
Samya: A Geo-Distributed Data System for High Contention Aggregate Data

Sujaya Maiyya, Ishtiyaque Ahmad, Divyakant Agrawal, Amr El Abbadi
University of California Santa Barbara

Santa Barbara, California
{sujaya maiyya, ishtiyaque, agrawal, amr}@cs.ucsb.edu

Abstract—Geo-distributed databases are the state of the art
tools for managing cloud-based data. But maintaining hot
records in geo-distributed databases such as Google’s Span-
ner can be expensive, as it synchronizes each update across
a majority of replicas. Frequent synchronization poses an
obstacle to achieve high throughput for contentious update-
heavy workloads. While such synchronizations are inevitable
for complex data types, simple data types such as aggregate
data can benefit from reduced synchronizations. To this end,
we propose an alternate data management system, Samya,
to manage aggregate cloud resource usage data. Samya dis-
aggregates available resources and stores fractions of these re-
sources across geo-distributed sites. Dis-aggregation allows sites
to serve client requests independently without synchronization
for each update. Samya incorporates a learning mechanism to
predict future resource demands. If the predicted demand is
not satisfied locally, a synchronization protocol, Avantan, is exe-
cuted to redistribute available resources in the system. Avantan
is a novel fault-tolerant consensus protocol where sites agree
on the global availability of resources prior to redistribution.
Experiments conducted on Google Cloud Platform highlight
that dis-aggregating data and reducing synchronizations allows
Samya to commit 16x to 18x more transactions than state of
the art cloud geo-distributed systems such as Spanner and
CockroachDB.

1. Introduction
Many small and mid-sized enterprises rely on large

cloud providers, such as Amazon AWS, Google GCP, and
Microsoft Azure, to provide backend infrastructure. While
the cloud’s pay-per-use strategy along with the elasticity
to spawn new resources on demand has many benefits, it
comes with a cost: an unexpected traffic spike can drastically
increase the consumed resources, leaving the customer with
a hefty bill.

To avoid such surcharges, cloud customers can set limits
on the amount of resources they consume through a variety
of resource tracking services. Clients can set limits on
resources such as storage capacity, number of deployable
VMs, and network bandwidth. Resource tracking services
within a cloud provider actively maintain data on current
resource usage; this data helps enforce the limits and bill
the customer accurately for their usage. A resource can be
consumed only if its current usage is below the preset limit

of that resource – this translates to a read-write transaction
at the resource tracking services.

Consider an example where a large cloud provider,
ultraCloud, has a start-up eCommerce.com as a customer.
The start-up comprises of many teams such as clothing, elec-
tronics, etc, as shown in Figure 1, and the teams consume
resources as indicated in the leaf nodes. The resource limit is
set by an admin of eCommerce.com and is applicable to all
teams within the organization. Such a hierarchical structure
is widely used by cloud providers to allocate resources, track
usage, and accurately bill customers [13, 12, 14].

Figure 1: Hierarchical org structure of a cloud customer.

The cloud provider, ultraCloud, tracks the number of
resources eCommerce.com can consume. For example, each
VM creation results in a read-write transaction in ultra-
Cloud’s resource tracking service to check if the overall
VMs consumed exceed eCommerce.com’s threshold. Only
after this transaction succeeds can the actual physical re-
source be allocated. Any update to an intermediary unit
(team) must percolate to the root node, eCommerce.com,
as the cumulative resource usage by all the teams in the
hierarchy is tracked at the root level. Typical update rates
for a single node in the hierarchy may be in the hundreds of
transactions per second, but the aggregate load on the root
for a moderately sized enterprise hierarchy may easily be
in thousands of transactions, causing the root node’s data to
become a hotspot.

In a cloud setting, data – including a tracking service’s
data – are stored on multiple servers across multiple data
centers to ensure high availability and fault-tolerance, for
example Google’s Spanner [4] and Amazon Aurora [27].

Consider the design choices of a Spanner-like database:
each data item is replicated across multiple sites, one of
which acts as a leader. For each update, the leader replicates
the change onto a set of replicas using consensus protocols
such as Paxos [20]. While this is a good choice for high

1440

2021 IEEE 37th International Conference on Data Engineering (ICDE)

978-1-7281-9184-3/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDE51399.2021.00128

20
21

 IE
EE

 3
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(I

C
D

E)
 |

97
8-

1-
72

81
-9

18
4-

3/
20

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
E5

13
99

.2
02

1.
00

12
8

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:49:27 UTC from IEEE Xplore. Restrictions apply.

availability, it aggravates the hot-spot problem in two ways:
(1) Sequential execution: for hot-spots, where many trans-
actions access the same data, conflicting transactions are
processed by the leader sequentially; and (2) High Latency:
each update is propagated to geographically distant sites,
incurring high latency. Spanner commits a transaction with
a mean latency of 17ms and a tail latency of 75ms [4]; hence
for a single data item, Spanner can commit on average 58.8
transactions per second (tps) and a tail throughput of 13.3
tps. For a customer such as eCommerce.com (Figure 1),
perhaps 60 tps is enough for an individual node, but for the
aggregate root node with hundreds of teams in the hierarchy,
this throughput value becomes problematic.

Our observation is that while geo-distributed databases
are a good choice for supporting complex forms of data,
they are not ideal for simple aggregate data types where
the operations are mostly limited to additions or subtrac-
tions, such as maintaining resource usage data. Spanner-
like solutions provide high scalability but fail to provide the
high throughput necessary for hot-spot data. Based on this
observation, our research objective is to design an alternate
system that manages simple data types and provides high
throughput for update heavy workloads in a cloud setting.

This objective has been addressed for traditional non-
cloud databases in many works such as [23, 2, 19, 9].
Escrow transactions [23] introduced the notion of concurrent
transactions updating different ‘chunks’ of aggregate data,
albeit in a non-distributed database. Barbara et al. [2],
Kumar et al. [19], and Golubchik et al. [9] introduced
the idea of partitioning aggregate data onto multiple sites,
allowing each site to independently update its portion of the
data value (e.g., multiple sites independently selling airline
tickets). The problem is made non-trivial by introducing
a constraint while updating the distributed data (e.g., not
selling more airline tickets than the available seats). The
solution proposed in this paper is motivated by these works,
adapted for the radically different settings of large scale geo-
distributed cloud infrastructures.

If partitions of available resources are stored on different
sites, the next logical question to ask is: how to distribute
the available resources among these sites? Advancements in
machine learning and deep learning as well as the abundance
of cloud resource demand data collected by cloud providers
can aid in answering this question. In fact if resource de-
mand can be predicted and resources can be allocated to sites
accordingly, most client requests can be served locally in
a decentralized manner, without incurring expensive cross-
datacenter communications.

In this paper, we propose Samya1 – a data system that
stores and tracks resource usage data across geo-distributed
sites. Samya avoids the high latency and low throughput of
Spanner-like databases by allowing sites to serve client re-
quests locally, without constant expensive synchronizations.

Overview: To serve client requests locally while still
maintaining the global constraint, sites in Samya start with
an initial allocation of available resources. We model the

1. Samya is the Sanskrit word for equilibrium or equality.

resource data as tokens (tokens of a specific resource are
indistinguishable). A site can serve requests locally as long
as it has locally available tokens; once it exhausts its local
tokens or if it predicts an increase in resource demand that
cannot be satisfied locally, it synchronizes with other sites
to redistribute any unused tokens in the system. We propose
a novel protocol –Avantan2 – to redistribute spare tokens.
Avantan is a fault-tolerant consensus protocol, in which,
unlike Paxos, the value to agree upon is unknown at the
start of the protocol.

Along with providing low latency, the dis-aggregation
strategy of Samya increases its availability compared to
Spanner-like databases. For a specific resource, Spanner
becomes unavailable if a majority of the sites that store
the resource information fail, whereas Samya is available
as long as at least one site is available.

Other Applications of Samya: Although Samya is mo-
tivated and presented as a service that stores and tracks
resource usage, it can be used as a data managing system
to maintain any aggregate data in the cloud. Examples of
applications consisting of aggregate data are: rate limiting
services to manage quotas and policies; inventory manage-
ment such as online shopping, car rentals, etc.; airline ticket
booking; advertisement campaigns tracking; billing services;
etc,. For ease of exposition, in this paper we focus on one
application: maintaining resource usage data.

2. Related Work
The hotspot problem for aggregated data is an impor-

tant practical problem studied extensively by the database
community. Data partitioning is the most predominantly
adopted solution for the hotspot problem, generally present
in two main forms: (i) Key partitioning where data items
are partitioned into different, non-overlapping sets based on
their keys and the sets are stored across multiple sites. (ii)
Value partitioning where the same data item, irrespective of
its key, is partitioned into different values and these values
are stored across multiple sites. Samya adopts the value
partitioning approach to store fractions of an aggregate value
(i.e., available tokens) across different sites.

The idea of value partitioning has been studied ex-
tensively, starting with the seminal paper by O’Neil [23].
In [23], O’Neill introduced escrow transactions where dif-
ferent transactions operate on different fractions of the same
data, thus allowing concurrency; this was proposed for a
non-distributed database. In [19], Kumar and Stonebreaker
extended [23] to site escrows: sites serve transactions locally
as long as they have non-zero escrow quantity. In [11],
Harder extended the idea of escrows and introduced hi-
erarchical escrows to reduce coordination to dynamically
update escrows of multiple sites. In [18], Krishnakumar and
Bernstein proposed Generalised Site Escrow to dynamically
allocate parts of aggregate data (i.e., resources) to different
sites using quorum locking and gossip messages.

The demarcation protocol [2] introduced by Barbara
and Garica-Molina partitions an individual data value to be

2. Avantan in Sanskrit means allocation.

21441

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:49:27 UTC from IEEE Xplore. Restrictions apply.

stored on separate machines; the protocol explains how to
maintain constraints on the data when the data is distributed.
In [1], Alonso and El Abbadi extend the demarcation pro-
tocol to store the value partitions across more than two
sites and formalize the theory of partitioned data. In [9],
Golulbchik and Thomasian assume the incoming request
pattern to follow Poisson distribution and allocate tokens
to different sites based on this distribution.

In essence, the above discussed works aim to partition
a data item based on its value, store the partitions on
multiple sites, and update them concurrently, while main-
taining a global constraint. These protocols are proposed
for radically different environments where typically the sites
are not geo-distributed, the networks are assumed reliable,
and the results presented are typically simulations. Samya
brings the basic idea – dis-aggregate the aggregate data
to increase concurrency – from these works into the more
modern context of cloud computing and geo-distributed data
management systems.

A related approach that supports local operations without
global synchronization is proposed by Shapiro et al. [25]
as Conflict-free Replicated Data Types (CRDTs). CRDTs
support conflict freedom by using eventually consistent
replication. The eventual consistency guarantees and the
semantics of the data types allows replicas to be updated
locally and synchronized eventually. CRDTs, or rather sys-
tems that use CRDTs, differ from Samya in that the replicas
of CRDTs do not dis-aggregate the value of a data item
nor maintain a global and distributed constraint, which are
important aspects of Samya. The replicas of a data item in
CRDT systems have identical values, without a notion of
re-balancing the values stored in each replica, as performed
in Samya. Another major difference between the two is data
in CRDT systems typically need to be commutative whereas
data in Samya can be non-commutative.

With the rise of the cloud paradigm, many new database
designs opt for geo-distribution to provide high availabil-
ity [4, 6, 27, 26]. The data in these systems are key par-
titioned and replicated across geo-distributed sites. Google
Spanner [4], Amazon Aurora [27], and CockroachDB [26]
all use replication protocols such as Paxos [20] or Raft [24]
to consistently replicate each update to a quorum (typically
majority). While Amazon’s Dynamo [6] chooses eventual
consistency and is hence less stringent on replicating each
update, it may suffer from inconsistent data.

In general, these approaches differ from Samya in that
they employ key partitioning and aim to efficiently execute
distributed transactions across these partitions, which are
often also replicated. First, due to replicating each update
to a quorum of geo-distributed sites, these systems are
prone to hot-spot problems for update heavy and contentious
workloads. Second, the design mantra common across these
works is to build a general data management system that can
store varied and complex forms of data. While the general
approach has many benefits, it fails to take advantage of
application specific data forms (such as aggregate data)
to optimize performance. This forces applications such as
cloud resource tracking services to inevitably design their

own data managing systems. Samya is designed to take
advantage of aggregate data by providing high performance
support for hot-spots without compromising availability.

3. Samya Architecture

3.1. System Model

This section discusses the system model of Samya.
Samya consists of sites and application managers.

Sites: To enhance the performance and for high avail-
ability, the aggregate data is dis-aggregated into different
partitions and the partitions are stored across multiple sites,
typically geo-distributed. Sites in Samya act as data shards
that store fractions of dis-aggregated resource availability
and usage data. For simplicity, we assume that all sites store
information about all resources and in most of the paper
the focus is on managing a single resource. Changing this
design choice to allow only some sites to store information
of specific resources is fairly straightforward; a run-time
library can provide lookup and directory services to identify
the sites that maintain a specific resource data.

Application Managers: These are stateless processes
that relay the messages between a client and the sites. App
managers mask the network topology and individual site
availability from external clients. As the sites and the clients
are geo-distributed, multiple geo-distributed app manager
processes exist to reduce the communication latencies be-
tween clients and sites. Being stateless, app managers can
easily scale on demand depending on the request load.

Samya assumes an underlying asynchronous communi-
cation network where messages can be delayed, dropped, or
reordered. The sites and the application managers can fail
by crashing but do not exhibit malicious behavior. Unless
they crash, the sites and application managers execute the
designated protocol correctly. Samya further assumes that
a site, which stores the data, does not crash indefinitely;
when a crashed site recovers, it reconstructs its previous
state (typically stored on stable storage). If an application
manager crashes, since they are stateless, a new process can
be spawned easily and plugged into the system.

3.2. Data Model
Abstractly, we term each resource stored in Samya as

an entity. Multiple instances of an entity are viewed as
a set of indistinguishable tokens. The clients (i.e., cloud
customers) acquire or release these tokens and Samya tracks
client actions to maintain up-to-date resource usage and
resource availability information for each entity. The ap-
plication owner (e.g., admin of an enterprise) configures a
preset maximum Me – the limit on available tokens for
entity e – and the application users can acquire or release
specific quantities of tokens for the entity.

Samya maintains the following system level constraint:
at no point does the system allow the clients to collectively
acquire more than Me tokens for an entity e.

0 ≤ total acquired tokens ≤Me (1)

1442

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:49:27 UTC from IEEE Xplore. Restrictions apply.

The state of an entity e, as maintained by each site
S in the system, refers to specific details as presented in
Table 1a: id is a unique identity to identify the type of
entity e (or resource, such as VM or storage); TokensLeft
indicates the number of tokens of entity e available at site
S; TokensWanted indicates the number of tokens of entity
e that site S needs during a redistribution.
Transactions: Clients perform two types of transactions:
• acquireTokens(e, n): A client asks for n tokens of

entity e, where n is a positive integer.
• releaseTokens(e, m): A client returns m tokens of

entity e, where m is a positive integer. These tokens can
later be acquired by other clients. An individual client never
returns more tokens than what it has acquired.

4. Samya
In this section we discuss how Samya efficiently man-

ages and tracks resource usage. Samya is a highly available
distributed data management system proposed as an alterna-
tive to manage resource data in geo-distributed databases. If
a client consumes any resource such as creating additional
VMs, traditional geo-replicated databases update all the
replicas to reflect the resource usage. Samya, on the other
hand, chooses a single site to update the resource usage
data, thus avoiding the expensive cross data-center commu-
nications for each update. To cope with varying resource
demands at different sites, Samya relies on learning based
predictions and dynamic reallocation of resources.

4.1. Overview
In this section, we provide an overview of Samya’s

request serving approach.

4.1.1. Components of a Site in Samya. Each site in Samya
consists of 4 components as shown in Figure 2.
• Request Handling Module: This module communicates
with app managers and serves client requests locally. This
module also triggers redistributions.
• Prediction Module: This is a learning module, trained on
existing resource demand data, that predicts future resource
demands in terms of number of tokens.
• Protocol Module: If the Request Handling module trig-
gers a redistribution, this module executes a multi-round
fault-tolerant protocol that collects token information from
other sites for redistribution.
• Redistribution Module: Once the redistribution protocol
completes, based on the responses from other sites, this
module re-allocates the spare tokens.

Each of these modules is pluggable and can be easily
replaced with an upgraded version, if and when needed.

4.1.2. Life-cycle of a client request. A step-wise overview
of how sites in Samya serve client requests is presented in
Figure 2:
1) Client request: A client generates and sends either an
acquireTokens(e, n) or releaseTokens(e, m) request, where e
is the entity id, and n, m are number of tokens. This request
reaches the closest app manager to the client (this can be
achieved using a load balancer).

Figure 2: Life-cycle of a client request.

2) App Manager: Typically, an app manager relays the
client request to the closest site. But if the closest site
has failed or is overloaded, an app manager may relay the
client request to another site. As a result, a single client’s
acquireTokens request may be sent to a site Sk whereas a
releaseTokens request may be sent to a different site Sj .
This is acceptable because sites in Samya only store the
resource usage data; Samya is not responsible for the actual
physical resource allocation, which is the function of higher
level applications.
3) Site serving request: A site S that receives a client
request attempts to serve the request locally; if successful,
it updates its local token state based on the type of request:

TokensLeftS = TokensLeftS − n (2)
if the client acquired n tokens; or

TokensLeftS = TokensLeftS +m (3)

if the client released m tokens. The site then responds to
the client, which is relayed via an app manager.
4) Demand prediction: After serving a client request, the
site predicts the future demand (e.g., next 5 minutes).
5) Trigger redistribution: If the predicted value indicates
a decrease in demand, the site simply continues to serve
more requests. However, if the predicted value indicates an
increase in demand that cannot be satisfied locally, the site
triggers a redistribution.
6) Execute protocol: If the site triggers a redistribution,
it communicates with other sites to collectively execute a
fault-tolerant protocol to share with each other the state of
entity e, which includes the information shown in Table 1a.
7) Reallocate tokens: Based on the shared information, each
site independently reallocates the overall spare tokens using
a deterministic reallocation procedure.
8) Update tokens state: Depending on the outcome of the
reallocation, the site that triggered the redistribution may
acquire more tokens, upon which it updates its state of entity
e and serves any pending or future requests.

In the following sections, we elaborate on: i). when
is a redistribution triggered? ii). how is the redistribution
protocol executed? and iii). once the protocol terminates,
how are the spare tokens reallocated? Table 1b defines the
variables that will be used in the following sections.

4.2. Triggering Redistribution
The cloud computing literature has many works that

highlight the predictability of resource demands in the cloud,

1443

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:49:27 UTC from IEEE Xplore. Restrictions apply.

item description
id identity of resource type

TokensLeftS Tokens left at site S
TokensWantedS Tokens wanted by site S

(a) State variables of an entity e.

Symbol Meaning
N Number of sites
TLt Tokens Left at tth redistribution
TWt Tokens Wanted at tth redistribution
St Total spare tokens in tth redistribution
Rt Set of sites in tth redistribution
Lt List of state variables of the sites in Rt

(b) Symbols used in explaining the redis-
tribution strategy.

Variable init values
BallotNum initially < 0, s >

InitVal state of entity e (Table 1a)
AcceptVal initially ⊥ (Null)

AcceptNum initially < 0, s >
Decision initially False

(c) Avantan variables at site s during
each protocol execution.

TABLE 1

e.g., [10, 5, 22, 7, 17]; as well as discuss various techniques
to predict resource demand. The common underlying idea
is to collect a large amount of actual demand data, analyze
this data to uncover any periodicity or patterns, and develop
mathematical models that can learn from the past data to
predict future demands.

Samya adopts a similar approach where application-
specific historical resource demand data is collected to train
a learning model. Once this model is trained and tuned to
predict future demands, it is used as the Prediction Module
(Figure 2). The Prediction Module is a pluggable module
wherein the application developers using Samya are free to
choose the best prediction technique suitable for their work-
load. This module can be replaced even after deployment,
if a better learning approach is found or if the application
workload changes. We discuss the prediction methods used
in evaluating Samya in Section 5.

An epoch is defined as the look-ahead time duration
used during prediction. This dictates how far ahead in the
future to predict resource demand (e.g., 5 or 10 minutes)
depending on the workload pattern. Samya supports two
ways of triggering a redistribution.
• Proactive redistribution: After a site serves an ac-

quireTokens(e,n) request, in a background thread, it predicts
resource demand for the next epoch. If demand is decreasing
or if the increase is below its current tokens availability, the
site continues to serve client requests; otherwise, the site
triggers a redistribution by updating its state of entity e:

TokensWanted = PredictedV alue− TokensLeft (4)
• Reactive redistribution: Since prediction techniques

are rarely 100% accurate, Samya allows for reactive redis-
tributions. When a site receives a client request that cannot
be served locally due to insufficient locally available tokens,
the site triggers a reactive redistribution by updating its state
of entity e:

TokensWanted = m (5)

4.3. Executing Redistribution Protocol
Once a site decides to trigger redistribution, it executes

Avantan: a novel fault-tolerant consensus protocol used to
redistribute available resource tokens. This section presents
two different versions of Avantan differing primarily in
their failure assumptions and failure recoveries. Sites ex-
ecute multiple instances of Avantan either sequentially or
concurrently; a single execution instance is presented in this
section. For each instance, Avantan aims to reach agreement
on the list of sites participating in that instance. The protocol

is designed to tolerate arbitrary crashes, message losses, and
network partitions, while making a best effort to provide
liveness. The two versions of Avantan are:
• Avantan[n+1

2]: Requires a majority (N2 + 1) of sites
to be alive and communicating during protocol execution.
This version is suitable when individual network links are
highly unreliable (prone to message drops) and servers crash
frequently but network partitions are infrequent. In this
version all sites execute one redistribution after another.

Avantan[∗]: No requirements on majority of sites being
alive to execute the protocol; it tolerates network partitions
of arbitrary sizes and allows different partitions to execute
redistribution concurrently. But this version is sensitive to
message losses during the execution of the protocol.

The two versions also differ in their failure recovery
mechanism, which will be discussed later. In developing
the protocol, we follow the abstractions defined in the Con-
sensus and Commitment (C&C) framework [21]. Avantan
abstractly consists of the following phases: the first phase
executes Leader Election and Value Construction, the sec-
ond phase makes the value Fault-Tolerant, and finally, the
third asynchronous phase distributes the Decision.

We explain the two versions of Avantan with respect to
redistributing the tokens of a single entity e; the protocol
can be easily extended to include multiple entities. During
protocol execution, sites maintain the variables in Table 1c,
which mainly correspond to the standard variables used
in Paxos. BallotNum is a tuple of the form <num, id>
where num is a local, monotonically increasing integer and
id is site id. Ballot number ensures the total ordering of
different redistributions. InitVal is the current state of entity
e (as defined in Table 1a) at site s when the redistri-
bution starts. AcceptVal is the list of state values of the
sites participating in the redistribution and AcceptNum is
the ballot number at which a site updates its AcceptVal.
Finally, a boolean Decision indicates if the sites reached
agreement on AcceptVal at ballot BallotNum. Unlike in
Paxos, AcceptVal is a list of values and not a single value.

The redistribution protocol is initiated by a site S either
for proactive or reactive reasons. Note that once a site starts
participating in the redistribution protocol, it queues all the
acquireTokens and releaseTokens requests from clients until
the protocol terminates.

4.3.1. Avantan[n+1
2]. The protocol consists of 3 rounds (5

phases) as described in Algorithm 1:

1444

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:49:27 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Avantan[n+1
2] redistribution protocol.

Let statet.i be the state of entity e at site with id i during
tth execution of Avantan.

1: procedure ELECTION-GETVALUE()

2: BallotNum ← (BallotNum.num+1, selfId)
3: InitVal ← currState /* With an updated

TokensWanted */
4: Send Election-GetValue(BallotNum) to all

5: procedure ELECTIONOK-VALUE()

6: upon receiving Election-GetValue(bal) from S
7: if bal > BallotNum then
8: BallotNum ← bal
9: predictedVal ← PredictForNextEpoch()

10: if predictedVal > currState.TokensLeft then
11: currState.TokensWanted ←

predictedVal - currState.TokensLeft
12: InitVal ← currState
13: Send ElectionOk-Value(BallotNum, InitVal,

AcceptVal, AcceptNum, Decision) to S

14: procedure ACCEPT-VALUE()

15: if received ElectionOk-Value(bal, initV, acceptV,
acceptN, dec) from majority then

16: if at least ONE response with dec=True then
17: AcceptVal ← acceptV of that response
18: Decision ← True
19: else if at least one response with acceptV 6= ⊥

/* dec is True for none. */ then
20: AcceptVal ← acceptV of the highest

acceptN
21: else
22: AcceptVal← (InitVal || all received initV s)
23: AcceptNum ← BallotNum
24: Send Accept-Value(BallotNum, AcceptVal, Deci-

sion) to all

25: procedure ACCEPT-OK()

26: upon receiving Accept-Value(bal, acceptV, acceptN,
dec) from S

27: if bal ≥ BallotNum then
28: AcceptVal ← acceptV
29: AcceptNum ← bal
30: Decision ← dec
31: Send Accept-ok(BallotNum) to S

32: procedure DECISION()

33: if received Accept-ok(bal) from majority then
34: Decision ← True
35: Send Decision(BallotNum, Decision) to all

• Election-GetValue: In the first phase site S attempts to
become the leader as well as collect the state values from
other sites. Site S increments its ballot number (line 2) and
sets its InitV al to its current local state of entity e, i.e.,
TokensLeft, and TokensWanted. Site S then sends Election-
GetValue(BallotNum) messages to all sites.

• ElectionOk-Value: As shown in lines 6-13, upon receiving
the Election-GetValue message, a site C (termed as cohort
to distinguish from the leader) checks if the received ballot
number is greater than its current ballot number. If yes,
it updates its ballot number, and predicts the next epoch’s
demand (line 9). C also sets its TokensWanted field (line
11) only if the predicted value is greater than current tokens
left, as C cannot satisfy its increasing demand. C then sets
its InitV al to the updated state and sends ElectionOk-
value(BallotNum, InitVal, AcceptVal, AcceptNum, Deci-
sion) to leader S. The AcceptVal, AcceptNum, and Decision
variables are used in failure recovery; in a failure-free exe-
cution, these variables are set to the initial values as defined
in Table 1c.

• Accept-Value: The leader S waits until it receives
ElectionOk-Value messages from a majority of the sites
including itself, denoted as Rt. In a failure-free execution
(failure recovery explained later), S sets AcceptV al to the
concatenated InitVals received in the ElectionOk-Value re-
sponses (line 22), and sets AcceptNum to its current ballot
number. S then sends Accept-Value(BallotNum, Accept-
Val, Decision) to all sites.

• Accept-ok: Upon receiving the Accept-Value message
from the leader, indicated in lines 26-31, a cohort C checks
whether the received ballot number is at least as high as
its current ballot number. If yes, it updates the AcceptV al,
AcceptNum, and Decision variables and sends an Accept-
ok(BallotNum) message to the leader.

• Decision: The leader waits for Accept-ok messages from
at least a majority of sites (including self), then sets its
Decision variable to True, and sends Decision(BallotNum,
Decision) messages to all. The protocol terminates for the
leader when it sends the Decision messages; the proto-
col terminates for a cohort once it receives the Decision
message. The sites then reallocate the tokens using the
information in AcceptV al and respond to any pending
client requests that were queued. The sites also reset the
variables in Table 1c (except BallotNum) once the protocol
successfully terminates.

Failure Recovery: If the leader fails (crashes or par-
titions), the other sites must recover in order to continue
serving the clients. The recovery follows the same steps as
a failure-free execution: if a site S′ times-out waiting for
the leader’s message, S′ attempts to become the new leader
and terminate the protocol by sending Election-GetValue
messages to all the sites. As shown in Procedure Accept-
Value (lines 15-24), S′ waits for a majority of ElectionOk-
Value messages and checks if at least one of the messages
has Decision as True: this implies the previous leader had
terminated the protocol and had sent at least one Decision

1445

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:49:27 UTC from IEEE Xplore. Restrictions apply.

message before failing; so S′ chooses the AcceptV al re-
ceived in this message (lines 16-18).

If none of the received messages has Decision as True
but at least one message has a non-empty AcceptV al, this
implies the previous leader had constructed the AcceptV al
and sent Accept-Value to at least one site before failing;
hence the new leader S′ chooses this value as AcceptV al
(lines 19-20). If multiple sites respond with differing
AcceptV als, the new leader chooses the AcceptV al cor-
responding to the highest AcceptNum. Any other case
implies the previous leader had either failed to construct
AcceptV al or to store it on a majority before failing,
and hence, S′ is free to construct AcceptV al based on
the received InitV als (line 22) (this is also the failure-
free behavior). The next steps of fault-tolerantly storing the
chosen value and sending the decision are the same as in
failure-free executions.
Fault Tolerance: As stated in the FLP impossibility result
[8], no consensus protocol can guarantee termination even
with a single site failure. Following the impossibility result,
Avantan[n+1

2] can block if a majority of the sites fail or are
unreachable, similar to Paxos.

In spite of the blocking behaviour of Avantan[n+1
2],

Samya’s availability is higher than a system that executes
Paxos for each transaction (e.g., Spanner). This is because
Avantan[n+1

2] does not block if a majority of the sites have
failed in the first phase of the protocol. To provide liveness,
we use timeouts: if a site that wants to be a leader sends out
Election-GetValue message but does not receive enough
ElectionOk-Value messages within the timeout period, the
site terminates the redistribution and continues to serve any
client requests that can be served locally. This is acceptable
since the leader failed to construct any value before aborting
the redistribution.

However, if the leader successfully constructed a value
and sent Accept-Value messages to all sites but failed
to make the value fault-tolerant, i.e., it did not receive a
majority of Accept-Ok messages, then that site and the
other live sites are blocked until a majority recover.

Theorem 1: No two distinct values are both chosen for a
given instance of Avantan[n+1

2].
Proof : Proof presented in the extended technical report [16].

4.3.2. Avantan[∗]. Avantan[n+1
2], similar to Paxos [20]

and other other consensus algorithms, is restrictive as it
requires a majority of sites for redistribution to succeed.
However, the tokens required by a site S, indicated in the
TokensWanted field, might be satisfied by fewer than a
majority of sites. The token redistribution logic imposes no
requirements on the minimum number of sites. Hence, we
propose an alternative consensus protocol, Avantan[∗], that
allows any subset of sites to participate and ensures that
all participating sites agree on the same value. We modify
Avantan[n+1

2] to accommodate these new requirements.
The failure free execution code of Avantan[∗] is the same

as Algorithm 1 but with 3 major changes:
(i). The leader S, rather than waiting for a majority of

responses after sending Election-GetValue messages, waits

until it receives enough ElectionOk-Value messages (with
TokensLeft field set) such that S’s token requirements can
be satisfied. After a predefined amount of time, if S does
not receive enough responses, it aborts the redistribution
and notifies other sites and the clients. All the sites whose
InitV als were collected form the set Rt – the set of
sites participating in the tth redistribution. In all subsequent
rounds, S communicates only with the sites in the Rt, while
notifying the other sites to discard this redistribution.

(ii). If a cohort responds with ElectionOk-Value mes-
sage to one leader, it rejects all other Election-GetValue
messages from concurrent leaders (even if they have higher
ballot) until the former instance of Avantan[∗] is complete.
This ensures that a site participates in one instance of
redistribution at a time.

(iii). Rather than waiting for any majority of sites to
respond with Accept-ok messages (as shown in line 33),
the leader S waits to receive Accept-ok from ALL the sites
in Rt before it sends out the decision.
Different sets of sites can execute parallel redistributions but
an individual site participates in one redistribution at a time.

Failure Recovery: Since Avantan[∗] does not require a
majority quorum to proceed, its failure recovery differs from
that of Avantan[n+1

2]. The leader S or other participants can
fail at any point during the execution of the protocol. Sites
that did not even receive the Election-GetValue message
are free to participate in other redistributions. If the leader
fails (crash or network partition), sites that participated in
the redistribution, must be able to recover.

A cohort C that participated in the redistribution detects
leader failure using time-outs. Upon timeout, C checks
the progress of the protocol execution. using the variables
defined in Table 1c. If site C’s Decision variable is True,
this implies the protocol had terminated and so C reallocates
the tokens. If the Decision is not true, C decides its next
action based on the value of AcceptV al:

i). If AcceptV al = ⊥: This implies C did not receive
AcceptVal from the leader S before S failed; thus, C is
free to abort this redistribution because the previous leader
could not have proceeded to the Decision phase without the
Accept-ok from C.

ii). If AcceptV al 6= ⊥: This implies the leader had
chosen a value but may not have decided on it if it had failed
to receive all Accept-oks from Rt before failing. C then
contacts all sites in Rt and waits for their responses (note
that C knows all the sites inRt based on the list of InitV als
in AcceptV al). If any site responds with Decision as True,
this implies the previous leader fault-tolerantly stored the
value but failed before sending Decision to all. Site C sends
the Decision message to all sites in Rt.

Otherwise, if any site responds with AcceptV al = ⊥,
this is same as case (i), and C can safely abort the redistri-
bution (and perhaps notify other sites in Rt). If all sites in
Rt, except the previous leader S, respond with identical
AcceptV al, this implies S successfully stored the value
on all sites in Rt but failed before sending any Decision
message. Hence, site C decides on that value, sets Decision
to True, and sends Decision messages. Finally, if C cannot

1446

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:49:27 UTC from IEEE Xplore. Restrictions apply.

communicate with all the other blocked sites in Rt, it is
blocked until the communication is fixed.
Fault tolerance: Similar to Avantan[n+1

2], failures during
protocol execution can cause sites in Rt participating in that
execution of Avantan[∗] to be blocked. But since Avantan[∗]
allows fewer number of sites to participate in a redistribution
compared to Avantan[n+1

2], the set of sites not participat-
ing in the tth instance of Avantan[∗] are free to serve
client requests or execute another redistribution instance.
The experiments in Section 5 analyze and contrast the fault
tolerance of the two versions of Avantan in practical settings.

Theorem 2: No two distinct values are both chosen by the
set of sites participating in a given instance of Avantan[∗].
Proof : Proof presented in the extended technical report [16].

While Avantan seems similar to Paxos, they differ in
two major ways: (i) Paxos aims to reach agreement on
a single, client provided value whereas Avantan collects
partial values from each site and aims to reach agreement on
the aggregated values, and (ii) the redistribution correctness
condition (Equation 1) does not require a majority – a fact
that is exploited in designing Avantan[∗]– which is stringent
requirement of Paxos.

4.4. Reallocating Tokens
Once the execution of Avantan terminates, the sites

execute a deterministic procedure, discussed in this section,
to reallocate the tokens. A successful execution of either
versions of Avantan ensures agreement on the AcceptV al,
which is a list of InitV als, i.e.,:

Lt =< e, TLt, TWt > ∀ i εRt (6)

The reallocation logic defined in Algorithm 2 takes Lt as
input and reallocates the spare tokens among the set of sites
in Rt. The redistribution algorithm ensures the constraint
in Equation 1 that at no point does the token allocation
count across all sites exceed the maximum limit Me for
a given entity e. For ease of exposition, we again focus
of reallocating the tokens for a single entity e and use the
variables defined in Table 1b to explain Algorithm 2.

Redistributing tokens: The RedistributeTokens proce-
dure takes Lt as input. The spare tokens and the total tokens
wanted (sum of tokens in the TokensWanted field of each
site) across all sites in Rt are computed as shown in lines
4-6. If the spare tokens are more than the total tokens
wanted, all pending client requests can be satisfied, and the
AllocateTokens procedure is called.

Rejecting requests: If the tokens wanted are more than
the spare tokens available, some requests must be rejected
as defined in the RejectSomeRequests procedure of Algo-
rithm 2. We adopt a greedy approach to maximise overall
token usage rather than maximise the number of requests
satisfied. This is achieved by first sorting the list Lt in
ascending order of tokens wanted (line 11); we choose the
ascending order so that the algorithm can reject requests
with least tokens wanted first. Requests are rejected by
setting tokens wanted to 0 (line 13) and increasing the spare

Algorithm 2 Procedures to re-allocate spare tokens after a
successful redistribution

1: procedure REDISTRIBUTETOKENS(Lt)

2: St ← 0 /* Spare tokens */
3: TotalTW ← 0 /* Total tokens wanted*/
4: for i in Rt do
5: TotalTW ← TotalTW + Lt[i].TWt

6: St ← St + Lt[i].TLt

7: if TotalTW > St then
8: Lt,St ← RejectSomeRequests(Lt,St)
9: AllocateTokens(Lt,St)

10: procedure REJECTSOMEREQUESTS(Lt,St)

11: sortedLt ← Lt sorted in ascending order of TWt

12: for i in sortedLt do
13: sortedLt[i].TWt ← 0

14: St ← St + sortedLt[i].TLt

15: if TotalTW ≤ St then
16: break
17: return sortedLt,St

18: procedure ALLOCATETOKENS(Lt,St)

19: for i in Rt do
20: Lt[i].T okensGranted← Lt[i].TWt

21: St ← St − Lt[i].TWt

22: for i in Rt do
23: Lt[i].T okensGranted←

Lt[i].T okensGranted+
St

len(Rt)

quantity, St, (line 14) until the number of spare tokens
exceeds the total tokens wanted (lines 15-16).

Allocating spare tokens: Finally, AllocateTokens (line
18) is called with the updated list Lt and spare tokens St. At
this point, the redistribution satisfies all requests with non-
zero tokens wanted (as the requests that cannot be satisfied
are already rejected). A tokens request is granted as shown
in line 20 and for each granted request, the spare quantity
is updated (line 21) After satisfying requests, if any more
tokens are left, they are equally distributed among all the
participating sites (line 23).
The redistribution procedure is pluggable; an application can
plug in any other algorithm that better suits their need.

5. Experimental Evaluation
This section discusses the experimental evaluation of

Samya, specifically the performance of two versions of
Samya that uses Avantan[n+1

2] and Avantan[∗] to handle
any redistributions during the experiments. Samya’s perfor-
mance is compared with two baselines we implemented in
Go and one open-sourced database:

i) MultiPaxSys: A Spanner-like geo-distributed database
that executes multi-Paxos [3] for each transaction.

ii) Demarcation/Escrow: A value-partitioned system
that captures the underlying mechanisms proposed in [2,

1447

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:49:27 UTC from IEEE Xplore. Restrictions apply.

Random Walk ARIMA LSTM
MAE

(no. of tokens) 1212.19 609.13 259.21

(a) Mean Absolute Error (MAE) - in units of
number of tokens - of resource demand pre-
diction for three different prediction models.

percentiles
Samya w/
Av.[n+1

2
]

Samya w/
Av.[∗]

Dem./
Escrow MultiPaxSys CockroachDB

90th 1.40 ms 2.9 ms 3.5 ms 126.8 ms 158.7 ms
95th 10.2 ms 37.3 ms 59.6 ms 172.7 ms 184.2 ms
99th 65.1 ms 97.3 ms 213.9 ms 276.3 ms 351.4 ms

(b) Different latency percentiles of Samya and baseline systems.

TABLE 2

19, 1, 18]. Specifically, Demarcation/Escrow extends the
Demarcation protocol proposed by Barbara et al. [2] to
more than 2 sites, similar to [1] by Alonso et al., and
integrates the notion of site escrows used in [19] by Kumar
et al. All sites start with an equal ‘escrow’ of an entity e
(maximum limit,Me, divided equally among all sites), and
the sites serve requests locally until they exhaust the spare
escrow locally, upon which a site i borrows escrows from
one or more sites. A stringent requirement of this baseline,
inherited from [2] and [19], is it requires the network to be
reliable; a message loss may lead to blocking.

(iii). CockroachDB (v20.2.3): A state-of-the-art open
sourced geo-distributed database [26] that uses Raft[24] to
replicate any changes to the data.

In evaluating Samya, the experiments focus on two
performance aspects: commit latency – time taken to commit
a transaction measured by the client; and throughput – the
number of transactions successfully committed per second,
i.e, only granted acquireTokens and releaseTokens requests
are counted in throughput.

5.1. Resource Demand Data and Its Prediction

Samya is evaluated on a VM workload dataset pub-
lished by Microsoft Azure [15]. The dataset, consisting
of roughly 2 million data points, contains a representative
trace of Azure’s VM workload in a single geographical
region collected over a month. Along with other information,
it includes VM creation and deletion requests reported at
discrete 5-minute intervals. A detailed description and an
analysis of the dataset published by Cortez et al. [5]
discusses several interesting patterns of the dataset. A note-
worthy observation among them is the VM requests have
nearly periodic properties over time. The authors conclude
that for such requests, “history is an accurate predictor of
future behavior”.

5.1.1. Resource Demand Prediction. The original Azure
data was pre-processed such that the number of VM cre-
ations and deletions represent demand for VMs, as depicted
in Figure 3a. The figure shows periodically increasing and
decreasing demand patterns in the data, indicating that a
learning model can learn these patterns to predict future
demands. Although the cloud computing literature consists
of many sophisticated learning methods, we picked 3 simple
options for resource prediction: random walk model as the
baseline model, ARIMA (autoregressive integrated moving
average) as a linear regression model, and LSTM, a type of
recurrent neural network, as a non-linear regression model.

To choose the best predictor of the VM demands in the
Azure dataset, the original one month data was split into

80% of training data and 20% of testing data. The result of
our evaluation is shown in Table 2a. LSTM predicted the
resource demands with highest accuracy, and hence, was
chosen as the prediction module for Samya.
5.1.2. Data Processing. Since Samya is proposed as a
solution for the hot-spot problem of aggregate data, the
dataset used to evaluate Samya needs to have a high request-
arrival-rate. To achieve this, we modified the original data’s
sampling interval of 5 minutes to 5 seconds. As a result, the
same number of requests that arrived in a span of 5 minutes
in the original dataset now arrived in a span of 5 seconds,
generating a workload with high request-arrival-rate. Due to
the shrinking of the sampling interval, the original duration
of 30 days of the entire dataset was reduced to 12 hours.

Samya is a geo-distributed system with sites across
different time zones while the Azure dataset corresponds
to only a single geographical region in a single time zone.
To generate the client requests at different regions, the
original dataset is phase shifted based on the time difference
between the regions. For example, if the demand in the
original dataset peaks at 10 AM Tuesday and drops at 1 AM
Wednesday, in our experiments, clients in North America
generate peak demand load at 10 AM Tuesday at the same
time as clients in Asia generate the reduced demand of 1
AM Wednesday – demand is phase-shifted corresponding
to the time difference between North America and Asia.
The phase shifting retains the periodicity in each region
while avoiding peak demand in all regions at the same time.
Clients in different regions generate respective phase-shifted
transactional workloads where the VM creation and deletion
requests from the dataset are transformed to acquireTo-
kens(VM, 1) and releaseTokens(VM, 1) requests respectively.

5.2. Experimental Setup
The clients and servers were deployed on Google Cloud

Platform where each VM was an n1-standard VM with 8
vCPUs and 30 GiB RAM. For most experiments, the VMs
were placed in 5 different regions: US-West1, Asia-East2,
Europe-West2, Australia-Southeast1, and SouthAmerica-
East1. 3 or 5 is the typical default number of replicas used
in current state-of-the-art databases [4, 26].

To simplify the evaluation, we merged the application
managers and clients into a single machine. Thus, each
region consisted of one VM as the client generating to-
ken acquire or release requests and another VM as the
server serving client requests. In the experiments, all five
clients generated transactions simultaneously and a client’s
requests were served by the closest site closest.

For MultiPaxSys, since systems such as Spanner [4]
place a majority of the sites in close-by regions to achieve

1448

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:49:27 UTC from IEEE Xplore. Restrictions apply.

faster replication time, we placed 3 out of 5 sites in different
regions within the US, and 2 others in Asia and Europe.

All the experiments focused on entity VM and the maxi-
mum global limit,Me, was set to 5000, indicating that each
site in Samya and Demarcation/Escrow starts with 1000
tokens. Note that the start allocation can also be an uneven
token distribution, based on historic data. Furthermore, as
indicated by the resource demand depicted in Figure 3a, a
single region’s demand can go beyond 1000, ensuring that
sites in Samya would require redistribution.

5.3. Latency and Throughput
The first set of experiments evaluate the commit la-

tency and throughput of the two versions of Samya and
the three baselines: Demarcation/Escrow, MultiPaxSys and
CockroachDB by generating load for one hour (correspond-
ing to 60 hours in the original dataset), creating roughly
820,000 transactions, each transaction either acquiring or
releasing one token of VM. The goal here is to study the
behavior of the systems over extended periods of time when
the workload is highly contentious.

Latency: Latency incurred at different percentiles for
all four systems are tabulated in Table 2b. Since each
transaction in MultiPaxSys and CockroachDB executes a
replication round before responding to the client, and the
workload is contentious, they incur significantly higher la-
tencies compared to Samya. For Demarcation/Escrow, al-
though most requests are served locally, due to the lack
of prediction and an efficient escrow redistribution strategy,
a resource demand peak causes latency spikes, causing its
overall latency to be higher than Samya.

The interesting behaviour here is the contrast in latency
numbers for Avantan[∗] and Avantan[n+1

2]. We suspected
Avantan[∗] to outperform Avantan[n+1

2], since the latter
needs to wait for a majority of responses to execute a
redistribution, unlike Avantan[∗], which can proceed with
any number of responses. But the latencies in Table 2b
indicate the opposite – Avantan[n+1

2] has lower latencies
than Avantan[∗] across all percentiles.

The difference in the first phase of the two versions
during redistribution explains this counter-intuitive result.
Avantan[n+1

2] requires a majority of sites to respond with
their local token values, which the leader concatenates
into a single value (i.e., AcceptV al). The redistribution re-
balances the tokens between a majority of sites. Whereas,
Avantan[∗] collects just enough responses (consisting of lo-
cal token values) to satisfy its token needs, and immediately
proceeds to the fault-tolerance phase. While this greedy
approach may benefit specific transactions, Avantan[∗] re-
balances the tokens between a small number of sites, causing
more sites to trigger subsequent redistributions. Hence, in
the long run, Avantan[n+1

2] is better at re-balancing the
tokens and causing fewer redistributions. In the experiments,
for the same client workload, Avantan[n+1

2] required 208
redistributions (proactive and reactive combined) whereas
Avantan[∗] required 792 redistributions.

Throughput: Figure 3b shows the throughput of all
four systems when five clients concurrently send requests.

Since MultiPaxSys and CockroachDB serve these requests
sequentially (as they all update the same data entry), their
throughput is roughly 16-18x worse than Samya and 11x
worse than Demarcation/Escrow. This result highlights the
benefits of dis-aggregating a value to allow executing con-
current transactions.

Between Demarcation/Escrow and Samya, the demand
prediction and a more efficient redistribution strategy of
Samya causes its throughput to be almost 1.3x better than
Demarcation/Escrow. The performance difference between
Avantan[n+1

2] and Avantan[∗] is due to the increased num-
ber of redistribution in the latter, which slows the rate with
which client requests are served.

This experiment establishes the performance of Multi-
PaxSys and CockroachDB are comparable, hence we use
MultiPaxSys as the baseline in the following experiments.

5.4. Failure Experiments
5.4.1. Crash Failures. This set of experiments evaluate
Samya and MultiPaxSys when crash failures occur (Demar-
cation/Escrow is not evaluated in failure experiments since
it requires reliable networks and hence is not fault-tolerant).
The experiment starts with five regions and roughly every 10
minutes, both the site and the client in a region is crashed,
until only one region remains alive, recording the throughput
throughout the experiment. As indicated in the Figure 3c,
once three sites crash, the throughput of MultiPaxSys drops
to 0, since no transaction can be committed once a majority
of the sites fail.

For the two versions of Samya, the performance is
roughly the same up to 2 site failures (note that the per-
formance is similar for both and not worse for Avantan[∗]
because in the first few minutes, the number of redis-
tributions are low due to low resource demand in the
Azure dataset; when the number of redistributions are low,
the two versions perform comparably). When 3 sites fail,
Avantan[n+1

2] attempts redistribution, times-out, and fails
to perform any redistribution due to the failed majority.
However, sites continue to serve requests that can be served
locally. Meanwhile, Avantan[∗] can successfully redistribute
tokens even if only a minority of the sites are alive, thus
causing its performance to be higher than Avantan[n+1

2].
when failures occur.

5.4.2. Network Partitions. This experiment measures the
performance of Samya and MultiPaxSys during a 3-2 net-
work partition, i.e., one partition consists of 3 sites and
the other consists of 2 sites, and clients send transactions
for thirty minutes. The results are indicated in Figure 3d.
In MultiPaxSys, only the partition with 3 replicas contin-
ues to serve client requests and are up-to-date while the
other two replicas are rendered stale. Its performance is
significantly low compared to Samya. For Samya, although
both Avantan[n+1

2] and Avantan[∗] start off with comparable
performance, once the sites exhaust local tokens and trigger
redistributions, Avantan[∗] outperforms Avantan[n+1

2], since
Avantan[n+1

2] cannot redistribute tokens in the smaller net-
work partition whereas Avantan[∗] can.

1449

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:49:27 UTC from IEEE Xplore. Restrictions apply.

0 200 400 600 800

-2k

-1k

0

1k

2k

Hours of a month

R
sr

c
de

m
an

d
(N

o.
of

to
ke

ns
)

(a) One month resource demand
data at a single region.

(b) Throughput of the systems
recorded for an hour.

(c) Throughput recorded when
sites fail.

(d) Throughput recorded during
network partition.

(e) Throughput of Samya with no
constraints and no redistributions
vs. Samya with redistributions.

(f) Throughput of Samya with
and without predictions.

(g) Average throughput (line
graphs) and latency (bar graphs)
for increasing number of sites.

(h) Average throughput measured
with increasing ratios of read-
only transactions.

Figure 3: Various performance evaluations of Samya

The two failure experiments highlight that between
the two versions of redistribution strategies for Samya,
Avantan[∗] performs better in a failure prone environment;
but in an infrequent failure settings, Avantan[n+1

2] performs
better as indicated in Section 5.3.

One advantage of MultiPaxSys over Samya in both
failure scenarios is that MultiPaxSys can allot more tokens
as long as a majority of replicas are alive, because the
synchronous replication makes sure that the entire quota
limit can be used. Whereas some unclaimed tokens in Samya
are inaccessible temporarily until recovery.

5.5. No Constraint vs. No Redistribution

The remaining experiments focus on contrasting the two
version of Avantan in Samya. In this experiment, we explore
whether redistribution is worthwhile and its cost on through-
put. This experiment compares Samya’s performance with
two baseline versions: i) No Constraints: there is no upper-
bound on the number of resource tokens allotted, hence
every requests (acquire or release) succeeds locally at a
site; ii) No Redistribution: a constraint on the limit exists
but once a site exhausts its local quota, it simply rejects the
client request, rather than triggering a redistribution (neither
proactive nor reactive). The results are shown in Figure 3e.

Comparing the baselines: i) Samya with no constraints is
the best case scenario with optimal performance, and as seen
in Figure 3e, Samya with constraints and redistributions has
only 3.5-4% less throughput than the optimal throughput. ii)
Samya with both versions of Avantan has about 14% higher
throughput than Samya with no redistributions, i.e., 14% of
the transactions would be rejected if Samya did not perform
redistributions. This indicates that although executing global
redistribution is expensive, the system performs better with
the redistributions.

5.6. Proactive vs. Reactive Redistributions
This experiment measures the significance of predictions

in Samya. The performance of four variants of Samya
are measured: Avantan[n+1

2] with and without prediction,
and Avantan[∗] with and without prediction. The clients
execute transactions for thirty minutes for each variant. As
indicated in Figure 3f, Samya performs about 1.4x better
with predictions (for both versions). Predictions proactively
prepare a site for the incoming demand and allows a site to
indicate its token requirements with higher precision. This
experiment highlights the advantages of using predictions in
building distributed systems such as Samya.

5.7. Increasing number of sites
This set of experiments evaluate the scalability of Samya

by increasing the number of sites from 5 to 20, with ad-
ditional sites spawned in each of the 5 regions in which
previous experiments were conducted. In this experiment,
for each configuration, the clients generate transactions for
10 minutes. Figure 3g depicts the average latency and
average throughput for each configuration. Samya shows
a roughly linear increase in throughput as the number of
sites increase, while keeping the latency constant for both
versions of Avantan. This experiment highlights that Samya
is highly scalable as more clients can concurrently acquire
or release tokens when the number of sites increase.

5.8. Read-Write workload
This experiment compares the average throughput of the

two versions of Avantan with that of MultiPaxSys, when
the ratio of read-only transactions increases, as shown in
Figure 3h. For Avantan, when a client issues a read request
to a site S, S communicates with all the other sites to
learn their current token availability, aggregates the received
values, and responds to the client with a global snapshot

1450

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:49:27 UTC from IEEE Xplore. Restrictions apply.

of the total available tokens. For MultiPaxSys, the current
available tokens is read at a single leader site. This experi-
ment highlights that when the read ratio increases roughly
past 65%, the throughput of MultiPaxSys increases more
than Avantan. Since reads are performed at a single site in
MultiPaxSys and most writes are performed at a single site
in Samya, one would expect the crossover point to be at
50%, which is not the case. The reason is that in our exper-
imental setup, five geo-distributed clients generate requests
in parallel and for MultiPaxSys, all client requests are sent
to one single leader site, which sequentially processes the
requests, thus incurring high latency. Whereas for Avantan,
due to the decentralised design choice, write requests are
typically served locally by the sites closest to the clients,
in parallel. Hence, as long as an application’s write load is
35% or more, it can benefit by choosing Samya.

5.9. Further Evaluations
Two additional experiments are discussed in the extended
technical report [16]:

(i) Varying the maximum limit Me: The experiment
shows that Avantan’s throughput increases roughly 5x when
the maximum limit is increased from mean (600 tokens)
to max demand (16000 tokens) for the specific Azure VM
demand data, thus highlighting that Samya’s performance
improves with higher maximum limit.

(ii) Varying the request arrival rate: As mentioned
in Section 5.1.2, to generate a high request arrival rate,
the original data sampling interval was modified from 300
seconds to 5 seconds. This experiment compares Samya and
MultiPaxSys when the request arrival interval varies from
5 seconds to the original scale of 300 seconds. The main
conclusion is that even at the original request arrival rate,
Avantan commits 43% more transactions than MultiPaxSys.

6. Conclusion
In this paper, we propose Samya – a geo-distributed

data management system to store aggregate resource usage
data. Samya is intended for high contention, update heavy
(35% or more) workloads. Samya dis-aggregates the data
and stores fractions of available resources on multiple geo-
distributed sites. The dis-aggregation allows concurrent up-
dates to hotspot resources, in contrast to sequentially order-
ing all concurrent and contentious updates at a leader site
as in traditional geo-distributed databases such as Google’s
Spanner. A site in Samya serves client requests indepen-
dently until, based on a learning mechanism, it predicts
an increase in its resource demand that cannot be satis-
fied locally. This triggers a novel synchronization protocol
Avantan to redistribute the available tokens, after which,
sites continue to serve client requests independently. The
experimental evaluation of Samya’s performance highlights
that it can commit 16x to 18x more transactions than a
Spanner-like database. Evaluating Samya for applications
other than resource tracking is an interesting future work.

Acknowledgements
Sujaya Maiyya is partially supported by IBM PhD Fellow-
ship. This work is funded in part by NSF grants CNS-
1703560 and CNS-1815733.

References
[1] Gustavo Alonso et al. “Partitioned data objects in distributed

databases”. In: Distributed and Parallel Databases 3.1 (1995),
pp. 5–35.

[2] Daniel Barbara et al. “The Demarcation Protocol: A technique
for maintaining linear arithmetic constraints in distributed database
systems”. In: International Conference on Extending Database
Technology. Springer. 1992, pp. 373–388.

[3] Tushar D Chandra et al. “Paxos made live: an engineering perspec-
tive”. In: Proceedings of the twenty-sixth annual ACM symposium
on Principles of distributed computing. 2007, pp. 398–407.

[4] James C Corbett et al. “Spanner: Google’s globally distributed
database”. In: ACM Transactions on Computer Systems (TOCS) 31.3
(2013), pp. 1–22.

[5] Eli Cortez et al. “Resource central: Understanding and predict-
ing workloads for improved resource management in large cloud
platforms”. In: Proceedings of the 26th Symposium on Operating
Systems Principles. 2017, pp. 153–167.

[6] Giuseppe DeCandia et al. “Dynamo: amazon’s highly available
key-value store”. In: ACM SIGOPS operating systems review 41.6
(2007), pp. 205–220.

[7] Sheng Di et al. “Host load prediction in a Google compute cloud
with a Bayesian model”. In: SC’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage
and Analysis. IEEE. 2012, pp. 1–11.

[8] Michael J Fischer et al. “Impossibility of distributed consensus with
one faulty process”. In: Journal of the ACM (JACM) 32.2 (1985),
pp. 374–382.

[9] Leana Golubchik et al. “Token allocation in distributed systems”.
In: [1992] Proceedings of the 12th International Conference on
Distributed Computing Systems. IEEE. 1992, pp. 64–71.

[10] Zhenhuan Gong et al. “Press: Predictive elastic resource scaling for
cloud systems”. In: 2010 International Conference on Network and
Service Management. Ieee. 2010, pp. 9–16.

[11] Theo Härder. “Handling hot spot data in DB-sharing systems”. In:
Information Systems 13.2 (1988), pp. 155–166.

[12] Amazon AWS Account Hierarchy. Accessed: 2020-02-17.
[13] Google Cloud Enterprise Hierarchy. Accessed: 2020-02-17.
[14] Microsoft Azure Resource Hierarchy. Accessed: 2020-02-17.
[15] Azure Public Dataset. 2019 (accessed June 30, 2020).
[16] Samya Technical Report. Accessed: 2020-10-13.
[17] Yexi Jiang et al. “Asap: A self-adaptive prediction system for instant

cloud resource demand provisioning”. In: 2011 IEEE 11th Interna-
tional Conference on Data Mining. IEEE. 2011, pp. 1104–1109.

[18] Narayanan Krishnakumar et al. “High throughput escrow algorithms
for replicated databases”. In: VLDB. Vol. 1992. 1992, pp. 175–186.

[19] Akhil Kumar et al. “Semantics based transaction management tech-
niques for replicated data”. In: ACM SIGMOD Record 17.3 (1988),
pp. 117–125.

[20] Leslie Lamport et al. “Paxos made simple”. In: ACM Sigact News
32.4 (2001), pp. 18–25.

[21] Sujaya Maiyya et al. “Unifying consensus and atomic commitment
for effective cloud data management”. In: Proceedings of the VLDB
Endowment 12.5 (2019), pp. 611–623.

[22] Hiep Nguyen et al. “{AGILE}: Elastic Distributed Resource Scaling
for Infrastructure-as-a-Service”. In: Proceedings of the 10th Inter-
national Conference on Autonomic Computing. 2013, pp. 69–82.

[23] Patrick E O’Neil. “The escrow transactional method”. In: ACM
Transactions on Database Systems (TODS) (1986), pp. 405–430.

[24] Diego Ongaro et al. “In search of an understandable consen-
sus algorithm”. In: 2014 {USENIX} Annual Technical Conference
({USENIX}{ATC} 14). 2014, pp. 305–319.

[25] Marc Shapiro et al. “Conflict-free replicated data types”. In: Sym-
posium on Self-Stabilizing Systems. Springer. 2011, pp. 386–400.

[26] Rebecca Taft et al. “CockroachDB: The Resilient Geo-Distributed
SQL Database”. In: Proceedings of the 2020 ACM SIGMOD Inter-
national Conference on Management of Data. 2020, pp. 1493–1509.

[27] Alexandre Verbitski et al. “Amazon aurora: Design considerations
for high throughput cloud-native relational databases”. In: Proceed-
ings of the 2017 ACM International Conference on Management of
Data. 2017, pp. 1041–1052.

1451

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 15:49:27 UTC from IEEE Xplore. Restrictions apply.

		2021-06-19T10:50:23-0400
	Preflight Ticket Signature

