariant 3.3
and terminate with > ¢ D) (z) D oyeN (@) D) (y) not much larger than its expec-
tation. Fix a partial transcript (mq,...,m;) through round j such that m; € M,
holds for every j' < j. Define Z; as follows:

Zi = Z fj+1(mggn) - Z (M) Z 73(7')(3:) Z DO (y),

mji1 €M1 mrEM, z€E[t]* yeN (z)

By Markov’s inequality, there exists a subset of messages M\l C M with py (M\l) >

pu1(Mi)/2 > 1/8 such that each message m; € M, satisfies Z; < 270/ (M) <
87y since p1(My) > 1/4 from Lemma 3.5. Similarly, conditioned on any specific
my € /{/l\/l\, by Markov’s inequality, there exists a subset of messages M\g C My
with pa(Ma) > pa(Ms)/2 > 1/8 such that each message mo € My satisfies Zy <
271 /u2(Ms) < 82Z,. In general, conditioned on any specific partial transcript
mi,...,m;_1 such that my € M\j’ holds for every j° < j, there exists a subset
of messages .A//Yj C M; with uj(/\//Yj) > pj(M;)/2 > 1/8 such that each message
m; € M\j satisfies Z; < 8ij.

After repeating the same argument r times, we get M 1. .- ,M\T. in sequence. For
any sampled transcript myq,. .., m, such that m; € M; for all j < r, we have

Z, = Z ﬁ(r)(z) Z D(r)(y) <87, < 931, 9—0.15cE < 9—0.12¢cE <
z€E[t]F yeEN ()

B~ =

as r < ¢cE/100 and ¢E > 100. Further, one more application of Markov’s inequality
shows that there exists a subset of values X’ C [t]* with D (X’) = a > 1/2 such
that -, c i) D) (y) < 1/2 holds for every z € X",

As a result, we can now lower bound the final error probability as follows. Define
B =D (XyNA").

ST D@D (@) + Y. D) [1- S DOy)

TE€X) zEX] yeN (z)

> Y D@D @)+ Y D@ [1- Y Dy

z€(XoNX") ze(X1NX") yeN (z)

1 ~ ~ ~

- (r) (r) (r) _ )

LY B Y 0w (1o Y 20
z€(XoNX7) ze(X1NX7) yeN ()

The previous step follows from Invariant 3.3(2). By the definition of X', we have

1 o) 3(r) 1 A
27 Y DO@D )5 Y D)
2€(XoNX") 2€(X1NXT)
In order to minimize the above expression, we can now assume without loss of gener-
ality that the partition between Xy NX’ and X; N X’ depends solely on 2. as only the
relative magnitude of DX)(JU 1.)/4 and 1/2 matters. Continuing, from the convexity
of 22,

=
o
Q
|

154 a? 1
> — >
_4t+

[\
[
~

I
—_
D
S
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Finally, we are ready to transfer the error probability back in exactly the same
manner as we did in the proof of Lemma 3.8. Using a similar argument, the existence
of M; guarantees that

1 - .
pcrrZI—Gt-exp —47’—27]- = exp —cE—4—4r—Zvj >2°F
j=1 j=1

since

- 14cE  32¢E  44cE
. < .
cE+ 4+ 4r + E v L cBE+ 100 + 100 + 100 < K 0

Jj=1

Proof of Theorem 3. Similarly to the proof of Theorem 2, Theorem 3 follows from
Lemma 3.9 and a direct application of Yao’s minimax principle. 0

4. New protocols for EqualityTesting and ExistsEqual. In this section, we
attempt to prove that our Q(EE'/") lower bound is tight for Equality Testing. We
manage to attain this bound in several situations but fail to achieve it for every value
of B k,r.

First of all, the Q(EE'Y") bound is binding only when it is at least Q(k), which
is necessary even when E is constant [31, 39, 18]. In Theorem 8 we give a log™(k/E)-
round protocol that reduces the effective dimension of the problem from k to at most
E with O(k) communication and basically lets us proceed under the assumption that
E > k. (Note that if F > k initially, log™(k/E) = 0.)

In Theorem 9 we give a simple protocol for Equality Testing with communication
O(rEk'Y") when E > k. According to Theorem 2 this is optimal when r = O(1).
All of our remaining protocols aim to eliminate or reduce this seemingly unnecessary
factor of r. In Theorem 10 we prove that ExistsEqual can be solved with O(Ek'/")
communication, for any r and E > k, and Theorem 11 shows the same communication
can be attained for Equality Testing, but with O(r) rounds rather than r. In particular,
Theorems 8, 10, and 11 imply that EqualityTesting/ExistsEqual can be solved with
absolutely optimal communication O(k + E) in logk rounds, which is also round-
optimal according to Theorems 2 and 3. However, Theorems 2, 9, and 11 leave the
precise complexity of EqualityTesting open when E > k and r is between w(1) and
o(logk).

Theorem 12 is our most sophisticated upper bound, in many ways. It proves that
Equality Testing can be solved using O(Ekl/T log 7+ Erlogr) communication when E >
k. When r > log k/ log log k the first term is dominant, and the protocol comes within
a logr < loglog k factor of Theorem 2’s lower bound. Taken together, these theorems
highlight a potential complexity separation between ExistsEqual and Equality Testing
and between SetDisjointness and Setlntersection in the low error probability regime.

Theorems 4-7 follow by combining the dimension reduction of Theorem 8 with
Theorems 9-12.

THEOREM 4. There exists a (log*(k/E) + r)-round randomized protocol for
EqualityTesting on vectors of length k that errs with probability per = 27F, using
O(k + rEk'™) bits of communication.

THEOREM 5. There exists a (log™(k/E) + r)-round randomized protocol for
ExistsEqual on wvectors of length k that errs with probability perr = 27, using O(k +
EEY™) bits of communication.
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THEOREM 6. There exists a (log*(k/E) + O(r))-round randomized protocol for
EqualityTesting on vectors of length k that errs with probability per = 27F, using
O(k + EkY™) bits of communication.

THEOREM 7. There exists a (log™(k/E)+r)-round randomized protocol for Equal-
ity Testing on vectors of length k that errs with probability peee = 277, using O(k +
EkY"logr + Erlog ) bits of communication.

Remark 1. The log*(k/E) terms in the round complexity of Theorems 4-7 are
not absolute. They can each be replaced with max{0, log*(k/E) — log™(C)}, at the
cost of increasing the communication by O(Ck).

Remark 2. By applying Theorem 1 to Theorems 4—7 we obtain SetDisjointness/
Setlntersection protocols with the same communication complexity, but with one more
round of communication. In the case of SetDisjointness (Theorem 1 4+ Theorem 5), it is
straightforward to skip the reduction of Theorem 1 and solve the problem directly with
O(k+EE'Y") communication in (r+log*(k/E)) rounds. However, we do not see how to
avoid Theorem 1’s extra round of communication when solving Setlntersection. That
is, the Setlntersection protocols implied by Theorems 1, 4, and 7 use (log™(k/E)+r +1)
rounds.

4.1. Overview and preliminaries. We start by giving a generic protocol for
EqualityTesting. The protocol uses a simple subroutine for ExistsEqual/Equality Testing
when k = 1. Suppose Alice and Bob hold z,y € U = {0, 1}!, respectively. Alice picks
arandom w € {0, 1}! from the shared random source and sends Bob & = (z,w) mod 2,
where (-, ) is the inner product operator. Bob computes § = (y, w) mod 2 and declares
“r=1" iff £ = g. Clearly, Bob never errs if x = y; it is straightforward to show that
the probability of error is exactly 1/2 when z # y. We call this protocol an inner
product test and &,y test bits. A b-bit inner product test on x and y refers to b
independent inner product tests on z and y.

At the beginning of phase j, 7 > 1, Alice and Bob agree on a subset I;_; of
coordinates on which all previous inner product tests have passed. In other words,

they have refuted the potential equality x; - y; for all ¢ € [k]\I;_1. Each coordinate
i € I;_1 represents either an actual equality (z; = y;) or a false positive (x; # y;). At
the beginning of the protocol, Iy = [k]. In phase j, we perform [/; independent inner
product tests on each coordinate in I;_; and let I; C I;_; be the remaining coordi-
nates that pass all their respective inner product tests. Notice that each coordinate
in I;_; corresponding to equality will always pass all the tests and enter I;, while
those corresponding to inequalities will only enter I; with probability 2=l At the
end of the protocol, we declare all coordinates in I, equal and all other coordinates
not equal.

This finishes the description of the generic Equality Testing protocol. Theorems 4—
12 all build on the framework of the generic protocol, instantiating its steps in different
ways.

4.1.1. A protocol for exchanging test bits. For EqualityTesting, it is possible
that a constant fraction of the coordinates are actually equalities, which makes |I;| =
O(k) for every j. The naive implementation would explicitly exchange all [;|I;_1] test
bits and use Q(kE) bits of communication in total. All the test bits corresponding to
equalities are “wasted” in a sense.

For our application, it is important that the communication volume that Alice
and Bob use to exchange their test bits in phase j be proportional to the number of
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false positives in I;_;, instead of the size of I;_;. We will use a slightly improved
version of a protocol of Feder et al. [21] for exchanging the test bits.

Imagine packing the test bits into vectors &, € Blli-1l where B = {0,1}%.
Lemma 4.1 shows that Alice can transmit & to Bob, at a cost that depends on an
a priori upper bound on the Hamming distance dist(Z,g), i.e., the number of the
coordinates in I;_; where they differ.

LEMMA 4.1 (cf. Feder et al. [21]). Suppose Alice and Bob hold length-K vectors
x,y € BX where B = {0,1}X. Alice can send one O(dL+ dlog(K/d))-bit message to
Bob, who generates a string ' € BX such that the following holds. If the Hamming
distance dist(z,y) < d, then x = 2'; if dist(x,y) > d, then there is no guarantee.

Proof. Define G = (V, E) to be the graph on V = BX such that {u,v} € E iff
dist(u, v) < 2d. The maximum degree in G is clearly at most A = (212) -22Ld gince there
are (212) ways to select the 2d indices and 222? ways to change the coordinates at those
indices so that there are at most 2d different coordinates. Let ¢ : V — [A] be a proper
A-coloring of G. Alice sends ¢(z) to Bob, which requires log A = O(dL + dlog(K/d))
bits. Every string in the radius-d ball around y (w.r.t. dist) is colored differently since
they are all at distance at most 2d; hence if dist(z,y) < d, Bob can reconstruct x
without error. ]

COROLLARY 4.2. Suppose at phase j, it is guaranteed that the number of false
positives in I;_q is at most kj_1. Then phase j can be implemented with O(k;_1l; +
k;j_1log(k/kj_1)) bits in two rounds.

Finally, a naive implementation of the protocol requires 2r rounds if the generic
protocol has r phases. In fact, the protocol can be compressed into exactly r rounds in
the following way. At the beginning, both parties agree that Iy = [k]. Alice generates
her I |Ip| test bits () for phase 1 and communicates them to Bob; Bob first generates
his own test bits j(*) for phase 1 and determines I, then generates lo|I; | test bits §(?)
for phase 2 and transmits both §(!) and §(®) to Alice. Alice computes I, generates
#®), computes I, generates #®), and then sends #(?) and z(®) to Bob, and so on.
There is no asymptotic increase in the communication volume.

4.1.2. Reducing the number of false positives. Our protocols for Equal-
ity Testing and ExistsEqual are divided into two parts. The goal of the first part is
to reduce the number of false positives from at most k to at most E; if £ > k, we
can skip this part. The details of this part are very similar to Saglam and Tardos’s
SetDisjointness protocol [41].

THEOREM 8. Let (z,y) be an instance of ExistsEqual with |xz| = |y| = k. In
log*(k/E) rounds, we can reduce this to a new instance (z',y’) of ExistsEqual where
|2'| = y'| < E, using O(k) communication. The failure probability of this protocol is
at most 2~ (E+1)

For EqualityTesting, we can reduce the initial instance to a new instance (z',y")
such that the Hamming distance dist(z’,y") < E, with the same round complezity,
communication volume, and error probability.

Proof. We first give the protocol for ExistsEqual, then apply the necessary changes
to make it work for Equality Testing.

The protocol for ExistsEqual uses our generic protocol and imposes a strict upper
bound k; on |I;|. Whenever |I;| exceeds this upper bound, we halt the entire protocol
and answer yes (there exists a coordinate where the input vectors are equal). We
start by setting the parameters k; and [; for any j € [1,log™(k/E)| as follows:
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ko =k,

k
kj = maX{2j_1eXp(j)(2)7E} 5
l; =3 +exp¥™(2).

Note that it is reasonable to assume k; > E before the last phase, since whenever we
find k; < E, we can simply terminate the protocol prematurely after phase j, and our
goal would be achieved.

Now suppose the input vectors share no equal coordinates. We know that |I;,_1| <
kj_1 at the beginning of phase j. The probability of any particular coordinate in /;_;
passing all tests in phase j is exactly p; = exp(—{;). Thus, the expected size of I; is
at most

k : ! < k <h
21=2expl~—1)(2) 23expl)(2) — 27t2exp)(2) = 8~
Recall the statement of the usual Chernoff bound.

FacT 4.3 (see [20]). Let X = Y | X;, where each X; is an independent and
identically distributed Bernoulli random wvariable. Letting p = E[X], the following
inequality holds for any 6 > 0:

kj_1p; =

s I
e
Pr[X>(1+6 < | —— .
X > (140 < (555 )
In our case X; = 1 iff the ith coordinate in I;_; survives to I;. By linearity of
expectation, p < k;/8. Setting 6 = k;/pu — 1 > 7, we have
&9 1% 7\ Fi/8 i

Hence, the probability that there are at least k; coordinates remaining after phase j
is at most 2717k < 27L7F and the probability this happens in any phase is at most
Zj 2-1.7k; < 2=(E+1) Notice that when z and y share at least one equal coordinate,
the error probability of this protocol is 0 because if it fails to reduce the number
of coordinates to F it (correctly) answers yes. The communication volume of the
protocol is asymptotic to

DUl € ) Lk =Y O(k/27) = O(k).

For EqualityTesting, we use the same k; as an upper bound on the number of
false positives in I, instead of the size of I;. Since the number of false positives is at
most k at the beginning, we can still use the same argument to show that with the
same choice of k; and [, after log™(k/E) phases, the number of false positives is at
most E with error probability 2~ (£+1, By Lemma 4.1, the number of bits we need
to exchange in phase j is O(kj_1l; + kj_1log(k/k;—1)). Notice that log(k/k;j_1) =
j—2+exp=2(2) = O(logl;), so the total communication volume is still O(k). O

In all of our protocols, we first apply Theorem 8 to reduce the number of coor-
dinates (in the case of ExistsEqual) or false positives (in the case of EqualityTesting)
to be at most E. This requires no communication if £ > k to begin with. Hence,
with log*(k/FE) extra rounds and O(k) communication, we will assume henceforth
that all instances of ExistsEqual have k£ < E and all instances of Equality Testing have
dist(z,y) < E.
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4.2. A simple Equality Testing protocol. In light of Theorem 8, we can assume
that the input vectors to EqualityTesting are guaranteed to differ in at most kg =
min{k, E} coordinates.

THEOREM 9. Fizanyk > 1, E > 1, andr € [1, (logko)/2], where kg = min{k, E}.
There exists a randomized protocol for Equality Testing length-k vectors x,y with Ham-
ming distance dist(x,y) < ko that uses r rounds, O(k—i—?"Eké/T) bits of communication,
and errs with probability pe, = 2~ (E+TD,

Proof. We instantiate the generic protocol. The parameter /; is the number of test
bits generated per coordinate of I;_; in phase j. The parameter k; is an upper bound
on the number of false positives surviving in I; (with high probability 1 — Q*O(E)).

k= ko0,
j/r—1
l; = 4EK)/" "
Now fix a phase j € [1,7] and suppose at the beginning of phase j that the number

of false positives in I;_; is at most k;_;. By assumption this holds for j = 1. The
probability that at least k; false positives survive phase j is upper bounded by

k. ek; ki g
()= () = we
i J
< 92k; log(kj—1/k;)—kjl; e < ké/r = k%;l due to r < @

k}j71
k;

<2728 logh=t < 2t —pg/m <
J

T
Thus, by a union bound, the number of false positives surviving phase j is strictly less
than kj, for all j € [1,r], with probability at least 1 — 2=(E+1) In particular, there
are no false positives at the end since k, = 1.

Meanwhile, by Lemma 4.1, the total communication volume is O(k + rEké/ "
since

Z kj—llj = 47"Eké/r,
j=1

and

- k — 1 k y

_ j/r
E kj_1log T ko E G (log " + log k) )
j=1 J 0 ™o

j=

k 1 k‘j/r ,
< 2k‘0 10g kf + kO Z Ogj/(i k(l)/ > 22 due to r < log2k0
0 =0 ko
= O(k) ki/" > 22 and ko < k. O

Proof of Theorem 4. Applying Theorems 8 and 9 in sequence, we obtain a (log*
(k/E) + r)-round randomized protocol for Equality Testing on vectors of length & that
errs with probability pe, = 277 and uses O(k + rEmin{k, E}'/") bits of commu-
nication. When E > k the protocol is obtained directly from Theorem 9 and uses
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O(rEkY") communication. When F < k the communication implied by Theorems 8
and 9is O(k + rE**Y") = O(k + rEEY/7).6 0

4.3. An optimal ExistsEqual protocol.

4.3.1. Overview of the protocol. In this section, we show that we can obtain
a (log* (k/E) 4 r)-round, O(k 4 Ek'/")-bit protocol for ExistsEqual. This matches the
lower bound of Theorem 3, asymptotically, when £ > k. Theorem 8 covers dimension
reduction in log*(k/FE) rounds, so we assume without loss of generality that £ > k
and we have exactly r rounds.

Suppose the inputs « and y share no equal coordinates. Imagine writing down all
the possible results of the inner product tests in a matrix A of dimension (E+log k) x k,
where A, ; is “=" if x;,y; pass the gth inner product test and “#” otherwise. By a
union bound, with probability 1 — 27 F, each column contains at least one “#.” Now
consider the area above the first “#” in each column. The probability that this area
is at least B’ is, by a union bound, at most

1) (E’Jrk— 1

1 >2_E/ < exp(klog(e(E' + k)/k) — E').

For E' = E + O(klog(E/k)) = O(E), this probability is < 27F. In our analysis
it suffices to consider a situation where an adversary can decide the contents of A,
subject to the constraint that its error budget (the area above the curve defined by the
first “#£” in each column) never exceeds E' = O(FE). The notion of an error budget is
also essential for analyzing the Equality Testing protocols of Sections 4.4 and 4.5.

In the jth phase, j > 1, our protocol exposes the fragment of A consisting of the
next /; rows of columns in I;_;. The set I; consists of those columns without any
“#” exposed so far. The communication budget for phase j is equal to [;|1;_1|. In the
worst case, the first exposed value in each column of I;_; \ I; is “#,” so the adversary
spends at least [;]I;| of its error budget in phase j.

If we witness at least one “#£” in every column, we can correctly declare there
does not exist an equal coordinate and answer no. Otherwise, if the adversary has
not exceeded his error budget but there is some column without any “#,” we answer
yes. If the adversary ever exhausts his error budget, we terminate the protocol and
answer yes. Recall that the notion of an error budget tacitly assumed that x and y
differ in every coordinate. It is important to note that if they do not differ in every
coordinate, the protocol answers correctly with probability 1, regardless of whether
the protocol halts prematurely or not. Thus, there is nothing to prove in this case and
it is fine to measure the error budget expended as if Alice’s and Bob’s inputs differ
in all coordinates. The probability that the error budget is exhausted when = and y
differ in all coordinates (causing the algorithm to incorrectly answer yes) is < 27,
according to (4.1).

4.3.2. Analysis. In this section we give a formal proof to the following theorem.

THEOREM 10. Fiz any k > 1, E > k, and r € [1,(logk)/2]. There exists an
r-round randomized protocol for ExistsEqual on vectors of length k that errs with prob-
ability peye = 2~ FD | using O(EkY™) bits of communication.

61t appears as if rE1T1/7 is an improvement over 7Ek/” when E < k, but this is basically an
illusion. In light of Remark 1, we can always dedicate log*(k/E) — 2 rounds to the first part and
r + 2 rounds to the second part while increasing the communication by O(k). When E > El-1/7,
rEY/T = Q((r + 2) EEY/ ("12)) meaning there is no clear benefit to using the rE'*1/" expression.
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Proof. The number of tests per coordinate in phase j is [;:
l; = 2EkI/™1,
Define E; = Z?/:1 lj/|I;/| to be the portion of the error budget spent in phases 1

through j. We can express the asymptotic communication cost of the protocol in
terms of the error budget as follows:

DUl S Ul + KTy 1L L=kl
j=1 j=2
<2EKYT + B, kYT definition of E,_;.

Recall that the protocol terminates immediately after phase j if E; > E’, which
indicates F,._1 < E’. Hence, the total cost is bounded by

< (2E + ENEY" = O(EEY™).

The protocol can err only if z and y differ in every coordinate. In this case, there
are two possible sources of error. The first possibility is that the protocol answers yes
because |I.| > 1. By a union bound, this happens with probability at most

k2~ Ximili < g2l = g2 28,

The second possibility is that the protocol terminates prematurely and answers
yes if E; > E’ for some j € [1,r]. The probability of this event occuring is also
< 27 see (4.1). This concludes the proof. |

Proof of Theorem 5. Theorem 5 follows directly by combining Theorems 8
and 10. ]

4.4. A logk-round-communication optimal EqualityTesting protocol.
Suppose we want a communication optimal EqualityTesting protocol using O(k + E)
bits. When E > k we need r = Q(log k) rounds, by Theorem 2. In this section, we
give a protocol for Equality Testing that uses O(r) rounds (rather than r) and O(EEY/T)
bits of communication, assuming £ > k. Observe that when r = O(log k), there is no
(asymptotic) difference between r rounds and O(r) rounds as this only influences the
leading constant in the communication volume.

4.4.1. Overview of the protocol. The protocol uses the concept of an error
budget introduced in section 4.3. To shave the factor r off the communication volume,
we cannot afford to use EkJ/"1 test bits for each coordinate that participates in phase
j. Consequently, we cannot guarantee with high probability (say, 1—2~9(%)) that the
number of false positives in I; is less than k' 7 /™. The protocol uses a “backtracking”
strategy that has been applied elsewhere, e.g., in the Feige et al. [22] binary search
algorithm using unreliable comparisons.

Our protocol needs to be able to respond to the rare event that the number of
false positives in I; is larger than k;. Notice that this type of error cannot be detected
in the first j phases and is not easily detectable in the following phases. The danger
in the number of false positives in I; exceeding k; is that when the test bits for phase
7+ 1 are exchanged using Lemma 4.1, the protocol may silently fail, with all test bits
potentially corrupted.

To address these challenges, Alice and Bob each keep a history of all the test bits
they have generated so far. They also keep a history of the test bits they have received
from the other party, which may have been corrupted. Define T4 and T to be the
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true history of the test bits generated by Alice and Bob, respectively. Define T](BA)

to be what Alice believes Bob’s history to be, and define TIEXB) analogously. Observe

that if every invocation of Lemma 4.1 succeeds, then Ty = TIE‘B) and Tg =T ](BA).

To detect inconsistencies, after Alice and Bob generate and exchange their test
bits for phase j, they accumulate their views of the history into strings 74 = T4 o
TI(BA) and T(B) = TlgB) o T'p, respectively, where o is the concatenation operator, and
verify that T = T(B) with a certain number of inner product tests. This is called
a history check. If the history check passes, they can proceed to phase j + 1. If the
history check fails, then the results of phase j are junk, and we can infer that one
of two types of low probability events occurred in phase 7 — 1. The first possibility
is that the test bits at phase j — 1 were exchanged successfully (and consequently,
the history check succeeded), but I;_; contains more than k;_; false positives. The
second possibility is that Alice’s and Bob’s histories were already inconsistent at phase
j — 1, but the phase-(j — 1) history check failed to detect this. Notice that Alice and
Bob cannot detect which of these types of errors occurred. In either case, we must
undo the effects of phases j and j — 1 and restart the protocol at the beginning of
phase 7 — 1. It may be that the history check then fails at the re-execution of phase
7 —1, in which case we would continue to rewind to the beginning of phase j — 2, and
so on. Being able to rewind multiple phases is important because we do not know
which phase suffered the first error.

Both parties maintain an empirical error meter E” that measures the sum of
logarithms of probabilities of low probability (error) events that have been detected.
If the error meter ever exceeds the error budget £/ = ©(FE) we terminate the protocol,
which we show occurs with probability < 27¥. Thus, the process above (proceeding
iteratively with phases, undoing and redoing them when errors are detected) must
end by either successfully completing phase r or exceeding the error budget.

If Alice and Bob successfully finish phase r, we are still not done. This is because
an error can happen in the later phases but we do not have sufficiently high (1 —27%)
confidence that they all succeeded. To build this confidence, Alice and Bob do inner
product tests on the whole history, gradually increasing their number until ©(F) tests
have been done. If one of these history checks fails, we increase the error meter E”
appropriately and rewind the protocol to a suitable phase j in the first stage of the
protocol.

Let us make every step of this protocol more quantitatively precise.

e The protocol has two stages, the refutation stage (in which potential equalities
are refuted) and the verification stage, each consisting of a series of phases.
Although the refutation stage logically precedes the verification stage, because
phases can be undone, an execution of the protocol may oscillate between
refutation and verification multiple times.

e The refutation stage is similar to the protocol in section 4.2 except Alice and
Bob will verify whether the messages conveyed by Lemma 4.1 are successfully
received with further inner product tests. The budget of phase j is

Ek)"
min{j2,r}

=

Observe that the sum of budgets, Z;,Zl By, is O(Eké/r). Thus, in phase j,
we perform l; = B;/k;_1 independent inner product tests on each coordinate
in I;_; and exchange test bits with a Hamming distance of k;_;. That is, we
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are working under the assumption (perhaps false) that there are k;_; false
positives still in I;_;. As usual, Iy is initially [k] and

kOSEa

ki < ky T

All histories T4, Tg, T}(3A)7 IgB) are initially empty, and the error meter E” is
initially zero.

Phase j has two steps, the test step and the history check step. In the test step,
Alice and Bob conduct inner product tests as in section 4.2, i.e., they generate
l; test bits for each coordinate in I;_; and exchange them using Lemma 4.1,
assuming their Hamming distance is at most k;_;. Alice appends the test
bits she generates onto the history T4 and appends the test bits she receives
from Bob onto TE(;A). Bob does likewise. In the history check step, they use
B; independent inner product tests to check whether 7AW = 7B where
TW =Ty o TEA), and T(B) = TﬁlB) o Tp. The history check fails if they
detect inequality and passes otherwise. Since Bj is, in general, less than E,
we are still skeptical of history checks that pass.

If the history check for phase j passes, Alice and Bob proceed to phase j +
1, or proceed to the verification stage if j = r. Otherwise, an error has
been detected: either the number of false positives in I;_; is at least k;_q,
or the history check at phase j — 1 mistakenly passed. The latter occurs
with probability exp(—B;_1) and we show the former occurs with probability
exp(—3k, 1 "Bj_1/4). Not knowing which occurred, we increment the error
meter E” by ko_l/TBj,l/2 due to a union bound. If E” exceeds the error
budget E' = cE, then we halt, where ¢ > 2 is a suitable constant. Otherwise
we retract the effects of phases j and 7 — 1 and continue the protocol at
the beginning of phase j — 1, with “fresh” random bits so as not to recreate
previous errors.

Observe that after phase r of the refutation stage, each coordinate in I, has
passed only about B,./k,_1 = E/r inner product tests, which is not high
enough. Before the verification stage begins, Alice and Bob each generate E’
test bits for each coordinate in I, and append them to T and T(5). (This
can be viewed as a degenerate instantiation of Lemma 4.1 with d = 0, which
requires no communication.) If there are no false positives in I,., these test
bits must be identical.

In the verification stage the phases are indexed in reverse order: r,r—1,...,1.
In each successive phase j, Alice and Bob test the equality 74 = T5) with
B; independent inner product tests. This process stops if it passes a total of
E’ tests, in which case they report that z and y are equal on I,. and not equal
on [k]\I,., or some verification phase j detects that T(4) # T(5)_ In this case,
we know verification phases r,7 — 1,...,j + 1 passed in error and that there
must also have been an error in refutation phase r. Therefore, Alice and Bob

increment E” by ko_l/rBT/Q + Z;/zj_H Bj, and halt if E” > E’. If not, they

rewind the execution of the protocol to phase j of the refutation stage and
continue.

Algorithm 1 recapitulates this description in the form of pseudocode from the

perspective of Alice. Here T'4[j, ] refers to the sequence of Alice’s test bits in T4 for
the ith coordinate produced in the most recent execution of phase 7, and Ta[ji - - « jo, °]
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refers to the test bits generated from phase j; to phase j;. Phase r + 1 refers to the
E' x |I,| test bits generated between the refutation and verification stages. 7|3, 1]

refers to the concatenation of T4[j,¢] and Tg‘) [7,1].

4.4.2. Analysis. To prove Theorem 6, it suffices to prove the following Theo-
rem 11.

THEOREM 11. Fiz any k > 1, E > 1, and r € [1,(logko)/6], where kg =
min{k, E}. There exists a randomized protocol for Equality Testing length-k vectors
x,y with Hamming distance dist(z,y) < ko that uses O(r) rounds, O(k + Ek(l)/r) bits
of communication, and errs with probability per, = 2~ (ET1),

The protocol of Lemma 4.1 fails if Bob does not generate the correct ' = x, which
indicates that the precondition is not met, i.e., dist(z,y) > d. Refutation phase j fails
if the condition in line 27 is not satisfied and the else branch at line 37 is executed in
order to resume the protocol from phase j — 1. Similarly, we say verification phase j
fails if the condition in line 45 is not satisfied, which also indicates the else branch at
line 49 is executed and the protocol is resumed from refutation phase j.

We begin the proof by showing that the extra communication caused by redoing
some of the refutation/verification phases is properly covered by the total error budget.
The following two lemmas actually prove that the error budget spent so far is correctly
lower bounded in line 38 and line 50, and then Lemma 4.6 upper bounds the total

number of extra phases by O(r) and the overall extra communication by O(k—l—Eké/ ).

LEMMA 4.4. Fix any j € [2,7]. If phase j of the refutation stage fails, then the
outcome of the most recent execution of phase j — 1 happened with probability at most

exp(—kg /" B;_1/2).

Proof. Recall that there are two types of errors at phase j — 1. If the (j — 1)th
history check erroneously passed, this occurred with probability exp(—B;_1). The
probability that more than k;_; false positives survive in I;_; is less than

Algorithm 1. An EqualityTesting protocol for Theorem 11 (from the perspective of
Alice).

1: procedure EQUALITYTESTING > main procedure
2: Iy + [I{?]
3: ko < min{k, E'} > initial bound on Hamming distance
4: E' + cE > error budget
5: E"+0 > error meter
6: for j«<1,...,rdo
Ekl/r

7 B; + —0___ > phase j communication budget

min{j2,r}
8: kj < ké_J /r > ideal upper bound on Hamming distance
9: lj < Bj/kj_1 > tests per coordinate
10: end for
11: REFUTATION(1)
12: VERIFICATION(T)
13: Output equal on coordinates I, and not equal on [k]\I,

14: end procedure
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Algorithm 1. An EqualityTesting protocol for Theorem 11 (from the perspective of

Alice) (cont.).

15

16:
17:

18

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:

42

43:
44:
45:
46:
47:
48:
49:
50:

51:
52:
53:
54:

: procedure INNERPRODUCTTEST(w,b)
perform b independent inner product tests on w and return the test bits
end procedure

: procedure REFUTATION(j)

for alli e l;_; do
T4[j,t] < INNERPRODUCTTEST(z;, ;)
end for
send T[4, -] to Bob and receive T](BA) [4,-] from Bob via Lemma 4.1
T, ] Talj, 1o T4l ]
T « INNERPRODUCTTEST(TM(1 - -4, ], B;)
send T to Bob and receive 73) from Bob directly

if 7(4) = T7(B) then > passed history check
I —{ielj_1|Talj,t] = T](SA) 7,9} > all coords. not yet refuted
if j <r then
REFUTATION(j + 1)
else

TW[r+1,-] L
for alli € I, do
TW[r +1,4] < INNERPRODUCTTEST(2;, E)
end for
end if
else

REFUTATION(j — 1)
end if
end procedure

: procedure VERIFICATION(j)
T + INNERPRODUCTTEST(TW[., -], B)

send T™ to Bob and receive 7B) from Bob directly
if 74 = 7(®) then
if Z;,: ; By < E' then > insufficiently confident to halt
VERIFICATION(j — 1)
end if
else > error detected

E" + E" +ky /"B, /2+Y!,_;,, By, and terminate if E” > E’ > update
error meter
REFUTATION(j) > rewind protocol to phase j
VERIFICATION(7")
end if

end procedure
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kj—1
(lfo )Q—kj—llj—l < (ke-ko ) gkt (n) < (%)k
J—1 i1

S 22k;j71 log(kg/kj,l)—kj,llj,l e S ké/’r S kl.ﬂol due tO r S logﬁk‘o
j—

< 9 Bli-tki-1/4
where the last step follows from the inequality

k
2log —— =2(j — l)logké/r

ki1
W because 823 < 8% for z € N
= fg_l)l/); log ké/r < %KT due to ké/r > 26
- 5;;12 definition of B;_;
B l% definition of ;_;.

Combining the above two cases, by a union bound, the outcome of the most
recent execution of phase j — 1 of the refutation stage happens with probability

at most exp(—B;_1) + exp(—3l;_1k;—1/4) = exp(—B,_1) + exp(—3k§1/TBj_1/4) <

exp(—kal/rBj,l/Q), as claimed. O
LEMMA 4.5. Fiz any j € [1,7]. If phase j of the verification stage fails, then the
outcomes of the most recent execution of phases r,r — 1,...,5 4+ 1 of the verification

stage and phase r of the refutation stage happened with overall probability at most
exp(—kg /"B, /2= 3" Bj:).

i'=i+1
Proof. Notice that the failure of verification phase 7 means all previous verification
phases r,7 —1,..., 7+ 1 failed to detect an inconsistency in the history, which occurs

with probability exp(— Zg,:j 41 Bjr). Meanwhile, the inconsistency is caused by an
error of some type in refutation phase r, which, according to Lemma 4.4, occurs with
probability at most exp(—k, Urp, /2). Therefore, the outcomes of the most recent

execution of verification phases r,r — 1,...,j + 1 and refutation phase r happened
with overall probability at most exp(—kgl/TBT/2 — Z;,:jH Bj). d

LEMMA 4.6. Algorithm 1 executes O(r) extra refutation/verification phases and
uses O(k + Eké/r) extra bits of communication.

Proof. We first consider the total number of extra phases. Each failure of refuta-
tion phase j uses at least k'o_l/TBj_l/2 > E/(2r) of the error budget and causes the
re-execution of two phases, namely j — 1 and j. Similarly, each failure of verification
phase j uses kal/rBr/2 + > i1 By = (r—j +1)E/(2r) of the error budget and
causes the re-execution of 2(r — j 4 1) phases. Thus, the total number of extra phases
is at most 4¢r = O(r), where the error budget E' = cE.

Turning to the overall extra communication, notice that phase j of the refutation
stage has communication volume O(B; + k;_1log(k/k;j—1)) and phase j of the veri-
fication stage has communication volume O(Bj). For any j € [2,7], also notice that

Bj_1/B; <j?/(j —1)? <4< ké/T. Thus, the communication caused by each failure
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is at most O(ké/ ") times the error budget spent by that failure, if we temporarily
ignore the k;j_ log(k/k;—1) term.

In order to upper bound the communication contributed by the k;_; log(k/k;_1)
term, observe that refutation phase j can only be repeated O(j?) times before the
error budget is exhausted. Thus, the overall extra communication is upper bounded

by O(k + Eké/r) since

,
1/r ’ -2 k

O(ky'") - E +;O(J ) - kj—1log o

iy g ~ 0(j% k G-1)/r

=O0(ky/") - E' + koz GO log e + log k§

j=1"0
r . r . (j=1)/r
oty k& 0G?) 0(5°) - log kg
= Olko') - B+ ko log 1 Z G-or Tt ko) LG-1/r
7j=1"0 Jj=1 0

— O(k+ EkY™).

The last step follows from the fact that ké/ "> 26 and kg < k. 0

Now we are ready to prove Theorem 11.

Proof of Theorem 11. If there are no errors, Algorithm 1 has at most 2r phases
and uses O(375_, (Bj+kj—1log(k/kj-1))) = O(k‘+Eké/T) communication, where each
phase can be implemented in O(1) rounds. Together with Lemma 4.6, we have shown
that it is an O(r)-round randomized Equality Testing protocol using O(k + Ek(l)/r) bits
of communication. Thus, it suffices to calculate the error probability of the protocol.

Consider a possible execution of the protocol, i.e., the sequence of the refuta-
tion/verification phases that are performed. It can be represented by a unique 0-1
string of length at most 4cr + 2r (by the proof of Lemma 4.6) such that each “1”
corresponds to a failed phase. In particular, each execution of the protocol that ter-
minates prematurely because E”’ > E’ is represented as a 0-1 string, which occurs
with probability at most 2-F by Lemmas 4.4 and 4.5. Hence the overall probability
of terminating prematurely is 24¢7+2r . 2= 5"

An error can also be caused by at least one false positive surviving all £’ indepen-
dent inner product tests generated after refutation phase r. The probability of this
happening is at most ko2~ F'. The last possible source of error is that all verification
phases fail to detect the inequality 7Y # T5) According to line 46, the probability
of this happening is at most 2-E Hence, the overall probability of error is upper
bounded by

glert2r 9=B' | po~F 4 9=F" = poly(kg)2™F,

which is at most 2=F for, say, E' = 2E. This concludes the proof. ]

Proof of Theorem 6. Theorem 6 subsequently follows by applying Theorems 8
and 11 in sequence. ]

4.5. A more efficient EqualityTesting protocol. Theorem 10 demonstrates
that the Q(Ekl/r) lower bound can be attained for ExistsEqual. Let us highlight a key
property of the protocol that arises naturally in ExistsEqual but is difficult to efficiently
recreate in EqualityTesting. In the first round Alice generates about Iy = E/k'~1/"
test bits per coordinate and sends them to Bob. Since there is no possibility of
reporting yes (Ji.x; = y;) in error, Bob can operate under the assumption that for all
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i.z; # ;. Therefore, if he finds that |I;| = 8;k*'/", he can infer that the adversary
has expended a (37 fraction of his error budget and adaptitvely choose the length of
his message to be 51 Ek'/", i.e., we are effectively charging k'/” bits of communication
to each of the 81 F units of error just spent by the adversary. In Theorem 10 this
adaptivity happens transparently: the length of the jth message depends directly on
the fraction 8;_1 of the error budget expended by the adversary in round j — 1, even
though 8;_; is not ever named as a parameter of the algorithm.

A key difference between ExistsEqual and Equality Testing is that in the latter, the
adversary can effectively hide how much of its error budget it has expended. Consider
the state of Bob after receiving the first message from Alice. If he finds that |I;| = k/2,
there is no way to tell how many false positives are contained in I; and how many
are true positives. In the worst case the number of false positives could be as high
as k'~1/7. We cannot optimistically assume the false positive number is lower,” and
continually using the pessimistic bound leads to O(rEkl/ ") communication. It seems
that any optimal algorithm must detect and adapt to the fraction of the error budget
spent by the adversary.

THEOREM 12. Fiz any k > 1, E = Q(1), and r € [1,(logko)/2], where ko <
min{k, E}. There exists a randomized protocol for Equality Testing length-k vectors x,y
with Hamming distance dist(x,y) < ko that uses r rounds, O(k—i—Ek‘é/r logr+Erlogr)
bits of communication, and errs with probability pey = 2~ F+1,

The remainder of this section constitutes a proof of Theorem 12.

Define E' = 7FE to be the error budget of the adversary, i.e., it is allowed to make
up to E’ inner product tests pass on unequal coordinates.

Round 1. Initially Iy = [k] is guarante to contain at most ko unequal coordinates.
Alice generates I; = E’ ké/ "1 test bits for each coordinate in Iy and transmits them
to Bob using Lemma 4.1 with a Hamming distance of d = ky. (We show later that the
ko log(k/ko) terms in this protocol contribute negligibly to the overall communication;
thus, for the time being we measure the cost as koly = E’ké/r.) Bob sets I; to be the
subset of Iy that pass all inner product tests.

Round 2. Due to the adversary’s error budget, the number of false positives in

I; is at most
by =EJly = kg "

Suppose the true number of false positives in Iy is
* 1-1
1= 51k1 = ﬁiko /Ta

meaning the adversary just spent a 3] fraction of his total error budget. Bob cannot
measure (1, but he can send a message to Alice that allows her to estimate 8]. Bob

invokes Lemma 4.1 logr times. For i € [1,logr], Bob generates the next léi) test bits

for coordinates in I; so that Alice can recover them up to a Hamming distance of kgi),

where
loky = 2E'ky",
I =1y 271,
K = ky /2L

"Invoking Lemma 4.1 with a Hamming distance d that is too small can result in an undetected
failure of the protocol.
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Clearly invocation 7 will succeed if kgi) > ki and may fail if ky) < ki. In order to
detect which invocations of Lemma 4.1 succeed, Bob supplements each with a ©(FE)-
bit hash of the test bits generated. Thus, with probability 1 — 2=©®¥) Lemma 4.1
has no silent failures.

Round 3 onward. Suppose that Alice detects that the invocations of Lemma 4.1
with Hamming distances kzgl), ceey kii*) succeed but the one with k%i“rl) fails (or that
1* =logr). Alice estimates 3] by

B =2"".
Observe that if i* < logr (the (¢* + 1)th invocation of Lemma 4.1 fails), then
ki > B — gt gl

and consequently, 81 < 1. On the other hand, if i* = logr, then 8 = 1/r, whereas
B} may be close to zero. Either way, we have

B < B+ 1/r.

Since every false positive in I has successfully passed léi*) inner product tests, we
can conclude that the maximum number of false positives remaining in I5 is
E E' k
ko = G 1 o = 1/7~1 . 1ké
l5 2E'ky'" 20"k kg2
As before, k3 = Bko is the true number of false positives in I, where 85 € [0,1] is
currently unknown. In the third round Alice selects I3 (see below) and invokes the

test bit exchange protocol (Lemma 4.1) with l:()f) = [32°7! test bits per coordinate
and Hamming distance k$” = ky/27=1, in parallel for all i € [1,logr]. The overall
communication volume is kolslogr, and we select I3 such that this is linear in the
(estimated) error budget spent by the adversary in round one, i.e.,

kaolslogr = By E'ky/" logr
and therefore
I = BL2E' k" [ky = 2B [k 3/"
is independent of ;.

All the bounds above were specialized to Round 3 but apply to round j by rein-
dexing appropriately. In particular, the receiver of the (j — 1)th message estimates

3‘—2 = k}k—z/kjfz by
Bima=2"" < B_y+1/r
and sets
kj_y = ﬁj,gk‘éi(jil)/r,
Iy =2E [ky ",

then invokes Lemma 4.1 logr times in parallel with parameters l;z) = lj2i*1 and
kzj(i)l =kj_1/ 2¢=1 to send the jth message. It remains to bound the total communi-
cation and the probability of error.

Communication volume. With the extra ©(FE)-bit hash, the cost of each invoca-
tion of Lemma 4.2 with parameters d, L is O(E +dL+ dlog(k/d)). There are at most
log r invocations per round and r rounds, so the total contributed by the first term is

O(Erlogr). The total contributed by the second term is
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r logr
fo+ 30 3 K,

j=2 i=1

= E/k(l)/T +logr - Z ki_1l;
=2

= E'ky" + 2Bk logr - {1+ B2

< E'ky" + 2Bk logr - [ 14+ (85, + 1/r)

j=3
< E'ky" + 6E'ky " logr S, <1
j=>3
= E'k)/"(6logr +1).
Next we bound the third term. For any j7 > 2, we have
logr ) )
> k2, log(k /)
logr : lk
—1
k logr logr .
73110g]€ 2121 1+k3 12211

= O(kj—1log(k/kj_1)).

Therefore, it suffices to consider only the first invocation of Lemma 4.1 from each
round. Now we bound the total across all rounds. For the first two rounds we have
kologk/ko < k and kqlogk/k1 < k, so we start counting from round j = 3.

ki_1lo
;’ 7j—1 gk]—l

r—1 / k
—3/r

22/3] 1k 1og7B —

]:

1Ko
r—1 log gj/r
i1
< : ﬁjfl kj/r
Jj=2
r—1 r—1
log kJ/7 Bj-1log 57—
<k, kil kz il =1l
j=2 j=2
loghkiT K1
<k kilr e Z ki/r
j= Jj=
— O(k) kY7 > 2.
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In conclusion, the total communication cost is O(k + Eké/r logr + Erlogr).

Error probability. We now show that protocol errs with probability less than
2= (E+1) If we use a 2E-bit hash of the test bits in each invocation of Lemma 4.1 the
probability that any failed invocation goes unnoticed is at most

rlogr-272F,
The algorithm works correctly so long as kj < k; for every j, which holds whenever
the adversary does not exceed his error budget E’. The probability that the error
budget is exceeded is, by a union bound, at most

E +ky—1 /
< ]:_ 01 )2_E < exp(kolog (e(E" + ko) /ko) — E'),
0 —
which is less than 273% when E' = 7TE > Tky. Finally, every unequal coordinate is
ultimately subject to I, = 2E’ inner product tests, and the probability that any goes
undetected is at most ky272F . The total error probability is therefore at most

rlogr-272F 4 2738 4 k02_2E/ < 2~ (B+1),

This concludes the proof of Theorem 12.

5. Distributed triangle enumeration. One way to solve local triangle enu-
meration in the CONGEST model is to execute, in parallel, a Setlntersection protocol
across every edge of the graph, where the set associated with a vertex is a list of
its neighbors. Since there are at most An/2 edges, we need the Setlntersection error
probability to be 2= E = O(logn), in order to guarantee a global success probabil-
ity of 1 — 1/ poly(n). Our lower bound says any algorithm taking this approach must
take Q((A + EAY7)/logn + r) rounds since each round of CONGEST allows for one
O(log n)-bit message. The hardest situation seems to be when A = E = O(logn), in
which case the optimum choice is to set r = log A, making the triangle enumeration
algorithm run in O(log A) = O(loglogn) time. In Theorem 13 we show that it is pos-
sible to handle this situation exponentially faster, in O(loglog A) = O(logloglogn)
time, and, in general, to solve local triangle enumeration [29] in optimal O(A/logn)
time so long as A > logn logloglogn.

THEOREM 13. Local triangle enumeration can be solved in a CONGEST network
G = (V, E) with mazimum degree A in O(A/logn+loglog A) rounds with probability
1 —1/poly(n). This is optimal for all A = Q(lognlogloglogn).

Proof. The algorithm consists of min{loglog A,logloglogn} phases. The goal of
the first phase is to transform the original triangle enumeration problem into one with
maximum degree A; < (logn)°™), in O(log* n) rounds of communication. The goal of
every subsequent phase is to reduce the maximum degree from A’ < y/logn to VA,
in O(1) rounds of communication. Thus, the total number of rounds is O(loglog A)
rounds if the first round is skipped and O(log* n + loglog(A1)) = O(logloglogn)
otherwise.

Phase 1. Suppose A > y/logn. Each vertex u is identified with the set A, =
{ID(v) | {v,u} € E} having size A. For each {u,v} € E we reduce Setlntersection to
Equality Testing by applying Theorem 1, then run the two-party EqualityTesting proto-
col of Theorem 4, with k = max{A,logn},r = log*n, and E = r~'k'~1/". (That is,
if A < logn we imagine padding each set to size logn with dummy elements.) One
undesirable property of this protocol is that it can fail “silently” if the preconditions
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of Lemma 4.1 are not met. When the Hamming distance between two strings exceeds
the threshold d, Bob generates a garbage string x’ # x but fails to detect this. To
rectify this problem, we change the Lemma 4.1 protocol slightly: Alice sends the color
@(x) of her string, as well as an O(logn)-bit hash h(z). Bob reconstructs 2’ as usual
and terminates the protocol if h(z) # h(z’). Clearly the probability of an undetected
failure (i.e., x # 2’ but h(x) = h(z’)) is 1/ poly(n). Define G; = (V, Ey) such that
{u,v} € Ey iff the Setlntersection protocol over {u,v} detected a failure. In other
words, with high probability, all triangles in G have been discovered, except for those
contained entirely inside G;. The probability that any particular edge appears in
E is27F = 9=k T E M log" n g independent of all other edges. In particular, if
A > (logn)'+1/1°8" " then no errors occur, with probability 1 — 1/poly(n). Define
A; to be the maximum degree in G;. Thus,

Pr[A; > (logn)*]

< n-exp (O((log n)*loglogn) — e(logn)' = - (log n)Q“)
< 1/poly(n).

Phases 2 and above. Suppose that at some round, we have detected all triangles
except for those contained in some subgraph G’ = (V, E’) having maximum degree
A’ < \/logn. Express A’ as (logn)?, where v < 1/2. We execute the EqualityTesting
protocol of Theorem 9 with k = A/, 7 = 2, and E = C(logn)'~7/? for a sufficiently
large constant C'. Note that 1 —+/2 > v, so E > k, as required by Theorem 9. The
protocol takes O(Ek'/2/logn +r) = O(1) rounds since the communication volume is
O(EkY?) = O(logn) and r = 2. Let G” be the subgraph of G’ consisting of edges
whose protocols detected a failure and A” be the maximum degree in G’. Once again,

)25

e=1/r=1/log"n

Pr {A” > (log n)w/g}

A’ _E (logn)7/?
<1 (tgayn) )

<n-exp (O((log n)??loglogn) — C(logn)'="/%. (log n)'Y/z)

< 1/poly(n).

Thus, once A < y/logn, loglog A < logloglogn — 1 of these two-round phases suffice
to find all remaining triangles in G. a

Theorem 13 depends critically on the duality between edges and Setlntersection
instances and between edge endpoints and elements of sets. In particular, when an
execution of a Setlntersection over {u, v} is successful, this effectively removes {u,v}
from the graph, thereby removing many occurrences of ID(u) and ID(v) from adjacent
sets.

Consider a slightly more general situation where we have a graph of arboricity
A (but unbounded A), witnessed by a given acyclic orientation having out-degree at
most A. Redefine the set A,, to be the set of out-neighbors of w.

A, ={ID(v) | {u,v} € E with orientation u — v}.

By definition |A,| < A. Because the orientation is acyclic, every triangle on {z,y, z}
is (up to renaming) oriented as x — y, © — z, y — z. Thus, it will only be detectable
by the Setlntersection instance associated with {z,y}.
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THEOREM 14. Let G = (V, E) be a CONGEST network equipped with an acyclic
orientation with out-degree at most \. We can solve local triangle enumeration on G
in O(\/logn +log\) time.

Proof. We apply Theorem 1 to reduce each Setlntersection instance to an Equal-
ity Testing instance, then apply Theorem 6 with £ = ©(logn) and r = log A to solve
each with O(\ + EAY") = O(\ + E) communication in O((A + E)/logn + r) =
O(A/logn +log \) time. Note that the dependence on A here is exponentially worse
than the dependence on A in Theorem 13. O

It may be that G is known to have arboricity A, but an acyclic orientation is
unavailable. The well-known “peeling algorithm” (see [16] or [4]) computes a CA
orientation in O(log~n) time for C sufficiently large, say, C' > 3. Using this algorithm
as a p;eprocessing step, we can solve local triangle enumeration optimally when \ =
Q(log” n).

THEOREM 15. Let G = (V, E) be a CONGEST network having arboricity \ (with
no upper bound on A). Local triangle enumeration can be solved in optimal O(\/logn)
time when A = Q(log®n) and sublogarithmic time O(logn/log(log® n/\)) otherwise.

Proof. The algorithm computes a = - A orientation in O(logw n) time and then
applies Theorem 14 to solve local triangle enumeration in O(yA/logn + log(y)))
time. The only question is how to set . If A = Q(log2 n) we set v = 3, making the
total time O(A/logn), which is optimal [29]. Otherwise we choose 7 to balance the
log., n and y\/logn terms, so that

ylogy = log® n/A\.

Thus, the total running time is slightly sublogarithmic O(logn/ log(log® n/\)). Specif-
ically, it is O(logn/loglogn) whenever A < log? ¢ 7. 0

6. Conclusions and open problems. We have established a new three-way
trade-off between rounds, communication, and error probability for many fundamental
problems in communication complexity such as SetDisjointness and Equality Testing.
Our lower bound is largely incomparable to the round-communication lower bounds
of [41, 11] and stylistically very different from both [41] and [11]. We believe that our
method can be extended to recover Saglam and Tardos’s [41] trade-off (in the constant
error probability regime), but with a more “direct” proof that avoids some technical
difficulties arising from their round-elimination technique. It is still open whether
Equality Testing can be solved in r rounds with precisely O(EEY") communication
and error probability 2=F < 27*. Our algorithms match this lower bound only when
r=0(1) or r = Q(logk), or for any r when solving the easier ExistsEqual problem.

We developed some CONGEST algorithms for triangle enumeration that employ
two-party Setlntersection protocols. It is known that this strategy is suboptimal
when A > n'/3 [13, 14]. However, for the local triangle enumeration problem,® our
O(A/logn + loglog A) algorithm is optimal [29] for every A = Q(lognlogloglogn).
Whether there are faster algorithms for triangle detection® is an intriguing open prob-
lem. Tt is known that one-round LOCAL algorithms must send messages of 2(Alogn)
bits deterministically [1] or Q(A) bits randomized [23]. Even for two-round triangle
detection algorithms, there are no nontrivial communication lower bounds known.

8Every triangle must be reported by one of its three constituent vertices.
9 At least one vertex must announce there is a triangle; there is no obligation to list them all.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/01/21 to 35.3.105.140 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COMMUNICATION COMPLEXITY OF EQUALITY TESTING 713

Appendix A. Reductions and near equivalences. Brody et al. [11] proved
that Setlntersection on sets of size k is reducible to Equality Testing on vectors of length
O(k), at the cost of one round and O(k) bits of communication. However, the reduc-
tion is randomized and fails with probability at least exp(—O(v/k)). This is the
probability that when k balls are thrown uniformly at random into k bins, some bin
contains w(vk) balls.

Recall the statement of Theorem 1:

Eq(k, 7, perr) < SetInt(k, 7, perr), SetInt(k,r + 1, perr) < Eq(k, 7, Perr) + ¢,
JEq(k, 7, perr) < SetDisj(k, 7, perr),  SetDisj(k,r + 1, perr) < IEq(k, 7, Perr) + ¢,

where ¢ = O(k + loglogp.l). In other words, under any error regime pe., the
communication complexity of Setlntersection and Equality Testing is the same, up to one
round and O(k + loglogp,!) bits of communication, and the same relationship holds
between SetDisjointness and ExistsEqual. The proof is inspired by the probabilistic
reduction of Brody et al. [11] but uses succinct encodings of perfect hash functions

rather than random hash functions.

Proof of Theorem 1. The leftmost inequalities have been observed before [41, 11].
Given inputs z,y to ExistsEqual or Equality Testing, Alice and Bob generate sets A =
{(1,21),...,(k,zr)} and B ={(1,v1),-.., (k,yx)} before the first round of communi-
cation and then proceed to solve Setlntersection or SetDisjointness on (A, B). Knowing
AN B or whether AN B = ) clearly allows them to determine the correct output of
Equality Testing or ExistsEqual on (z,y).

The reverse direction is slightly more complicated. Let (A, B) be the instance of
Setlntersection or SetDisjointness over a universe U with size at most |U| = O(k? /perr)-
Alice examines her set A, and picks a perfect hash function h : U — [k] for A, i.e.,
h is injective on A. (This can be done in O(k) time, in expectation, using only
private randomness. In principle Alice could do this step deterministically, given
sufficient time.) Most importantly, h can be described using O(k-+loglog |U|) = O(k+
log log p,+) bits [42], using a variant of the Fredman—Komlés—Szemerédi [24] two-level
perfect hashing scheme.!® Alice sends the O(k + loglog p.,1)-bit description of h to
Bob. Bob calculates B; = B N h~!(j) and responds to Alice with the distribution
|Bol, |B1l, - - -, | Br—1|, which takes at most 2k bits. They can now generate an instance
of equality testing where the k equality tests are the pairs Agx By, A1 X B1,..., Ag_1 X
By_1. By construction, A; = ANh™1(j) is a one-element set. There is clearly a 1-1

10We sketch how the encoding of h works, for completeness. First, pick a function b’ : U +— [O(k?)]
that is collision-free on A. Fredman, Komlés, and Szemerédi [24] proved that a function of the form
R/ (z) = (ax mod p) mod O(k?) works with constant probability, where p = Q(k?log|U|) is prime
and a € [0, p) is random. Pick another function h. : [O(k?)] + [k] that has at most twice the expected
number of collisions on A, namely 2- (g) /k < k, and partition A into k buckets A; = ANh; '(5). The
sizes |Aol|, |A1l,...,|Ax—1| can be encoded with 2k bits. We now pick O(log k) pairwise independent
hash functions k1, ha, ..., ho(og k) : [O(k?)] = [O(k?)]. For each bucket A;, we define h(;) to be the
function with the minimum 4 for which h;)(2) = h;(z) mod |A;|? is injective on A;. In order to
encode which function h;y is (given that h1, ..., ho(log k) are fixed and that | A;| is known), we simply
need to write i in unary, i.e., using the bit-string 0°~11. This takes less than 2 bits per j in expectation
since each h; is collision-free on A; with probability at least 1/2. Combining A/, h«, |Aol, ..., |Ak—_1]
and h(gy, ..., hk—1) into a single injective function from U ~— [O(k)] is straightforward and done
exactly as in [24]. By marking which elements in this range are actually used (O(k) more bits),
we can generate the perfect h : U ~— [k] whose range has size precisely k. Encoding h’ takes

O(log k + loglog |U|) bits and encoding hy takes O(log k) bits. The distribution |Ag],...,|Ax—1]| can
be encoded with 2k bits. The functions hi,...,ho(og k) can be encoded in O(log? k) bits and the
functions hy, -+, h(r—1) with less than 2k bits in expectation.
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correspondence between equal pairs and elements in AN B. We have Bob speak first
in the EqualityTesting/ExistsEqual protocol; thus, the overhead for this reduction is
just one round of communication and O(k + loglog p.,1) bits. d

Appendix B. Section 3 proofs.
B.1. Proof of Lemma 3.1.

Proof of Lemma 3.1. Let X be the whole universe. From our assumptions, the
entropy of ¢ can be lower bounded as

H(g) = 3 g(z) log ——

= q(x)

and since ) q(x) = 1, this is

1
aq(x)log aq(@) + log

v

1 1
[p(a:) log m — (p(x) — aq(z))log p(:c)—aq(x)} + log a.

8
m
®

The previous step follows from Assumption 2 and the fact that zlogz~!4ylogy ! >
(x +y)log(z +y)~! for any x,y > 0. Continuing, by Assumption 1,

+ log «,

> l 9= Y (p(x) - aglx) o

.
= (z) — aq(x)

and by the concavity of logarithm,

S

>

Q|+

—

2
[s—g—(l—a)logl ]+loga

1- H
—s- 4 alog(l—a)—&—loga:s—g—ﬂ. |
! ! ! a

B.2. Proof of Lemma 3.2. Recall the Kullback-Leibler divergence (also known

as relative entropy) is defined to be Dk, (ql|p) = >_, q(z)log %, where supp(q) C

supp(p). That is, it is the expected value of log % when x ~ q. This lemma bounds
the probability that log @ deviates too far from its expectation. It is syntactically

p(z
similar to Markov’s inequality, but note that Markov’s inequality is inapplicable as
log 242) 45 not nonnegative.

p(z)
Proof of Lemma 3.2. Define &) to be

Xo = {z € supp(q) | q(x)/p(x) < 29/e+or= (e loslize)/ay

and X7 = supp(q) \ Xy. Suppose, for the purpose of obtaining a contradiction, that
the conclusion of the lemma is false, i.e., ¢(X1) = ag, for some oy > a. Notice that
for each value z € &7, Assumption 2 implies that

(B.1) q(z) > p(x) - 991/a+g2—(1-a) log(1—a) /o > 9—s+g1/a—(1-a)log(l-a)/a
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Then we can upper bound the entropy of ¢ as follows:

H(g)= ) ()10g7+z 7)log )

TEX)

g1 o
< Z 1og )+a0 {s—a—i— log(l—a)};

reXy

the previous step follows from (B.1). By the concavity of logarithm, this is

s 1
g(l—ao)logli O—i—ao[S—il_,_ aalog(l—a)]
o l1-«a
:s—0'91+040{ log(1 —a) — OIOg(l_QO)}
« Qo
<S_gl7

where the last step follows from the monotonicity of (1 — a)log(l — a)/a. This
contradicts Assumption 1. 0
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