
BBB: Simplifying Persistent Programming using
Battery-Backed Buffers

Mohammad Alshboul1, Prakash Ramrakhyani2, William Wang2, James Tuck1, and Yan Solihin3

1ECE, North Carolina State University: {maalshbo, jtuck}@ncsu.edu
2Arm Research: {prakash.ramrakhyani, william.wang}@arm.com

3Computer Science, University of Central Florida: yan.solihin@ucf.edu

Abstract—Non-volatile memory (NVM) is poised to augment
or replace DRAM as main memory. With the right abstraction
and support, non-volatile main memory (NVMM) can provide an
alternative to the storage system to host long-lasting persistent
data. However, keeping persistent data in memory requires
programs to be written such that data is crash consistent (i.e.
it can be recovered after failure). Critical to supporting crash
recovery is the guarantee of ordering of when stores become
durable with respect to program order. Strict persistency, which
requires persist order to coincide with program order of stores,
is simple and intuitive but generally thought to be too slow.
More relaxed persistency models are available but demand higher
programming complexity, e.g. they require the programmer to
insert persist barriers correctly in their program.

We identify the source of strict persistency inefficiency as the
gap between the point of visibility (PoV) which is the cache, and
the point of persistency (PoP) which is the memory. In this paper,
we propose a new approach to close the PoV/PoP gap which we
refer to as Battery-Backed Buffer (BBB). The key idea of BBB
is to provide a battery-backed persist buffer (bbPB) in each core
next to the L1 data cache (L1D). A store value is allocated in the
bbPB as it is written to cache, becoming part of the persistence
domain. If a crash occurs, battery ensures bbPB can be fully
drained to NVMM. BBB simplifies persistent programming as the
programmer does not need to insert persist barriers or flushes.
Furthermore, our BBB design achieves nearly identical results to
eADR in terms of performance and number of NVMM writes,
while requiring two orders of magnitude smaller energy and time
to drain.

I. INTRODUCTION

Non-volatile main memory (NVMM) is poised to augment
or replace DRAM as main memory. Due to its non-volatility,
byte addressability, and being much faster in speed than SSD
and HDD, NVM can host persistent data in main memory [4],
[10], [11], [39], [46], [51], [52], [74], [95], [96].

In order to utilize this non-volatility feature, it is critical to
guarantee ordering of persists, i.e. the ordering of stores reach-
ing persistent memory to become durable. This is specified
through a persistency model [5], [23], [38], [43], [68]. Without
an explicit guarantee, the persist order will follow the cache
replacement policy instead of the program order in updating

This research is supported in part through the following grants: Solihin
was supported by NSF grant 1900724 and UCF. Alshboul and Tuck were
supported in part by NSF grant CNS-1717486 and by NC State. Alshboul’s
PhD primary and co-advisor are Solihin and Tuck, respectively. Wang received
funding from the European Union’s Horizon 2020 research and innovation
programme under project Sage 2, grant agreement 800999.

the persistent memory state, and this may lead to inexplicable
results. Programmers rely on the persistency model to write
both normal-operation code and post-crash recovery code, and
to reason about how such code can keep persistent data in
a consistent state [23], [27], [43], [54], [68], [88], [89]. In
designing persistency models, it is generally accepted that
there is a tradeoff between performance and programmability.
For example, strict persistency requires persist order to co-
incide with program order of stores, while epoch persistency
orders persists across epochs but not within an epoch. While a
more relaxed persistency model can offer higher performance,
adopting a more relaxed persistency model burdens the pro-
grammer with additional tasks, e.g. defining epochs.

Another persistency programmability challenge is caused by
the gap between the point of visibility (PoV) and the point of
persistency (PoP), which affects parallel programs (Figure 1).
A store may become visible to other threads when the value
is written to the cache, but does not persist until reaching
the memory controller (MC)1. Furthermore, before persistency
is ensured, a store value may be observed by another thread
which may persist another value, resulting a non-consistent
persistent memory state.

MC and

NVMML1D

PoPPoV

Core LLCL2

Fig. 1: Illustration for the gap between the Point of Visibilty (PoV)
at the L1D cache, and the Point of Persistency (PoP) at the NVMM
or MC.

Managing persist order and the PoV/PoP gap currently
incurs substantial performance penalty and requires oner-

1We assume a base system with ADR [37], where an update becomes
persistent when it reaches the write pending queue (WPQ) of the memory
controller (MC).

1

ous effort from the programmer. For example, consider In-
tel PMEM [73], which provides programmers flush (clwb/-
clflushopt) and fence (sfence) instructions. To guarantee persist
ordering of two stores, clflushopt followed by sfence need to
be inserted between them, delaying the issue of the second
store (for a long time) until the first store reaches the MC.
A missing flush or fence may cause bugs that are difficult to
identify or reproduce due to their intermittency. Furthermore,
it is not easy to debug a persistent program as a crash must
be induced at different points of the program to check its
persistent state correctness.

Thus, in this work, we ask the question: Can the gap
between PoV and PoP be closed inexpensively? Closing this
gap simplifies persistent programming and improves perfor-
mance [90], because any committed store value persists and
becomes visible simultaneously. One approach described in
prior literature is to allow the PoV/PoP gap to exist, but hides
the side effect if the gap may be exposed. In Bulk Strict
Persistency (BSP) [43], if a store value has not persisted but is
requested by another thread/core, it (and older stores) are per-
sisted first before responding to the request. This complicates
cache coherence and delays responses to external requests.
Another approach being considered by industry is to close the
PoV/PoP gap by using non-volatile caches (NVCache), where
the entire cache hierarchy is added to the persistence domain.
NVM technologies (e.g. STT-RAM, ReRAM, and PCM) [28],
[48], [71] could be considered but they suffer from limited
write endurance, high access latency, high write energy, and
low write bandwidth [42], [61], [87]. These problems make
NVCache more suitable for last level (or near last level) cache.
However, the reduced PoV/PoP gap may improve performance
but does not simplify programming. An alternative would
be to use battery-backed SRAM caches through eADR [80].
However, eADR is expected to be costly as it requires a large
battery to back the entire cache hierarchy [16].

In this paper, we propose a new approach to close the
PoV/PoP gap. We call this the Battery-Backed Buffer (BBB).
The key idea of BBB is to provide a persist buffer in each
core next to the L1 data cache (L1D) that is non-volatile
(backed by battery). A store is allocated an entry in the
battery-backed persist buffers (bbPB) as it is written to cache,
hence it becomes visible and persistent simultaneously. The
stores in bbPB are then lazily drained from the bbPB to
memory. If a crash occurs, the battery ensures bbPB can
be fully drained to NVMM. The bbPB is sized to balance
performance and battery cost. We find that a small number of
entries (e.g. 32) is sufficient. BBB provides strict persistency
semantics without the performance penalties associated with
it. We explore a major design choice of whether to view bbPB
as processor-side or memory-side structures, and discuss their
tradeoffs. Due to the complete elimination of PoV/PoP gap,
persistent programming is simplified as flushes and fences are
no longer necessary. We show that with careful design, BBB’s
performance is nearly identical to eADR but with much lower
hardware overhead because the bbPB size is much smaller
than caches.

TABLE I: Comparison between several schemes for providing strict
memory persistency ordering: Intel PMEM, Bulk Strict Persistency
(BSP), eADR, and Battery-Backed Buffers (BBB).

Aspect PMEM BSP eADR BBB
SW Complexity High Low Low Low
Persist Inst. clwb & fence None None None
HW Complexity Low High Low Low
Strict pers. penalty High Medium None Low
Battery Needed None None Large Small
PoP location WPQ/mem Mem L1D bbPB/L1D

Table I contrasts different approaches for implementing
strict persistency. PMEM’s programming complexity is the
highest due to the need to correctly and completely insert
flushes and fences. BSP requires highly complex architectural
support to give the illusion of strict persistency even though
the underlying hardware allows non-ordered persists, and still
incurs substantial performance penalty for strict persistency.
eADR requires a large battery to support draining of the entire
cache hierarchy. PMEM and BSP do not close the PoP/PoV
gap as the memory or MC still serves as PoP. In contrast,
BBB incurs low programming complexity (no flushes/fences
are needed), low hardware complexity, negligible performance
penalty for strict persistency, and requires only small battery to
drain a few bbPB entries on a crash. BBB also closes PoP/PoV
completely as bbPB is added next to the L1D cache.

Overall, the contributions of this paper are the following:
• A novel approach called Battery-Backed Buffer (BBB) to

close the PoV/PoP gap, including bbPB design choices
and coherence mechanisms.

• Estimation of energy and area needed for both BBB
and eADR, showing BBB with two orders of magnitude
improvement over eADR with regards to the energy and
time costs for draining.

• Evaluation of BBB’s effectiveness with different bbPB
sizes.

The rest of the paper is organized as follows: Section II
provides a relevant background. Section III introduces BBB
and its design. The evaluation methodology is shown in
Section IV, while the experiments results are reported in
Section V. Section VI discusses relevant prior works. The
paper concludes in Section VII.

II. BACKGROUND

A. The Difficulty of Persistent Programming

In this section, we highlight how challenging it is for the
programmer to write code that guarantees crash recoverability.
This has already been discussed in several prior works that
have emphasized how writing NVMM-friendly code can be
very tedious and error-prone [1], [18], [56], [57], [64], [97].

As mentioned in Section I, the volatility of the cache hierar-
chy requires using persistency models to guarantee correct per-
sistency ordering at the NVMM. These models usually require
the programmer to add special instructions to the code to guar-
antee crash recoverability. These instructions often have two
types of functionalities: (1) Sending updates to the NVMM,

2

1 void AppendNode(int new val){
2 // create and initialize new node
3 node t* new node = new node t(new val);
4 // update new node’s next pointer
5 new node −> next = head;
6 // update the linkedList ’s head pointer
7 head = new node;
8 }

Fig. 2: Example code to add a node to the beginning of a
linked list.

1 void AppendNode(int new val){
2 // create and initialize new node
3 node t* new node = new node t(new val);
4 // update new node’s next pointer
5 new node −> next = head;
6 // NEW: Persist new node
7 writeBack(new node);
8 persistBarrier ;
9 // update the linkedList ’s head pointer

10 head = new node;
11 // NEW: Persist head pointer
12 writeBack(head);
13 persistBarrier ;
14 }

Fig. 3: Updated code to add a node to the beginning of a
linked List.

which is done by flushing or writing back the corresponding
cache block from the caches to NVMM (writeBack). Some
examples of such instructions are (clwb) and (clflushopt) from
x86 ISA, and (DCCVAP) and (DCCVADP) from Arm ISA.
(2) After sending blocks to the NVMM, the second instruction
type needed to guarantee persistency ordering is a barrier/fence
instruction that ensures the subsequent instructions wait until
the flushing is completed (persistBarrier). Examples of such
barrier instructions are (sfence) and (mfence) for x86 ISA, and
(DSB) and (DMB) for Arm ISA.

The main task of a programmer is to decide when and where
to add these two types of special instructions. Figure 2 shows
an example code to add a node to the head of a linked list.
The code creates and initializes a new node (line 3), makes
it to point to the current head node (line 5), and updates the
head pointer to the new node (line 7). The code example is
correct and works well if crash recoverability is not a concern.
However, with NVMM, the code risks losing the entire linked
list if stores persist out of the program order. For instance,
the update to the head pointer may get persisted before the
new node itself is persisted. If a crash occurs between the
two persists, the new node will be lost (since it is still in the
volatile caches), while the head pointer will still point to new
node, which becomes invalid after the crash.

To make this code NVMM-friendly, the programmer may
impose persist ordering by modifying the code as shown in

Figure 3. Mainly, special instructions are added after storing
the new node (line 7-8), and after storing the head pointer
(line 12-13). With that, it is now guaranteed that the update
to the head pointer will never be persisted until the update to
the new node itself is persisted.

With BBB, this persist ordering problem will no longer
exist, and the code shown in Figure 2 can still be safely used
without any risk of persist ordering issues. This is because
the new node initialization (line 3) will become persistent
immediately after its store is committed. Since the two stores
are guaranteed to commit in program order, the store updating
the head pointer (line 7) will commit after that, and hence
the two updates are also going to automatically and instantly
persist in that order. Note that the discussion about this code
focuses on the persist ordering problem. Other programming
problems (e.g. transaction semantics, permanent leaks) are out
of the scope of this paper.

B. Non-Volatile Caches and eADR

As mentioned earlier, non-volatile caches (NVCaches) have
been proposed and evaluated in literature [40], [58], [69],
[77]. NVCaches rely on various NVM technologies, such as
PCM, STT-RAM, and ReRAM [4], [28], [48], [52], [71],
which differ in their access latency and density. However, they
suffer from similar challenges as in NVMM, including limited
write endurance. These problems will be more pronounced
than NVMM because caches will be written at a much higher
rate than memory, and the closer it is to the core, the higher
the rate. Spin-Transfer Torque Random Access Memory (STT-
RAM) has a relatively high write endurance level of 4× 1012

writes, higher than alternatives such as Phase Change Memory
(PCM) with 108 writes [52], [61], [71], [87], and Resistive
Random Access Memory (ReRAM) with 1011 writes [4],
[48], [61], [87]. However, their write endurance is still or-
ders of magnitude lower than SRAM memory cells (about
1015) [61], [71], [87]. Furthermore, they also suffer from high
write energy, and higher access latency than SRAM caches.
Finally, unless they are used for the entire cache hierarchy,
they will still have PoV/PoP gap that complicates persistency
programming.

Nevertheless, SRAM-based caches can become non-volatile
by providing an additional energy source to create battery-
backed caches. This energy source should be enough to im-
plement flush-on-fail policy, where the entire cache hierarchy
is drained to memory when a crash happens, and thus making
the SRAM-based caches appear non-volatile. This approach
enhances the ADR [37] guarantee from only covering the
memory controller, to covering the entire cache hierarchy.
Hence, it is named enhanced-ADR (eADR) [16], [77], [78].
Compared to NVCaches, eADR does not affect access latency,
write energy, and write endurance. However, flush-on-fail
requires a substantial amount of energy and time, resulting
in considerable space and cost for the energy source (e.g.
battery), and delaying crash recovery until after the draining
is complete.

3

bbPB

Core

Store Buffer

Private
Cache(s)

Private
Cache(s)

bbPB

NVMM
Controller

Shared LLC

DRAM
Controller

DRAM NVMM

Core
PoP: New

PoV

PoP: Old

Battery-backed in:
eADR only
BBB only
Both

Fig. 4: BBB system overview.

III. SYSTEM DESIGN

In this section, we discuss our proposed approach Battery-
Backed Buffers (BBB), its mechanism, the design space, and
the trade-offs associated.

A. High-Level Overview

A crucial component that BBB adds is the battery-backed
persist buffers (bbPB), shown in Figure 4. The figure shows
a multicore processor with flat physical address space that is
divided into DRAM and NVMM. A portion of the NVMM
address range is allocated for persistent data. Battery-backed
components in eADR only are shown in light grey (all caches),
battery-backed components in BBB only are shown in medium
grey (bbPB), while battery-backed components in both eADR
and BBB are shown in dark grey (store buffers and the write
pending queue (WPQ) in the NVMM controller). Dataflow
path for persisting stores follow the thick lines.

bbPB is located alongside the L1 data cache (L1D) of each
core. Its first role is to serve as the Point of Persistence (PoP);
any store allocated in the bbPB can be considered durable
as bbPB ensures that the store will eventually reach NVMM
through flush-on-fail draining; traditional persist buffers [50],
[62] are volatile as they lose content if power is lost. With
BBB, a battery provides sufficient energy to drain bbPB to
the NVMM in the event of a crash.

The bbPB also plays a role in matching the Point of Visibil-
ity (PoV) and PoP, by moving PoP up from the MC to L1D. To
achieve that, a store is allocated in bbPB at the same time the
store goes to the L1D, after any cache miss or coherence state
upgrade has been satisfied. Note that in some cases, the PoP
needs to move further up to the store buffers (Section III-C).
By closing the PoV and PoP gap, persistency programming is
simplified as strict persistency can be achieved without explicit
flushes and fences, and without the performance penalty of
long-latency persist; a store instantly persists when allocated
a bbPB entry. In contrast, traditional persist buffers (used with
Buffered Epoch Persistency or BEP) [50], [62] have this gap
and hence still require explicit persistency instructions. Stalls
may still occur at epoch boundaries in BEP due to needing to
wait the completion of persist buffer draining to NVMM.

Core

Caches

Memory
Side

bbPB

(a) Processor side
NVMM

Core

bbPB

(b) Memory side

NVMM
WPQ

WPQ

Core Core

Processor
Side Forced

Drain

Fig. 5: bbPB logical view as a processor-side structure (a) vs.
memory-side structure (b).

BBB also requires much smaller battery than eADR which
requires the entire cache hierarchy to be battery backed. The
size of the battery depends on the worst number of entries that
need to be drained at the time of crash, which is determined
by the bbPB size (i.e. number of bbPB entries). Hence, the
choice of bbPB size is an important parameter: it should be
large enough to avoid stalling the core if bbPB is full, but
should be small enough to keep the battery small and cheap.

To keep the battery small, bbPB is only used for stores
that need to persist (i.e. persisting store). Non-persisting stores
consist of stores that go to volatile memory (DRAM), or
ones that go to NVMM but do not deal with persistent data.
They can go directly to the cache hierarchy without involving
bbPB. To distinguish store types, some prior work requires
special instructions (e.g. NVload, NVStore) [58] to be used.
Instead, we assume that regular store instructions are used.
Persisting stores are distinguished from the pages that they
access. We assume persistent data is allocated only in the
heap using persistent memory allocation (e.g. palloc), which
allocates such data in pages that map to page frames within
the persistent portion of the physical address space. Persistent
pages are allocated physically in the NVMM, while non-
persistent pages can be allocated in either DRAM or NVMM.

B. Processor vs. Memory Side

So far we have not discussed how bbPB should interact with
the rest of the memory hierarchy. One obvious choice is for the
bbPB to be logically viewed as a processor-side structure, as it
keeps track of persisting stores that need to drain to memory.
This view is similar to traditional persist buffers [50], [62], but
with added PoP guarantee. Figure 5(a) illustrates this view. On
the other hand, bbPB can also be viewed as a structure on the
memory side. The latter view makes sense as well because in
the current architecture, only memory side structures such as
the NVMM and write pending queue (WPQ) in the memory
controller are in the persistence domain. As bbPB is added to
the persistence domain, it can be thought of as a persistence
domain extension of the write pending queues (WPQs) that
are distributed in different cores.

The choice of the procesor- vs. memory-side organizations
carry important consequences. The close physical proximity to
the core makes the processor-side organization a more intuitive

4

choice. In such an organization, each bbPB entry corresponds
to an (address, value) pair for each store instruction that needs
to persist. Store granularity could be used (e.g. byte, word,
doubleword). The stores need to be ordered in the bbPB
because they have not yet reached the persistence domain.
Coalescing of values between stores is not permitted except
in some special cases (e.g. when two stores are subsequent
and involve the same block)2. In contrast, in the memory-
side organization, each bbPB entry corresponds to a data
block whose value is changed by a store. Because bbPB
entries are already in the persistence domain, stores to the
same block can be coalesced regardless of the ordering of
such stores. Furthermore, ordering is not necessary as store
values have reached the persistence domain in bbPB entries.
Entries in bbPB can also drain out of order to NVMM,
making various optimizations possible, for example, one that
minimizes NVMM writes. By allowing store reordering and
coalescing, the memory-side organization conveys substantial
advantages in requiring fewer bbPB entries to perform well,
and in reducing writes to NVMM. Furthermore, the memory-
side organization also simplifies cache coherence: since bbPB
is at the memory side, it is not directly involved with cache
coherence the way L1D or L2 caches are.

The two approaches also differ in handling a load from the
core. In the processor-side approach, a load must check the
cache hierarchy and bbPB to find the data block. In most cases,
the block will be found in the caches instead of the bbPB, but
in rare cases, the block may have been evicted from the caches
while still residing in the bbPB. In such cases, bbPB supplies
the block to the core. Handling a load in the memory-side
approach is more complicated. A load first accesses the cache
hierarchy. If it misses in the hierarchy (i.e. last level cache
(LLC) miss), the block may reside in the memory (NVMM
or WPQ) or the bbPB, so both need to be checked. The
(MC) may need to inquire the bbPB of each core to find
potentially the latest/valid value of the block. Alternatively,
to avoid broadcast, a bbPB directory may be kept at the MC
to track which bbPB may hold a valid copy of the block. The
need to broadcast or keep a directory is a substantial drawback
of the memory-side approach.

Thus, for our BBB design, we choose the memory-side
approach. However, there is a drawback of the memory-side
approach. We note that when the LLC misses, the missed
block may still be in bbPB pending to be drained to persistent
memory. The memory has a stale copy of the block so the
missed block must be located from the right bbPB. To locate
the block, a broadcast to all bbPBs in all cores may be needed;
or if a directory for bbPBs is kept, only select bbPBs need to
be inquired. However, a broadcast is not scalable, but keeping
directory information updated requires a complex protocol
mechanism as various protocol races could occur. To avoid
such a problem, we require that the LLC be dirty-inclusive
of bbPBs, i.e. any bbPB block must have a corresponding

2An additional coalescing opportunity is possible if epoch persistency is
considered: stores within an epoch may be coalesced. However, with BBB
we are targeting strict persistency.

dirty block in the LLC. Being dirty-inclusive, an LLC miss is
guaranteed not to find a block in a bbPB, hence eliminating
the need to check bbPB on LLC misses. Enforcing inclusion
is simple. When a dirty LLC block is evicted, a forced drain
message is sent to all bbPBs (Figure 5(b)), akin to back
invalidation being sent to the L2 and L1 caches. If a bbPB
has such a block, it drains the block before responding with
acknowledgment.

A dirty block may be drained from bbPB as well as be
written back from the LLC. While it is correct to let both
occur, for write endurance reason we should avoid redundant
write back from the LLC. To quickly identify dirty blocks that
should not be written back, we add a bit to each cache block to
annotate a block that is holding persistent data, similar to the
one used in [50]. When such a block is evicted from the LLC,
it is not written back to NVMM. Since a dirty persistent block
in LLC has or had a corresponding bbPB block, the value can
be considered to have been written back to memory.

C. Handling Relaxed Memory Consistency Models

In an earlier discussion, we described the PoV/PoP gap.
There is a subtle issue here related to relaxed memory con-
sistency models. For example, with release consistency, PoV
is defined only for and with regard to release synchroniza-
tion memory instructions but undefined/unordered for regular
stores. This creates an ambiguous aspect as to whether PoP
for stores should be ordered or left unspecified as the PoV.
To guide our choice, we note that PoV is only applicable to
multi-threaded applications as it governs when a store from
one thread is seen by others, whereas memory persistency
applies even to single-threaded (sequential) applications. We
believe that the latter requires persist ordering to be defined
even for relaxed consistency models. Hence, we propose PoP
to follow the semantics of program-order for persisting stores.

A challenge to achieving program-order persistency for
relaxed consistency models is that while stores are committed
in program order, they do not go to the L1D in program order.
For example, if an older store misses in L1D, a younger store
that hits the cache is permitted to write its value in the L1D.
If an update to bbPB and L1D coincides, we cannot guarantee
program order to PoP. To solve this, for relaxed consistency
models, we also battery-back the store buffer (SB) (Figure 4).
In this design, PoP is achieved when a committed store is
allocated in the SB, earlier than PoV which is at the L1D. This
requirement for sequential programs is equally needed when
using NVCache or eADR, as stores may also write to the cache
out of program order. This design adds a small cost to the
battery but allows BBB to guarantee program order persistency
without requiring the programmer to use persist barriers and
without incurring persistency stalls. When a crash happens,
the content of the SB will be drained directly to the WPQ
(similar to non-temporal stores [3]) after completely draining
the content of the corresponding bbPB. This guarantees the
per-core program order to be maintained.

5

D. BBB Design Invariants

BBB design requires the following invariants to be kept to
guarantee correct execution and crash recovery:

1) Persisting stores enter the persistency domain in program
order. The persistency domain includes bbPB (sequential
consistency and total store ordering), or additionally in-
cludes store buffer (more relaxed consistency models).3

2) Battery consists of sufficient energy to drain bbPB and
WPQ (plus store buffers in some cases) to the NVMM
in the event of power loss.

3) A store is not made visible to other cores/threads until
it becomes persistent.

4) LLC or L2 caches are inclusive of bbPBs, and a block
only resides in at most one bbPB.

To meet Invariant 1, a store is allocated a bbPB entry after
all older stores have been allocated and written to the cache.
If bbPB is full, some entries are drained to free them up. To
avoid performance degradation from full bbPB, bbPB needs
to be sized sufficiently. If the bbPB already has the block, the
new store value will be coalesced with it.

Invariant 2 is ensured by having a battery with sufficient
energy to drain bbPB to memory, and thus guranteeing that
any allocated bbPB entry will eventually reach the NVMM.
This includes in-flight inter-cores packets between bbPBs.

Invariant 3 is common in persistency studies. Violating it
may result in a first store from a first thread that has not
persisted to become visible to a second thread which then
persists a second store that depends on the first store. If a crash
occurs, the threads disagree on the persistent state of the first
store. To meet Invariant 3, the L1D cache ensures that it has
obtained the block in the coherence state that allows the store
(i.e. M state), before the store writes to the L1D cache and
allocated in the bbPB.

Invariant 4 was partly discussed in Section III-B and the
rest will be discussed more below in Section III-E.

E. Cache Coherence Interaction

bbPBs have two unique characteristics. Despite being logi-
cally located at the memory side, each core has its own bbPB,
and hence if not carefully designed, a block may potentially
exist in multiple bbPB and suffer from coherence issues. In
order to avoid that, Invariant 4 requires that a block resides
in at most one bbPB. The invariant ensures that a block
is drained only once from bbPB to NVMM with the latest
value, and avoids dealing with coherence between copies at
multiple bbPBs. Another unique characteristic of bbPB is that
it is located close to the core, and a persisting store needs to
allocate an entry as it writes its value to the L1D. To enforce
Invariant 4, a writing core cannot just allocate a new entry for
a block if the block resides in another bbPB. The block must
be removed from the other bbPB and retrieved to the writing
core’s bbPB.

There are two issues that we need to deal with to support
Invariant 4. First, a bbPB must be notified of any relevant

3This invariant is equally needed for eADR or any NVCache solution.

1

X
L2

2Core
+ L1D

X, S X, S

1

X
L2

2Core
+ L1D

X, M -

1: RdX
3: ReplyD

2: Inv/
Remove

1 2

X, I XX, M

1: Upgr
3: Ack

2: Inv/
Remove

1 2

X, I XX, M

1

X

L2

2Core
+ L1D

X, M -

1: Rd
3: ReplyD (no flush to Mem)

2: Down
grade

1

X

2

X, S X, S

(a) Invalidation to M block

(b) Invalidation to S block

(c) Intervention to M block

Fig. 6: Illustrating how BBB handles main cache coherence
cases with data in bbPBs. Terms follow from [83].

external invalidation or intervention request made by another
core. This is not as simple as it sounds because the LLC does
not keep a bbPB directory; it only keeps directory for per-core
L2 caches. Hence, when a core wants to write to a block, it
does not know which bbPB to send the invalidation to. To
simplify this, we enforce bbPB L2 inclusion, meaning that for
each block in bbPB, the same block must also exist in the
L2 cache. L2 inclusion provides substantial benefits because
the LLC keeps L2 directory, hence by sending invalidation
to the sharer L2 caches (which then send back invalidation
to their respective bbPBs), it is guaranteed that the bbPB
containing the block will be notified as well. No new directory
information is needed in the LLC.

Another issue is whether to drain the block from bbPB when
an invalidation/intervention is received by a bbPB. If the block
is drained, Invariant 4 is enforced as the block is removed
from the current bbPB so that the new bbPB can allocate it.
However, draining delays the acknowledgement or reply to
the invalidation/intervention until draining is complete, and
it incurs an additional write to NVMM which reduces write
endurance. Thus, we choose not to drain the block. Instead,
when an external request is received, the block is moved to
the requesting core. The requesting core is now responsible for
draining this block to the NVMM. Note that the that energy
source is sized to provide sufficient energy to complete any in-
flight packets in the event of crash. Therefore, it is guaranteed
that no updates will be lost due to the inter-core movements of
cache blocks. This requirement is equally needed for eADR.

Figure 6 illustrates the main coherence scenarios. Two cores
are illustrated with the L2 cache and the bbPB is shown for
each core. A block X and its initial state (assuming MESI
protocol) in the L2 cache of Core1 are shown. It receives
an external request from Core2. For example (a), the block

6

TABLE II: Illustrating the bbPB actions corresponding to different
coherence operations, originating from other cores (remote invali-
dation/intervention) or from the same core (local read/write). An
operation is marked unmodified (UM) if the base MESI protocol
applies.

State In bbPB? RemoteInv RemoteInt LocalRd LocalWr

M N UM UM UM Allocate
Y Fig. 6(a) Fig. 6(c) UM Coalesce

E N UM UM UM Allocate
Y Invalidate UM UM Coalesce

S N UM UM UM Allocate
Y Fig. 6(b) UM UM Coalesce

I N UM UM UM Allocate
Y Invalidate UM UM Coalesce

is in Core1’s L2 cache (in M state) and in bbPB. The L2
cache at Core1 receives a Read Exclusive request by Core2
and notifies the bbPB. The L2 cache invalidates the block and
bbPB removes the block (without draining it). The block is
then sent back to Core2, which then installs it in the L2 cache
(in M state), allowing it to write to the block and install it in
its bbPB. This example illustrates that if a block is written by
multiple cores, the block may move between bbPBs but will
drain to memory only once.

In example (b), block X is initially shared by both cores.
An Upgrade request is received at Core1’s L2 which notifies
bbPB. As before, the block is invalidated from the L2 cache
and removed from bbPB. An acknowledgment is sent to Core2.
At this time, Core2 has sufficient state to allow it to write to the
block and simultaneously install it in the bbPB. No draining
occurs here, either.

Finally, in example (c), the block is in the M state initially
and Core1’s L2 cache receives a read request from Core2.
In response, Core1 downgrades its block from M to S and
replies to the request with data. However, the block remains
in the original bbPB. With traditional MESI protocol, the block
will be written back to memory because the resulting state S
indicates that the block must be clean in the cache. However,
our memory-side approach here allows an optimization. Since
bbPB is in the persistence domain and can be considered as
an extension of the main memory, it is as if the M block had
already been written back to memory. Hence, write back to
memory is skipped, resulting in bandwidth saving to the LLC.

In conclusion, the modifications to the cache coherence
protocol are minor. No additional delay is added to the critical
path of cache coherence transactions. Furthermore, our BBB
approach allows bbPB to minimize the number of writes to
memory, both for bbPB draining, as well as for writeback
from the L2 cache. Table II illustrates full coherence cases
and the corresponding bbPB operations.

F. Other Issues

a) bbPB draining policy: Another important design issue
is regarding when and how to drain bbPB to NVMM. Regard-
ing the when question, since blocks in bbPB are already in
the persistence domain and there is sufficient energy to drain
them to memory, in theory, they can stay in the bbPB for
coalescing. Draining bbPB too early reduces opportunities to

coalesce multiple stores, which decreases both performance
and write endurance. On the other hand, draining too late
increases the chance of the bbPB being full when a burst
of persisting stores needs new entries allocated, resulting in
performance degradation. Hence, an important principle of
optimization is to keep bbPB as full as possible while keeping
the probability of full bbPB low. To achieve this balance, we
define a draining occupancy threshold. bbPB does not drain
blocks except when its occupancy reaches the threshold, at
which time draining is initiated until the occupancy decreases
below the threshold. For example, we found 75% threshold to
work well for 32-entry bbPB. A similar optimization is applied
to memory controller WPQ [34], [35].

Regarding the how question, we apply a first come first
served (FCFS) draining policy; the oldest block allocated in
the bbPB is chosen to drain first. While other policies are
possible, e.g. draining blocks based on the prediction for future
writes, we leave them for future work.

b) Hardware cost of BBB: Assuming bbPB having 16-
32 entries (more on the choice in Section V), the total size of
bbPB will be about 1-2KB per core. Each bbPB entry contains
a 64-byte data block plus up to 8-byte meta-data that contains
the physical block address, and a few bits for status. The
physical address is used to avoid accessing TLB when bbPB
is drained, or when the L2 cache sends back invalidation to
the bbPB.

c) Context switch: Because bbPB holds the block’s phys-
ical address, there is no cache block address aliasing problem
between multiple processes. No draining or state saving is
needed on context switch.

IV. METHODOLOGY

TABLE III: The simulated system configuration.

Component Configuration
Processor 8 cores, OoO, 2GHz, 8-wide issue/retire

ROB: 192, fetchQ/issueQ/LSQ: 32/32/32
L1I and L1D private, 128kB, 8-way, 64B, 2 cycles
L2 shared, 1MB, 8-way, 64B, 11 cycles
DRAM 8GB, 55ns read/write
NVMM 8GB, 150ns read, 500ns write (ADR)
bbPB 32 entries per core, drain threshold 75%

A. Simulation configuration

We evaluate BBB using a multicore processor model built
on gem5 simulator [15], with parameters shown in Table III.
The machine consists of a hybrid DRAM/NVM main memory,
each type being 8GB and having a separate MC. The NVMM
MC is in persistence domain and is battery-backed (ADR).
The NVMM read and writes latencies are 150ns and 500ns,
respectively, which are higher than DRAM latencies, in line
with prior studies [14], [20], [47], [55], [86]. We use Arm 64-
bit instruction set architecture (ISA). Our simulation models an
Arm-based mobile phone with an 8-core processor, each core
has an 8-wide out-of-order pipeline. L1 caches are private per

7

core, while the L2 is shared. Coherence between L1 caches
rely on directory-based MESI protocol.

TABLE IV: Summary of the evaluated workloads along with their
descriptions and the percentage of the persistent stores (%P-Stores)
to the total stores in the workload.

Workload Description %P-Stores
rtree 1 million-node rtree insertion 15.5%
ctree 1 million-node ctree insertion 18.9%
hashmap 1 million-node hashmap insertion 6.0%
mutate[NC/C] modify in 1 million-element array 23.8%
swap[NC/C] swap in 1 million-element array 23.8%

B. Workload Description

To evaluate battery-backed persist buffers (bbPB) size re-
quirements in BBB, we designed the workloads listed in
Table IV. These workloads are chosen to generate significant
persist traffic.

Among these workloads rtree, btree, and hashmap work-
loads maintain a 1 million-node data structure that is allocated
in the persistent space, and the workload performs random
insertions to the data structure. This generates persistent writes
that need to be allocated at the bbPB. Similarly, array-mutate
and array-swap perform random mutate and swap operations
respectively, on a 1 million-element array. NC or C after the
array operation’s name (e.g. mutateNC vs mutateC) stands
for ”Non-Conflicting” or ”Conflicting”, respectively. This in-
dicates whether each thread performs updates on a separate
region of the array (hence non-conflicting), or conflicts are
allowed between threads. Each workload runs with 8 threads
on 8 cores.

We designed the workloads to exert maximum pressure
on the bbPB. They perform back-to-back persistent writes
with little other computation. In contrast, real-world workloads
typically perform additional computations to generate the data
to be persisted. Thus, our analyses on size of bbPB required
for good performance represents the worst-case end point for
the workloads we studied.

For all of these workloads, we evaluate BBB normalized
to eADR which serves as the base case. eADR represents the
optimal case for performance overheads and number of writes
to NVMM, hence it performs as good as a system without
any persistency in mind. On average, the simulated window
reports the timing of 250 million instructions, after 200 million
instructions for warm-up.

C. Methodology for Evaluating Draining Cost

eADR draining cost depends on the cache hierarchy and
number of cores. We evaluate the cost based on two types of
systems with differing number of cores and cache hierarchy: a
server class and a mobile class system, as shown in Table V.
The server class system is based on the specifications of Intel
Xeon Platinum 9222 [25], [94], while the the mobile class sys-
tem are based on the Arm-based iPhone 11 specifications [26],
[30], [36]. Most notably, the total cache size for the system

is 107MB and 8.75MB for the server and the mobile class
system, respectively.

TABLE V: Systems used to evaluate the draining costs

Component Mobile Class Server Class
Number of cores 6 32
L1 cache size 6 x 128kB 32 x 32 kB
L2 cache size 1 x 8MB 32 x 1 MB
L3 cache size N/A 2 x 35.75 MB
Memory channels 2 12

To compare the draining cost of BBB and eADR, we focus
on (1) the energy needed at the time of the crash, which
determines the size, lifetime, and system footprint of the
battery, and (2) the time needed to perform the draining, which
is affected by the amount of data to drain and non-volatile
main memory (NVMM) write bandwidth. Such time impacts
the turn-round time after a crash, and thus the responsiveness
of the system. It can also result in further energy overheads if
other parts of the system (e.g. the core) need to remain alive
during draining.

Estimating draining energy. On a crash, data in bbPB (or
in caches for eADR) is accessed and then moved to NVMM.
We assume that caches in eADR and bbPB in BBB are SRAM.
The energy needed to access data in such SRAM cells is
estimated to be about 1pJ/Byte [63]. However, this is very
small compared to the energy needed for data movement. The
energy required for data movement is a lot harder to calculate.

Our estimations of the energy cost for data movement are
based on the results from the work done by Dhinakaran et
al [65], which looked into the energy cost of data movement
across several levels in the memory hierarchy. The energy
consumption per memory operation was measured using an ex-
ternal power meter while executing carefully designed micro-
benchmarks. These micro-benchmarks were used to isolate
and observe the energy needed solely for data movement
and minimize the effect of out-of-order execution and other
architectural optimizations. More specifically:

1) To calculate the cost of data movement between the
processor and a targeted level in the memory hierarchy
(e.g. L2 cache), these micro-benchmarks operate on an
allocated data that is chosen such that it has a memory
footprint to not fit in any of the cache levels above the
targeted level.

2) The average memory latency and the cache miss rates
were continuously monitored to validate that the micro-
benchmarks are accessing the targeted level of the mem-
ory hierarchy.

3) The micro-benchmarks were designed to minimize the
impact of other operations, not related to memory ac-
cesses.

4) To isolate the compiler optimizations’ impact on the
micro-benchmarks, all the assembly codes were man-
ually validated to guarantee the expected behavior.

These experiments provided the energy needed to move the
data between the processor’s registers and any level in the

8

memory hierarchy. Finally, the difference between these results
can be used to calculate the energy cost of moving data
between different levels in the memory hierarchy.

Table VI shows the estimated energy needed for draining
data from different cache levels to NVMM. The numbers are
derived from [65], with some adaptation: (1) As the analysis
in [65] only reports data movement in the direction from
memory to caches, we estimate that the energy needed to
bring data from a cache to memory (as needed at the crash)
is similar to that to bring data from memory to the cache.
(2) Since the results reported in [65] are only for a DRAM-
based system, we assume those results for our analysis on the
energy needed to drain to NVMM. This assumption equally
affects eADR and BBB, and thus will not have a notable
impact on our comparison between the two schemes. (3) The
energy for draining a block from bbPB is estimated from the
energy to drain a block from the L1D cache to NVMM. (4)
The energy numbers in [65] do not include a 3-level memory
hierarchy. Therefore, we assume the draining cost numbers
do not increase when adding another cache level, as in the
server class system in Table V. This assumption produces
an optimistic energy figure for eADR, so in reality, eADR
energy cost may be higher than our estimate. Moreover, when
reporting eADR draining energy and time costs, we calculate
only the energy and time needed to drain dirty blocks, to
estimate the average energy and time.

The final part of our energy analysis is estimating the battery
size. In this analysis, the battery needs to be provisioned with
sufficient energy to drain the entire caches, in case all blocks
in the caches are dirty. This is important because missing to
drain even one dirty cache block may result in inconsistent
persistent data that cannot be recovered. We chose the smallest
battery size that is capable of storing the required energy.
Different battery technologies have different energy densities
(i.e. the amount of energy stored per volume unit). We looked
into two main battery technologies (SuperCap [98] and Li-
thin [67]), which have energy density of (10−4 and 10−2) Wh
cm-3, respectively [93].

TABLE VI: Estimated energy costs of different operations for drain-
ing eADR or BBB at the moment of crash.

Operation Energy Cost
Accessing Data from SRAM 1pJ/Byte
Moving data from L1D to NVMM 11.839nJ/Byte
Moving data from bbPB to NVMM 11.839nJ/Byte
Moving data from L2 to NVMM 11.228nJ/Byte
Moving data from L3 to NVMM 11.228nJ/Byte

Estimating draining time. For this part, we rely on the
reported NVMM bandwidth and latencies [41]. As the draining
happens at crash with no other traffic present, we assume that
the entire NVMM bandwidth will be dedicated for draining.
NVMM bandwidth also depends on the number of memory
channels for each system as described in Table V.

V. EVALUATION

We first discuss the most important aspect of BBB: its
draining cost, in comparison to eADR (Section V-A). Then we
discuss BBB performance and write overheads (Section V-B
and V-C). Finally, we present the sensitivity study of BBB
design (Section V-D).

A. Draining Cost Comparison

Table VII presents the average energy needed to drain
data from caches (for eADR) and from bbPB (our BBB
approach, 32 entries), based on the cost model we discussed in
Section IV-C. We give eADR optimistic estimates with several
assumptions. First, we assume eADR only drains dirty cache
blocks to memory. For the workloads evaluated, on average
44.9% of blocks are dirty in the cache hierarchy, similar to
figure obtained by Garcia et al [31]. Second, we assume dirty
blocks are identified using a hardware finite state machine
that is power efficient, and consumes zero energy overheads.
Moreover, we don’t include the static energy cost for eADR.
In contrast, we note that BBB does not require cache accesses
for dirty block identification. Furthermore, caches do not need
to be powered during the draining process (hence no static
energy consumption). Finally, we assume that at the time of
failure, the battery-backed persist buffers (bbPB) are full and
all entries need to be drained, representing the worst case for
BBB.

As shown in Table VII, despite optimistic estimates, using
eADR costs 46.5 mJ and 550 mJ to drain for the mobile and
server class systems, respectively. Not surprisingly, the mobile
class system has smaller caches hence draining energy is
smaller than in the server class system. Despite more realistic
estimates, BBB costs only 145 µJ and 775 µJ, respectively,
which are 320× and 709× more efficient than eADR, respec-
tively. BBB’s energy cost is between two to three orders of
magnitude smaller than eADR.

TABLE VII: Estimated draining energy cost for BBB vs. eADR (dirty
blocks only).

System Draining Energy Normalized to BBB (X)
eADR BBB eADR BBB

Mobile Class 46.5 mJ 145 µJ 320× 1
Server Class 550 mJ 775 µJ 709× 1

Table VIII presents the average time needed to drain data
from caches (for eADR) and from bbPB (our BBB approach).
eADR takes 0.8 ms and 1.8 ms to drain for mobile class
and the server class system, respectively. In contrast, BBB
takes only 2.6 µs (307× faster) and 2.4 µs (750× faster),
respectively, which represent two to three orders of magnitude
improvement.

eADR and our BBB need energy source to drain. We
estimate two energy source types: super capacitors (Super-
Cap) [98], and lithium thin-film batteries (Li-thin) [67], by
applying the analysis from [93] (as discussed in Section IV-C),
while using the energy values from Table VII. Table IX shows
the estimates for only the active material needed for the
battery, excluding packaging and other aspects. As shown in

9

TABLE VIII: Estimated draining time for BBB vs. eADR (dirty
blocks only).

System Draining Time Normalized to BBB (X)
eADR BBB eADR BBB

Mobile Class 0.8 ms 2.6 µs 307× 1
Server Class 1.8 ms 2.4 µs 750× 1

column group (a), eADR in the mobile class system would
require an energy source of 2.9 × 103 mm3 and 30 mm3 for
SuperCap and Li-thin technologies, respectively. In contrast,
BBB requires only 4.1 mm3 and 0.04 mm3, respectively.
The server class system shows a similar trend with energy
source of 34× 103 mm3 and 300 mm3 for SuperCap and Li-
thin technologies, respectively, for eADR. In contrast, BBB
requires only 21.6 mm3 and 0.21 mm3 volume, respectively.

To put it in perspective, the last two columns convert
size/volume to the footprint area of a typical core used in the
mobile class system (i.e. 2.61 mm2) [30]. Although we don’t
necessarily envision that this energy is going to be provided
through introducing a new battery, we use the comparison
to a mobile core’s size to help visualize the energy source
comparison between BBB and eADR. To simplify converting
battery volume to area, we assume cubic battery shape and
infer the footprint area from the volume. The areas needed
for eADR batteries are substantial: 77× and 404× the size
of a core for the mobile class and the server class systems,
respectively, when using SuperCap. Even when using Li-thin,
which is more space efficient, the area is still large: 3.6× and
18.7× the size of the core, for the mobile class and server
class systems, respectively. In contrast, BBB requires a much
smaller size. Even with SuperCap, the area needed is 97.2%
and 296% the size of a core for the mobile and the server class,
respectively. It becomes even smaller with Li-thin: 4.5% and
13.7% the size of a core, respectively. Overall, the battery
volume for BBB is between 707 − 1, 574× smaller, while
the area for BBB is between 79− 137× smaller than eADR.
Moreover, Table X looks into the battery size when varying
the number of entries in bbPB and shows that even with bbPB
size of 1024 entries, BBB is 22− 49× cheaper than eADR.

TABLE IX: Estimates of the size of the energy source needed to
implement BBB and eADR (a). In addition, to showing the needed
footprint to be occupied by the energy source as a ratio to the area
of the mobile class system’s core (b).

Battery (a) Size/Volume (mm3) (b) Ratio to core area (%)
SuperCap Li-thin SuperCap Li-thin

M
ob

ile eADR 2.9× 103 30
7,746%

(∼ 77×)
359.5%

(∼ 3.6×)
BBB 4.1 0.04 97.2% 4.5%

Se
rv

er eADR 34× 103 300
40,363%

(∼ 404×)
1,873%

(∼ 18.7×)

BBB 21.6 0.21
296%

(∼ 3×) 13.7%

B. Performance Evaluation

The much smaller amount of data that needs draining is
the primary reason for BBB’s much smaller battery cost than

TABLE X: Battery size (in mm3) when varying the number of bbPB
entries for mobile (M) and server (S) platforms.

bbPB Size 1 4 16 32 64 256 1024

SprCap M 0.12 0.50 2.02 4.1 8.1 32.3 129.3
S 0.7 2.7 10.8 21.6 43.1 172.4 689.7

Li-thin M 0.001 0.005 0.02 0.04 0.08 0.3 1.3
S 0.006 0.026 0.10 0.21 0.43 1.7 6.8

eADR. However, this may also incur performance degradation
in BBB when persisting stores come at a faster pace than can
be drained by bbPB, causing bbPB to be full and stalls the
core. In contrast, eADR does not cause stalls anymore than
regular caches would, hence it represents the ideal case.

Figure 7(a) illustrates the execution time of two versions of
BBB with differing bbPB entries (32 and 1024) and eADR,
normalized to eADR, for all workloads tested. As shown in
the figure, 32-entry BBB performs worse than eADR by only
about 1% on average, and 2.8% in the worst case. The main
source of performance overhead is when a core’s bbPB is full
when the core attempts to persist a store, and coalescing cannot
be done because the block being written is not in bbPB. In
this case, the store stalls the core until some blocks in bbPB
have been drained and free up some entries. With 1024 entries,
BBB achieves nearly identical performance with eADR, at the
cost of a larger battery compared to 32-entry BBB.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
x
ec

u
ti

o
n
 T

im
e

(X
)

(a) Execution Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
u
m

b
er

 o
f

W
ri

te
s

to
 N

V
M

M
 (

X
)

(b) Number Of Writes

BBB BBB (1024) Optimal (eADR)

Fig. 7: Execution time and number of writes to NVMM for BBB
with 32 entries (first bar), with 1024 entries (second bar), and eADR
(third bar), normalized to eADR.

As discussed in Section IV, our workloads were designed
to generate back-to-back writes to the persistent domain,
which stresses persist buffers. However, the nature of the data
structures in the workloads still creates a difference in the time
needed to perform the operation and thus creates a difference
in the frequency of generating persists by the core. This is why
some workloads (e.g. swapNC) might incur relatively higher
delays due to the very short time between two subsequent
persists.

C. NVMM Writes Evaluation

Due to the limited write endurance of NVMM, the number
of writes to NVMM is also an important metric. If we had used
the processor-side approach, almost every persisting store must
go to the bbPB and drain to the NVMM. With the memory-
side approach, stores are coalesced in bbPB, and the number

10

of NVMM writes depends on the number of block draining
needed to free up entries in bbPB. Hence, we expect the
number of bbPB entries to determine the number of NVMM
writes. Also, as discussed in Section III, dirty writebacks from
the LLC to the NVMM in our BBB approach are silently
dropped to avoid redundant writes to the NVMM.

Figure 7(b) compares the number of NVMM writes for
BBB with 32 and 1024 entries, with eADR, normalized to
eADR. eADR represents the optimal case because eADR
does not introduce any new writes to the NVMM due to
persistency ordering. The figure shows that even 32-entry
bbPB in BBB captures the majority of the coalescing that
happen in eADR; it only adds an average of 4.9% writes to
NVMM (ranging from 1 − 7.9%) to eADR. This overhead
decreases to less than 1% if BBB uses 1024-entry bbPB,
since the larger buffer provides more room to hold blocks and
captures most coalescing opportunities. This result illustrates
the effectiveness of the memory-side approach in coalescing
stores in the bbPB, because bbPB is in the persistence domain.
In contrast, traditional persist buffers prevent most coalescing
because it would result in persistency ordering violation, so
the number of writes would be much higher.

We also measured the number of writes to NVMM using the
processor-side approach, and found that on average, there are
2.8× more writes to NVMM than eADR. This is because there
are not many coalescing opportunities, while the memory-side
approach is effective in performing coalescing.

D. Sensitivity Studies

To obtain deeper insights into BBB, we vary the bbPB size
from 1 entry up to 1024 entries. Figure 8 shows the number
of times persisting stores are rejected at the bbPB because it
is full (a), execution time overhead (b), and number of bbPB
drains to memory (c). All figures are normalized to the 1-entry
bbPB case. Note that the y-axes starts at -0.2, so that near zero
values are visible in the figures.

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 4 8
1

6
3
2

6
4

1
2

8
2

5
6

5
1

2
1

0
2

4 1 2 4 8
1
6

3
2

6
4

1
2

8
2

5
6

5
1
2

1
0

2
4 1 2 4 8

1
6

3
2

6
4

1
2

8
2
5
6

5
1

2
1

0
2

4

(a) bbPB Rejections (b) Execution Time (c) bbPB Drains

W
o

rk
lo

ad
s’

 A
v
g
.

O
v
er

h
ea

d
 (

X
)

Fig. 8: Sensitivity study showing the average (i.e. geomean) impact
of varying the bbPB size on: The number of persist request being
rejected due to full bbPB (a), The execution time comparison (b),
and the number bbPB drains to the NVMM (c). All are normalized
(X) to the case with bbPB size of 1 (leftmost column) in each group.

As shown in the figure, bbPB rejection count decreases
quickly when increasing the bbPB size, reaching nearly zero
with 16-32 entries. These findings are consistent with the

impact on execution time, which stops decreasing with 32
entries. The bbPB drains overhead reaches near zero with 64
entries, but 32 entries are not far behind. This represents the
amount of coalescing that was achieved at the bbPB and will
be translated into a reduction of the number of writes to the
NVMM. Thus, 32-entry bbPB (our default configuration) is the
smallest size that shows very close results compared to eADR,
beyond which we start to have diminishing returns. This buffer
size might be higher than what was used in prior works (e.g. 8
entries in [50]). However, we decided to conservatively choose
a relatively larger buffer for the following reasons: (1) We
chose the size to conduct the energy comparison between BBB
and eADR. Therefore, we chose the smallest size that shows
almost no performance degradation (about 1%). Prior works
showed acceptable, yet higher, degradation when using smaller
sizes, which is consistent with the result we report in Figure 8.
(2) Our evaluated workloads were chosen to represent the
worst-case and stress the design by generating back-to-back
persists. Therefore we expect to have larger buffers. In general,
the choice of bbPB size is a design decision based on the trade-
off between the energy budget and the desired performance.

VI. RELATED WORK

NVM has received significant research activities in recent
years. Past work has examined various aspects of NVM,
including memory organization (e.g., [9], [79]), abstraction
(e.g., [84]), checkpointing (e.g., [7], [27]), memory safety
(e.g., [8], [11], [95], [96]), secure execution environment (e.g.,
[12], [29]), extending life time (e.g., [6], [21], [22], [70], [72]),
and persistency acceleration (e.g., [81], [82]). The above list
is a small subset of examples of work in NVM research. From
here on, we will expand on papers that are most immediately
related to our work.

Persistency models. Persist barriers enable epochs to be
defined in BPFS [23]. Pelley et al. defined and formalized
memory persistency models including strict, epoch, and strand
persistency [68], in the order of increasing performance and
decreasing ordering constraints. Persist ordering can be com-
pletely relaxed using lazy persistency, as long as persistent
state integrity can be checked using checksums [5], [13].
Persist barrier variants that only ensure ordering but not
synchronous to instruction execution were presented in [62].
Persistency model is also moving up, being considered at the
programming language level [49].

Persist buffers. Volatile persist buffers were introduced
in DPO [50] and HOPS [62] to enable buffered persistency
models, where stores are temporarily held until drained to
memory. In contrast to DPO and HOPS, BBB’s persist buffers
(bbPB) differ in the following aspects: (1) battery-backed, (2)
part of the persistence domain, and (3) logically memory-
side. These key differences lead to unique characteristics: (1)
stores in bbPB can be freely coalesced and reordered, (2)
strict persistency is automatically achieved without flushes and
fences.

eADR. Persistency domain initially consisted of only the
NVM, and has expanded over time. Initially, persisting a

11

store requires flush, fence, and another instruction pcommit
which flushes MC write pending queue (WPQ) to NVMM.
With ADR, Intel adds WPQ to the persistency domain, thus
deprecating pcommit. Capacitor or battery is needed to provide
WPQ’s flush-on-fail capability. More recently, Intel hinted that
eADR will make it into production [78]. eADR [77] adds
the entire cache hierarchy to the persistence domain. Because
PoV/PoP gap is closed, flush and fence instructions are gener-
ally no longer necessary with eADR. However, eADR requires
battery to provide flush-on-fail for the entire cache hierarchy
instead of only the bbPB in BBB. Table XI summarizes this
comparison between eADR and BBB.

TABLE XI: Summary of the comparison between eADR and BBB
regarding the hardware/integration costs.

Aspect eADR BBB

Processor modifications None (1) Adding the bbPBs
(2) Minor coherence changes

Draining energy cost Very High Low
Time needed to drain Very High Low
Drive energy to
targeted components Needed Needed

Failure atomicity. Persistency programming assumes a
certain persistency model and on top of that, relies on support
for failure atomic code regions. For sequential programs,
libraries and language extensions have been implemented to
provide transaction-based failure atomicity [2], [17], [85]. Au-
tomatic transformation of data structures to persistent memory
has been proposed too [53], [60]. For concurrent programs,
compiler-based automatic instrumentation has been proposed
to transform lock-based concurrent programs for persistent
memory [19], [33]. Other works propose hardware and soft-
ware primitives to aid porting lock-free data structures to
persistent memory [66], [91]. Many studies add durability
to transaction-based concurrent programs without changing
application source code [32], [44], [92], while others add
durability to software transactions [24], [75], [86]. Finally,
checkpointing and system-level solutions were also used to
achieve failure atomicity [45], [59], [76]. Overall, the afore-
mentioned works provide mechanisms for achieving failure
atomic regions (i.e. durable transactions), which is orthogonal
the goal of our paper. BBB addresses persist ordering and
simplifies ordering-related programming complexity, which
provides a property that can be relied on by higher level
primitives such as failure atomic regions.

VII. CONCLUSION

We have proposed Battery-Backed Buffers (BBB), a mi-
croarchitectural approach that simplifies the persist ordering
aspect of persistency programming by aligning the point of
persistency (PoP) with the point of visibility (PoV). We
evaluated BBB over several workloads and found that adding
32-entry bbPB per core is sufficient to provide performance
comparable to eADR (only 1% slow down and 4.9% extra
writes) while requiring 320 − 709× lower draining energy
compared to eADR.

REFERENCES

[1] Intel. an introduction to pmemcheck. [Online]. Available: https:
//pmem.io/2015/07/17/pmemcheck-basic.html

[2] “Persistent memory development kit (pmdk).” [Online]. Available:
https://pmem.io/pmdk/

[3] “Non-temporal store instructions,” 2017. [Online]. Available: https:
//www.felixcloutier.com/x86/movntdq

[4] H. Akinaga and H. Shima, “Resistive Random Access Memory
(ReRAM) Based on Metal Oxides,” IEEE Journal, 2010.

[5] M. Alshboul, J. Tuck, and Y. Solihin, “Lazy persistency: A high-
performing and write-efficient software persistency technique,” in ISCA,
2018.

[6] M. Alshboul, J. Tuck, and Y. Solihin, “Wet: Write efficient loop tiling
for non-volatile main memory,” in DAC, 2020.

[7] M. Alshboul, H. Elnawawy, R. Elkhouly, K. Kimura, J. Tuck, and
Y. Solihin, “Efficient checkpointing with recompute scheme for non-
volatile main memory,” ACM Trans. Archit. Code Optim., 2019.

[8] A. Awad, P. Manadhata, S. Haber, Y. Solihin, and W. Horne, “Silent
Shredder: Zero-Cost Shredding for Secure Non-Volatile Main Memory
Controllers,” in ASPLOS, 2016.

[9] A. Awad, S. Blagodurov, and Y. Solihin, “Write-aware management of
nvm-based memory extensions,” in ICS, 2016.

[10] A. Awad, B. Kettering, and Y. Solihin, “Non-volatile Memory Host
Controller Interface Performance Analysis in High-performance I/O
Systems,” in ISPASS, 2015.

[11] A. Awad, Y. Wang, D. Shands, and Y. Solihin, “ObfusMem: A Low-
Overhead Access Obfuscation for Trusted Memories,” in ISCA, 2017.

[12] A. Awad, M. Ye, Y. Solihin, L. Njilla, and K. A. Zubair, “Triad-
NVM: Persistency for Integrity-Protected and Encrypted Non-Volatile
Memories,” in ISCA, 2019.

[13] A. W. Baskara Yudha, K. Kimura, H. Zhou, and Y. Solihin, “Scalable
and fast lazy persistency on gpus,” in IISWC, 2020.

[14] F. Bedeschi, C. Resta, O. Khouri, E. Buda, L. Costa, M. Ferraro,
F. Pellizzer, F. Ottogalli, A. Pirovano, M. Tosi, R. Bez, R. Gastaldi, and
G. Casagrande, “An 8Mb Demonstrator for High-density 1.8V Phase-
Change Memories,” in VLSIIC, 2004.

[15] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The GEM5
simulator,” ACM SIGARCH Computer Architecture News (CAN), 2011.

[16] S. Blanas, “The new bottlenecks of scientific computing,”
2020. [Online]: https://www.sigarch.org/from-flops-to-iops-the-new-
bottlenecks-of-scientific-computing/

[17] B. Bridge, “Nvm-direct.” [Online]: https://github.com/oracle/nvm-direct
[18] M. Carlson. Persistent memory: What developers need to know.

[Online]: https://www.snia.org/educational-library/persistent-memory-
what-developers-need-know-2018

[19] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging
locks for non-volatile memory consistency,” ACM SIGPLAN Notices,
2014.

[20] A. Chatzistergiou, M. Cintra, and S. D. Viglas, “Rewind: Recovery
write-ahead system for in-memory non-volatile data-structures,” VLDB
Endow., Jan. 2015.

[21] J. Chen, G. Venkataramani, and H. H. Huang, “Repram: Re-cycling pram
faulty blocks for extended lifetime,” in DSN 2012, 2012.

[22] J. Chen, Z. Winter, G. Venkataramani, and H. H. Huang, “rpram:
Exploring redundancy techniques to improve lifetime of pcm-based main
memory,” in PACT, 2011.

[23] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better I/O through byte-addressable, persistent memory,”
in SOSP, 2009.

[24] A. Correia, P. Felber, and P. Ramalhete, “Romulus: Efficient algorithms
for persistent transactional memory,” in SPAA, 2018.

[25] CPU-WORLD, “Intel xeon 9222 specifications.” [Online]: http:
//www.cpu-world.com/CPUs/Xeon/Intel-Xeon\%209222.html

[26] J. Cross, “Inside apple’s a13 bionic system-on-chip.” [On-
line]: https://www.macworld.com/article/3442716/inside-apples-a13-
bionic-system-on-chip.html

[27] H. Elnawawy, M. Alshboul, J. Tuck, and Y. Solihin, “Efficient check-
pointing of loop-based codes for non-volatile main memory,” in PACT,
2017.

12

[28] X. Fong, Y. Kim, R. Venkatesan, S. H. Choday, A. Raghunathan, and
K. Roy, “Spin-transfer torque memories: Devices, circuits, and systems,”
Proceedings of the IEEE, 2016.

[29] A. Freij, S. Yuan, H. Zhou, and Y. Solihin, “Persist level parallelism:
Streamlining integrity tree updates for secure persistent memory,” in
MICRO, 2020.

[30] A. Frumusanu, “The apple iphone 11, 11 pro and 11 pro max review.”
[Online]: https://www.anandtech.com/show/14892/the-apple-iphone-11-
pro-and-max-review/2

[31] A. A. Garcı́a, R. de Jong, W. Wang, and S. Diestelhorst, “Composing
lifetime enhancing techniques for non-volatile main memories,” in
MEMSYS, 2017.

[32] E. Giles, K. Doshi, and P. Varman, “Hardware transactional persistent
memory,” in MEMSYS, 2018.

[33] V. Gogte, S. Diestelhorst, W. Wang, S. Narayanasamy, P. M. Chen, and
T. F. Wenisch, “Persistency for synchronization-free regions,” in PLDI,
2018.

[34] A. Hansson, N. Agarwal, A. Kolli, T. Wenisch, and A. N. Udipi,
“Simulating dram controllers for future system architecture exploration,”
in ISPASS, 2014.

[35] C. Huang, V. Nagarajan, and A. Joshi, “Dca: A dram-cache-aware dram
controller,” in SC, 2016.

[36] A. Inc, “Apple: iphone11 specifications.” [Online]: https://www.apple.
com/iphone-11/specs/

[37] Intel, “Deprecating the pcommit instruction,” 2016. [Online]: https:
//software.intel.com/blogs/2016/09/12/deprecate-pcommit-instruction

[38] Intel, “Persistent memory programming,” 2016, http://pmem.io.
[39] Intel and Micron, “Intel and micron produce breakthrough memory

technology,” 2015.
[40] J. Izraelevitz, T. Kelly, and A. Kolli, “Failure-atomic persistent memory

updates via justdo logging,” in ASPLOS, 2016.
[41] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J.

Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson, “Basic
performance measurements of the intel optane dc persistent memory
module,” arXiv preprint arXiv:1903.05714, 2019.

[42] Y. Joo, D. Niu, X. Dong, G. Sun, N. Chang, and Y. Xie, “Energy- and
endurance-aware design of phase change memory caches,” in DATE,
2010.

[43] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Efficient Persist
Barriers for Multicores,” in Micro, 2015.

[44] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Dhtm: Durable
hardware transactional memory,” in ISCA, 2018.

[45] S. Kannan, A. Gavrilovska, and K. Schwan, “Pvm: Persistent virtual
memory for efficient capacity scaling and object storage,” in EuroSys,
2016.

[46] T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y. Lee,
R. Sasaki, Y. Goto, K. Ito, T. Meguro, F. Matsukura, H. Takahashi,
H. Matsuoka, and H. Ohno, “2Mb Spin-Transfer Torque RAM (SPRAM)
with Bit-by-Bit Bidirectional Current Write and Parallelizing-Direction
Current Read,” in ISSCC, 2007.

[47] W.-H. Kim, J. Kim, W. Baek, B. Nam, and Y. Won, “Nvwal: Exploiting
nvram in write-ahead logging,” in ASPLOS, 2016.

[48] Y. Kim, S. R. Lee, D. Lee, C. B. Lee, M. Chang, J. H. Hur, M. Lee,
G. Park, C. J. Kim, U. Chung, I. Yoo, and K. Kim, “Bi-layered rram
with unlimited endurance and extremely uniform switching,” in 2011
Symposium on VLSI Technology - Digest of Technical Papers, 2011.

[49] A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Language-level persistency,” in
ISCA, 2017.

[50] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. M. Chen,
and T. F. Wenisch, “Delegated Persist Ordering,” in MICRO, 2016.

[51] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Eval-
uating STT-RAM as an Energy-effcient Main Memory Alternative,” in
ISPASS, 2013.

[52] B. C. Lee, “Phase Change Technology and The Future of Main Memory,”
IEEE Micro, 2010.

[53] S. K. Lee, J. Mohan, S. Kashyap, T. Kim, and V. Chidambaram, “Recipe:
converting concurrent dram indexes to persistent-memory indexes,” in
SOSP, 2019.

[54] Z. Lin, M. Alshboul, Y. Solihin, and H. Zhou, “Exploring memory
persistency models for gpus,” in PACT, 2019.

[55] M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, and J. Ren,
“Dudetm: Building durable transactions with decoupling for persistent
memory,” in ASPLOS, 2017.

[56] S. Liu, K. Seemakhupt, Y. Wei, T. Wenisch, A. Kolli, and S. Khan,
“Cross-failure bug detection in persistent memory programs,” in ASP-
LOS, 2020.

[57] S. Liu, Y. Wei, J. Zhao, A. Kolli, and S. Khan, “Pmtest: A fast and
flexible testing framework for persistent memory programs,” in ASPLOS,
2019.

[58] Y. Lu, J. Shu, L. Sun, and O. Mutlu, “Loose-Ordering Consistency for
Persistent Memory,” in ICCD, 2014.

[59] A. Memaripour, A. Badam, A. Phanishayee, Y. Zhou, R. Alagappan,
K. Strauss, and S. Swanson, “Atomic in-place updates for non-volatile
main memories with kamino-tx,” in EuroSys, 2017.

[60] A. Memaripour, J. Izraelevitz, and S. Swanson, “Pronto: Easy and fast
persistence for volatile data structures,” in ASPLOS, 2020.

[61] S. Mittal, J. S. Vetter, and D. Li, “Lastingnvcache: A technique for
improving the lifetime of non-volatile caches,” in 2014 IEEE Computer
Society Annual Symposium on VLSI, 2014.

[62] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“An analysis of persistent memory use with whisper,” SIGPLAN Not.,
2017.

[63] D. Nayak, D. P. Acharya, and K. Mahapatra, “An improved energy
efficient sram cell for access over a wide frequency range,” Solid-State
Electronics, vol. 126, 2016.

[64] K. Oleary. How to detect persistent mem-
ory programming errors using intel inspec-
tor. [Online]: https://software.intel.com/en-us/articles/detect-persistent-
memory-programming-errors-with-intel-inspector-persistence-inspector

[65] D. Pandiyan and C.-J. Wu, “Quantifying the energy cost of data
movement for emerging smart phone workloads on mobile platforms,”
IISWC, 2014.

[66] M. Pavlovic, A. Kogan, V. J. Marathe, and T. Harris, “Brief announce-
ment: Persistent multi-word compare-and-swap,” in PODC, 2018.

[67] D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L.
Taberna, and P. Simon, “Ultrahigh-power micrometre-sized supercapac-
itors based on onion-like carbon,” Nature nanotechnology, 2010.

[68] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory Persistency,” in
ISCA, 2014.

[69] PMEM.io, “Persistent memory programming,” 2019. [Online]: https:
//pmem.io/2019/12/19/performance.html

[70] M. K. Qureshi, “Pay-as-you-go: Low-overhead hard-error correction for
phase change memories,” in MICRO, 2011.

[71] M. K. Qureshi, S. Gurumurthi, and B. Rajendran, Phase Change
Memory: From Devices to Systems, 2011.

[72] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and
B. Abali, “Enhancing lifetime and security of pcm-based main memory
with start-gap wear leveling,” in MICRO, 2009.

[73] A. Raad, J. Wickerson, G. Neiger, and V. Vafeiadis, “Persistency
semantics of the intel-x86 architecture,” Proc. ACM Program. Lang.,
2019.

[74] R. Rajachandrasekar, S. Potluri, A. Venkatesh, K. Hamidouche, M. W.
ur Rahman, and D. K. D. Panda, “MIC-Check: A Distributed Check-
pointing Framework for the Intel Many Integrated Cores Architecture,”
in HPDC, 2014.

[75] P. Ramalhete, A. Correia, P. Felber, and N. Cohen, “Onefile: A wait-free
persistent transactional memory,” in DSN, 2019.

[76] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutiu, “Thynvm:
Enabling software-transparent crash consistency in persistent memory
systems,” in MICRO, 2015.

[77] A. Rudoff, “Persistent memory programming.”
[78] A. Rudoff, “Persistent memory programming without all that cache

flushing,” in SDC, 2020.
[79] M. Saxena and M. M. Swift, “Flashvm: Virtual memory management

on flash,” in USENIXATC, 2010.
[80] S. Scargall, “Persistent memory architecture,” in Programming Persistent

Memory, 2020.
[81] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Proteus: A flexible

and fast software supported hardware logging approach for nvm,” in
MICRO, 2017.

[82] S. Shin, J. Tuck, and Y. Solihin, “Hiding the long latency of persist
barriers using speculative execution,” in ISCA, 2017.

[83] Y. Solihin, Fundamentals of Parallel Multicore Architecture. Chapman
& Hall/CRC Computational Science, 2015.

[84] Y. Solihin, “Persistent memory: Abstractions, abstractions, and abstrac-
tions,” IEEE Micro, 39(1), 2019.

13

[85] P. Subrahmanyam, “pmem-go.” [Online]: https://github.com/jerrinsg/go-
pmem

[86] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
Persistent Memory,” in ASPLOS, 2011.

[87] J. Wang, X. Dong, Y. Xie, and N. P. Jouppi, “i2wap: Improving non-
volatile cache lifetime by reducing inter- and intra-set write variations,”
in HPCA, 2013.

[88] T. Wang, S. Sambasivam, Y. Solihin, and J. Tuck, “Hardware supported
persistent object address translation,” in MICRO, 2017.

[89] T. Wang, S. Sambasivam, and J. Tuck, “Hardware supported permission
checks on persistent objects for performance and programmability,” in
ISCA, 2018.

[90] W. Wang and S. Diestelhorst, “Quantify the performance overheads of
pmdk,” in MEMSYS, 2018.

[91] W. Wang and S. Diestelhorst, “Brief announcement: Persistent atomics
for implementing durable lock-free data structures for non-volatile
memory,” in SPAA, 2019.

[92] Z. Wang, H. Yi, R. Liu, M. Dong, and H. Chen, “Persistent transactional
memory,” IEEE Computer Architecture Letters, 2014.

[93] Z.-S. Wu, K. Parvez, X. Feng, and K. Müllen, “Graphene-based in-plane
micro-supercapacitors with high power and energy densities,” Nature
communications, 2013.

[94] I. Xeon, “Intel® xeon® platinum 9222 processor.”
[Online]: https://ark.intel.com/content/www/us/en/ark/products/195437/
intel-xeon-platinum-9222-processor-71-5m-cache-2-30-ghz.html

[95] Y. Xu, Y. Solihin, and X. Shen, “Hardware-Based Domain Virtualization
for Intra-Process Isolation of Persistent Memory Objects,” in ISCA,
2020.

[96] Y. Xu, Y. Solihin, and X. Shen, “MERR: Improving Security of
Persistent Memory Objects via Efficient Memory Exposure Reduction
and Randomization,” in ASPLOS, 2020.

[97] L. Zhang and S. Swanson, “Pangolin: A fault-tolerant persistent memory
programming library,” in USENIXATC, 2019.

[98] Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira,
A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A.
Stach, and R. S. Ruoff, “Carbon-based supercapacitors produced by
activation of graphene,” science, 2011.

14

