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CONNECTIVITY ORACLES FOR GRAPHS SUBJECT TO VERTEX
FAILURES⇤

RAN DUAN† AND SETH PETTIE‡

Abstract. We introduce new data structures for answering connectivity queries in graphs
subject to batched vertex failures. A deterministic structure processes a batch of d  d? failed
vertices in Õ(d3) time and thereafter answers connectivity queries in O(d) time. It occupies space
O(d?m logn). We develop a randomized Monte Carlo version of our data structure with update time
Õ(d2), query time O(d), and space Õ(m) for any failure bound d  n. This is the first connectivity
oracle for general graphs that can e�ciently deal with an unbounded number of vertex failures. We
also develop a more e�cient Monte Carlo edge failure connectivity oracle. Using space O(n log2 n),
d edge failures are processed in O(d log d log logn) time, and thereafter, connectivity queries are
answered in O(log logn) time, which are correct with high probability. Our data structures are
based on a new decomposition theorem for an undirected graph G = (V,E), which is of independent
interest. It states that for any terminal set U ✓ V we can remove a set B of |U |/(s�2) vertices such
that the remaining graph contains a Steiner forest for U �B with maximum degree s.
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1. Introduction. The dynamic subgraph model [20, 22, 38, 40, 47, 73] is a con-
strained dynamic graph model. Rather than allow the graph to evolve in completely
arbitrary ways (via an unbounded sequence of edge insertions and deletions), there is
assumed to be a fixed ideal graph G = (V,E) that can be preprocessed in advance.
The ideal graph is susceptible only to the failure of edges/vertices and their subsequent
recovery, possibly with a bound d? on the number of failures at one time. Queries
naturally answer questions about the current failure-free subgraph. This model is
useful because it more accurately represents the behavior of many real-world net-
works: changes to the underlying topology are relatively rare but transient failures
very common. More importantly, this model o↵ers the algorithm designer the free-
dom to explore exotic graph representations. Because preprocessing time is not the
most critical measure of e�ciency, it may be desirable to build a specialized graph
representation that facilitates more e�cient updates and queries.

Dynamic subgraph connectivity. The dynamic subgraph model was introduced by
Frigioni and Italiano [47] who showed that when the ideal graph is planar, vertex
failures/recoveries and connectivity queries could be handled in O(log3 n) amortized
time, after Õ(n) preprocessing. Their algorithm even allowed the ideal graph to evolve
via edge updates, also in O(log3 n) amortized time, so long as it remained planar.
Dynamic subgraph connectivity structures were later developed for general graphs [9,
20, 22, 38, 42]. Chan, Pǎtraşcu, and Roditty [22] gave an O(m4/3)-space structure
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1364 RAN DUAN AND SETH PETTIE

that handles vertex failures/recoveries in Õ(m2/3) amortized time and connectivity
queries in O(m1/3) time. Duan [38] developed a di↵erent O(m)-space structure with
the same amortized update and query time as [22], and a new Õ(m)-space structure
with worst-case Õ(m4/5)-time updates and O(m1/5) time queries. More recently
Duan and Zhang [42] presented a worst-case randomized (Monte Carlo) structure
with update time Õ(m3/4) and query time Õ(m1/4). Each of [22, 38, 42] has an ⌦(m)
update time-query time product. Baswana et al. [9] (see also [26]) showed how to
maintain a DFS tree in the dynamic subgraph model with Õ(

p
mn) update time,

which supports O(1)-time connectivity queries.
Pǎtraşcu and Thorup [73] considered a situation where a batch of d edges fail si-

multaneously. They showed that an O(m)-space structure could be constructed that
handles updates in O(d log2 n log log n) time and subsequently answers connectivity
queries in O(log log n) time. Moreover, they observed that the query time could not be
unilaterally improved, by a reduction to the predecessor problem [72, 76]. One down-
side of the Pǎtraşcu–Thorup structure is that it requires exponential time to compute:
it involves solving sparsest cut Õ(n) times on various subgraphs. Using a polynomial
time O(

p
log n)-approximate sparsest cut algorithm [5, 4, 78] instead increases the

update time to O(d log5/2 n log log n). Pǎtraşcu and Thorup [73] were motivated by
the absence of a fully dynamic connectivity data structure with poly(log n) worst-case
update time.1 Kapron, King, and Mountjoy [61] discovered a randomized dynamic
connectivity structure with O(c · poly(log n)) update time that errs with probability
n�c. Gibb et al. [51] observed that this data structure can function correctly, with
high probability (w.h.p.), without actually storing the graph. This leads to a d-edge
failure connectivity oracle with update and query time similar to [73], but using just
Õ(n) space.

The analogous d-vertex failure connectivity problem is inherently more complex.
Whereas removing d edges can only increase the number of connected components
by d, removing d vertices can have an impact on the connectivity that is completely
disproportionate to d. When d = 1 we can use the block tree representation of
biconnected components to answer connectivity queries in constant time; see [16]
for data structural details. When d = 2 we can use the SPQR tree [11, 16] of each
biconnected component to answer queries in O(1) time. A data structure of Kanevsky
et al. [60] can answer queries in O(1) time when d = 3. Similar ad hoc solutions can
also be designed for d-edge failure connectivity oracles, for constant d  4 [37, 50,
75, 82]. However, scaling these solutions up, even to an arbitrarily large constant d,
becomes prohibitively complex, even in the simpler case of edge failures. In a �-edge
connected graph, encoding all �-edge cuts is simple with the cactus [32] representation,
but the simplicity is lost when encoding both �- and (�+1)-edge cuts. See [34, 35, 36].

In previous work [40] we designed a d-edge failure oracle that reduces the prob-
lem to two-dimensional (2D) orthogonal range reporting. Using the range reporting
structure of Chan, Larsen, and Pǎtraşcu [21] gives a d-edge failure structure with
O(d2 log log n) update time, O(min{ log d

log logn
, log logn

log log logn
}) query time, and O(m log log n)

space, or a somewhat slower update time with O(m) space. By itself, this structure
compares favorably with the d-edge failure oracles of [73, 61] when d = O(log n).
However, it has additional properties that make it attractive for use in d-vertex

1There are dynamic connectivity structures with amortized poly(logn) update time [57, 56,

83]. However, the fastest deterministic worst-case update time is O(
q

n(log logn)2

logn ) [62], a small

improvement over the long-standing O(
p
n) bound of [45, 44]. See [68] for Las Vegas randomized

dynamic connectivity structures with n
o(1) worst-case bounds.
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CONNECTIVITY ORACLES FOR VERTEX FAILURES 1365

failure oracles. Specifically, if D is the set of failed vertices, the update time is
actually O

�
(
P

v2D
degT (v))2 log log n

�
, where T is any spanning tree of the graph.

In other words, the update time is quadratic in the sum of the T -degrees, independent
of their degrees in G.

If G were guaranteed to have an O(1)-degree spanning tree we would immediately
have a satisfactory d-vertex failure connectivity oracle with update time Õ(d2) and
query time Õ(1). Of course, there is no such guarantee. Every bridge edge appears in
every spanning tree T , so a vertex incident to many bridges must have high T -degree.
Since bridges are easy to deal with this is not a very convincing counterexample. One
might hope that if G had su�cient connectivity, a low degree spanning tree could be
found. This is the approach taken by Borradaile, Pettie, and Wul↵-Nilsen’s [16] d-
failure connectivity oracles for planar graphs. Barnette’s theorem [7] states that every
triconnected planar graph has a degree-3 spanning tree, which can be found in linear
time [30, 79]. However, the analogues of Barnette’s theorem for general graphs are too
weak to be of any use. Czumaj and Strothmann [30, 79] proved that a k-connected
graph with maximum degree �(G)  k(�T � 2) + 2 has a degree-�T spanning tree,
which can be found in polynomial time. If, however, the maximum degree is at least
�(G) � k(�T � 1) it is NP-hard to decide if there is a degree-�T spanning tree.
Thus, even if we could force G to be k-connected for some large constant k, it would
not help to find a low degree spanning tree.

In [40] we developed a d?-vertex failure connectivity oracle that o↵ers a trade-o↵
between update time and size. For any integer parameter c � 1, the space of the data

structure is O(d1�2/c
? mn1/c�1/(c log(2d?)) log2 n) and the time to process d  d? vertex

failures is O(d2c+4 log2 n log log n). Thereafter connectivity queries can be answered
in O(d) time. The main drawbacks of [40] are its conceptual complexity and very
poor trade-o↵ between space and update time. Henzinger and Neumann [55] recently
showed how any d-vertex failure connectivity oracle could be transformed to support
fully dynamic updates in the dynamic subgraph model, where vertices fail and recover
individually.

New results. In this paper we present dramatically better d-vertex failure con-
nectivity oracles that match or improve on [40] in every measure of e�ciency except
construction time. Using space O(d?m log n), a batch D of d  d? vertex failures is
processed in O(d3 log3 n) time such that connectivity queries in G � D can be an-
swered in O(d) time.2 The construction time is O(mn log n). Note that there is now
no trade-o↵ between space and update time. Clearly any pair of (d? + 1)-connected
vertices cannot be disconnected by d failures. By preprocessing the graph with the
linear time Nagamochi–Ibaraki algorithm [67], we can replace E(G) by an equivalent
subgraph containing m̄ = min{m, (d? + 1)n} edges. Thus, the factors of m in the
space and construction time can be replaced with m̄.

In the extended abstract of this work [41, section 7], we claimed a randomized
Monte Carlo structure that occupies Õ(m) space and has update and query times
Õ(d2) and O(d). This was an erroneous claim; we do not see any way to store this
structure in less than ⌦(d?m) space. In this paper we present a di↵erent randomized
Monte Carlo structure that uses space O(m log6 n), and has update and query times
O(d2 log d log2 n log log n) and O(d). This solution is more sophisticated than the
one described in [41, section 7] and generalizes the Kapron, King, and Mountjoy [61]
sketch technique in ways that may be of independent interest. We use vertex sampling
rather than edge-sampling and show that sketches for certain subgraphs of a complete

2The notation G�D is short for the subgraph of G induced by V (G)�D.
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1366 RAN DUAN AND SETH PETTIE

bipartite graph A⇥B can be generated “on the fly” using space Õ(|A| + |B|) rather
than a naive bound of O(|A⇥B|).

Some of the techniques used in our Monte Carlo d-vertex failure oracle can be re-
purposed to improve the state of the art in d-edge failure oracles [73, 61, 51]. We show
that with O(n log2 n) space, d edge failures can be processed in O(d log d log log n) time
in expectation and thereafter support connectivity queries in O(log log n) time, which
are correct w.h.p.

Our data structures are based on a new graph decomposition theorem, which
is obtained from a recursive version of the Fürer–Raghavachari [48] algorithm for
approximating the minimum degree spanning tree. The theorem states that for any
undirected graph G = (V,E), terminal set U ✓ V , and integer s, there exists a set of
n/(s � 2) vertices B that can be removed, such that U � B is spanned by a degree-
s Steiner forest in the graph G � B. We believe this decomposition theorem is of
independent interest.

Refer to Table 1 for a summery of d-edge failure and d-vertex failure connectivity
oracles.

Lower bounds. One question raised by [40] is whether it is possible for a d-
vertex failure oracle to match the Õ(1) query time of existing d-edge failure ora-
cles [73, 40, 61, 51]. There is now strong circumstantial evidence that no such data
structure exists with reasonable update time. In particular, if the integer 3SUM
conjecture3 holds, then any d-vertex failure connectivity oracle with subquadratic
preprocessing and reasonable update time must have ⌦(d1/2�o(1)) query time [63].
Henzinger et al. [54] showed that the OMv conjecture4 on the hardness of online
matrix-vector multiplication implies an ⌦(d1�o(1)) query lower bound, even if any
polynomial preprocessing is allowed. Thus, beating O(d) query time would require
refuting a plausible conjecture. Of course, the plausibility of the 3SUM and OMv
conjectures continues to be actively scrutinized. Stronger forms of the 3SUM and
OMv conjectures have already been refuted; see [6, 53, 65]. Whereas d-edge failure
connectivity oracles can be stored in sublinear Õ(n) space [51], this is not possible
for vertex failures. It is straightforward to see that any subgraph of the complete
bipartite graph Kn,d?+1 can be reconstructed with a d?-failure oracle, implying such
an oracle occupies ⌦(min{m, d?n}) bits of space.

Related work. Much of the previous work in the d-failure model has focused on
computing approximate shortest paths avoiding edge and vertex failures. Demetrescu
et al. [31] gave an exact shortest path oracle for weighted directed graphs subject to
d = 1 failure. It occupies O(n2 log n) space and answers queries in constant time. The
construction time for this oracle was later improved by Bernstein and Karger [14]. An
analogous result for d = 2 failures was presented by Duan and Pettie [39], which uses
space O(n2 log3 n) and query time O(log n). Approximate distance oracles for d edge
failures were given for general graphs [25], with stretch that grows linearly in d.

These problems have also been studied on special graph classes. Borradaile,
Pettie, and Wul↵-Nilsen [16] described connectivity oracles for planar graphs subject
to d-edge failures or d-vertex failures. See Baswana, Lath, and Mehta [8] for exact

3The 3SUM problem is, given a set A of n numbers, to determine if there exist a, b, c 2 A

for which a+ b+ c = 0. There are now known to be O(n2
/ poly(logn)) algorithms for both integer

inputs [6] and real inputs [53, 46, 52]. The integer 3SUM conjecture asserts that the problem requires
⌦(n2�o(1)) time, even if A ⇢ {�n

3
, . . . , n

3}.
4The OMv conjecture is that given a matrix M 2 {0, 1}n⇥n to be preprocessed and n vectors

v1, . . . , vn 2 {0, 1}n presented online, the total cost of preprocessing and computing the products
{Mvi}1in is ⌦(n3�o(1)). Note that fast matrix multiplication is not obviously helpful in this
context since Mvi must be reported before receiving vi+1.
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distance oracles for planar graphs avoiding d = 1 failure, and see Abraham et al. [1, 2]
for approximate distance oracles for planar graphs and graphs of bounded doubling
dimension.

Parter and Peleg [70] considered the problem of computing a subgraph that pre-
serves shortest paths from s sources after a single edge or vertex failure. They proved
that ⇥(s1/2n3/2) edges are necessary and su�cient for every s. See also [15, 18, 19,
24, 33, 69, 71] for spanners (subgraphs) that preserve approximate distances subject
to edge or vertex failures.

Recently researchers have considered reachability problems on directed graphs
subject to vertex failures. Choudhary [29] gave an optimal O(n)-space, O(1)-query
time reachability oracle for d = 2 failures. Baswana, Choudhary, and Roditty [10]
considered the problem of finding a sparse subgraph that preserves reachability from
a single source, subject to d vertex failures. They proved that ⇥(2dn) edges are
necessary and su�cient.

1.1. Organization. In section 2 we review the Euler tour structure of [40] for
handling d edge failures. We begin section 3 with a sketch of the Fürer–Raghavachari
algorithm FR-Tree, then describe our decomposition algorithm Decomp. In section 4
we observe that by applying Decomp iteratively, we naturally obtain a representation
of the graph as a low degree hierarchy. Section 4 describes how to build a d-failure
connectivity oracle, by supplementing the low degree hierarchy with suitable data
structures. The algorithms for deleting failed vertices and answering connectivity
queries are presented in section 5. The basic algorithm for deleting failed vertices
takes Õ(d4) time using standard 2D orthogonal range reporting data structures. In
section 6 we give three distinct ways to reduce this to Õ(d3) using other orthogonal
range searching structures. In section 7 we present a randomized Monte Carlo version
of our data structure with update time Õ(d2) and space Õ(m), and in section 7.4
we give a more e�cient d-edge failure connectivity oracle. Several open problems are
discussed in section 8.

2. The Euler tour structure. In this section we describe the ET-structure
for handling connectivity queries avoiding multiple vertex and edge failures. When
handling only d edge failures, the performance of the ET-structure is incomparable
to that of Pǎtraşcu and Thorup [73] in nearly every respect.5 The strength of the
ET-structure is that if the graph contains a low degree tree T , the time to delete a
vertex is a function of its degree in T ; incident edges not in T are deleted implicitly.
We prove Theorem 2.1 in the remainder of this section.

Theorem 2.1. Let G = (V,E) be a graph, with m = |E| and n = |V |, and let
F = {T1, . . . , T|F|} be a set of vertex disjoint trees in G. (F does not necessarily span
connected components of G.) There is a data structure ET(G,F) that supports the
following operations. Suppose D is a set of failed edges, of which d are tree edges in F
and d0 are nontree edges. Deleting D splits some subset of the trees in F into at most
2d trees F 0 = {T 0

1, . . . , T
0
2d}. In O(d2q+ d0) time we can report which pairs of trees in

F 0 are connected by an edge in E �D. In O(min{ log logn

log log logn
, log d

log logn
}) time we can

5The ET-structure is significantly faster in terms of construction time (near-linear versus a large
polynomial or exponential time) though it may use slightly more space: O(m log logn) versus O(m).
It handles d edge deletions exponentially faster for bounded d (O(log logn) vs. ⌦(log2 n log logn))
but is slower as a function of d: O(d2 log logn) versus O(d log2 n log logn) time. The query time is
essentially the same for both structures, namely O(log logn). Whereas the ET-structure naturally
maintains a certificate of connectivity (a spanning tree), the Pǎtraşcu–Thorup structure requires
modification and an additional logarithmic factor in the update time to maintain a spanning tree.
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CONNECTIVITY ORACLES FOR VERTEX FAILURES 1369

determine which tree in F 0 contains a given vertex. Using space O(m log log n) the
value of q is O(log log n); using space O(m) the value of q is O(log✏ n).

Our data structure uses Chan, Larsen, and Pǎtraşcu’s [21] structure for orthogonal
range reporting on the integer grid [U ]⇥[U ]. They showed that given a set of N points,
there is a data structure with size O(N log logN) such that given x, y, w, z 2 [U ], the
set of points in [x, y]⇥ [w, z] can be reported in O(log logU + k) time, where k is the
number of reported points. If the space is reduced to O(N) the update time becomes
O(log✏ U + k) for any fixed ✏ > 0.

For a tree T , let Euler(T ) be a list of its vertices encountered during an Euler
tour of T (an undirected edge is treated as two directed edges), where we only keep
the first occurrence of each vertex. One may easily verify that removing f edges from
T partitions it into f + 1 connected subtrees and splits Euler(T ) into at most 2f + 1
intervals, where the vertices of a connected subtree are the union of some subset of
the intervals. To build ET(G = (V,E),F) we build the following structure for each
pair of trees (T1, T2) 2 F ⇥ F ; note that T1 and T2 may be the same. Let m0 be the
number of edges connecting T1 and T2. Let Euler(T1) = (u1, . . . , u|T1|), Euler(T2) =
(v1, . . . , v|T2|), and U = max{|T1|, |T2|}. We define the point set P ✓ [U ]⇥ [U ] to be
P = {(i, j) | {ui, vj} 2 E}. Suppose D is a set of edge failures including d1 edges in T1,
d2 in T2, and d0 nontree edges. Removing D splits T1 and T2 into d1+d2+2 connected
subtrees and partitions Euler(T1) into a set I1 = {[xi, yi]}i of 2d1 + 1 intervals and
Euler(T2) into a set I2 = {[wi, zi]}i of 2d2+1 intervals. For each pair i, j we query the
2D range reporting data structure for points in P \ ([xi, yi]⇥ [wj , zj ]). However, we
stop the query the moment it reports some point corresponding to a nonfailed edge,
i.e., one in E �D. Since there are (2d1 + 1)⇥ (2d2 + 1) queries and each failed edge
in D can only be reported in one such query, the total query time is O(d1d2q + d0),
where q is either log log n or log✏ n, depending on the space usage. See Figure 1 for
an illustration.

Assuming that m0 � 1, the space for the data structure restricted to T1 and T2 is
O(m0 log log n) or O(m0). In order to avoid spending any space on pairs (T1, T2) with
m0 = 0, we maintain a hash table of tree pairs with at least one edge between them.
Since each nontree edge contributes to the space of at most one tree pair (T1, T2),
the overall space for ET(G,F) is O(m log log n) or O(m). For the last claim of the
theorem, observe that if a vertex u lies in an original tree T1 2 F , we can determine
which tree in F 0 contains it by performing a predecessor search over the left endpoints
of intervals in I1. This can be accomplished in the minimum of O( log logn

log log logn
) time [72]

or O( log d

log logn
) time [77] after O(d2) preprocessing on a ⇥(log n)-bit word-RAM.

Corollary 2.2 demonstrates how ET(G, ·) can be used to answer connectivity
queries avoiding edge and vertex failures.

Corollary 2.2. Let T be any spanning tree of G = (V,E). The data struc-
ture ET(G, {T}) occupies space O(m log log n) (or O(m)) and supports the following
operations. Given a set D ⇢ E of edge failures, d of which are tree edges and d0

are nontree edges, D can be processed in O(d2 log log n + d0) time (or O(d2 log✏ n +
d0) time) so that connectivity queries in the graph (V,E � D) can be answered in
O(min{ log logn

log log logn
, log d

log logn
}) time. If D ⇢ V is a set of vertex failures, let d =P

v2D
degT (v) be the sum of their T -degrees. The update time is O(d2 log log n) (or

O(d2 log✏ n)) and the query time is O(min{ log logn

log log logn
, log d

log logn
}).

Proof. Using ET(G, {T}) we split T into d + 1 subtrees and Euler(T ) into a set
I of 2d + 1 connected intervals, in which each connected subtree is made up of some
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u1

u2

u3u4

u5

u6 u7

u8

u9
u10

u11

u12

v1

v2

v3

v4v5

v6

v7 v8

v9

T1 T2

(a)

1 3 5 7 9 11
1

3

5

7

9

T2 :

T1 :

(b)

Fig. 1. (a) Here T1 and T2 are two trees where Euler(T1) = (u1, . . . , u12) and Euler(T2) =
(v1, . . . , v9) list their vertices according to first appearance in some Euler tours of T1 and T2. (It
does not matter which Euler tour we pick.) There are six nontree edges connecting T1 and T2,
marked by dashed curves. If the edges {u2, u3} and {v1, v2} are removed, T1 and T2 are split into
four subtrees, say, T

0
1, T

0
2, T

0
3, T

0
4, and both Euler(T1) and Euler(T2) are split into three intervals,

namely X1 = (u1, u2), X2 = (u3, . . . , u7), X3 = (u8, . . . , u12), Y1 = (v1), Y2 = (v2, . . . , v7), and
Y3 = (v8, v9). Each tree T

0
i is identified with some subset of the intervals: T

0
1, . . . , T

0
4 are identified

with {X1, X3}, {X2}, {Y1, Y3}, and {Y2}. (b) The point (i, j) (marked by a blue dot) is in our point
set if {vi, uj} is a nontree edge. To determine if, for example, T 0

1 and T
0
4 are connected by an edge,

we perform two 2D range queries, X1 ⇥Y2 and X3 ⇥Y2, and keep at most one point (i.e., a nontree
edge) for each query. In general, removing d1 edges from T1 and d2 edges from T2 necessitates
(2d1 + 1)(2d2 + 1) 2D range queries to determine incidences between all pairs of subtrees. In this
example we require nine 2D range queries, indicated by boxes in the point set diagram.

subset of the intervals. Using O(d2) 2D range queries, in O(d2 log log n + d0) time we
find at most one edge connecting each pair in I ⇥ I. (In the case of vertex failures,
no range queries are performed for the intervals containing singleton vertices in D.)
In O(d2) time we find the connected components of E �D or V �D and store with
each interval a representative vertex from its component. To answer a query (u, v) we
only need to determine which subtree u and v are in, which involves two predecessor
queries over the left endpoints of intervals in I. This takes O(min{ log logn

log log logn
, log d

log logn
})

time.

Corollary 2.2 motivates us to look for conditions under which G contains a low
degree spanning forest, say, with degree at most s. In the next section we show that
although G may not have a degree-s spanning forest, there are O(n/s) critical nodes
that, if they were removed, would let the remaining graph be spanned by a degree-s
spanning forest.

3. A new graph decomposition theorem. Let G = (V,E) be an undirected
graph and U ✓ V be a set of terminals. We call a forest T ✓ E a Steiner forest for U if
u, v 2 U are connected in T i↵ they are connected in G. Fürer and Raghavachari [48]
proved that the minimum degree spanning forest (if U = V ) and minimum de-
gree Steiner forest could be approximated to within 1 of optimal in polynomial
time.6

6Fürer and Raghavachari [48] claimed a running time of O(|U |m↵(m,n) log |U |). The ↵(m,n)
factor can be removed using the incremental-tree set-union structure of Gabow and Tarjan [49].
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CONNECTIVITY ORACLES FOR VERTEX FAILURES 1371

Fig. 2. A fragment of a larger tree is depicted. Swapping {u, v} for {x, y} yields a new tree
with at least one fewer nodes with degree �(T0).

Theorem 3.1 (Fürer and Raghavachari [48]). Suppose G contains a Steiner for-
est for U with maximum degree �⇤. A Steiner forest T for U with maximum degree
�⇤ + 1 can be computed in O(|U |m log |U |) time.

Let FR-Tree(G,U) be the procedure that computes T . Our decomposition the-
orem is not concerned with �⇤ but with other properties of the forest T . In order
to see how these properties arise, we sketch how the FR-Tree(G,U) algorithm works
in the simpler case in which U = V . Let �(G0) denote the maximum degree in the
graph G0.

The algorithm begins with any spanning forest T0 and iteratively tries to improve
T0, yielding T1, T2, . . . , T!, such that (i) �(Ti+1)  �(Ti) and (ii) the set of degree-
�(Ti) nodes in Ti+1 is a strict subset of the degree-�(Ti) nodes in Ti. The number of
improvements is clearly finite. Since any tree contains fewer than n/(k�1) nodes with

degree at least k, the total number of improvements is at most
P�(T0)

k=�(T!) n/(k� 1) =

O(n log �(T0)
�(T!) ) = O(n log n).

The FR-Tree algorithm only searches for a particular class of improvements that
can be found in linear time, leading to an O(mn log n) time bound. Let T0 be the
current spanning tree. All vertices with degree �(T0) and �(T0) � 1 are initially
marked bad and all others good. (In the diagrams in Figure 2 white nodes have degree
�(T0), gray nodes have degree �(T0) � 1, and black nodes have degree less than
�(T0) � 1.) The simplest single-swap improvement arises if there is a non-T0 edge
{u, v} such that u and v are good (black) and a bad vertex x with degree �(T0)
appears on the unique cycle of T [ {{u, v}}. In this case we choose any edge {x, y}
incident to x on the cycle and set T1  T0 � {{x, y}} [ {{u, v}}, thereby eliminating
a degree-�(T0) vertex (namely x, and perhaps even y) but possibly increasing the
number of degree-(�(T0)� 1) vertices (namely u and v).

In general the FR-Tree algorithm considers improvements composed of an arbi-
trarily large number of edge-swaps. While there exists an unscanned edge {u, v} where
both u and v are marked good, it marks all bad vertices good on the fundamental cycle
of T0[{{u, v}}. Thus, a formerly bad good vertex is one whose degree can be reduced
by 1 via a sequence of edge-swaps that does not introduce any degree-�(T0) vertices.
If a degree-�(T0) vertex is ever marked good, an improvement has been detected and
the sequence of swap edges that created it can easily be reconstructed. See Figure 3.
Every time this procedure finds an improvement we obtain a new spanning tree and
begin the search for another improvement from scratch. Let T! be the spanning tree
for which this procedure fails to find an improvement. Let B be the set of vertices still
marked bad. By definition B includes all vertices with degree �(T!) and some subset
of the vertices with degree �(T!) � 1. Consider what happens to G and T! if we
removed all B-vertices from the graph. FR-Tree’s search for improvements guarantees
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1372 RAN DUAN AND SETH PETTIE

Fig. 3. A fragment of a larger tree is depicted. A sequence of edge-swaps reduces the number
of degree-�(T0) vertices but may increase the number of degree-(�(T0)� 1) vertices.

that T! � B is a spanning forest of the graph G � B. Indeed, if there were an edge
{u, v} connecting two distinct trees of T!�B, then all B-vertices on the fundamental
cycle of T! [ {{u, v}} would have been marked good and therefore u and v would not
have been in distinct trees of T!�B after all. In general, the output of FR-Tree(G, V )
is the pair (T!, B).

When the terminal set U is a strict subset of V , the execution of FR-Tree(G,U)
is similar, except that T0, . . . , T! are Steiner trees (which might not span V ). Each
improvement to Ti substitutes for some edges in Ti an equal number of paths, whose
intermediate vertices come from V � V (Ti). See [48]. Theorem 3.2 summarizes the
properties of the FR-Tree algorithm that we actually use.

Theorem 3.2 (see [48]). The FR-Tree(G,U) algorithm returns a pair (T,B),
where T is a Steiner forest for U and B ⇢ V comprises all vertices with T -degree
�(T ) and some subset of vertices with T -degree �(T )�1. If u, v 2 U are disconnected
in T �B, then they are also disconnected in G�B.

The degree �(T � B) is by definition at most �(T ) � 1, which may still be too
large. Theorem 3.3 shows that by iteratively applying the FR-Tree algorithm to the
components of T �B we can reduce the maximum degree to any desired bound s � 3,
at the cost of increasing the set B of “bad” vertices.

Theorem 3.3 (the decomposition theorem). Let U ✓ V be a terminal set in a
graph G = (V,E) and s � 3. There is an algorithm Decomp(G,U, s) that returns a
pair (T,B) such that the following hold.

1. T is a Steiner forest for U and T �B is a Steiner forest for U �B.
2. �(T �B)  s.
3. |B| < |U |/(s� 2) and |B \ U | < |U |/(s� 1).

The running time of Decomp is O(|U |m log |U |).

In the remainder of this section we give the Decomp(G,U, s) algorithm and prove
Theorem 3.3. An invocation of Decomp consists of the following three steps.

Step 1. Let (T 0, B0) be the output of FR-Tree(G,U). If �(T 0)  s, then we are
done, and return the pair (T 0, ;).

Step 2. Partition the edge set of T 0 into minimal trees {ti} such that the leaves
of each ti are either B0-nodes or leaves of T 0, and hence U -nodes. Let B0[ti] be the
B0 nodes in ti and V [ti] be the set of all vertices in G � B0 reachable from vertices
in V (ti) � B0[ti]. (When U = V , V [ti] is exactly V (ti) � B0[ti]; in general V [ti] may
contain vertices outside of V (T 0). See Figure 4.) Let G[ti] be the graph whose vertex
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CONNECTIVITY ORACLES FOR VERTEX FAILURES 1373

Fig. 4. Left: the output of FR-Tree. Square green nodes are terminals; pink diamonds are
B

0-nodes (and may be terminals); thick edges are part of T 0; gray vertices are outside V (T 0). Right:
detaching the edges adjacent to B

0 nodes creates 10 subtrees; non-V (T 0) nodes are connected to at
most one subtree; Decomp is called recursively on each subgraph; B

0-nodes have degree 1 in these
recursive calls and are designated terminals (square nodes).

set is V [ti] [ B0[ti] and whose edge set includes all edges induced by V [ti] and, for
each u 2 B0[ti], the unique T 0-edge connecting u to V (ti). For each ti, obtain a pair
(Ti, Bi) by recursively calling Decomp(G[ti], (V [ti]\U)[B0[ti], s). Observe that B0[ti]
are included as terminals in the recursive call, even if they are not members of U . See
Figure 4 for an illustrative example.

Step 3. Return the pair (T,B) where

T =
[

i

Ti and B = B0 [
[

i

Bi.

We need to establish all the claims: that T � B is, in fact, a Steiner forest of
U�B with maximum degree s, that B has the right cardinality, and that the running
time is O(|U |m log |U |).

If the algorithm halts at Step 1, then T 0 is, by Theorem 3.2, a Steiner forest for
U in G. Suppose that the algorithm does not halt at Step 1 and let P (u0, uk) be a
path in T 0 between u0, uk 2 U . Partition it into subpaths P (u0, u1), . . . , P (uk�1, uk),
where u1, . . . , uk�1 are all the B0-nodes encountered on the path. By construction,
each P (ui, ui+1) is completely contained in some tree ti and the endpoints of this path
are terminals in the recursive call to Decomp(G[ti], (V [ti] \ U) [ B0[ti], s), so, by the
inductive hypothesis, the tree Ti returned contains a (possibly di↵erent) path between
ui and ui+1. By Theorem 3.2 again, the graphs {G[ti]} intersect only at B0-nodes,
which necessarily occur as leaves in the {Ti} trees, so the edge set T =

S
i
Ti returned

is, in fact, a Steiner forest for U . By Theorem 3.2, all nodes in B have T -degree
at least s and all nodes in T � B have T -degree at most s. Moreover, if u, v 2 U
are disconnected in T � B, then they are disconnected in G � B. This follows from
Theorem 3.2 if u and v are in di↵erent trees ti, tj , and by induction on the output of
Decomp(G[ti], (V [ti] \ U) [B0[ti], s) if u, v are both in ti.
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We now prove that B has the claimed cardinality, using the property that all
B-nodes have degree at least s in T .

Lemma 3.4. Let T be any minimal Steiner tree for U . The number of nodes in
T with T -degree at least s is at most g(|U |) = b |U |�2

s�2 c. The number of U -nodes in T

with T -degree at least s is at most h(|U |) = b |U |�2
s�1 c.

Proof. Due to the minimality of T , all leaves are necessarily U -nodes. Moreover,
we can assume without loss of generality that all internal nodes have degree at least
3, by splicing out paths of degree-2 vertices. When |U |  s � 1 we have g(|U |) = 0
and when |U |  s we have h(|U |) = 0. The claimed bounds on g and h hold when
there is exactly one internal node. In general, choose an internal node u adjacent to
exactly one internal (nonleaf) node. If u is adjacent to at least s � 1 leaves, then it
contributes 1 to the g(|U |) tally; remove its incident leaves and designate u a U -node.
We preserve the property that all leaves are U -nodes, and since the net loss in the
number of U -nodes is at least s � 2, we have g(|U |)  g(|U | � (s � 2)) + 1. Observe
that u only contributes to the h(|U |) tally if it is already a U -node. In this case we
have a loss of s � 1 U -nodes, which implies that h(|U |)  h(|U | � (s � 1)) + 1. The
claimed bounds on g and h follow by induction on |U |.

To analyze the running time we imagine that a single global Steiner tree for
U is being maintained, which is the union of the current Steiner trees in the deepest
recursive calls. The initial tree provided to a call to FR-Tree is therefore just a fragment
of the global Steiner tree, whose maximum degree is some k � s+1. Each iteration of
this call to FR-Tree, except the last, finds an improvement, which reduces the number
of maximum-degree nodes in its fragment by at least one. Say a k-improvement is
one that reduces the number of degree-k nodes. If the current global Steiner tree has
maximum degree k, the total number of k-improvements that can be found, in all
recursive calls, is at most |U |/(k � 2). The initial value of k is certainly at most |U |.
Since each improvement takes linear time, the total time for all improvements is at

most O(m) ·
P|U |

k=s+1 |U |/(k � 2) = O(|U |m log(|U |/s)).

4. The low degree hierarchy. We can apply Theorem 3.3 iteratively to create
a low degree hierarchy. Fix s = 4 and generate a set of pairs {(Ti, Bi)} as follows:

(T0, B0) Decomp(G, V, 4),

(T1, B1) Decomp(G,B0, 4),

· · ·
(Ti, Bi) Decomp(G,Bi�1, 4),

· · ·
(Tp, ;) Decomp(G,Bp�1, 4).

In other words, the “bad” vertices for T0 form the terminal set for T1, and in general,
the bad vertices for Ti�1 form the terminal set for Ti. We end, of course, at the first
Tp with degree at most s = 4, so Bp = ;. It follows from Theorem 3.3 that |B0| < n/3
and in general that |Bi| < |Bi�1|/2, so p < log n� 1 levels su�ce.

Define Ti to be the set of trees in Ti � Bi and T to be the set of all trees in
T0, . . . , Tp, as if each forest were on a disjoint vertex set. Theorem 3.3 implies that
the forest Ti has two useful properties: it has maximum degree 4, and it is a Steiner
forest for Bi�1 �Bi. Suppose v 2 V (Ti) \Bi�1 is a terminal for the first time in Ti.
We treat this copy of v as the “principal” copy in T ; all other copies of v that may
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CONNECTIVITY ORACLES FOR VERTEX FAILURES 1375

appear in Ti+1, . . . , Tp are dummies. For example, if e = {u, v} 2 E(G), we think of
e joining the terminal/principal copies of u and v in T .

Definition 4.1. Suppose ⌧i 2 Ti and ⌧i0 2 Ti0 , i  i0. We say ⌧i is a descendant
of ⌧i0 if a connected component of G� Bi0 contains V (⌧i0) and at least one vertex of
V (⌧i).

Observe that if V (⌧i) \ Bi0 = ;, then ⌧i can only have one ancestor at level i0;
if it had two distinct ancestors, then they would be connected by a path in G� Bi0 ,
contradicting Theorem 3.3. Unfortunately, it seems that V (⌧i) can intersect Bi0 , so
in general the ancestry relation between trees in T induces a (p + 1)-level dag, not
a rooted tree. Algorithmically it is much easier to deal with trees rather than dags.
For this reason we define a variant hierarchy C that is more structured. Both C and
T are used by our data structures.

Definition 4.2. Define Ci to be the set of connected components of G � (Bi [
Bi+1 [ · · · [ Bp�1) containing at least one Bi�1 (terminal) vertex. Suppose �i 2 Ci
and �i0 2 Ci0 , where i  i0. We say �i is a descendant of �i0 , written �i � �i0 , if
V (�i) \ V (�i0) 6= ;.

Lemma 4.3 identifies the critical properties of {Ci} used by our algorithm.

Lemma 4.3. Consider the hierarchy of components {Ci}i2[0,p].
1. Each � 2 Ci has at most one ancestor in Ci0 for each i0 2 [i, p].
2. V (�) ✓ V (�0) for each � � �0.
3. If {u, v} 2 E and u 2 V (�), v 2 V (�0), then � � �0 or �0 � �.
4. If � 2 Ci, the terminals V (�) \ Bi�1 are contained in a single tree in Ti,

denoted ⌧(�).

Proof. For part 1, note that any two distinct components �0, �00 2 Ci0 have V (�0)\
V (�00) = ;. Since, by construction, V (�) \ (Bi0 [ · · · [ Bp�1) = ;, � cannot share
vertices with both �0 and �00. We now turn to part 2. Suppose � 2 Ci, �0 2 Ci0
with i < i0. If � and �0 share one vertex, then V (�) ⇢ V (�0) since � is connected
and V (�) \ (Bi0 [ · · · [ Bp�1) = ;. If part 3 were false, then � and �0 would be
unrelated. Let �00 be the ancestor of � at the same level as �0, so �0, �00 are two
distinct components in some Ci. Part 2 implies u 2 V (�00), meaning �0 and �00 are
joined by an edge {u, v} and are therefore not distinct components in Ci. For part 4,
consider a tree ⌧ 2 Ti = Ti�Bi. By Theorem 3.3, ⌧ spans the terminals (Bi�1-nodes)
in a connected component of G�Bi. A � 2 Ci represents a connected component in
G � (Bi [ · · · [ Bp�1), so if V (�) intersects V (⌧) at one terminal, every terminal of
V (�) must be contained in V (⌧).

Lemma 4.3.1 (unique ancestors) shows that the ancestry relationship on the com-
ponents of C0, . . . , Cp can be succinctly encoded as a forest of rooted trees. Let C be
the component hierarchy defined by the � relation. The nodes of C are in one-to-one
correspondence with the components of C0, . . . , Cp, where C0 form the leaves of C.
Slightly abusing notation, we shall say “� 2 C” to mean that � is a node in C or that
� is a component in some Ci.

4.1. Stocking the low degree hierarchy. Our goal is to supplement C and
T with useful data structures that allow us to reconnect the graph after a set of
vertices fail. Recall that T is composed of trees with maximum degree at most 4. If
a single tree ⌧ 2 T experiences the failure of some vertex set D ⇢ V , we can find
individual edges that reconnect the subtrees of ⌧ �D using O(|D|2) 2D range queries
(Theorem 2.1). However, individual edges are, in general, insu�cient to reconnect the

D
ow

nl
oa

de
d 

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1376 RAN DUAN AND SETH PETTIE

subtrees. There could be long paths that go through vertices that appear in ancestors
or descendants of ⌧ in T . In order to quickly detect the existence of these paths we
follow an idea from [22] and introduce artificial edges that capture connectivity via
paths. We do not want to add too many artificial edges, for two reasons. First, they
take up space, which we want to conserve, and second, after deleting vertices from
the graph the validity of many artificial edges may be cast into doubt. Any invalid
artificial edges must be ignored when reestablishing connectivity, so it is important
that the algorithm not encounter too many of these edges. Before saying exactly how
artificial edges are added we must introduce the concept of a d?-adjacancy list. Recall
that d? is the maximum number of vertex failures.

Definition 4.4. Let L = (v1, v2, . . . , vr) be a list of vertices and d? � 1 be an
integer. The d?-adjacency edges ⇤d?(L) connect all vertices at distance at most d?+1
in the list L:

⇤d?(L) = {{vi, vj} | 1  i < j  r and j � i  d? + 1}.

Lemma 4.5. The following properties hold for any vertex list L:
1. ⇤d?(L) contains fewer than (d? + 1)|L| edges.
2. If a set D of at most d? vertices are removed from L, then the subgraph of

⇤d?(L) induced by L�D remains connected.
3. Suppose L is partitioned into consecutive sublists L1 and L2. Then at most

O(d2
?
) edges from ⇤d?(L) cross the partition (L1, L2).

Proof. Part 1 is trivial, as is 2, since each pair of consecutive undeleted vertices is
at distance at most d? + 1, and therefore adjacent. Part 3 is also trivial: the number
of edges connecting any prefix and su�x of L is at most (d? + 1)(d? + 2)/2.

Fix a �i 2 Ci and let �i+1, . . . , �p be its ancestors in C. Recall that the terminals of
�i are contained in a single tree ⌧(�i) 2 Ti. The mapping ⌧ is not necessarily injective:
one tree in Ti could be the host for many components in Ci. Define A(�i, �j) to be
a list of the terminals in V (�j) that are adjacent to at least one vertex in V (�i),
listed according to an Euler tour Euler(⌧(�j)). (Recall that the terminals in V (�j)
are exactly those vertices in V (�j) \ (Bj�1 � (Bj [ · · · [ Bp�1)).) Let A(�i) be the
concatenation of A(�i, �i+1), . . . , A(�i, �p). We interpret elements of A(�i) as the
terminal copies of vertices in T .

Definition 4.6. The multigraph H is on the vertex set of T . For each {u, v} 2
E, H contains an original edge connecting the terminal copies of u and v. For each

component � 2 C, H includes ⇤(�)
def
= ⇤d?(A(�)). Each edge in H is labeled with its

provenance: either original or the name of a � if it appears in ⇤(�). Note that H
may contain multiple edges with the same endpoints but with di↵erent provenance.

Lemma 4.7 exhibits the two salient properties of ⇤(�): that it encodes useful
connectivity information and that it is economical to e↵ectively destroy ⇤(�) when it
is no longer valid, often in time sublinear in |⇤(�)|.

Lemma 4.7. Consider a ⇤(�i) ⇢ E(H).
1. Suppose d  d? vertices fail, none of which are in V (�i), and suppose u and

v are in components of ancestors of �i and are each adjacent to at least one
vertex in V (�i). Then u and v remain connected in the original graph and
remain connected in H.

2. Suppose the proper ancestors of �i are �i+1, . . . , �p and a total of f edges
are removed from ⌧(�i+1), . . . , ⌧(�p), breaking their Euler tours into intervals
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CONNECTIVITY ORACLES FOR VERTEX FAILURES 1377

I1, . . . , Ip�i+2f . Then at most O(d2
?
(p + f)) edges of ⇤(�i) connect distinct

intervals Ij , Ij0 .

Proof. For part 1, the vertices u and v are connected in the original graph because
they are each adjacent to vertices in V (�i) and, absent any failures, all vertices in V (�i)
remain connected. By Definition 4.6, u and v appear in ⇤(�i), and, by Lemma 4.5,
⇤(�i) remains connected after the removal of any d vertices. Turning to part 2, recall
from Definition 4.6 that A(�i) was the concatenation of A(�i, �i+1), . . . , A(�i, �p) and
each A(�i, �i0) was ordered according to an Euler tour of ⌧(�i0) 2 Ti0 . Removing
f edges from ⌧(�i+1), . . . , ⌧(�p) separates their Euler tours (and, hence, the lists
{A(�i, �i0)}i0) into at most 2f+p�i intervals. By Lemma 4.5 at most (2f+p�i)·O(d2

?
)

edges from ⇤(�i) connect distinct intervals. In other words, in order to “logically”
delete ⇤(�i) it su�ces to delete O(d2

?
(p + f)) edges from ⇤(�i) since all remaining

edges do not add to the connectivity of the remaining graph.

We apply Theorem 2.1 and generate an ET-structure ET(H, T ) for H. Lemma 4.8
bounds the space for the overall data structure.

Lemma 4.8. Given a graph G with m edges, n vertices, and a parameter d? � 1,
the d?-failure connectivity oracle consists of C,ET(H, T ) and various linear space
data structures supporting navigation around C. The space required by the oracle is
O(d?m log n log log n) or O(dm log n), depending on the 2D range searching structure
used in ET(H, T ), and its construction time is O(mn log n).

Proof. The number of vertices in H is at most (p + 1)n, n per Ti. (This is
a pessimistic bound. We are unable to conceive of any graph G for which this is
achieved.) The number of original edges in H is m. Each original edge contributes a
vertex to at most p lists A(�), and each member of A(�) contributes at most d? + 1
edges to ⇤(�). The number of vertices and edges in H is therefore at most m+(p+1)n+
p(d? +1)m = O(d?m log n). By Theorem 2.1, each edge in H contributes O(log log n)
or O(1) space to ET(H, T ). Regarding construction time, by Theorem 3.3 the time to
compute (T0, B0) is O(mn log n), and more generally, the time to compute (Ti+1, Bi+1)
is O(m|Bi| log |Bi|) time, where |Bi| < n/(s� 2)i = n/2i decays geometrically with i.
Thus, the total time to compute T and C is O(mn log n).

5. Recovery from failures. In this section we describe how, given a set of
d  d? failed vertices, the data structure can be updated in time Õ(d2d2

?
) such that

connectivity queries can be answered in O(d) time. Section 5.1 gives the algorithm to
delete failed vertices and section 5.2 gives the query algorithm and proof of correctness.
In section 6 we describe several ways to improve the update time to Õ(d3).

5.1. Deleting failed vertices. Let D ⇢ V be the set of d failed vertices.
Step 1. Begin by marking any � 2 C a↵ected if V (�) \ D 6= ;, and mark the

corresponding tree ⌧(�) 2 T a↵ected as well. For each a↵ected ⌧(�), mark each D-
node and its incident tree edges as deleted. This breaks up ⌧(�) into a↵ected subtrees,
which must be reconnected, if possible.

Lemma 5.1. The number of a↵ected trees is at most d(p + 1). The number of
a↵ected subtrees is at most 4d(p + 1).

Proof. By Lemma 4.3, any u 2 D appears in at most p+1 components of C. Since
all failed vertices have degree at most s = 4 in the T trees in which they appear, there
are at most 4d(p + 1) a↵ected subtrees.

Recall from the discussion above that if � is a↵ected, then V (�) contains failed
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1378 RAN DUAN AND SETH PETTIE

vertices and the connectivity provided by ⇤(�) is presumed invalid. By Lemma 4.7
we can logically delete ⇤(�) by ignoring O(d2

?
) edges for each of O(pd) breaks in the

list A(�). Since there are at most O(pd) a↵ected (sub)trees, the number of edges that
need to be ignored is O((pd)2d2

?
). Let H 0 denote the graph H with these O((pd)2d2

?
)

edges removed.
Step 2. We now attempt to reconnect all a↵ected subtrees using valid edges, i.e.,

those in H 0. Let R be a graph whose vertex set V (R) represents the O(pd) a↵ected
subtrees such that {t1, t2} 2 E(R) if t1 and t2 are connected by an edge in H 0.
Using the structure ET(H, T ) (see Theorem 2.1) we populate the edge set of R in
time O(|V (R)|2q + (pd)2d2

?
), where q = log log n or log✏ n, depending on the space of

the 2D range structure [21]. For each 2D range query, we halt the enumeration of
points/edges as soon as an H 0-edge is reported. Recall that a point/edge is tagged
with its provenance, so we can check in O(1) time whether it came from an a↵ected
⇤(�) and must be discarded. Since |V (R)| = O(pd) and p < log n, the time to perform
these queries is O(d2(q + d2

?
) log2 n). In O(|E(R)|) = O((pd)2) time we determine the

connected components of R.
This concludes the deletion algorithm. The running time is dominated by Step 2.

5.2. Answering a connectivity query. To answer a connectivity query be-
tween u and v we first check to see if there is a path between them that avoids
a↵ected trees, then consider paths that intersect one or more a↵ected trees.

Step 1. We first find the components in C containing u and v as terminals; let
them be �(u) and �(v). If �(u) is una↵ected, let �̂(u) be the most ancestral una↵ected
ancestor of �(u), and let �̂(v) be defined analogously. If �̂(u), �̂(v) exist and are equal,
then V (�̂(u)) contains u and v but no failed vertices. If this is the case we declare u
and v connected and stop.

We can find �̂(u) and �̂(v) in O(log p) = O(log log n) time using a binary search
over the ancestors of �(u) and �(v). Alternatively, we can find them in time O(log d),
independent of n, using relatively simple data structures. Fix any postordering of
the nodes of C. Find the predecessor �pred and successor �succ of �(u) among all
components whose terminal set contains a D-vertex. There are at most d such nodes,
so the cost to find them is O(log d) via binary search. Let �lca

pred, �
lca
succ be the least

common ancestors of �(u) and �pred, �succ, respectively. Without loss of generality
suppose �lca

pred is closer to �(u). Since V (�lca
pred) \D 6= ;, �lca

pred is a↵ected. If �lca
pred is

at depth k from its root in C, the node �̂(u) that we are looking for is the ancestor of
�(u) at depth k+1. Refer to [12, 13] for linear space data structures for least common
ancestor and level ancestors.

Step 2. We now try to find vertices u0 and v0 in a↵ected subtrees that are con-
nected to u and v, respectively. If �(u) is a↵ected, then u0 = u clearly su�ces, so we
only need to consider the case when �(u) is una↵ected and �̂(u) exists. Recall from
Definition 4.6 that A(�̂(u)) is the list of terminals in proper ancestors of �̂(u) that
are adjacent to some vertex in V (�̂(u)). We scan A(�̂(u)) looking for any nonfailed
vertex u0 adjacent to V (�̂(u)). Since V (�̂(u)) is una↵ected, u is connected to u0, and
since all of �̂(u)’s proper ancestors are a↵ected, u0 must appear in an a↵ected subtree
in T . Since there are at most d failed vertices we must inspect at most d+1 elements
of A(�̂(u)). This takes O(d) time to find u0 and v0, if they exist. If one or both of u0

and v0 does not exist we declare u and v disconnected and stop.
Step 3. We have the terminal copies of u0 and v0 in T . We find the a↵ected sub-

trees t01 and t02 containing u0 and v0 in O(min{ log logn

log log logn
, log d

log logn
}) time via predecessor

search over the left endpoints of the Euler-tour intervals that remain after deleting D
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CONNECTIVITY ORACLES FOR VERTEX FAILURES 1379

and their incident tree edges. Note that t01 and t02 are vertices in R, from Step 2 of
the deletion algorithm. We declare u and v to be connected i↵ t01 and t02 are in the
same connected component of R. This takes O(1) time.

Lemma 5.2. The query algorithm correctly determines whether u and v are con-
nected in G�D, in O(d) time.

Proof. If the query algorithm halts in Step 1 it is because both u and v are in
the una↵ected component �̂(u), and since V (�̂(u)) \ D = ;, all vertices in �̂(u) are
still connected. If the query algorithm halts in Step 2 it is because u 2 V (�̂(u)),
v 62 V (�̂(u)), and A(�̂(u)) � D = ;. Since A(�̂(u)) contains all vertices adjacent to
�̂(u) there can be no path from u to v in G�D.

At Step 3 we have discovered u0, v0 such that u is connected to u0, which appears
as a terminal in some a↵ected subtree t01 and similarly for v, v0, and t02. Since t01, t

0
2

are vertices in R, the correctness of the query algorithm hinges on whether the graph
R correctly represents the connectivity between a↵ected subtrees.

We first argue that if t01 and t02 are connected by a path in R, then they are
connected in G�D. Each edge on this path is either an original edge or a ⇤(�)-edge
for some una↵ected �. All original edges not incident to D are still valid and each ⇤(�)
edge can, when � is una↵ected, be replaced by a path in G � D using intermediate
nodes in V (�).

We now argue that if P = (u0 = u0, u1, . . . , u|P | = v0) is a u0-v0 path in G � D,
that there exists a t01-t

0
2 path in R. Partition P = P1P2 . . . P! into maximal subpaths

(Pi = (ua(i), . . . , ub(i))) such that V (Pi) is either (i) contained in a single a↵ected
subtree or (ii) contained in V (�) for some una↵ected � 2 C. Observe that because of
the maximality criterion, no two type (ii) subpaths can be adjacent. Since P1 and P!

contain u0 and v0, they must be type (i) subpaths. We want to show that all type (i)
subpaths are connected in R by considering how consecutive type (i) subpaths could
be connected by valid edges in H 0. (Recall that H 0 is H after deleting all ⇤(�) edges
for a↵ected � 2 C.) There are two cases to consider.

Case 1. Suppose Pi and Pi+1 are type (i) subpaths. Then {ub(i), ua(i+1)} is an
original edge in H 0, so it or some other edge will be discovered that puts the a↵ected
subtrees of Pi and Pi+1 in the same connected component in R.

Case 2. Suppose Pi and Pi+2 are type (i) subpaths, but Pi+1 is a type (ii) subpath.
Let � 2 C be the component for which V (Pi+1) ⇢ V (�), so ub(i), ua(i+2) 62 V (�). It
must be that ub(i), ua(i+2) 2 A(�), and since ⇤(�) remains connected after any d
vertex deletions, ub(i) and ua(i+2) are connected by a path in ⇤(�) � D. All the
⇤(�) � D edges straddling two a↵ected subtrees are eligible to be discovered when
populating the edge set of R, so the a↵ected subtrees of Pi and Pi+2 must be in the
same connected component in R.

6. Improving the update time. In this section we present not one, not two,
but three di↵erent methods to reduce the update time from Õ(d2d2

?
) to Õ(d3). Each

of the three methods uses a di↵erent, more sophisticated orthogonal range searching
structure. In section 6.1 we show how Õ(d3) time can be achieved with a 2D colored
(a.k.a. categorical) range searching structure [64]. Section 6.2 uses a 2D range count-
ing [23] data structure, and section 6.3 uses a 3D range emptiness data structure [21].
The method of section 6.3 was suggested to us by Shiri Chechik.

6.1. Method 1: Colored range searching. We use the following theorem
from Larsen and van Walderveen [64].
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Theorem 6.1 (see [64]). Given a multiset P ⇢ [U ]⇥ [U ] of n points and coloring
� : P ! N, there is a data structure occupying space O(n log n) that answers the
following type of query. Given x, x0, y, y0, report the color set � = {�(p) | p 2 P \
[x, y]⇥ [x0, y0]}. The query time is O(log logU + |�|).

Assign each component � 2 C a distinct color �(�) 2 {1, . . . , |C|}. Recall that
each edge in H is tagged with its provenance. All original edges receive color zero
and all ⇤(�) edges receive color �(�). Each 2D range query now returns a list of
colors in the query rectangle. We halt the search the moment it returns color 0 (an
original edge), or the color of any una↵ected component. Since there are at most
d(p + 1) a↵ected components, each of the O((pd)2) 2D range queries is halted after
time O(log log n + pd).

Using Method 1, the space of the resulting d?-failure connectivity oracle becomes
O(d?m log2 n) and the update time O((pd)3) = O(d3 log3 n).

6.2. Method 2: 2D range counting. We use the following theorem of JaJa,
Mortensen, and Shi [58].

Theorem 6.2 (see [58]). Given a multiset P ⇢ [U ] ⇥ [U ] of n points there is an
O(n)-space data structure answering the following type of query in O(log n/ log log n)
time. Given x, x0, y, y0, report the number k = |P \ [x, y]⇥ [x0, y0]|.

Consider an a↵ected component �i and recall that its adjacency list A(�i) is the
concatenation of A(�i, �i+1), . . . , A(�i, �p), where �i+1, . . . , �p are its ancestors in C.
The 2D range queries that are influenced by ⇤(�i) involve two trees, say, ⌧ = ⌧(�j)
and ⌧ 0 = ⌧(�j0), where i < j  j0  p. Each query is the product Q = I ⇥ I 0 of an
interval I ⇢ Euler(⌧) and another I 0 ⇢ Euler(⌧ 0). Given the indices of the first and
last elements of A(�i, �j) \ I and A(�i, �j0) \ I 0, we can determine in O(1) time how
many ⇤(�i) edges (points) appear in Q. Call these a↵ected points. For each a↵ected
component � and each query Q to be performed by the update algorithm, we calculate
the number of a↵ected ⇤(�) points in Q. This takes time O(pd · (pd)2) = O(d3 log3 n).

Let kQ be the total number of a↵ected points in Q, over all a↵ected �. In
O(log n/ log log n) time we compute the number k of points in Q. If k = kQ, then there
are no una↵ected points in Q, and if k > kQ we deduce that there is an una↵ected
point (a valid edge connecting the two intervals). The total time for all O((pd)2)
queries is therefore O(d2 log3 n/ log log n) time. The bottleneck in this approach is
computing the set {kQ} of critical thresholds.

Using Method 2 the space of our d?-failure connectivity oracle is O(d?m log n)
and the update time is O(d3 log3 n).

6.3. Method 3: 3D range emptiness. We use the following theorem of Chan,
Larsen, and Pǎtraşcu [21].

Theorem 6.3 (see [21]). Given a set P ⇢ [U ] ⇥ [U ] ⇥ [U ] of n points there
is an O(n log1+✏ n)-space data structure answering queries of the following type, in
O(log logU) time. Given x, x0, x00, y, y0, y00, determine if P\[x, y]⇥[x0, y0]⇥[x00, y00]=;.

List the nodes in C as {�1, . . . , �|C|}. Suppose that {u, v} is an original edge in
H and ⌧u, ⌧v are the trees in T containing the terminal copies of u and v, where u
appears at position i in Euler(⌧u) and v appears at position j of Euler(⌧v). Rather
than map {u, v} to the point (i, j) in the 2D structure of ET(H, T ) we map it to the
3D point (i, j, 0). If {u, v} is an edge of ⇤(�k) we map it to the point (i, j, k).
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CONNECTIVITY ORACLES FOR VERTEX FAILURES 1381

Let (�k1
, �k2

, . . . , �kd(p+1)
) be the a↵ected components and Q be a 2D query per-

formed by the update algorithm. We are interested in knowing whether there is a
point whose first two coordinates are in Q and whose third coordinate is not a mem-
ber of {k1, . . . , kd(p+1)}. Thus the 2D query Q can be reduced to d(p+1) 3D emptiness
queries Q⇥ [0, k1), Q⇥ (k1, k2), and so on. Each 3D query is answered in O(log log n)
time, so the total update time is O(d3 log3 n log log n).

With the current state-of-the-art range searching data structures [21, 23, 58, 64],
Method 2 is always strictly superior to Methods 1 and 3 in update time or space or
both. Method 2 also leaves the most room for improvement since the bottleneck is
not range counting queries per se but computing the critical thresholds {kQ} for the
queries.

7. A Monte Carlo connectivity oracle. In the extended abstract [41] of this
work, we claimed a Monte Carlo d?-failure connectivity oracle with near optimum
space Õ(m), update time Õ(d2), and query time O(d). The data structure described
in [41, section 7] functions correctly but occupies space ⌦(d?m), not Õ(m).7 In this
section we present the first Monte Carlo connectivity oracle that achieves the claimed
specifications of [41, section 7]. Our data structure is inspired by the graph sketching
techniques of Ahn, Guha, and McGregor [3] and Kapron, King, and Mountjoy [61] but
applies the ideas di↵erently. In particular, by using vertex sampling rather than edge
sampling, we show that it is possible to form sketches of complete bipartite subgraphs
“on the fly” using minimal storage.

Let us first take one step back and discuss why achieving near-linear space is
di�cult. Recall from section 4 that A(�) is a list of all vertices adjacent to the
component �, and D is the set of failed vertices. So long as � su↵ers no vertex
failures, we want the subgraph induced by A(�) � D to remain connected. On the
other hand, if � does su↵er a vertex failure, we want to be able to e�ciently dispose of
any suspect edges induced by A(�). Adding the d?-adjacency edges ⇤d?(A(�)) solved
both problems, but with some significant losses in e�ciency. The space required to
store ⇤d?(A(�)) is ⌦(d? ·|A(�)|), and in order to ignore suspect edges, the update times
for our deterministic solutions are ⌦(d3). It seems very di�cult to avoid an ⌦(d?)
factor overhead in space. Indeed, if |A(�)| = d + 2 and all but two random elements
of A(�) fail, we want to be able to quickly determine that those last two elements are
still connected. In this situation, is it possible to avoid storing a clique on A(�)?

By introducing Monte Carlo randomness, we are able to save both space and time
simultaneously. The high-level ideas are as follows.

• Rather than use a d?-adjacency list ⇤d?(A(�)) to maintain connectivity in-
formation within A(�), we pick a random subset B(�) ✓ A(�) and represent
the complete bipartite graph A(�) ⇥ B(�).8 The total number of edges in
the multigraph, over all � (i.e.,

P
�
|A(�)⇥B(�)|), could be quite large. One

property of our graph sketch is that the space is actually proportional to the
number of distinct edges in

S
�
A(�)⇥B(�), not counting multiplicity, which

is just Õ(m).
• Observe that a complete bipartite graph A(�)⇥B(�) preserves the connectiv-

ity on A(�) i↵ B(�)�D 6= ;, i.e., if at least one nonfailed vertex is (randomly)

7After showing that a certain data structure S[⌧, ⌧ 0] occupies O(m log4 n) space, we stated [41, p.
505], “By a similar analysis, the space for S[v, ⌧ ] and S[�, ⌧ ] are also upper bounded by O(m log4 n).”
Unfortunately, we see no way to store S[v, ⌧ ] in less than Õ(d?m) space.

8Throughout this section we abusively write A⇥B to be the set of undirected edges {u, v} with
u 2 A, v 2 B.
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1382 RAN DUAN AND SETH PETTIE

selected for inclusion in B(�). In some situations we can guarantee that this
property holds, w.h.p. For example, if |A(�)| � 2|D| and ⌦(log n) vertices
are included in B(�), then w.h.p. one vertex in A(�)�D is included in B(�).
However, in general it is impossible to guarantee this property w.h.p., short of
setting B(�) = A(�). Our solution depends on a particular accounting scheme
used in choosing the B(·) sets. We process the components �1, . . . , �|C| in an
arbitrary sequential order. When it is �j ’s turn we examine the subgraph
induced by A(�j) and choose |B(�j)| such that the expected number of new
edges contributed by A(�j)⇥B(�j) is Õ(|A(�j)|). Every time a new edge is
added we label it with its owner “�j .” These labels are not simply used for
accounting. We prove that for any failed set D, at least one of the following
two events occurs, w.h.p.: (i) either B(�j) �D 6= ; (and connectivity infor-
mation via � is maintained) or (ii) at least |A(�j)| pairs in

�
D

2

�
are owned

by �j . Event (ii) is a happy outcome because it reveals a small number of
components whose connectivity information was not maintained as in (i), and
those components can be processed separately in O(|D|2) total time.

• When � su↵ers a vertex failure, the entire bipartite graph contributed by �,
namely A(�)⇥ B(�), is suspect. Our sketch has the property that complete
bipartite subgraphs of A(�) ⇥ B(�) can be e�ciently generated by a data
structure occupying space Õ(|A(�)| + |B(�)|) rather than O(|A(�)| · |B(�)|).
Thus, it is e�cient to subtract from all relevant graph sketches the contribu-
tion of edges from a↵ected components.

Organization of section 7. In section 7.1 we show how the B-sets are chosen and
analyze their properties. In section 7.2 we introduce two sketches. Original graph
edges are sketched exactly as in Kapron, King, and Mountjoy [61], but “artificial”
edges in A(�) ⇥ B(�) are sketched in a new way. The total size of all sketches and
their attendant data structures is O(m log6 n). In section 7.3 we show how to handle
a batch of d vertex failures in O(d2 log6 n) time and subsequently answer connectivity
queries in O(d) time. In section 7.4 we observe that it is often unnecessary to explicitly
form complete graph sketches. This allows us to reduce the update time of the best
d-edge failure oracles [73, 61, 51, 40] to O(d log d log log n) expected time and reduce
the update time of section 7.3 to O(d2 log d log2 n log log n) expected time.

7.1. The B-sets and their properties. Recall that the “artificial” edges as-
sociated with � 2 C will be a complete bipartite graph A(�) ⇥ B(�). The algorithm
for generating B(�) ✓ A(�) is as follows. Choose an arbitrary order �1, . . . , �|C| of

the components. Each pair {u, v} 2
�
V

2

�
(regardless of whether it is in E or not) is

initially unlabeled and may become labeled as we proceed. After B(�1), . . . , B(�j�1)
have been selected we consider the pairs on elements of A(�j). Let n0 = |A(�j)| and let

m0 2 [0,
�
n
0

2

�
] be the number of unlabeled pairs in (A(�j)

2
). The set B(�j) is selected by

sampling each vertex in A(�j) independently with probability min{1, n
0·c lnn

m0 }, where

c is a su�ciently large constant that controls the error probability n�⌦(c). Every
unlabeled pair in the set {{u, v} | u 2 A(�j), v 2 B(�j)} is now owned by �j and
labeled “�j .”

Lemma 7.1. For each � 2 C, O(|A(�)| log n) pairs are labeled “�” in expectation.
The total number of pairs in

S
�
A(�)⇥B(�) is O(m log2 n) in expectation.

Proof. The probability that an unlabeled pair {u, v} with u, v 2 A(�) is labeled
“�” is exactly the probability that either u or v (or both) is selected for inclusion
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CONNECTIVITY ORACLES FOR VERTEX FAILURES 1383

in B(�). Recalling the definitions of n0 and m0, the number of edges labeled � is, by
linearity of expectation, at most m0 · (2n0 · c lnn)/m0 = O(|A(�)| log n).

Every pair {u, v} 2
S

�
A(�)⇥B(�) must be owned by some component. By the

first part of the lemma,
�����
[

�

A(�)⇥B(�)

����� 
X

�

O(|A(�)| log n) = O(m log2 n).

The last equality holds because each edge contributes one element to at most p < log n
A(·)-lists.

By design, the B-sets are chosen to keep the total number of owned pairs Õ(m).
Lemma 7.2 indicates why this method of choosing B-sets is useful when vertices fail.

Lemma 7.2. Fix any � and any set D of (failed) vertices such that A(�)�D 6= ;.
With probability 1� n�⌦(c), one of the following two events occurs.

1. B(�)�D 6= ;.
2. The number of pairs in

�
D

2

�
owned by � is at least |A(�)|.

Proof. Consider the moment in the algorithm just before B(�) is selected, and
let n0,m0 be defined as usual. We consider two possible scenarios, depending on how
many of the m0 pairs are completely contained in D or straddle/lie outside of D.

Case I. At least m0/2 of the unlabeled pairs contain at least one vertex in A(�)�
D. There must be at least (m0/2)/n0 vertices in A(�) �D, and each one is sampled
with probability min{1, cn0 lnn/m0}. The probability that some vertex in A(�) �D
is sampled into B(�) is

1�
✓

1�min

⇢
1,

cn0 lnn

m0

�◆ m0
2n0

> 1� n�c/2,

in which case part 1 of the lemma holds.
Case II. At least m0/2 of the unlabeled pairs are contained in

�
D

2

�
. We can

assume without loss of generality that m0 � cn0 lnn for otherwise B(�) = A(�) and
part 1 of the lemma is already satisfied. Assign each unlabeled pair in

�
D

2

�
to one of its

endpoints, and let deg0(v) be the number of pairs assigned to v, so
P

v
deg0(v) = m0/2.

Partition the vertices into blog n0c + 1 classes where class i contains those vertices
for which deg0(v) 2 [2i, 2i+1). Let the sum of degrees in class i be ✏i(m0/2), i.e.,P

i
✏i = 1. The number of vertices in class i is at least ✏im0/2i+2 since each accounts

for at most 2i+1 distinct edges. The expected number of vertices in class i included
in B(�) is therefore at least ✏icn0 lnn/2i+2, and by a Cherno↵ bound, the probability
that at least half the expected number are sampled is 1 � exp(�✏icn0 lnn/2i+5). If
so, this contributes at least ✏icn0 lnn/25 pairs owned by �. Call a class i good if
✏icn0 lnn/2i+5 � (c/27) lnn, or equivalently, if ✏i � 2i�2/n0. The fraction of pairs

contributed by bad classes is at most
Pblogn

0c
i=0 2i�2/n0 < 1/2. Thus, with probability

1 � n�⌦(c), the number of unlabeled pairs in
�
D

2

�
that are covered by B(�)-vertices

in good classes (which become owned by �) is at least (1/2) · cn0 lnn/25 > n0. This
satisfies part 2 of the lemma.

Remark 7.3. The proof of Case II of Lemma 7.2 is necessarily ad hoc. We are
trying to lower bound a sum X = X1 + · · · + Xk of independent random variables,
which seems to be well suited to some variant of the Azuma–Hoe↵ding inequality [43].
However, in our case E[X] is small but the variances V [Xi] large. In this regime the
standard concentration bounds do not o↵er strong enough guarantees.

D
ow

nl
oa

de
d 

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1384 RAN DUAN AND SETH PETTIE

7.2. Graph sketches. We use the graph sketch of Kapron et al. [61, 51, 81] to
store original edges but develop a new sketch for artificial edges of the form A(�) ⇥
B(�). It is convenient to rename the vertex ids in {1, . . . , n}. For each ⌧ 2 T , the ids
of the terminals in V (⌧) occupy a contiguous interval of [1, n], and moreover, their
ids are consistent with the ordering of Euler(⌧).

7.2.1. Sketching original edges. An edge e = {u, v} is represented by the bit
string hei = hmin{u, v},max{u, v}i. For i 2 [0, logm), j 2 [1, c log n), the edge sets
E = E0,j ◆ E1,j ◆ · · · ◆ Elogm�1,j are generated such that all edges are sampled for

inclusion in Ei,j independently with probability 2�i. The sketch ⌥E
0
for an edge set

E0 ✓ E is a logm⇥ c log n matrix in which

⌥E
0
(i, j) =

M

e2E0\Ei,j

hei .

That is, the (i, j)th entry contains the bitwise XOR of all edge names in E0 \ Ei,j .

Clearly sketches are additive: for any E0, E00, ⌥E
0�E

00
= ⌥E

0 � ⌥E
00
. Lemma 7.4

illustrates why this sketch is useful for quickly finding edges crossing cuts.

Lemma 7.4. Define Eu to be the edges incident to u. For any subset S ⇢ V ,
define ⌥ =

L
u2S

⌥Eu to be the componentwise XOR of all ⌥Eu sketches. For each
j, there exists some i such that with constant probability ⌥(i, j) is the name of some
edge crossing the cut (S, V � S).

Proof. Edges with two endpoints in S contribute nothing to ⌥ since hei�hei = h0i.
Let i be such that the number of edges crossing the cut is between 2i and 2i+1 � 1.
Then with constant probability, exactly one such edge is sampled for inclusion in
Ei,j .

When a batch D of vertices fail we get a set {tl} of O(|D| log n) a↵ected subtrees.
For each tl, we need to be able to obtain a sketch of all edges {u, v} where u 2 tl,
v 2 tl0 , l0 6= l. The data structures V and C report sketches of edges incident to one
vertex and one component, respectively.
C (�, I): The input is a component � 2 C and an interval I of some Euler(⌧), where ⌧

could be equal to ⌧(�). Define Eu,� to be the original edges joining u to the
terminals of V (�). Report the sketch ⌥ =

L
u2I

⌥Eu,� .
V (v, I): The input is a vertex v and an interval I of some Euler(⌧). Let Ev,I be the

original edges joining v to the terminals in I. Report the sketch ⌥Ev,I .

Lemma 7.5. The structures V ,C occupy O(m log2 n) space and answer queries
in O(log2 n) time.

Proof. First consider a fixed v 2 V (�). Let Lv = (v1, . . . , vdeg(v)) be a list of v’s
neighbors, in increasing order of vertex id. By how we chose the vertex id assignment,
any interval I of some Euler(⌧) corresponds to an interval of Lv. Let ⌥r be the
sketch for the single edge {v, vr}. In O(deg(v) log2 n) space we store all prefix sums
(↵1, . . . ,↵deg(v)), where ↵k =

L
rk

⌥r. To answer a query V (v, I), we simply need
to identify the sublist of (v1, . . . , vdeg(v)) covered by interval I, say it is (vk, . . . , vl),

and report ↵l � ↵k�1 in O(log2 n) time.
We now turn to C . As before, let L� = (v1, v2, . . .) be a list of all neighbors of

terminals in V (�), listed in increasing order of vertex id, let ⌥r be the sample matrix
for Evr,� , and let �k =

L
rk

⌥r. Suppose the query is C (�, I). We do a binary
search to find the sublist of (v1, v2, . . .) covered by I, then report the interval-sum in
O(log2 n) time by XORing two �-sketches.
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Each original edge {u, v} may contribute two O(log2 n)-size sketches to V and C .
The total space is therefore O(m log2 n).

7.2.2. Sketching artificial edges. Artificial edges are encoded di↵erently than
original edges. Let e = {u, v} be an artificial edge in A(�) ⇥ B(�). The encoding
hei = hu, v, �i puts u 2 A(�) before v 2 B(�), and includes the provenance identifier
�.9 Given a bit string hu, v, �i, we can easily verify whether it corresponds to a
legitimate edge by checking whether u 2 A(�), v 2 B(�).

The sketches for artificial edges are obtained via vertex -sampling rather than
edge-sampling. For i 2 [0, log n), and j 2 [1, c log n], we choose sets Ai,j , Bi,j , Ci,j
such that

V = A0,j ◆ A1,j ◆ · · · ◆ Alogn�1,j ,

V = B0,j ◆ B1,j ◆ · · · ◆ Blogn�1,j ,

C = C0,j ◆ C1,j ◆ · · · ◆ Clogn�1,j .

Each � 2 C is included in Ci,j independently with probability 2�i. Similarly, each
u 2 V is included in Ai,j and Bi,j independently with probability 2�i. Define Eia,ib,ic,j

to be the edge set

Eia,ib,ic,j = {hu, v, �i | u 2 Aia,j , v 2 Bib,j , � 2 Cic,j}.

Let bE = E0,0,0,· be the union of all edges contained in A(�) ⇥ B(�) over all

� 2 C.10 The sketch of E0 ⇢ bE is a 4D matrix b⌥E
0
, where

b⌥E
0
(ia, ib, ic, j) =

M

e2E0\Eia,ib,ic,j

hei .

Lemma 7.6 is the analogue of Lemma 7.4 for vertex-sampled sketches.

Lemma 7.6. Let Eu be the edges adjacent to u in bE, and let b⌥Eu be the sketch
for Eu. Suppose that for S ⇢ V , the cut (S, V � S) is nonempty, and let b⌥ =L

u2S
b⌥Eu be the componentwise XOR of the sketches of S-vertices. For each j, with

constant probability there exists ia, ib, ic such that b⌥(ia, ib, ic, j) is the name of some
edge crossing the cut (S, V � S).

Proof. In contrast to the proof of Lemma 7.4, there is not necessarily a specific
triple (ia, ib, ic) that satisfies the lemma; we only claim that one of the O(log3 n) triples
will work, with constant probability. Let C ✓ C be the subset of components such that
for each � 2 C, some edge of A(�)⇥B(�) crosses the cut. With constant probability,
|Cic,j \ C| = 1, where ic = blog |C|c. Suppose that � 2 C is the component isolated
by Cic,j . Let A0 ✓ A(�) be the subset of vertices adjacent to edges with provenance
� crossing the cut. Note that A0 may include vertices on both sides of the cut. With
constant probability |Aia,j \A0| = 1, where ia = blog |A0|c. Let va 2 A0 be the vertex
isolated by Aia,j , and let B0 ✓ B(�) be the neighbors of va on the other side of the
cut. With constant probability |Bib,j \ B0| = 1, where ib = blog |B0|c, isolating some

vertex vb 2 B0. Thus, in this case b⌥(ia, ib, ic, j) = hva, vb, �i is the name of an edge
crossing the cut.

9Here “�” refers to a logn-bit identifier for the component �.
10Because each edge in A(�)⇥B(�) is tagged with its provenance �, edges with the same endpoints

but di↵erent provenances are distinguishable edges. Thus, we usually think of bE as a set rather than
a multiset.
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The structures bC and bV are analogues of C and V but report sketches of edges
in bE. The structure bB is new and is used to e�ciently generate sketches of complete
bipartite subgraphs of A(�)⇥B(�) on the fly.
bC (�, I): The input is a component � 2 C and interval I of some Euler(⌧). Define

Eu,� to be the bE-edges joining u to the terminals of V (�). Report the sketch
b⌥ =

L
u2I

b⌥Eu,� .
bV (v, I): The input is a vertex v and interval I of some Euler(⌧). Let Ev,I be the bE

edges joining v to terminals in I. Report the sketch b⌥Ev,I .
bB(�, I,D): The input is a component �, an interval I ✓ A(�), and a set D of failed

vertices such that I \ D = ;. Let EI,D = I ⇥ (B(�) � D) � (A(�) � D) ⇥
(I \ B(�)) be the subset of provenance-� edges in (A(�)�D)⇥ (B(�)�D)
crossing the cut (I, A(�)� I); see Figure 5. Report the sketch matrix b⌥EI,D .

Lemma 7.7. The structures bV , bC , and bB occupy O(m log6 n) space. The query

time for bV and bC is O(log4 n), whereas the query time of bB is O(|D| log2 n+log4 n).

Proof. The implementation of bV (v, I) is exactly like V (v, I), except that b⌥r oc-
cupies O(log4 n) space and is the sketch for all edges joining v and vr (with di↵erent
provenances). According to Lemma 7.1, the number of edges in bE (ignoring multi-

plicity) is O(m log2 n). Thus, the space for bV is O(m log6 n). The query time is still
linear in the sketch size: O(log4 n).

The implementation of bC (�, I) is also similar to C (�, I), with a O(log4 n) query
time. We now analyze its space. Let � be a component and v be a neighbor of � that
is a terminal in V (�0). Each such pair (v, �) contributes O(log4 n) space to bC . We
consider the pairs when �0 � � and �0 � � separately. There are at most O(pn) pairs
(v, �) when �0 � � since v has at most p ancestral components, so the contribution
of these is O(pn log4 n) = O(n log5 n). Now suppose �0 � �. Let u be some vertex in
V (�) adjacent to v, and let �00 be the provenance of the edge {u, v}. It must be that
�00 � � is a strict descendant of � and that both u, v 2 A(�00). This also implies that
v 2 A(�), hence the contribution of all pairs (v, �) when �0 � � is O(|A(�)| log4 n),
which is O(m log5 n) over all �.

We now turn to the new structure that answers the query bB(�, I,D). Let b⌥0 be
the sketch for I ⇥ (B(�)�D) and b⌥1 be the sketch for (A(�)�D)⇥ (I \B(�)). The
output sketch is exactly b⌥0� b⌥1. We focus on the computation of b⌥0; computing b⌥1

is symmetric. Figures 5(a), (b) illustrate b⌥0 and b⌥1, respectively.
If � 62 Cic,j then b⌥0(ia, ib, ic, j) = h0i. Otherwise, define A0 = I \ Aia,j and

B0 = B(�) \Bib,j �D. Then

b⌥0(ia, ib, ic, j) =

* 
M

u2A0

hui
!|B0|

,

 
M

v2B0

hvi
!|A0|

, h�i|A
0|·|B0|

+
,

where xk is short for

kz }| {
x� · · ·� x. Note that to compute this entry of b⌥0, we only

need to be able to compute the parities of |A0| and |B0|, and the sums
L

u2A0 hui andL
v2B0 hvi.

Let A(�) = (u1, . . . , u|A(�)|) and B(�) = (v1, . . . , v|B(�)|). We store parity pre-
fix sum matrices (�k)k2[1,|A(�)|] and (�0

k
)k2[1,|B(�)|] and name prefix sum matrices

(⇢k)k2[1,|A(�)|], and (⇢0
k
)k2[1,|B(�)|], where
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CONNECTIVITY ORACLES FOR VERTEX FAILURES 1387

(a)

(b)

Fig. 5. (a) The complete bipartite graph I ⇥ (B(�) � D) sketched by b⌥0. (b) The complete

bipartite graph (I \B(�))⇥ (A(�)�D) sketched by b⌥1. Note that in b⌥ = b⌥0 � b⌥1, edges with both
endpoints in I are included twice and cancel each other out.

�k(ia, j) = |{u1, . . . , uk} \Aia,j | mod 2,

�0
k
(ib, j) = |{v1, . . . , vk} \Bib,j | mod 2,

⇢k(ia, j) =
M

k02[1,k]:uk02Aia,j

huk0i ,

⇢0
k
(ib, j) =

M

k02[1,k]:vk02Bib,j

hvk0i .

Suppose I = (uk, . . . , ul) is the query interval. First compute the parity matrices
� = �l��k�1 and �0 = �0

|B(�)| in O(log2 n) time, and then compute �00 in O(|D| log2 n)

time, where �00(ib, j) = |D\Bib,j | mod 2. Next compute name matrices ⇢ = ⇢l�⇢k�1

and ⇢0 = ⇢0|B(�)| in O(log2 n) time and ⇢00 in O(|D| log2 n) time, where ⇢00(ib, j) =L
v2D\Bib,j

hvi. One may easily verify that �, ⇢ are the correct parity and name

matrices for I and that �0 � �00, ⇢0 � ⇢00 are the correct parity and name matrices for
B(�) � D. Each entry of the output matrix b⌥0 is then computed in O(1) time as
follows:

b⌥0(ia, ib, ic, j)

=

8
>>>>>><

>>>>>>:

h0i if � 62 Cic,j ,
D
(⇢(ia, j))�

0(ib,j)+�
00(ib,j),

(⇢0(ib, j)� ⇢00(ib, j))�(ia,j),

h�i�(ia,j)·(�
0(ib,j)+�

00(ib,j))
E otherwise.

The overall time to compute b⌥0 is therefore O(|D| log2 n + log4 n).
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1388 RAN DUAN AND SETH PETTIE

Remark 7.8. Observe that in the proof of Lemma 7.7, the matrices �00, ⇢00 de-
pended only on D, not I. Thus, once they are computed we can answer a query for a
di↵erent triple (�, I 0, D) in just O(log4 n) time. This fact will be used in sections 7.3
and 7.4.

7.3. Update and query algorithms. At a high level, the deletion algorithm
has four major steps.

1. The first task is to mark up to (p + 1)d  d log n components �1, . . . , �(p+1)d

as a↵ected, as well as the corresponding trees ⌧1, . . . , ⌧(p+1)d. (Because the
component-to-tree mapping is not injective, the number of distinct trees may
be smaller.) We mark all tree edges incident to D as deleted, which breaks up
Euler(⌧1), . . . ,Euler(⌧pd) into O(pd) intervals, call them I1, . . . , IO(pd), with
the property that each a↵ected subtree (i.e., those in ⌧1�D, . . . , ⌧(p+1)d�D)
is the union of some subset of the intervals.

2. The next task is to generate two sketches ⌥[Iq], b⌥[Iq] for each interval repre-

senting valid edges in E and bE, respectively, joining Iq to another interval. In
other words, we do not want to consider original or artificial edges adjacent
to D, nor invalid artificial edges with provenance � for some a↵ected �, nor
valid artificial edges joining Iq to an una↵ected tree in T . The structures

V ,C , bV , bC , bB are used to build these sketches.
3. Let t1, . . . , tO(pd) be the a↵ected subtrees. We form the sketches ⌥[tq] and
b⌥[tq] for each tree, by XORing the sketches of the constituent intervals of
tq. According to Lemmas 7.4 and 7.6, these sketches reveal one edge cross-
ing the cut defined by V (tq), with constant probability. We can implement
a probabilistic version of Bor̊uvka’s algorithm in order to compute the con-
nected components among the a↵ected subtrees. The jth Bor̊uvka step only
examines parts of the sketch with matching j-coordinate. Using “fresh” ran-
domness for each Bor̊uvka step is essential for showing the procedure succeeds
w.h.p.

4. Lastly, we must account for any una↵ected components � 2 C that were
unlucky enough to see all vertices in B(�) fail. According to Lemma 7.2, at
least |A(�)| of the pairs in

�
D

2

�
are owned by �, w.h.p. We scan all

�|D|
2

�
labels,

tallying up how many times each owner label occurs. Any owner label � that
appears |A(�)| times might provide additional connectivity not captured by
the components discovered at the end of step 3. We merge any connected
components from step 3 that contain at least one A(�) vertex. This takes
O(|A(�)|) time to process � and hence O(d2) time overall.

7.3.1. Generating sketches. We show how to generate b⌥[Iq]. The process for

⌥[Iq] is analogous but simpler and faster. For each z  (p + 1)d, consult with bC to

get a sketch b⌥(�z, Iq) covering edges in bE joining Iq to terminals in V (�z). These
sketches include two types of edges we must subtract o↵: (i) those incident to D
and (ii) those with provenance � for some a↵ected �.11 For each v 2 D, consult

with bV to get a sketch b⌥(v, Iq) covering edges in bE joining Iq to v. These sketches
cover type (i) bad edges. Suppose I is an interval containing terminals of V (�y). For

each z  (p + 1)d, if �z � �y is a strict descendant of �y, consult bB to get a sketch

11Note that the intersection of (i) and (ii) is generally nonempty, so it is not su�cient to subtract
o↵ (i) and (ii) separately as this will inadvertently add back edges in (i) \ (ii).
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b⌥(�z, Iq, D). This covers all remaining edges with provenance �z not already covered

by {b⌥(v, Iq)}v2D. Finally, we compute b⌥[Iq] by combining these sketches.

b⌥[Iq] =

0

@
M

z(p+1)d

b⌥(�z, Iq)

1

A�
 
M

v2D

b⌥(v, Iq)

!
�

0

@
M

z(p+1)d

b⌥(�z, Iq, D)

1

A .

For the time analysis, recall that there are O(pd) a↵ected components, O(pd)
a↵ected subtrees, and O(pd) relevant Euler tour intervals. By Lemma 7.7, the time to
compute all b⌥(�z, Iq) sketches is O((pd)2 log4 n) = O(d2 log6 n), and the time to com-

pute b⌥(v, Iq) sketches O(pd2 log4 n) = O(d2 log5 n). By Lemma 7.7 and Remark 7.8,

the time to compute all b⌥(�z, Iq, D) sketches is O((pd)d log2 n + (pd)2 log4 n) =
O(d2 log6 n).

7.3.2. Executing Bor̊uvka’s algorithm. Once the sketches for each interval
are generated we can combine them to form sketches ⌥[tl], b⌥[tl] for each a↵ected
subtree tl.

We proceed as in Bor̊uvka’s MST algorithm [17] and many parallel connectivity
algorithms that use the “hook and contract” technique [27, 28, 59, 74]. In each round,
each a↵ected subtree will pick an arbitrary edge joining it to a di↵erent a↵ected
subtree. The a↵ected subtrees will be merged into larger a↵ected subtrees, which
participate in the next round. Under error-free conditions—which we do not have—
this process will halt after log2(O(dp)) rounds since each round reduces the number
of nonisolated a↵ected subtrees by at least half.

The formal procedure is as follows. Let Cj�1 = {tj�1,1, tj�1,2, . . . , tj�1,|Cj�1|} be
the a↵ected trees after j� 1 rounds, where C0 = {t0,1, . . . , t0,O(dp)}. We maintain the

invariant that we have, for each tj�1,l, sketches ⌥[tj�1,l], b⌥[tj�1,l] covering original
and artificial edges joining tj�1,l to a di↵erent tree. In the jth round, loop over
each tj�1,l 2 Cj�1 and look for the name of any valid original/artificial edge in the

log n entries of ⌥[tj�1,l](?, j) and the log3 n entries of b⌥[tj�1,l](?, ?, ?, j). Such an
edge ej�1,l, if it exists, has one endpoint in V (tj�1,l). Let Cj be the components
induced by the Cj�1 trees and the intertree edges {ej�1,l} just selected. Suppose the
constituent trees of some tj,r 2 Cj are S ✓ Cj�1. The sketches for tj,r are computed

as ⌥[tj,r] =
L

t2S
⌥[t] and b⌥[tj,r] =

L
t2S

b⌥[t]. The total time to compute sketches

for Cj is just O((|Cj�1|� |Cj |) log4 n).
Observe that just before executing the jth round we have only examined sketch

entries whose final coordinate is in {1, . . . , j� 1}. Hence, the contents of the sketches
with final coordinate j reflect “fresh” randomness, and we can apply Lemmas 7.4
and 7.6. If there exists at least one edge crossing the cut defined by tj�1,l, then

with constant probability, either ⌥[tj�1,l] or b⌥[tj�1,l] will reveal the name of one such
edge. Letting kCkk denote the number of nonisolated components in Ck, we have
E[kCjk]  (1� ✏)kCj�1k for some absolute constant ✏ > 0. Thus, after c log n rounds
E[kCc lognk]  (1� ✏)c lognkC0k < n�⌦(c) and by Markov’s inequality, the probability
that Cc logn has nonisolated components (an error) is n�⌦(c).

7.3.3. Recapitulation. The high level update algorithm in section 7.3 was di-
vided into four major steps. Step 1 (marking a↵ected components and subtrees,
enumerating relevant intervals) takes O(d log n) time. Step 2 (generating sketches)
takes O(d2 log6 n) time. Step 3 (Bor̊uvka’s algorithm) takes time linear in the sum of
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1390 RAN DUAN AND SETH PETTIE

the sketches: O(d log4 n). Finally, Step 4 (processing � with B(�) ✓ D) takes O(d2)
time. Observe that due to the probabilistic nature of Lemmas 7.2, 7.4, and 7.6, Steps
3 and 4 can have both detected and undetected errors, with probability n�⌦(c).12

The final output of this algorithm (a partition of the a↵ected subtrees into con-
nected components) is exactly the same as in the deterministic algorithms of sec-
tions 4–6. Thus, the same deterministic query algorithm works in O(d) time. In the
next section we shall see some general methods to shave poly(log n)-factors o↵ some
algorithms that use graph sketches.

7.4. Improving update times with on-demand sketching. Recall that ex-
isting d-edge failure connectivity oracles have update times that are linear in d but
have poly(log n) factors (O(d log2 n log log n) [73] or O(d log d log3 n) [61]) or have a
quadratic dependence on d, but better dependence on n, namely O(d2 log log n) [40].
In this section we show how to improve all of these bounds and use sublinear space,
as in [51].

Theorem 7.9. A connectivity oracle for G = (V,E) with size O(n log2 n) can
be constructed in O(m log n + n log2 n) time. Any set D ✓ E(G) of d edges can
be processed in O(d log d log log n) time in expectation (and O(d log n log log n) time
w.h.p.) such that connectivity queries in the graph (V,E�D) can be answered in time
O(min{log log n, log d

log logn
}). With high probability, the query is answered correctly.

Proof. Because the space is sublinear in m we cannot a↵ord to store the graph,
nor can we explicitly record for each edge which samples it appears in. Assume
the initial vertex ids are {1, . . . , n}. We assign u the bit string �(u), where � :
{1, . . . , n} ! {0, 1}c logn is a uniformly random injective function. The encoding of
an edge e = {u, v} is hei = hmin{�(u),�(v)},max{�(u),�(v)}i.

Sketching. We use hash functions to decide whether to include edges in sampled
sets. Choose pairwise independent hash functions h1, . . . , hc logn : {0, 1}2 logn !
{0, . . . , 2w � 1}, and for each i 2 [0, logm) and j 2 [1, c log n], let Ei,j be the edge set

Ei,j = {e 2 E | hj(e) 2 [0, 2w�i)}.

The sketch ⌥E
0

is a logm ⇥ c log n matrix defined exactly as before. Pairwise in-
dependence su�ces to guarantee the claim of Lemma 7.4, that for any set E0 ⇢ E
and any j, there exists an i such that with constant probability, ⌥E

0
(i, j) is the

name of one edge in E0. (See [51, Appendix A]) for a short proof.) Moreover, since
E = E0,j ◆ · · · ◆ Elogm�1,j , the right value of i is, w.h.p., the unique value for which

⌥E
0
(i, j) 6= h0i and ⌥E

0
(i + 1, j) = h0i. We also need to be able to tell that a bit

string ⌥E
0
(i, j) encodes an edge rather than garbage. Since � assigns random c log n-

bit strings, the XOR of multiple edge names is a random 2c log n-bit string. Thus,
the probability that a garbage string looks like a legitimate edge name is n�2(c�1).

The construction. At preprocessing time, choose an arbitrary spanning tree T ✓
E(G) and an arbitrary tour Euler(T ) = (v1, . . . , vn). Initialize sketch matrices ⌥v1 ,
. . . ,⌥vn to be all zero. For each e = (vk, vl) 2 E(G), evaluate h1(e), . . . , hc logn(e) to
determine which sets Ei,j contain e. If e 2 Ei,j , update ⌥vk(i, j)  ⌥vk(i, j) � hei
and likewise with ⌥vl(i, j). Finally, compute all prefix sum sketches (µ1, . . . , µn),

12One undetected error that has nothing to do with sketching is if B(�) ✓ D, but � is not processed
in Step 4. An undetected sketch failure occurs if tj,l is not an isolated tree, but nonetheless ⌥[tj,l]

and b⌥[tj,l] are the all-zero matrices. A detected error would be if ⌥[tc logn+1,l] or ⌥[tc logn+1,l]
were not the all-zero matrices, indicating that c logn Bor̊uvka steps failed to detect all connected
components.
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where µk =
L

k0k
⌥vk0 . The data structure stores T,Euler(T ), and (µk). The

space is dominated by (µk), which takes O(n log2 n) words. The construction time is
O(m log n + n log2 n) in expectation. Observe that each edge causes just O(c log n)
entries of the sketches to be updated, in expectation, and that computing (µk) takes
O(n log2 n) time once the (⌥vk) are computed.

Handling edge failures. Suppose a subset D ✓ E(G) of edges are deleted.13 Re-
moving D partitions Euler(T ) into a set of 2|D \ T | + 1 intervals, call them I. For
each interval I 2 I, suppose it is {vp, . . . , vq}, we compute its initial sketch ⌥[I]  
µq�µp�1, then proceed to delete D from the sketches. For each e = (vk, vl) 2 D, find
the intervals I, I 0 2 I containing vk, vl, respectively, and for each Ei,j 3 e, update
⌥[I](i, j)  ⌥[I](i, j) � hei and update ⌥[I 0] likewise. Once we have sketches for all
intervals, we execute Bor̊uvka’s algorithm as in section 7.3.2. The time to generate the
sketches and execute Bor̊uvka’s algorithm takes time linear in the size of all sketches,
namely O(d log2 n).

To improve the update time we calculate entries in sketch matrices in an on-
demand fashion. Suppose t is a tree encountered during Bor̊uvka’s algorithm. We
maintain a linked list L[t] of sketches satisfying the invariant ⌥[t] =

L
�2L[t] �. (For

example, before the first Bor̊uvka step, t is an interval in I and L[t] consists of two
µ sketches and possibly several single-edge sketches, one for each edge in D with an
endpoint in t.) Thus, any entry ⌥[t](i, j) can be looked up in |L[t]| time. In the jth
Bor̊uvka step, for each current tree t we do a binary search for the maximum i such
that ⌥[t](i, j) 6= h0i and check whether it is a legitimate encoding of an edge. In this
Bor̊uvka step, if trees t1, . . . , tr are merged into one tree t0, we simply set L[t0] to be
the concatenation of L[t1], . . . ,L[tr].

The number of basic sketches appearing in any list L[·] is O(d): there are at most
2|I| = O(d) µ-sketches of interest and at most d single-edge sketches for edges in D.
If Bor̊uvka’s algorithm terminates after b steps, then we have probed O(b log log n)
locations in each of the basic sketches, for a total time of O(db log log n). The claimed
update time follows from the fact that b is O(log d) in expectation and O(log n) w.h.p.

Queries. A query (uk, ul) simply needs to find the intervals I, I 0 containing uk, ul,
respectively, and check whether I, I 0 are in the same connected component discov-
ered by Bor̊uvka’s algorithm. Finding I, I 0 can be done with predecessor search, in
O(log log n) time [80] or O(log d/ log log n) time [77].

The same technique allows us to shave four log factors o↵ the update time from
section 7.3.

Theorem 7.10. A connectivity oracle for G = (V,E) with size O(m log6 n) can be
constructed in O(mn log n) time. Any set D ✓ V (G) of d vertices can be processed in
O(d2 log d log2 n log log n) time in expectation (and O(d2 log3 n log log n) time w.h.p.)
such that connectivity queries in G � D can be answered in O(d) time. With high
probability, the query is answered correctly.

Proof. Consider how we construct the sketch matrix b⌥[I] for an interval I. For
each a↵ected component �z, b⌥(�z, I) is the sum of two � sketches, and for each v 2 D,
b⌥(v, I) is the sum of two ↵ sketches. Recall that entries of b⌥(�z, I,D) are computable
in O(1) time, given matrices �,�0, ⇢, ⇢0, and �00, ⇢00. The first four matrices depend
only on �z and entries in them can be computed in O(1) time. The last two matrices

13We are promised that D ✓ E(G), which cannot be verified with only Õ(n) space. Strictly
speaking, we will be preparing a data structure that answers connectivity queries in G

0 = (V,E�D),
i.e., any edge e 2 E(G)�D is treated as an insertion, not a deletion.
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depend on both �z and D, and each of their entries takes O(d) time to compute.
Thus, if b Bor̊uvka steps su�ce, it takes O(bd2 log2 n) time to compute the relevant
entries of the �00, ⇢00 matrices, over all O(d log n) a↵ected �z.

Now consider a tree t in the jth Bor̊uvka step. We look for an edge with one
endpoint in t via three binary searches over b⌥[t]. We find the maximum ic for which
b⌥[t](0, 0, ic, j) 6= h0i, then find the maximum ia for which b⌥[t](ia, 0, ic, j) 6= h0i, then
find the maximum ib for which b⌥[t](ia, ib, ic, j) 6= h0i. With constant probability,
this entry contains the name of an edge with one endpoint in t. Thus, each of the
O((d log n)2) basic sketches is probed in O(b log log n) locations, for a total time of
O(d2b log2 n log log n). Once again, b is O(log d) in expectation and O(log n) w.h.p.

8. Conclusions. In this paper we illustrated the power of a new graph decom-
position theorem by giving time- and space-e�cient connectivity oracles for graphs
subject to vertex failures. Our data structures perform well in all the major measures
of e�ciency (space, update time, query time, and preprocessing time) but leave many
opportunities for improvement. The following open problems are quite challenging.

• The Fürer–Raghavachari [48] algorithm FR-Tree for computing the near-
minimum degree spanning tree takes O(mn log n) time, which is the main
bottleneck in our construction. Is it possible to reduce the running time
of FR-Tree to Õ(m), or compute spanning trees with similar decomposition
properties in Õ(m) time? Would such a result contradict a popular hardness
conjecture?14

• The conditional lower bounds of [63, 54] show that any connectivity oracle
with reasonable update time cannot have Õ(1) query time, independent of
d, but they do not preclude a data structure having both query and update
time Õ(d). Is it possible to reduce the update time below O(d2) without
disturbing the space or query time?

• Is it possible to reduce the space of our deterministic d?-failure connectivity
oracle to Õ(m) (independent of d?) or perhaps Õ(d?n)?

A more accessible problem is to eliminate log factors, especially in our Monte
Carlo structure, which still has an extra log6 n factor in space and log2 n factor in
update time.

Acknowledgment. We would like to thank Kasper Green Larsen and Peyman
Afshani for help with the navigating the range searching literature, Shiri Chechik for
suggesting the reduction to 3D range searching in section 6.3, and Veronika Loitzen-
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[75] J. A. L. Poutré, J. van Leeuwen, and M. H. Overmars, Maintenance of 2- and 3-edge-
connected components of graphs I, Discrete Math., 114 (1993), pp. 329–359, https://doi.
org/10.1016/0012-365X(93)90376-5.

D
ow

nl
oa

de
d 

10
/0

1/
21

 to
 3

5.
3.

10
5.

14
0 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/1.9781611974782.32
https://doi.org/10.1137/1.9781611974782.32
https://doi.org/10.1007/978-3-540-30551-4_49
https://doi.org/10.1007/978-3-540-30551-4_49
https://doi.org/10.1137/1.9781611974331.ch89
https://doi.org/10.1137/1.9781611973105.20
https://doi.org/10.1137/1.9781611974782.142
https://doi.org/10.4230/DagRep.6.11.1
https://doi.org/10.4230/DagRep.6.11.1
https://doi.org/10.1007/978-3-642-40450-4_66
https://doi.org/10.1007/978-3-642-40450-4_66
https://doi.org/10.1137/1.9781611973402.80
https://doi.org/10.1137/1.9781611973402.80
https://doi.org/10.1016/0012-365X(93)90376-5
https://doi.org/10.1016/0012-365X(93)90376-5


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1396 RAN DUAN AND SETH PETTIE
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