The Visual Computer (2019) 35:223-237
https://doi.org/10.1007/s00371-017-1465-7

ORIGINAL ARTICLE

@ CrossMark

Procedural modeling of rivers from single image toward natural scene
production

Jian Zhang' - Chang-bo Wang'® - Hong Qin? - Yi Chen’ - Yan Gao'

Published online: 28 December 2017
© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Abstract

The rapid and flexible design of natural environments is an important yet challenging task in graphics simulation, virtual
reality, and video game productions. This is particularly difficult for natural river modeling due to its complex topology,
geometric diversity, and its natural interaction with the complicated terrain. In this paper, we introduce an integrated method
for example-based procedural modeling to overcome such difficulties. First, we propose a compact parametric model to
represent the certain river, which inherits typical features of natural rivers such as tributary, distributary, tortuosity, possible
lakes adjacent to the river. Then, we demonstrate our method for generating 3D river scene solely based on the parametric
model. However, choosing appropriate parameters is a tedious undertaking in practice. To further enhance our method’s
functionality, we rely upon a natural river image to extract meaningful parameters toward the rapid procedural production of
the new river scene. Finally, we design a new method to compare two river scenes and iteratively optimize the river network
by using the simulated annealing technique. Our method can produce natural river scenes from an example river network and
single terrain image with little interaction, and the synthesized scene is visually consistent with the input example in terms
of feature similarity. We also demonstrate that our procedural modeling approach is highly automatic toward rapid scene
production through various graphics examples.

Keywords Procedural modeling - Natural river generation from images - Natural phenomena

1 Introduction modeling has been applied to handle many problems of sim-

ilar kinds such as terrains, roads, trees, villages, or even

Conventional 3D modeling still remains a tedious task
especially for novice users, in spite of the rapid prolifera-
tion of various modeling software in recent years. This is
especially the case when we intend to model large-scale
outdoor scenes involving natural landscape and/or urban
structures with many variations. In reality, we wish to have
automatic or semi-automatic techniques toward the rapid
creation of 3D digital contents, which promise to reduce
a lot of tedious works by users. For decades, procedural

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00371-017-1465-7) contains supplementary
material, which is available to authorized users.

B Chang-bo Wang
cbwangcg @gmail.com; cbwang @sei.ecnu.edu.cn

School of Computer Science and Software Engineering, East
China Normal University, Putuo District, Shanghai, China

Department of Computer Science, State University of New
York at Stony Brook, Stony Brook, NY 11794-4400, USA

cityscape [7,19,23,29,32,34]. In essence, procedural model-
ingis a generative content creation technique using a program
or grammar. A wide variety of plausible 3D digital contents
can be created automatically if a grammar is properly defined.

Rivers are very common in natural scenes and play an
essential role to enrich users’ experiences during game play-
ing or film watching, and the existence of rivers on any type
of terrain also offers a beautiful scenery with various set-
tings. Nevertheless, modeling curved river on an existing
terrain is quite difficult due to its complex topology, abun-
dant types of shape geometry and its natural adaptation with
terrain constraints. A traditional solution is to manually cre-
ate river scenes by using professional modeling tools, aided
by diversified meshes, particles, and animated textures. At
the same time, the user should maintain the consistency
between rivers and terrains, as well as the self-consistency
of the river network, which is a long, laborious, and tedious
work even for professional users. In recent years, researchers
have also made progress toward production of modeling for

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-017-1465-7&domain=pdf
http://orcid.org/0000-0003-0576-1477
https://doi.org/10.1007/s00371-017-1465-7

224

J.Zhang et al.

water bodies including rivers. Procedural methods toward
river scenes [4,14,42] can generate diverse plausible results,
but existing techniques are generally lack of controllability.
Interactive methods [8,9] produce controllable river scene,
but the user should always deal with fussy work in order to
keep the consistency between rivers and terrains. We pro-
pose an inverse procedural approach to the synthesis of river
scenes, which extracts features from exemplars. The inverse
method offers a rapid creation of 3D contents while also con-
sidering the user’s intent, which could save much labor time.

How to strike a balance between the user control and user
interaction is a delicate undertaking for the river scene mod-
eling. This paper aims at solving this problem by addressing
two aspects. First, we should find a powerful parametric
model to represent a river network, which catches features
well such as tributary, distributary, tortuosity, and possible
lakes adjacent to the river nearby. The process of expanding
a river network should also be designed carefully so that we
can generate the river associated with terrain while afford-
ing flexible user control. Second, the result of the procedural
model should be iteratively optimized due to the randomness
that may be caused by procedural processes.

In this paper, we present a novel procedural method to
generate the curved river, with features similar to the given
example, while still keeping the river network consistency
with the terrain and itself. The individual river segment is gen-
erated by using a midpoint displacement method subject to
terrain consistency. We expand the whole river network on the
terrain from the parametric model. The input to our method
consists of the river image from a real scene and a terrain
over which the modeled river will flow. Our method repre-
sents the input river scene image as a directed acyclic graph
and extracts a set of parameters (to be detailed in Sect. 4),
which is then used to regenerate similar river scene upon new
terrain. Our main contributions are as follows:

— We design a novel compact parametric model for repre-
senting a river scene and a procedural method to generate
various synthetic river scene corresponding to a terrain.
Our method for river modeling produces various results
and keeps the consistency between river and terrain.

— We introduce a method for extracting shape features of
the river network from single image through user interac-
tion. This process is meaningful and can reduce the com-
plexity of appropriate parameter selection for river scene.

— The result generated by our parametric model is still not
so controllable since the method is stochastic and the river
network is affected by terrain. We then devise a method
for similarity evaluation of two river scenes and a method
to iteratively optimize a given river network.

The remainder of this paper is organized as follows. Section 2
briefly reviews related works. We provide the overview of our

@ Springer

method in Sect. 3. Section 4 describes our parametric model
for a river scene, and how we generate a river network on
certain terrain. Section 5 details how the result river scene is
generated from the input river image. Section 6 demonstrates
the implementation details and the results, with a brief dis-
cussion on limitations of our method, and Sect. 7 concludes
the paper with possible future work.

2 Related works

To the best of our knowledge, the similarity computation of
two river scenes and reverse modeling of rivers have not been
addressed by the computer graphics community. Our work
is related to procedural approaches and interactive methods
of rivers. We also briefly review example-based methods
because of their great relevance to this paper.

Procedural modeling Procedural techniques have been
used in computer graphics for a long time, and several authors
have proposed methods for river modeling on terrain. Despite
that the results are always hard to control, we benefit from
classical procedural methods which combine fast produc-
tion and plausible results. Kelley et al. [22] first presented
a procedural method that generates river network with ter-
rain scene. They used a recursive algorithm to branch and
subdivide a single river path, in order to create a river net-
work. Prusinkiewicz et al. [30] introduced a method which
combines context-sensitive geometric rewriting and mid-
point displacement to generate rivers in mountains. Derzapf
et al. [6] produced river network at a planetary scale. They
generated adaptively refined scene geometry during fly-
through by exploiting current graphics hardware, starting
with a coarse geometry of a planet. Procedural methods based
on hydrology [13,25,36,42] offer rapid production of river
scene, but they are lack of user control. Génevaux et al. [14]
combined feature-based primitives and hierarchical proce-
dural modeling to generate terrain scene including rivers.
Recently, Cordonnier et al. [4] introduced a method to pro-
duce landscapes with high-level control from uplift map,
which combines uplift and hydraulic erosion.

Interactive methods Interactive methods with sketch-
ing [20,35] have also been used in river scene modeling, but
these methods do not always guarantee physical plausibility.
Yuetal. [41] presented a method for interactive simulation of
running fluids, which provides a plausible rendering result.
Using 3D curves to control the shape of terrain and water
body, Hnaidi et al. [17] proposed an interactive method based
on diffusion equation. Emilien et al. [8] described a frame-
work of generating waterfall scene, combining procedural
generation and user control. Samavati et al. [33] proposed
their method for adding terrain features as well as water
bodies to Digital Earth, which combines sketching and 3D
reconstruction. Compared with these approaches, our method
needs less user interaction.

Procedural modeling of rivers from single image toward natural scene production 225

Example-based modeling Our method is closer to
example-based modeling, which generates similar objects
from examples [26]. They are widely used in texture syn-
thesis [16,21,24]. Example-based methods also have been
applied to generate 3D geometric objects [11], trees [37,38],
indoor scenes [10,40], terrain scenes [2,43], and build-
ings [1,15]. Emilien et al. [9] introduced a method for
interactive synthesis of virtual landscapes based on exam-
ples, but their method relies on plenty of user operations.
Recently, more and more authors combined example-based
procedural modeling with machine learning [28,39]. Nishida
et al. [27] presented a method that allows users to design
road network by specifying road examples, which inspires
this research to explore along a similar direction toward river
scene production. They extracted patches from examples and
grew new road network using these patches while combin-
ing procedural approaches. But for a river scene we need to
consider more about the coupling between river and terrain.

3 Method overview

To find the procedural representation for various kinds of
rivers, we need a powerful procedural model to create river
scenes. In Sect. 4.1 we depict our compact parametric model
for rivers, divided into two categories: top-down parameters
and cross-sectional parameters. Given the starting and end-
ing positions, our method expands the river network by using
the rules described in Sect. 4.2, while maintains the consis-
tency between river and terrain. Our procedural rules allow
the generation of distributaries, tributaries, and lakes in the
river scene. Nevertheless, due to the complexity of choos-
ing appropriate parameters, we then seek a new solution of
extracting parameters from a single image.

An overview of the pipeline of our method is shown in
Fig. 1. First, the user selects a river image which is to be

River Pr ral

e - ocedu' a

Parameters Generation
Ext*ct‘ion l I

Optimization

wauao’s as

Similarity
Measure

2
Acce Eted ? Yes Stop

98ew) Janly

Fig. 1 Framework overview: the input river image is used to extract
river parameters and helps the generation of river network upon new
terrain. Final synthesized scene is generated via iterative optimization

analyzed and provides terrain height map which is used to
generate terrain in the final scene. Our input of image is the
aerial view of a river scene such as an aerial photograph
or picture extracted from available geographic information
systems. To extract the top-down features of a given river,
the user should specify the start position and the end position
of the river network and we then represent the input river as
a directed acyclic graph with some parameters (detailed in
Sect. 5.1).

Once the top-down parameters of the river image are
extracted, the initial river network can be created by our
procedural model, with the user-provided terrain and cross-
sectional parameters. Then we start the optimization process
(Sect. 5.3), which is necessary because of the top-down dif-
ference between the input image of the river and the result
river. We use a simulated annealing framework to iteratively
modify the river network and finally get a convergence result.
Our method for similarity computation between two river net-
works intends to compare the top-down features of two river
networks (described in Sect. 5.2). At the end of each iteration,
the optimization process could be terminated if the similarity
between two river scenes reaches the threshold value.

4 Procedural model for river

Rivers on different terrain have many special features that
can be represented by a powerful procedural model. Inspired
by [13], we introduce a procedural method to expand river
network. Unlike the method depicted in [13], where they
created the river tributary by iteratively dividing one river
segment to two from downstream to upstream, our model
is capable of generating several typical characteristics such
as distributary, tributary, and connected lake in river scene.
In this paper we call that, a distributary is a river that flows
from mainstream, and a tributary is a river that flows into
mainstream (see Fig. 2 for a graphical illustration).

4.1 Parameters of river network

To generate various river scenes, we need to find out the
common characteristics and categorize them into a set of
parameters that can be used in programming. By studying
the existing river procedural model and looking at many
real scenes, one compact parametric model is proposed.
Our parametric model is designed to be used in the river
scene generation step. The parameters comprise two parts:
top-down parameters and cross-sectional parameters. The
top-down parameters control the characteristics of river net-
work such as tortuosity of rivers and distributary number,
which contribute to the diversity of river network. On the
other hand, the cross-sectional parameters define the features
that are responsible for the integration of mesh generation in

@ Springer

J.Zhang et al.

226
&
— 3“ 3
Main Stream
— 2
Distributary
v

Tributary

v

Flow Direction

Fig.2 The level of river segment used in our method. At the source of
a river, the segment is marked as level one. The level of distributaries
and tributaries should be greater than or equal to the level of their parent
river. If the level marking is conflicted, we select the larger one. In this
figure, there is two isolated regions because of the distributaries flowing
into the river network

Table 1 Our parameters for river generation

Type Parameters Description

Top-down ny The number of single river segment

dr The straight line distance from river start
to river end

ke The ratio of the actual length of river to
the straight distance of river

ksm, ksv The mean and variance of the bending
factor for single river segment

dsm, dsy The mean and variance of the straight line
distance for river segment

ng The number of river distributary

ng The number of river tributary

ne The number of isolated regions

Obm, Oby The mean and variance of the angle
between the direction of one river
segment and its distributary

Stm Sty The mean and variance of the area of lake

n The number of lake in river scene

The river width for mainstream and
decrease factor for smaller level river

Cross section wy, Xrw

hy, Xrh The river depth for mainstream and
decrease factor for smaller level river

7 Controls whether a river increases level
when it bifurcates

him, hy The mean and variance of the river lake

river scene and also influence terrain, which are not extracted
from input river image. The parameters are shown in Table 1.

Top-down parameters represent attributes of diverse river
networks. n, defines the number of river segment, which
is represented as an edge in our directed acyclic graph. nq
and n; define the number of river distributaries and tribu-

@ Springer

taries, respectively. A distributary contributes to an island
surrounded by rivers when it flows into a river segment
(Fig. 2) and we use n. to count the number of the isolated
regions. The initial flow direction of a river segment is deter-
mined by the angle 0; {6 ~ N (Bpm, Opy)}, where N is the
normal distribution, with 6y, the expectation and 6y, the
variance. Tortuosity is a vital property for river segment. For
a single river segment, we define the tortuosity as the ratio
of the actual river length to the straight line distance of the
river. We bring in parameter k; to represent the tortuosity of
the whole river network. For every river segment, the straight
line distance of river is sampled from the normal distribution
with expectation dgy, and variance dgy, and the tortuosity is
also determined by the parameter kg, and kgy .

Cross-sectional parameters are used in the generation of
integrated meshes of the river and the adapted terrain. In
our framework, the river segment is labeled by a number of
level (Fig. 2), the river with a bigger number often has a
smaller water body. xrw and x, affect the decrease speed
of river width and depth, respectively. When we expand the
river network, the newly added distributary or tributary has
an incremental level with probability ¢.

4.2 River network generation

In our framework, the river network growth is restricted
because users specify the start and end position of the river,
while the altitude of river source should be greater than the
river mouth. A river may not arrive at the specified position
finally if it flows freely. To simplify the generation, we solve
the mainstream first and create distributaries and lakes then.
Every watercourse of the river segment is represented as a
B-spline curve.

4.2.1 Mainstream

The river is generally curved and smooth, which can be
fitted by a B-spline curve. By using the midpoint displace-
ment, we alter the data points of B-spline and recalculate
the watercourse of a river, while also maintaining the consis-
tency between rivers and terrain. Our algorithm starts with a
straight line segment from river’s start position to its end posi-
tion. Then the line segment is iteratively divided to ny —nq—ny
parts (Fig. 3). At last the algorithm recursively modifies the
segment of the mainstream to make the river fitting the ter-
rain. Figure 4 shows how we modify a river segment at first
iteration, and we also iteratively reduce the value of d in the
same way as that in the traditional approach, which makes
the river more smoothly. Examine Fig. 4, the curved river
should flow with the terrain and the constraint problem is
formulated as:

Procedural modeling of rivers from single image toward natural scene production 227

N

<

(a) (b) ©
=

(@ (e) ®

Fig. 3 The mainstream is iteratively divided into five segments. At
every iteration, the length of the displaced segment (colored in red) is
sampled from normal distribution N (dsm, dsy) and the branch angle 6
is sampled from normal distribution N (Gpm, Oby)

Fig.4 To apply midpoint displacement, we first select a point py at the
perpendicular bisector of the river segment. We select py by calculating
Formula 1 at the range p € circlep, . The distance d between p; to the
original river is sampled according to ksy, and kg, (Table 1), where u is
the radius of circlep, that we set it to be half of d. That is to say, we
select p; which makes the length of this curve in agreement with the
sampled tortuosity

oh
argmin </ clamp <—, 0, oo)) , (1)
P . ar

a, x
clamp(x, a, b) = { x, a<x<b, 2)
b, x>b

where g_/rz indicates the directional derivative of the terrain
height along the direction of the river e. We solve Formula 1
by using a stochastic sampling method and p; is selected in
the range p € circlep,. Note that, we clamp the gradient of
terrain height in the range (0, co), because we only punish
that rivers flow from low altitude to high altitude.

4.2.2 River network

To expand the whole river network R, we need a marking rule
for the river segment. Inspired from Horton—Strahler num-
ber [18], we design our marking rule shown in Fig. 2. As
showcased in Fig. 2, the river segment from the river source
is marked as level one, while it increases with a probability
when it bifurcates to a distributary and decreases when meets
a tributary. A larger level number indicates the river is nar-
rower and shallower. We put forward that a river network R
is defined by a set of nodes {/N\} and a set of river segments

{E}. Every river segment ¢; has the branch angle 0; (if it
has a parent river segment), bending factor k;, straight line
distance d;, the start node n; 1, and the end node n; »>.

Let Y* = {n},d}, k;, ...} denote the desired values of the
river parameters. Algorithm 1 describes how we expand a
river network with the mainstream and the desired parameters
T*. As showcased in Algorithm 1, a river segment is selected
and could be expanded until there are enough distributaries,
tributaries, isolated regions, and lakes.

Algorithm 1: River Network Expansion

Input: a input mainstream R, desired parameters 7"*
Qutput: whole river network R

1 ng < 0,n <—0,n; <—0,n,c ~0
2 while n, < (n% —n) do
3 Select the segment e to expand.
4 Compute branch angle 6, bending factor k and straight line
distance d from 7.
5 if Execute Rule 1 with 6, k, d for segment e then
6 ny++
7 end
8 end
9 while n, < n* do
10 Select the segment e to expand.
11 Compute branch angle 6, bending factor k and straight line
distance d from 7.
12 if Execute Rule 2 with 0, k, d for segment e then
13 n; ++
14 end
15 end
16 while n; <n}do
17 Select the segment e to expand.
18 Compute branch angle 6, bending factor k and straight line
distance d from 7.
19 if Execute Rule 1 with 0, k, d for segment e and create an
isolated region then
20 ny + 4, g+ +
21 end
22 end
23 while ni < nj do
24 Select the segment e to place a lake.
25 Compute size s from 7°*.
26 if Execute Rule 3 with s for segment e then
27 n++
28 end
29 end
30 return R

River segment selection We use a probabilistic method to
determine which river segment should be expanded. A river
segment e¢; cannot be expanded if it already has two extended
branches; otherwise, it will be expanded at a probability ¢;:

Pi
i=—=y > 3)
Zn:l Pn

where p; = g;+ f; is the priority value that takes into account
the priority of terrain height g; and the priority of river level
fi,and g; is computed as follows:

@ Springer

228

J.Zhang et al.

Table 2 Expansion rules for the river network

1.1 s(n) = s(n)dn +1) : ()

1.2 s(n) = s(n)d@®) : (1 —¢)

2.1 s(n) = sm)t(n+1) : ()

2.2 s(n) = s(n)t(n) : (1 —¢)

3 s(n) — s(n)l

4 s(n) : Distance(s(n), R) < 6 — s/(n)
5 Midpoint Displacement(s(n))

gi = ﬂ7 4)

Tmax — Tmin

where 7 is the height of the river segment’s end node N »
and Tyax the maximum height in R and tpj, the minimum
height. f; is computed as follows:

fi=1- % ©)
max — ‘min

where [, 1S the maximum level in R and [, the minimum
level.

Lakes are randomly placed on the nodes {A} in our
framework. Besides, lakes are preferred to be placed on the
junctions of river segments because in the real world lakes
are usually not at the endpoints of a river.

River segment expansion Each river segment is expanded
according to the pre-defined parameters. Our rules of river
expansion are defined in the following form:

predecessor : condition — successor : probability,
where predecessor is a river segment that is to be expanded
to successor (predecessor € R). The rule is selected with
probability when condition is met.

The river network is expanded using the rules described
in Table 2, where s(n) defines one river segment with level
n,and d(n) and ¢ (n) define distributary and tributary, respec-
tively. Rule 1-3 expand a distributary, a tributary, and a
lake, respectively. When expanding distributary, Rule 1.1 is
selected with probability ¢ (Table 1), which is the same as
Rule 2.1 when expanding tributary. In Algorithm 1, Rule 4
and Rule 5 are executed when any distributary or tributary is
successfully added to R. We extend a river segment s to the
river network R when its tail is closed to R (Rule 4). Lakes
are added to river network by using Rule 3. When expanding
rules are executed, the branch angle, the straight line dis-
tance, etc., are sampled from normal distribution depending
on our parametric model described in Sect. 4.1. Several types
of distributaries are demonstrated in Fig. 5.

While expanding a new distributary ¢* to a river segment
e, the segment ¢* flows from e to a low elevation area. In
contrast, e* flows from higher place to ¢ when expanding a
new tributary.

@ Springer

1 P 1 2 1 2 1 2

3
3 N
(a) (b) (o) J\ @

Fig. 5 Different types of distributaries, the number representing the
river level: a a distributary meeting existing river node and generating
a isolated region; b a distributary meeting river segment and creating
new river node; ¢ two distributaries creating from one river segment; d
a continuation of a river segment

While expanding a new distributary ¢* to a river segment
e and creating an isolated region, the start node n; of e* is
set to be the end node of e. Recall that in our framework
the structure of a river is a directed acyclic figure that can
be sorted by topology. Let {\'} denote a subset of {\} in
which the topology order of any node is no greater than .
In (NN /} we select a node n* that should meet the formula as
follows:

min (|Distance (nl, n*) - d|) < ¢, 6)

where d defines the desired value of straight line distance
sampled from 7* and ¢ is the threshold value defined by
users. Then we set n* as the end node of ¢* based on Eq. 6.

Collisions avoidance Collisions could occur when we add
adistributary or tributary to a river network, or when we bend
a river segment to make it fit a terrain. At the expansion step
we use a two-dimensional mask to store the location of the
river network on terrain. A new river segment is added to the
river network only if there is no collision.

4.3 Example of river scenes

Figure 6 shows three river scene generated using our frame-
work, demonstrating the diversity of our parametric model.
The parameter values in Table 3 affect the result a lot, while
another impact is the terrain, because our midpoint displace-
ment method is executed along with the terrain. Handling
these 22 parameters is somehow tedious for the river scene
generation, so we seek a method that could extract parame-
ters directly from real river image.

5 River generation from image

In this section, we discuss the generation of river scene from
river image and existing terrain. In our framework, the user
provides ariver scene image, and we extract top-down param-
eters (Table 1) from the image after a simple interaction
(Fig. 7). Then by using our procedural method, we gener-

Procedural modeling of rivers from single image toward natural scene production 229

Fig.6 Differentriver scenes generated by our system. On the left are the
2D views of the scenes, and the right are 3D scenes. The corresponding
values of parameters are in Table 3

Table 3 Our parameters for river generation

Parameters Figure 6a Figure 6b Figure 6¢
ny 25 20 13

d; 3120 2177 2103
ke 2.76 2.93 2.61
ksm 1.28 1.31 1.76
key 0.222 0.212 0.782
dym 643 667 562
dsy 4832 5112 4152
ng 17 5 6

n 0 8 0

ne 0 1 2
Bom 0.78 0.77 1.12
Oy 0.182 0.447 0.822
Stm 8246 9923 0

Sly 37142 0 0

n 2 1 0

wy 28 32 43
Xrw 0.91 0.85 0.95
hy 15.94 22.72 28.62
Xrh 0.88 0.71 0.93
@ 0.88 0.82 0.91
Tim 48.46 50 0

hiy 20.37% 0 0

Fig.7 River network extracted from image: a the user drags a rectangle
around the river and selects aregion of the river with a stroke; b the image
after segmentation; ¢ the river network extracted from the segmentation
image with the user specifying the river source and the river mouth

ate an initial river network, with user-defined cross-sectional
parameters. The final river network is generated from itera-
tive optimization.

5.1 Parameters learning from image

We have introduced our procedural model for rivers in Sect. 4,
yet the result is not easy to control because the number of
parameters is large and the method is stochastic. Then we try
to extract river features from an image, which is the top view
of the river scene. We use Grabcut described in [31] to gen-
erate segmentation image for river image. Grabcut affords a
good result that extracts the correct contour with boundaries
of a river from an image (Fig. 7). The region of a river is
segmented with the help of user interaction. Then we extract
the skeleton of river network by using the method introduced
in [3], afterward each river segment is retrieved by traversing
the skeleton of the image. The flow direction of each river
segment e is automatically determined based on the assump-
tion that the branch angle 6 < m/2 (Fig. 8). We re-group

/ /
/ /
/ /
- ‘s
/ /

Fig. 8 The flow of river segment is determined with the branch angle
01 <7m/2,60 > 7/2)

@ Springer

230

J.Zhang et al.

these river segments as a directed acyclic graph R, which
represents the river network of the input image. After a pre-
processing (Algorithm 2) for example river, we can calculate
the top-down parameters 7 * from R. Given a new terrain, a
start position ps and an end position p., we could generate
a new river network with 7*. The river scale parameter p is
introduced to control the size of the generated river:

_ Distance(ps, pe)

W= i (N

Then we multiply ny, nj, n{, n/ by .

Algorithm 2: Preprocessing for Example River R.

1 compute the shortest path from river source to river month and
mark them as mainstream {E,, }.

2 foreach river segment e in R and e ¢ {E,,} do

3 if e flows into {E,,} then

4 | mark e as a tributary

5 end

6 if e flows from {E,,} then

7 | mark e as a distributary

8 end

9 end

However, as mentioned before, the river scene is also con-
trolled by the terrain, so that this river network may not be
our expected result. On the other hand, many operations in
our procedural model use sampling, and this may generate
ambiguity result when a river is not large. In order to find
the optimal river scene fitting the terrain and being similar to
the example scene, we design the distance evaluation method
and iteratively modify our result.

5.2 Evaluation of river scene production

As the initial result river network has been generated, we
need a distance function to evaluate the difference between
our result with the input image. Some parameters can be
controlled accurately, such as the number of tributaries. We
consider the tortuosity distance &. and the branch angle dif-

ference &, as follows:
b= 1 exp (_ (Ko — k| + '\/kgv -)) L ®
O — Qsm‘ + '\/ O — O
Ea=1—exp|— ,)]
/2

’ ’ ’ / .
where kg, kg, Oy, and 6, are the corresponding parame-
ter values of the generated river network. We also consider

another distance evaluation, which is not evident in our

@ Springer

(@) (b) (©

Fig. 9 The generated result without optimization (a). Two sets of
parameters for top-down distance function can result in diverse out-
put scenes (b, ¢). The input river network is shown in Fig. 7

Table 4 The values of top-down distance at the state of convergence
(corresponding to Fig. 9)

& & & Top-down distance
Figure 9a 0.35 0.18 0.23 -
Figure 9b 0.18 0.12 0.29 0.19
Figure 9¢ 0.31 0.16 0.16 0.19

parametric model. When a distributary flows into the river
network, one piece of land surrounded by rivers appears
(Fig. 2). We calculate this feature & especially:

B (S(R1) — S (Ra))?
& =1—exp (— 2R) , (10)

where S(R1) and S(R,) define the area of isolated region in
two river scenes. Then we give the top-down distance func-
tion:

D(R1, R2) = wcbe + waa + wiél. Y

The values w, w,, and wy, satisfying w. + @, + @) = 1 are
weight coefficients associated with the distance function. The
user controls the final production by defining these param-
eters. Figure 9 and Table 4 document the effect of different
parameters on the optimized river network, and demonstrate
that the results after optimization are visibly better than that
before optimization. The river scene presented in Fig. 9b
(wc = 0.6, v, = 0.2, o = 0.2) shows the approximate
tortuosity but more difference in isolated region. In contrast,
Fig. 9¢ (o, = 0.2, wy = 0.2, @) = 0.6) has a nearly equal
area of isolated region related to Fig. 7 because the parame-
ter w gives a high importance to isolated region difference,
while the tortuosity is not so ideal. In Sect. 5.3 we will discuss
the usage of distance function in details.

5.3 River network optimization

We use a simulated annealing framework to optimize the
result scene (Algorithm 3). Our algorithm starts with the river

Procedural modeling of rivers from single image toward natural scene production 231

Algorithm 3: River Network Optimization.
Input: Example river network R, Result river network R,

1 1<t

/* n: total iteration times */
2 fori from1tondo

/* m: trial times in one iteration */

3 for j from1tomdo
4 R’I <« perturb R
5 if D(R,R)) < o then
6 R (—’R/l
7 stop
8 end
9 AE < D(R,R}) — D(R, R1)
10 if AE < O then
1 | R <R
12 else if rand() < e# then
13 ‘ R1 < R,l
14 else
15 \ continue to next iteration
16 end
17 end
18 < txXa
19 end

network generated from the procedural model, where the top-
down parameters are extracted from example river image.
The energy function of our annealing framework is based on
the distance evaluation described in Sect. 5.2:

E = D(R1,Ra), (12)

where R defines the example river network and R> the
current generated river network, respectively. To perform
the annealing framework algorithm, we need a perturbation
operation (line 4 in Algorithm 3) for the river network. Our
perturbation consists of three aspects: river segment, river
intersection, and lake. The following discussions describe
the perturbation in details:

e Flex(py) : ny(er, pi) perturbs the position of river e;’s
data point p;j (not the head or tail), then regenerate the
B-spline curve of e.

e Translate(p) : ni(e1,e1,i, ey, ;) sets the parent river
of e; to the adjacent river ey ; ; of e;’s original parent
river ey ;, and resets the child river (if has) of e; as the
same way. Regenerate the B-spline curve of e; with the
same expected tortuosity.

e Drag(pa) : na(ni, e1;) perturbs the position of node of
river intersection n1, and recalculate all the adjacent river
€l,i of ni.

e Move(pm) : nm(n1, n1;) moves the position of one lake
from node n; to the adjacent node ny; of nj.

e Scale(ps) : ns(ny) changes the size of lake at node n;.

Optimization
06 ——Fig.15-S

— Fig.15-L

Fig.16

D(R1,R2) o.

Iteration

Fig. 10 Optimization of the river scenes. The abscissa and the ordinate
represent the iteration times and the value of distance function for two
river scenes, respectively. Figure 14-S, -L refers to the smaller and the
larger scenes in Fig. 15, respectively

In Algorithm 3, these operations are randomly selected
and executed while retaining consistency with terrain and
avoiding collisions at the same time. The simulated annealing
method operates by iteratively perturbing the current river
network, and evaluating where the iteration could be accepted
by the current energy. Unlike the classic implementation of
the simulated annealing approach, we try m times at every
iteration for cooling down temperature so that we get more
trials and could find the optimized result. In Algorithm 3, we
set n = 400, m = 20, fp = 0.8 and the final temperature
0.3. We also set a threshold to the distance function, and
the algorithm could stop anytime. The convergence of our
algorithm is shown in Fig. 10.

5.4 Guided optimization from sketch

Our optimization algorithm is easy to extend given a second
sketch for the river layout. As showcased in Fig. 11, The final
river is optimized with the input image and passes through
the sketch area. As for sketch guiding, the integrated method
is mainly changed in the following three parts:

— Unlike in Eq. 7, we calculate the river length of the sketch
as the numerator. The recalculated w is used to amend
parameters 7 * in the same way as before.

— We analyze the topology of the sketch area and treat it as
the main stream. We also bend it to fit the terrain.

— The topology of the sketch area will not be changed at
every iteration in Algorithm 3. Besides, the positions of
the nodes extracted in the sketch are not changed in the
optimization process.

6 Implementation details and experimental
results

In this section, we document the implementation details and
experimental results generated with our method. First, we

@ Springer

232

J.Zhang et al.

(d)

Fig. 11 Guided optimization from sketch: a The exemplar river image;
b A sketch at target terrain; ¢ and d The generated river network

(a) (b)

Fig. 12 The schematic of the generated river mesh. On the left is the
river network, and on the right is the corresponding mesh. On the left
there is a thin tributary because of its greater river level

present the key steps for generating 3D scene from the river
network (Sect. 6.1). Then in Sect. 6.2, we present some exper-
iments with evaluation.

6.1 Procedural generation of scenes

3D scene generation mainly consists of two parts: river mesh
generation and terrain modification. To ensure the realism of
the final 3D results, with impalpable artifacts, we carefully
process the river mesh and the terrain.

River mesh generation It may be noted that we use a spline
function to smooth the trajectories of the river network. We
define the river surface of the whole river network by united
3D meshes (see Fig. 12). Using the trajectories of the river

@ Springer

|
|
|
1 Li!
|
|

|
Decoration region ! River region !

Fig. 13 The region of terrain modification

@

Fig. 14 Terrain before and after deformation and decoration

network, these meshes are generated with a certain width.
We calculate the width of a river with level A by w = w; x
(er)k—l’ where w, defines the width of a river whose level
is 1 and yy is the decreasing factor of the river width. The
intersections of rivers are carefully handled to avoid overlap.

Terrain modification We introduce deformation to the ter-
rain according to the river region (see Fig. 13). The affected
terrain region is divided into two parts as follows:

Q1 = {p € Q| Distance(p, e) < 12}, (13)
Qy = {p € Q| r2 < Distance(p, e) < r1}, (14)

where e defines the river trajectory. The corresponding defor-
mation and decoration are performed as follows:

— In ©1, excavation is performed precisely to generate the
riverbed. Génevaux et al. [13] discussed different types
of riverbed depending on water flow, elevation, etc. Our
procedural process uses the simple excavation showcased
in Hnaidi et al. [17]. The maximum depth H depends on
theriverlevel as H = h; x (th)k_l , where h; defines the
depth of river whose level is 1 and yy, is the decreasing
factor of the river depth, and the distance from final river
meshes to the maximum position of the riverbed is set to
be h. We also remove the vegetation in the region 2.

— In Qj, we add vegetation to decorate the terrain by
stochastically planting trees. To smooth the terrain after
generating riverbed, we set height W of position p as
h = hy+ (%)2 x (ho — hp), where Iy and
ho define the maximum height of the riverbed and the
original height at position p, respectively.

The generated river meshes and the modified terrain form the
final scene. Figure 14 highlights the comparison between the
original terrain and the final river scene.

Procedural modeling of rivers from single image toward natural scene production 233

Fig. 15 The top left is the input image extracted from Google Earth,
while the top right is the target terrain that river flows over. The middle
is a short river scene generated by our method. A larger scene with the
same input is demonstrated at the bottom of this figure

6.2 Results

The system is implemented in C++, and the computations
are performed on a PC with NVidia GeForce GTX850M and
Intel Core 17 CPU, running at 2.5GHz with § GB RAM. With
our system, we are able to calculate several river scenes from
different example rivers and terrains. We render the rivers
and lakes by using the integrated mesh and for terrains we
use texture blending and level-of-detail (LOD) technique.
Fresnel reflection and refraction technique is also used for
the water rendering. All 3D scenes are rendered by Unreal
Engine [12] in real time.

InFig. 6, we show three different river scenes generated by
our procedural model, with user-defined terrain and parame-
ters. The figure shows that our method catches features such
as tortuosity, distributaries and tributaries, and can produce
various results from appropriate parameters, while maintains
the coherence between terrains and rivers. Figures 15 and 16
showcase the river scenes resembling the rivers shown in
corresponding images. With provided river image, the inter-

Fig. 16 Another example of the river scene. The input river has an
outstanding feature of tortuosity, with distributaries and tributaries. Our
system generates a similar river flowing from the mountain to the plain

action process generally takes less than 1 min (Fig. 7). For
Fig. 15, the input image shows a river with several short dis-
tributaries, and our method creates two rivers with different
scale flowing along the terrain from the user-specified start-
ing position to the end. Figure 16 demonstrates another result
of our method. With features similar to the input image, our
method generates a new river following on the rough terrain.
In Fig. 17, various rivers are generated with a same input
exemplar and with different scale. These rivers are connected
into the single large river while maintaining the consistency
between terrains and rivers.

Statistics The overall time consumption of our method
is mainly composed of four parts: parameter extraction, ini-
tial river network generation, river network optimization, and
generation of the 3D river scene. It is necessary to mention
that the acceptance condition of river network generation
impacts a lot for the time consumption of our method. Also,
our algorithms’ behavior is affected by random seed since we
use a stochastic method. The values of parameters have an
obvious impact on the computation time. We set the threshold

@ Springer

234

J.Zhang et al.

Fig. 17 Taking the first river network in Fig. 6 as the exemplar scene, we added six new rivers connected into an existing long river

Table 5 Computation time for

our simulations Length (m) Computation time in second
Extraction Generation Optimization 3D scene
Figure 6a 8611 - 472 - 4.17
Figure 6b 6379 - 4.53 - 4.92
Figure 6¢ 5068 - 3.17 - 3.47
Figure 15-S 971 0.17 1.12 591 2.13
Figure 15-L 6783 0.17 5.03 16.73 3.86
Figure 16 4022 0.21 3.09 8.84 3.69

of energy value (5.3) o = 0.15 and count the time consump-
tion at each component.

Examine Table 5, from left to right, the columns of the
table list the figure number, the length of result river and the
computation time at each algorithm part (including feature
extraction, generation of initial river network, optimization
of river network, and 3D scene generation). In Table 5, 15-S,
-L refer to the smaller and the larger scenes in Fig. 15, respec-
tively. Unlike the classical practice for Reversible jump
Markov chain Monte Carlo, our optimization method does
not start with random sample. With an initialization similar to

@ Springer

the expected result and perturbations in a contiguous space,
our method has a rapid convergence (shown in Fig. 10).
Limitations The first limitation is that our method does not
guarantee global hydraulic correctness because of the river
network only adapting terrain locally. In addition, the pro-
posed approach currently cannot extract the cross-sectional
features from an input image. Besides, since the input of our
method is a river image and our system generates new river
with no interaction, the controllability of the output is not
remarkable. However, in this way our system is friendly to
the novice user, they just need to provide the photo of river
network and our system automatically creates new river adap-

Procedural modeling of rivers from single image toward natural scene production 235

Fig. 18 Our method fails to produce a satisfactory result (right) with a
user sketch (left) as the first input. Sketches often contain unnatural or
artistic features which cannot be captured by our method

tive to the terrain. Moreover, our method currently handles
terrain by using a grid-based approach which brings the mem-
ory limitation problem, so that the generated scene is not so
huge. In the future, we want to produce river scene from an
image at a huge scale while keeping the similarity with the
input image. Last, our method works well with river scenes
from nature, but we cannot handle scenes with artificial fea-
tures such as artwork or deliberate sketching (Fig. 18).

7 Conclusion and future work

This paper has introduced a new method for procedural mod-
eling toward river scene creation, with optimized results
based on examples. We started with a novel parametric model
for river scene generation and expanded the synthesized
method to handle the river network, while retaining the con-
sistency between the river and the complicated terrain. Our
model could generate various results of river scenery by offer-
ing the advantage of compact parameter selection.

To further simplify the user interaction of choosing appro-
priate parameters, we relied on a natural river image to extract
parameters toward a rapid production of river scenes. In order
to better satisfy users’ demand and expectation, we designed
a method to compare two river scenes and introduced an
iterative optimization of river scene by using the simulated
annealing algorithm. Several results demonstrated a suite of
functionalities of our method.

Future work could focus on the global consistency
between rivers, terrains and other natural landscape entities
such as bog, swamp. The interaction of river segmentation
could be improved, using a fully automatic method instead.
The input image right now only accommodates the ortho-
graphic view of the river scene from the top, and we wish
to lift this restriction by allowing images taken from various
angles in the near future, while permitting river width to be
changed. We also hope to combine our work with physical
techniques such as erosion simulation [5], which makes the
scene more exquisite.

Acknowledgements This paper is partially supported by Natural Sci-
ence Foundation of China (No0.61532002, 61672237), Natural Science
Foundation Grant NSFIIS-1715985, and National High-tech R&D Pro-
gram of China (863 Program) under Grant 2015AA016404.

References

1. Aliaga, D.G., Vanegas, C.A., Benes, B.: Interactive example-based
urban layout synthesis. In: ACM Transactions on Graphics (TOG),
vol. 27, p. 160. ACM (2008)

2. Argudo, O., Andujar, C., Chica, A., Guérin, E., Digne, J., Pey-
tavie, A., Galin, E.: Coherent multi-layer landscape synthesis. Vis.
Comput. 33, 1005-1015 (2017)

3. Brandt, J.W., Algazi, V.R.: Continuous skeleton computation by
Voronoi diagram. CVGIP Image Underst. 55(3), 329-338 (1992)

4. Cordonnier, G., Braun, J., Cani, M.P., Benes, B., Galin, E., Pey-
tavie, A., Guérin, E.: Large scale terrain generation from tectonic
uplift and fluvial erosion. Comput. Graph. Forum. 35, 165-175
(2016)

5. Cordonnier, G., Galin, E., Gain, J., Benes, B., Guérin, E., Peytavie,
A., Cani, M.P.: Authoring landscapes by combining ecosystem
and terrain erosion simulation. ACM Trans. Graph. 36(4) (2017).
https://doi.org/10.1145/3072959.3073667

6. Derzapf, E., Ganster, B., Guthe, M., Klein, R.: River networks for
instant procedural planets. Comput. Graph. Forum. 30, 2031-2040
(2011)

7. Emilien, A., Bernhardt, A., Peytavie, A., Cani, M.P., Galin, E.: Pro-
cedural generation of villages on arbitrary terrains. Vis. Comput.
28(6-8), 809-818 (2012)

8. Emilien, A., Poulin, P., Cani, M.P., Vimont, U.: Interactive pro-
cedural modelling of coherent waterfall scenes. Comput. Graph.
Forum. 34, 22-35 (2015)

9. Emilien, A., Vimont, U., Cani, M.P., Poulin, P., Benes, B.: World-
brush: interactive example-based synthesis of procedural virtual
worlds. ACM Trans. Graph. 34(4), 106 (2015)

10. Fisher, M., Ritchie, D., Savva, M., Funkhouser, T., Hanrahan, P.:
Example-based synthesis of 3d object arrangements. ACM Trans.
Graph. 31(6), 135 (2012)

11. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal,
A., Rusinkiewicz, S., Dobkin, D.: Modeling by example. ACM
Trans. Graph. 23, 652-663 (2004)

12. Games, E.: Unreal engine. https://www.unrealengine.com (2007).
Accessed 13 Nov 2017

13. Génevaux, J.D., Galin, E., Guérin, E., Peytavie, A., Benes, B.:
Terrain generation using procedural models based on hydrology.
ACM Trans. Graph. 32(4), 143 (2013)

14. Génevaux, J.D., Galin, E., Peytavie, A., Guérin, E., Briquet, C.,
Grosbellet, F., Benes, B.: Terrain modelling from feature primi-
tives. Comput. Graph. Forum. 34, 198-210 (2015)

15. Guerrero, P, Jeschke, S., Wimmer, M., Wonka, P.: Learning shape
placements by example. ACM Trans. Graph. 34(4), 108 (2015)

16. Han, J., Zhou, K., Wei, L.Y., Gong, M., Bao, H., Zhang, X., Guo,
B.: Fast example-based surface texture synthesis via discrete opti-
mization. Vis. Comput. 22(9-11), 918-925 (2006)

17. Hnaidi, H., Guérin, E., Akkouche, S., Peytavie, A., Galin, E.: Fea-
ture based terrain generation using diffusion equation. Comput.
Graph. Forum. 29, 2179-2186 (2010)

18. Horton, R.E.: Erosional development of streams and their drainage
basins; hydrophysical approach to quantitative morphology. Geol.
Soc. Am. Bull. 56(3), 275-370 (1945)

19. Hou, F, Qin, H., Qi, Y.: Procedure-based component and architec-
ture modeling from a single image. Vis. Comput. 32(2), 151-166
(2016)

@ Springer

https://doi.org/10.1145/3072959.3073667
https://www.unrealengine.com

236

J.Zhang et al.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Huijser, R., Dobbe, J., Bronsvoort, W.F., Bidarra, R.: Procedural
natural systems for game level design. In: 2010 Brazilian Sym-
posium on Games and Digital Entertainment (SBGAMES), pp.
189-198. IEEE (2010)

Ijiri, T., Mech, R., Igarashi, T., Miller, G.: An example-based pro-
cedural system for element arrangement. Comput. Graph. Forum.
27, 429-436 (2008)

Kelley, A.D., Malin, M.C., Nielson, G.M.: Terrain Simulation
Using a Model of Stream Erosion, vol. 22. ACM, New York (1988)
Kelly, G., McCabe, H.: A survey of procedural techniques for city
generation. ITB J. 14, 87-130 (2006)

Landes, P.E., Galerne, B., Hurtut, T.: A shape-aware model for dis-
crete texture synthesis. Comput. Graph. Forum. 32, 67-76 (2013)
Mei, X., Decaudin, P., Hu, B.G.: Fast hydraulic erosion simulation
and visualization on GPU. In: 15th Pacific Conference on Computer
Graphics and Applications, 2007. PG’07, pp. 47-56. IEEE (2007)
Merrell, P.: Example-based model synthesis. In: Proceedings of
the 2007 Symposium on Interactive 3D Graphics and Games, pp.
105-112. ACM (2007)

Nishida, G., Garcia-Dorado, I., Aliaga, D.: Example-driven proce-
dural urban roads. Comput. Graph. Forum. 35, 5-17 (2016)
Nishida, G., Garcia-Dorado, 1., Aliaga, D.G., Benes, B., Bousseau,
A.: Interactive sketching of urban procedural models. ACM Trans.
Graph. 35(4), 130 (2016)

Pajarola, R., Gobbetti, E.: Survey of semi-regular multiresolution
models for interactive terrain rendering. Vis. Comput. 23(8), 583—
605 (2007)

Prusinkiewicz, P., Hammel, M.: A fractal model of mountains and
rivers. In: Proceedings of Graphics Interface, vol. 93, pp. 174-180.
Canadian Information Processing Society (1993)

Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive fore-
ground extraction using iterated graph cuts. ACM Trans. Graph.
23, 309-314 (2004)

Rusnell, B., Mould, D., Eramian, M.: Feature-rich distance-based
terrain synthesis. Vis. Comput. 25(5), 573-579 (2009)

Samavati, F., Runions, A.: Interactive 3d content modeling for dig-
ital earth. Vis. Comput. 32(10), 1293-1309 (2016)

Smelik, R.M., Tutenel, T., Bidarra, R., Benes, B.: A survey on
procedural modelling for virtual worlds. Comput. Graph. Forum.
33,31-50 (2014)

Smelik, R.M., Tutenel, T., de Kraker, K.J., Bidarra, R.: A declar-
ative approach to procedural modeling of virtual worlds. Comput.
Graph. 35(2), 352-363 (2011)

Stava, O., Benes, B., Brisbin, M., Kiivédnek, J.: Interactive ter-
rain modeling using hydraulic erosion. In: Proceedings of the
2008 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pp. 201-210. Eurographics Association, Switzerland
(2008)

Stava, O., Pirk, S., Kratt, J., Chen, B., Méch, R., Deussen, O.,
Benes, B.: Inverse procedural modelling of trees. Comput. Graph.
Forum. 33, 118-131 (2014)

Tan, P, Zeng, G., Wang, J., Kang, S.B., Quan, L.: Image-based tree
modeling. ACM Trans. Graph. 26, 87 (2007)

Wang, F., Kang, L., Li, Y.: Sketch-based 3d shape retrieval using
convolutional neural networks. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 1875-1883
(2015)

Xu, K., Stewart, J., Fiume, E.: Constraint-based automatic place-
ment for scene composition. Graph. Interface 2, 25-34 (2002)
Yu, Q., Neyret, F., Bruneton, E., Holzschuch, N.: Scalable real-time
animation of rivers. Comput. Graph. Forum. 28, 239-248 (2009)
Zhang, H., Qu, D., Hou, Y., Gao, F., Huang, F.: Synthetic modeling
method for large scale terrain based on hydrology. IEEE Access 4,
6238-6249 (2016)

@ Springer

43. Zhou, H., Sun, J., Turk, G., Rehg, J.M.: Terrain synthesis from
digital elevation models. IEEE Trans. Vis. Comput. Graph. 13(4),
834-848 (2007)

Jian Zhang is currently a Ph.D.
student of School of Computer
Science and Software Engineer-
ing, East China Normal Univer-
sity, China. He received his B.E.
degree in software engineering
from East China Normal Univer-
sity in 2014. His research interests
include procedural modeling and
sketch-based modeling.

Chang-bo Wang is a professor
of School of Computer Science
and Software Engineering, East
China Normal University, China.
He received his Ph.D. degree at
the State Key Laboratory of CAD
& CG, Zhejiang University in
2006, and received B.E. degree
in 1998 and M.E. degree in civil
engineering in 2002, respectively,
both from Wuhan University of
Technology. His research interests
include physically based model-
ing and rendering, computer ani-
mation and realistic image synthe-

sis, information visualization, and others.

Hong Qin is a Full Professor of
Computer Science in Department
of Computer Science at State Uni-
versity of New York at Stony
Brook (Stony Brook University).
He received his BS (1986) degree
and his MS degree (1989) in Com-
puter Science from Peking Uni-
versity in Beijing, China. He
received his Ph.D. (1995) degree
in Computer Science from the Uni-
versity of Toronto. His research
interests include Computer Graph-
ics, Geometric and Physics-based
Modeling, Computer Aided

Design, Computer Aided Geometric Design, Computer Animation and
Simulation, Virtual Environments and Virtual Engineering, and others.

Procedural modeling of rivers from single image toward natural scene production

237

Yi Chen is currently a gradu-
ate student of School of Computer
Science and Software Engineer-
ing, East China Normal Univer-
sity. He received his B.S. degree
in computer science and technol-
ogy in 2015. His research interests
include terrain modeling and vir-
tual reality.

Yan Gao is an associate professor
of School of Computer Science
and Software Engineering, East
China Normal University, China.
He received his B.S. (1993) degree
in Computer Science from Nan-
jing University of Aeronautics and
Astronautics, and received his
M.S. degree (2002) in Computer
Science from Wuhan University
of Technology, China. He received
his Ph.D. (2006) degree in Com-
puter Science from Shanghai Jiao
Tong University. His research
interests include computer anima-

tion and Geometric modeling and others.

@ Springer

	Procedural modeling of rivers from single image toward natural scene production
	Abstract
	1 Introduction
	2 Related works
	3 Method overview
	4 Procedural model for river
	4.1 Parameters of river network
	4.2 River network generation
	4.2.1 Mainstream
	4.2.2 River network

	4.3 Example of river scenes

	5 River generation from image
	5.1 Parameters learning from image
	5.2 Evaluation of river scene production
	5.3 River network optimization
	5.4 Guided optimization from sketch

	6 Implementation details and experimental results
	6.1 Procedural generation of scenes
	6.2 Results

	7 Conclusion and future work
	Acknowledgements
	References

