
Dolos: Improving the Performance of Persistent Applications in
ADR-Supported Secure Memory

Xijing Han
North Carolina State University

Raleigh, NC, USA
xhan24@ncsu.edu

James Tuck
North Carolina State University

Raleigh, NC, USA
jtuck@ncsu.edu

Amro Awad
North Carolina State University

Raleigh, NC, USA
ajawad@ncsu.edu

ABSTRACT
The performance of persistent applications is severely hurt by cur-
rent secure processor architectures. Persistent applications use
long-latency flush instructions and memory fences to make sure
that writes to persistent data reach the persistency domain in a way
that is crash consistent. Recently introduced features like Intel’s
Asynchronous DRAM Refresh (ADR) make the on-chip Write Pend-
ing Queue (WPQ) part of the persistency domain and help reduce
the penalty of persisting data since data only needs to reach the
on-chip WPQ to be considered persistent. However, when persis-
tent applications run on secure processors, for the sake of securing
memory many cycles are added to the critical path of their write
operations before they ever reach the persistent WPQ, preventing
them from fully exploiting the performance advantages of the per-
sistent WPQ. Our goal in this work is to make it feasible for secure
persistent applications to benefit more from the on-chip persistency
domain.

We propose Dolos, an architecture that prioritizes persisting data
without sacrificing security in order to gain a significant perfor-
mance boost for persistent applications. Dolos achieves this goal by
an additional minor security unit, Mi-SU, that utilizes a much faster
secure process that protects only the WPQ. Thus, the secure opera-
tion latency in the critical path of persist operations is reduced and
hence persistent transactions can complete earlier. Dolos retains a
conventional major security unit for protecting memory that occurs
off the critical path after inserting secured data into the WPQ. To
evaluate our design, we implemented our architecture in the GEM5
simulator, and analyzed the performance of 6 benchmarks from
the WHISPER suite. Dolos improves their performance by 1.66x on
average.

CCS CONCEPTS
•Hardware→Memory and dense storage; • Security and pri-
vacy → Security in hardware.

KEYWORDS
Memory Security, Merkle Tree, MAC, Persistent memory, Encryp-
tion

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480118

ACM Reference Format:
Xijing Han, James Tuck, and Amro Awad. 2021. Dolos: Improving the Per-
formance of Persistent Applications in ADR-Supported Secure Memory. In
MICRO’21: 54th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO ’21), October 18–22, 2021, Virtual Event, Greece. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3466752.3480118

1 INTRODUCTION
Emerging non-volatile memories (NVMs) are expected to play a
major role in future computing systems. Unlike DRAM, NVMs can
retain data after power loss events, which enables crash-recoverable
workloads that leverage this persistent storage capability. More-
over, NVMs do not require frequent refresh operations as in DRAM,
which allows significant idle-power savings. Finally, NVMs feature
high capacities and potential for further scalability. For instance,
existing NVM products, e.g., Intel Optane DC Persistent Memory
(DCPMM)[12], have capacities of 128GB-256GB per memory mod-
ule. With all these features, NVMs are expected to replace DRAM
or augment it as a part of the main memory.

Due to various challenges for securing a trusted supply chain of
integrated circuits chips, the move towards computing paradigms
where computing systems are not physically under the control of
users, and various advancements in hardware trojans and attacks,
minimizing the trusted computing base (TCB) to the minimum
possible is of utmost importance. In state-of-the-art secure proces-
sors, the TCB is constrained to the processor chip boundaries, and
thus the integrity and confidentiality of data must be protected
when leaving the processor chip boundaries. Even though secure
processors are necessary and already adopted for DRAM-based
memory, they become even more needed with NVMs due to their
data remanence vulnerability. However, integrating secure pro-
cessors with NVMs is challenging; the implementation of secure
processors should account for the recoverability, write endurance,
and performance aspects of NVMs[3, 5, 6, 14, 19, 20, 23, 25, 26].

Persistent workloads that leverage the data retention capability
of NVMs are expected to explicitly flush its persistent data updates
from the processor’s volatile caches to the persistent domain. In
such a persistency model, currently supported in Intel processor,
persistent applications frequently execute cacheline flush opera-
tions followed by a memory fence to force ordering of persistence
operations with following instructions. However, due to the high
write latency of NVMs, persisting updates by flushing them all the
way to the NVMmodule can significantly degrade performance[16].
Therefore, recent support from processor vendors extends the per-
sistence domain to include a small write buffer, inside the processor
chip, called write pending queue (WPQ)[13]. By relying on a backup
battery or ultra-capacitors, the WPQ can be flushed to NVM when
a power outage is detected. Since persisting data becomes as fast

https://doi.org/10.1145/3466752.3480118
https://doi.org/10.1145/3466752.3480118

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Xijing Han, James Tuck, and Amro Awad

as flushing cachelines from caches to the WPQ, it eliminates the
significant delays in the critical path that would have occurred due
to NVM write latency. The support for additional reserved power
to flush the internal WPQ buffer is called Asynchronous DRAM
Refresh (ADR). ADR support is considered a mandatory platform
requirement for systems adopting persistent memories[11]. While
ADR could be further extended (e.g., as in enhanced ADR (eADR))
to further reduce the persistence overheads, it comes at the cost of
non-standard extensions, high costs, and environment-unfriendly
batteries. Thus, we expect most future persistent memory systems
to have the standard ADR support which extends the persistent
domain to include the processor’s WPQ buffer. Due to security and
crash consistency reasons, state-of-the-art secure NVM implemen-
tations apply all secure metadata updates and operations before
inserting the data in the persistence domain, i.e., the data written
to WPQ is treated similarly to off-chip data.
The Challenge: Before considering a cacheline persisted, secure
NVM controllers need to ensure that all the associated security
metadata are updated and crash consistent. Since the WPQ is con-
sidered as part of the persistent domain, such metadata updates
along with expensive cryptographic operations directly add to the
critical path latency of data persistence operations. The overheads
of security metadata updates and cryptographic operations by far
exceed the NVM write latency, which renders the ADR support in-
effective; data persistence operations will incur significant latency
before the data reaches the persistence domain. Based on our exper-
iments, persistent workloads encounter an average performance
overhead of 52% (up to 61%) compared to an ideal secure NVM
system where data is considered persisted immediately after it is
flushed from the processor’s internal caches, i.e., as in non-secure
processors. Prior works[6, 14, 15, 23, 26] discussed the challenges
of implementing secure and crash-consistent NVMs. However, all
prior works assume that the memory backend security operations
should occur before the data to be persisted reaches the persistence
domain (WPQ), and hence incur significant performance overheads
when used with persistent applications.

Our key observation is that it is possible to defer the security
operations to occur towards the eviction from the WPQ, and thus
incur minimal overheads in the critical path (insertion in the WPQ).
However, the fundamental challenge is how to ensure that the
security and recoverability guarantees of NVMs are met with mini-
mal to no changes to the standard ADR power budget and circuitry
supported in persistent memory platforms. Naive implementations
that assume all security metadata operations can be done at the
WPQ draining time (i.e., power failure detected) would fail to meet
the ADR requirements due to the power-consuming cryptographic
operations in addition to potentially tens of reads and writes of
security metadata for each entry to be drained from the WPQ. Thus,
our goal is to devise a novel secure NVM controller that leverages
ADR capabilities to minimize the latency of data persistence op-
erations, while also maintaining the security and recoverability
requirements.

In this paper, we propose Dolos, a novel secure NVM controller
that elegantly and securely shifts the overheads of secure operations
to occur after eviction from the processor’s internal persistence
domain (i.e., WPQ buffer). By doing so, the majority of overheads
due to security operations are removed from the critical path of

data persistence operations, and thus exploit the otherwise un-
tapped potential of ADR-backed WPQ. Dolos design is based on
our observation that the protection of the contents of the WPQ can
implemented in a two-step fashion, one step that is extremely light-
weight at the time of inserting a write entry in the WPQ, which is
in the critical path of the data persistence operations. While the sec-
ond step is at the time of eviction from the WPQ, which essentially
integrates the security metadata updates with the rest of the secure
NVM’s state. While the second step happens on each eviction from
WPQ during the run-time, it can be skipped during WPQ draining
due to ADR activation, i.e., detection of power outage. In other
words, we provide two separate execution paths for evictions from
WPQ, one during normal run-time and one during WPQ draining
stage. The run-time path involves expensive operations and security
metadata updates, whereas the WPQ draining path involves almost
no extra operations beyond writing the WPQ contents to the NVM,
i.e., complying with the standard ADR support for flushing WPQ.
By doing so, Dolos adds minimal latency (the first step) to writes
on their way to the persistence domain (i.e., completion of data
persistence operation). Dolos leverages several novel mechanisms
that cleverly hide the overheads for protecting the contents of the
WPQ such that they can be merely flushed to NVM in case of a
power outage while ensuring security, crash recoverability, and
ultra-low latency in the critical path of persistent workloads. Dolos
can be orthogonally integrated with prior secure NVM works that
optimize memory backend operations (e.g.,[2, 6, 15, 26]), where
Dolos minimizes the the latency of the memory front-end opera-
tions (insertion into the WPQ), and hence significantly improves
persistent workloads’ performance.

To evaluate Dolos, we use Gem5 simulator[7], an open-source
cycle-level simulator, to run representative persistent workloads
from Whisper[16], in addition to in-house developed workloads.
On average, Dolos improves the overall performance by 1.66x,
compared to the state-of-the-art secure NVM implementations.
Moreover, we show how Dolos provides the same security and
recoverability guarantees of the state-of-the-art secure NVM im-
plementations.

The rest of the paper is organized as follows. First, in Section
2, we discuss the background topics related to this work. Section
3 describes the motivation of this paper. Section 4 introduces the
Dolos design. Evaluation methodology and results are shown in
Section 5. Related works are in Section 6. Conclusions are in Section
7.

2 BACKGROUND
In this section, we present the main concepts related to our work.

2.1 Memory Encryption
With attacks that leverage data remanence in memory devices, e.g.,
cold boot attacks in DRAM, there have been significant efforts to
encrypt memory with low overheads. Such attacks become even
more plausible with the use of emerging NVMs that naturally retain
the data for a long time after a power outage. Generally, memory
encryption can be implemented either inside the memorymodule or
from the processor side (near the memory controller). In the former
approach, e.g., as in i-NVMM[9], the data is encrypted/decrypted
when written/read inside the memory module. Thus, any physical

Dolos: Improving the Performance of Persistent Applications in ADR-Supported Secure Memory MICRO ’21, October 18–22, 2021, Virtual Event, Greece

attacks that could successfully acquire the memory module would
fail to breach the confidentiality of data. However, malicious im-
plants or hardware trojans in the memory bus or memory slots can
observe the memory data not encrypted and hence breach confi-
dentiality. Due to the challenges of ensuring a trustworthy supply
chain of integrated circuits (including motherboards), there has
been strong traction towards limiting the trust base to processor
chips, and hence moving memory encryption to the memory con-
troller on the processor side. For instance, Intel’s Software Guard
Extension (SGX) and AMD’s Secure Memory Encryption (SME)
implement memory encryption on the processor side. By doing
so, any attempts to breach the data confidentiality outside the pro-
cessor chip will be thwarted via encryption. For the rest of this
paper, we will assume processor-side memory encryption due to
its prevalence and stronger security.

There are two major ways to implement processor-side memory
encryption: direct encryption or counter-mode encryption.
Direct Encryption: As shown in Figure 1-a, the plaintext is used
as a direct input for the cryptographic encryption engine (e.g., AES)
to generate the ciphertext. In addition to the plaintext, a processor-
wide (or per enclave in the case of SGX) encryption key is used as
the second input to the encryption engine. In this scheme, the same
plaintext will always generate the same ciphertext, which opens the
door for dictionary-based attacks. While the memory address can
be augmented with the plaintext to minimize the dictionary-based
attacks, temporal reuse of the same value in a particular address
would still be exposed. In addition to its security weaknesses, direct
encryption incurs significant delays and performance overheads
due to the high AES latency (typically tens of cycles) encountered
in the critical path of each access.
Counter-mode Encryption: unlike direct encryption, counter-
mode encryption associates each memory block (e.g., 64 bytes)
with an encryption counter that is used along with the block ad-
dress to form initialization vector (IV), as shown in Figure 2. On
each encryption of a particular block, its associated counter is in-
cremented. Instead of directly encrypting the plaintext using the
AES engine, counter-mode encryption uses the IV to generate a
spatially (due to the use of address) and temporally (due to the use
of counter) unique encryption pad that will be merely XOR’ed with
the plaintext to complete the encryption process, as shown in Fig-
ure 1-b. The decryption process is similar except that the ciphertext
will be XOR’ed with an encryption pad. Note that the encryption
pad can be pre-generated without waiting until the arrival of the
ciphertext, which can effectively hide the decryption latency. For
the rest of the paper, we will use counter-mode encryption due to
its security and performance advantages of direct encryption.

The encryption counters used to form the IVs correspond to
memory blocks that are stored in memory. Thus, to complete an
encryption/decryption operation, the encryption counter corre-
sponding to the block to be read/written needs be fetched from
memory to generate the encryption pad used to complete the de-
cryption/encryption. Note that the encryption counters themselves
are not confidential, since the encryption key is unknown to the
adversaries. However, fetching encryption counters on each mem-
ory access can encounter significant performance overheads, and
thus a counter cache is generally used to cache counter blocks. For
storage efficiency, counters are typically packed in 64-byte blocks

Plaintext

AES Engine

Ciphertext

Enc. Key

(a) Direct Encryption

Initialization Vector

AES Engine

Plaintext

Enc. Key

Ciphertext

(b) Counter-mode Encryption

Figure 1: Difference between direction encryption and
counter-mode encryption.

that contain 64 counters organized in a split mode, one 64-bit major
counter and 64 7-bit minor counters. Each counter block covers the
encryption counters of 64 cachelines, i.e., 4KB page when using
64-byte cachelines[8]. While encryption counters themselves are
not a secret, tampering with them or replaying them can comprise
the system’s security due to known-plaintext attacks. Thus, it is
essential to protect the integrity of encryption counters to allow
secure usage of counter-mode encryption.

Page ID Page
Offset Counter Padding

Figure 2: The fields of the initialization vector used in
counter-mode encryption.

2.2 Integrity Verification
Secure processors need not only to protect the confidentiality but
also the integrity of the data when stored off-chip (i.e., outside the
trust base). Also, as mentioned earlier, the encryption counters used
to protect confidentiality need to have their integrity protected as
well. Thus, modern secure processors implement an integrity verifi-
cation mechanism to detect tamper or replay of data or encryption
counters. However, typical authentication mechanisms such as as-
sociating each block with a message-authentication code (MAC)
would fail to prevent replaying old content along with their MAC.
Thus, integrity trees, typically called Merkle Trees, are used.

A Merkle Tree protects the integrity of the memory by a tree
of hashes/MACs where the root is securely stored inside the pro-
cessor chip. Thus, any memory update would lead to update the
corresponding tree path and the root, as shown in Figure 3. Sim-
ilarly, any memory read, once fetched to the processor, needs be
verified by calculating its hash/MAC and subsequently verify with
its parent hash/MAC (if verified), otherwise the parent needs to be
verified through the grand-parent etc. up until reaching a verified
node in the path. Note that once a tree node has been verified and
inserted in the processor cache, it remains verified as it is no longer
vulnerable to external attacks, until it gets evicted.

Generally, there are two types of integrity trees: Merkle Tree
(MT) and Tree of Counters (ToC). As shown in Figure 3, MTs can
be thought of as a tree of hashes where the protected parts are
the leaves, and then levels of hashes are built on top of each other
until all collapsing into a single value, the root. On the other hand,
while ToC leaves are the protected data (or encryption counters),
the ToC nodes consist of counters (also called versions) and a MAC

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Xijing Han, James Tuck, and Amro Awad

that is calculated on them and their parent counter/version in the
next level. Thus, the ToC’s root is also a node that contains coun-
ters/versions that are used as input to the MAC stored along with
the counters/versions in their immediate children nodes and so on.
Figure 4 depicts a sample ToC. In the presence of a large number of
parallel MAC units, ToC can update all levels in parallel, whereas
MT updates propagate serially to the root. However, while ToC
is used in Intel’s SGX, its ability to leverage such parallel updates
for large memory capacities (e.g., large enclaves) is restricted by
the power and area overheads that accompany the use of tens of
MAC engines per memory controller. Moreover, ToCs significantly
complicate crash recoverability in persistent memory[26]. While
the solutions proposed in this work apply to both ToC and MT, we
limit the scope of discussion for the rest of the paper to MT due to
its simplicity, however, ToCs can leverage our approaches as is to
improve the performance without the need for an impractical num-
ber of MAC engines required for parallel updates in large capacity
memories.

Processor Boundary

Merkle Tree
MRoot M M M M M M M

M M M M M M M M M M M M M M M M…

…

C C C…
64 bits 64 X 7bits

64B to 8B Hash

MC

Figure 3: Merkle Tree.

C0 C1 C3C2 C4 C5 C6 C7 MAC C0 C1 C3C2 C4 C5 C6 C7 MAC

C0 C1 C3C2 C4 C5 C6 C7 MAC

Hash Hash

Figure 4: Tree of Counters.

After fetch and verification, MT nodes are typically cached inside
the processor chip in a metadata cache, which allows speeding up
the verification process of future accesses. Moreover, such caching
allows faster updates to the MT in case of write operations. In gen-
eral, there are two ways to update MT in the presence of metadata
cache, eager update and lazy update. In a lazy update scheme, up-
dates propagate upwardly on upon the eviction of a dirty node. For
instance, a MT node in level 2 is updated with a new hash value
only when one of its updated children in level 1 gets evicted from
the metadata cache. In such a scheme, the root of the is not always
up-to-date, however since the updates to MT nodes are eventually
propagated to the root, and such updated MT nodes will be used in
the verification, lazy update retains the same security guarantees
of updating the root on each memory update. On the contrary, an
eager update scheme updates the whole affected tree path up to
and including the root on each memory update. While lazy update
is clearly a better option than eager update for conventional mem-
ories, it introduces major crash consistency problems when used

with persistent memories; the root is not up-to-date and the content
of the metadata cache will be lost during a crash, thus secure re-
covery is infeasible[6, 26]. Therefore, eager MT update is generally
used with secure NVMs[6, 10, 26].

Since both encryption counters and data need to have their
integrity protected, state-of-the-art solutions leverage a Bonsai
Merkle Tree (BMT)[18], which allows integrity verification of data
and encryption counters by merely using integrity tree over en-
cryption counters while associating each data block with a MAC
value that is calculated over the MT-verifiable counter, address and
ciphertext. By doing so, the storage overheads of integrity protec-
tion is minimized compared to building two trees, one over data
and the other over encryption counters.

2.3 Persistent Security
To ensure crash recovery of secure NVMs, special handling of secu-
rity metadata (encryption counters andMT nodes) is required. Thus,
there was a large body of work that addressed the recoverability
of secure NVMs, commonly referred to as persistent security[4, 6,
10, 14, 23, 26, 27]. Osiris[23] allowed the recovery of encryption
counters updated on the volatile counter cache by leveraging Error-
Correction Codes (ECC) written with the data. Thus, recovering
the counter used for encrypting the data can be done by using
ECC as a sanity check for the decryption process. Liu et al.[14] pro-
pose an approach that relaxes the atomicity of counter updates for
non-persistent data structures. Other works, such as Triad-NVM[6]
and Anubis[26] augmented prior crash recovery solutions with
the ability to recover integrity trees and reduce the recovery time,
respectively. Freij et al.[10] explore mechanisms to speed up MT ea-
ger updates through pipelining and break the serialization between
various memory writes in terms of MT updates.

In general, all the prior works aim to ensure recoverability, re-
duce write overheads, and allow fast recovery after crashes. One
common assumption in all prior works is that crash consistency
support needs to occur before considering the data persisted, i.e.,
the completion of a data persistence operation. Thus, a data per-
sistence operation incurs expensive cryptographic operations, e.g.,
encryption and integrity tree updates, before the application can
proceed to the next instruction. In conventional non-secure mem-
ories, the same problem exists, due to the long write latency of
NVMs, that the application needs to wait for before considering the
data persisted. Thus, recent processors provide battery-backed fast
write buffers inside the processor chip that can be flushed to the
NVM upon a power failure, and thus data persistence operation can
finish much faster as it longer needs to wait until the data reaches
the NVM. These buffers are called write-pending queues (WPQs),
and the standard system feature that enables flushing the WPQ to
NVM upon power failure is called Asynchronous DRAM Refresh
(ADR)[11]. Unfortunately, current works completely overlook the
main purpose of WPQ, which is reducing the latency of the critical
path for data persistence operations. Thus, our paper is the first to
investigate how the WPQ can be leveraged to reduce the critical
path latency of persistence operations in secure NVMs.

Persistent applications utilize the persistency feature of NVM
by storing objects in NVM and maintaining a way to reconnect

Dolos: Improving the Performance of Persistent Applications in ADR-Supported Secure Memory MICRO ’21, October 18–22, 2021, Virtual Event, Greece

to stored NVM objects across application runs. When writing per-
sistent applications, one major issue that needs to be considered
is data persistency and atomicity of updates[1, 21]. Data persis-
tency mandates flushing the data to be persisted all the way to the
persistence domain (e.g., WPQ). While atomicity of updates aims
to ensure that either all updates or none finish, which is particu-
larly important when updating a large data structure or related
information within a transaction. Current persistence libraries, e.g.,
Intel’s Persistent Memory Development Kit (PMDK)[17], provides
users with mechanisms to explicitly persist updates and ensuring
they reached the persistence domain through cache flushing and
memory fences, respectively.

Unlike conventional applications, where writes can be buffered
and not in the critical path of the application, persistent work-
loads’ performance heavily depends on the latency of persistence
operations, and they can lead to 24.3% performance overheads on
average[16]. Thus, it is important to minimize the overheads of
data persistence operations in such workloads.

3 MOTIVATION
To motivate the design of Dolos, we now consider the impact of
a secure processor architecture with NVM and its performance
implications on persistent applications. Figure 5 shows several
possible secure processor architectures with NVM. The most basic
is shown in Figure 5(a). The secure processor is inside the TCB
where as off-chip NVM is not trusted, and the persistency domain
is solely off-chip NVM. Writes have to go though a security unit
before leaving processor.

The introduction of ADR, bringing the WPQ into an on-chip
persistency domain, leads to the the two architectures in Figure 5-b
and Figure 5-c. In these architectures, the persistency domain is
the whole off-chip memory and the ADR-enabled WPQ. In Figure
5-b, the security unit is placed before the WPQ, thus it protects the
whole persistency domain, even the WPQ. Upon a crash, content in
the WPQ is immediately flushed outside the TCB to off-chip mem-
ory since it must have been previously protected by the security
unit. This design imposes large overheads on persist operations
because they must first pass through the security unit before en-
tering the WPQ. The flushes and fences used to enforce persistent
memory models must wait for flushes or writes to reach the WPQ
to complete, and the security unit’s latency will be added to that de-
lay, slowing down persist operations. This adds up to considerable
overhead.

Ideally, we would like to avoid these overheads by placing the
security unit after the WPQ. Figure 5-c shows an architecture to
hide the latency of the security unit by placing it after WPQ, thus
persisting writes first and securing them later. Upon a crash, the
WPQ content must go through the security unit before being writ-
ten to memory. This implies that the ADR power supply is sufficient
to complete the security operations of all pending writes in the
WPQ.

To better understand the performance implications of perform-
ing security operations before persisting data, Figure 6 shows a
performance comparison when performing the security operation
before the WPQ (Fig 5-b) to a hypothetical scheme that allows
delaying a security operation until after eviction from the WPQ

WPQ (ADR)

Non-volatile
Main Memory

Security
Unit

LLC flushes and evictions

TCB

Security
Unit

TCB

Non-volatile
Main Memory

Processor Processor

(a) (b)

WPQ (ADR)

Minor
Sec. Unit

May Escape
TCB

TCB

Processor

Security
Unit

Non-volatile
Main Memory

LLC flushes and evictions

LLC flushes and evictions

(d)

TCB

May Escape
TCB

On-chip persistent domain

Trusted Computing Base (TCB)

WPQ (ADR)

Non-volatile
Main Memory

Security
Unit

LLC flushes and evictions

Processor

(c)

Figure 5: Models of Secure Memory and Secure Persistent
Memory: a) Secure Memory Model without ADR, b) Secure
PersistentMemoryModel that cannot take full advantage of
ADR, c) an infeasible approach that requires the persistency
domain to subsume the Security Unit, and d) our approach:
lower latencyMinor SecurityUnit protectsWPQentries,ma-
jor Security Unit protects memory.

(Fig 5-c). We use the same setup as described in Section 5 to col-
lect these results. On average, we observe a 2.1x slowdown when
inserting security operations’ overhead (eager update of integrity
tree and encryption) and fetching their security metadata before
insertion to the WPQ. We conclude from this analysis that it is
far better for performance to persist data as soon as it arrives at
the memory controller, i.e., inserting it immediately in the WPQ.
However, it is likely infeasible to reserve enough power to complete
the security operations, all of their potential metadata updates in
memory, and possibly fetch security metadata from memory, when
a power failure is detected. The standard ADR support is limited to
flushing tens of entries in the WPQ, and thus shifting security oper-
ations to occur while powered by ADR would likely fail to complete
all operations on time. Meanwhile, extending ADR capabilities to
have more power would require larger batteries, higher costs, and
restrict the solution from working on systems with standard ADR
support.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Xijing Han, James Tuck, and Amro Awad

Figure 6: CPI between placing security process before and
after WPQ.

An ideal solution would allow writes to persist immediately
into the WPQ without waiting to achieve high performance while
maintaining the same ADR power budget as non-secure systems.
Our design approximates the ideal by introducing a lightweight
security unit to protect the WPQ, as shown in Figure 5-d, that
reduces the delay added to writes. Now, the WPQ is protected by
the Minor Security Unit which has a much lower latency, and this
allows data to quickly persist. Upon a crash or power failure, the
WPQ content can be immediately flushed outside the TCB because
it has been encrypted, thus incurring no extra overhead on the
ADR power budget. Entries in the WPQ are then decrypted and
re-encrypted by the major Security Unit off the critical path of
persistence. Overall, this design leverages the ADR-enabled WPQ
for faster commit of secure writes while also complying with ADR
power constraints.

4 DOLOS IMPLEMENTATION
In the section, we will discuss the detailed implementation of Dolos.
Dolos adopts two different security units (Minor Security Unit &
Major Security Unit) to protect ADR-supportedWPQ and persistent
memory respectively. We will discuss the detailed design of these
two units in the following sections.

4.1 Threat Model
Our threat model is similar to the state-of-the-art work on secure
NVM[3, 6, 23, 24, 26]. Specifically, we assume a trusted processor,
i.e., attackers cannot probe internal wires and caches within the
processor chip.Moreover, similar to prior work, we only consider ex-
ternal attacks where (timing, power, electromagnetic) side-channel
attacks and access control bypassing that leverage software and
hardware bugs within the processor chips are out of scope. There
exists a large body of work that addresses such internal attacks,
and thus our work mainly focuses on external attacks. In our threat
model, external attackers can snoop the memory bus, scan the mem-
ory module, tamper with the memory data and responses to the

processor’s requests. Moreover, while part of the tampering threat,
attackers can attempt to swap memory locations’ values. Specif-
ically, the following attacks are considered in our threat model:
spoofing attacks, relocation attacks and replay attacks. In our threat
model, the memory content could be overwritten using some fake
and arbitrary content, and can also be rolled back to an old version.
Moreover, attackers can replace the content of one memory block
with the content of a memory block in a different location. Thus,
our solution needs to detect such attacks.

4.2 High-level Overview of Dolos
Considering both the threat model and persistence scheme, any
proposed design needs to achieve the following:

• Ultra-low latency for persisting data: we should mini-
mize the time between the arrival of a write request to the
secure memory controller and the time such a request is
considered persisted.

• Security during run-time and across crashes: any data
that reaches the persistence domain is expected be sent off-
chip before or upon detection of a crash, and thus it needs
to have its integrity and confidentiality protected.

• Crash Consistency: any data arrives to the persistence
domain must be recoverable. Thus, the encrypted data along
with any security metadata that are required to decrypt it
and verify its integrity must be retained after a crash.

Thus, to meet these design requirements, we leverage a split
security implementation, as shown in Figure 7. In this design, we
ensure ultra-low latency for data persistence operations by adding a
small security unit, Minor Security Unit (Mi-SU), that is responsible
of protecting the integrity and confidentiality of the WPQ content
through novel optimizations that leverage the unique features of
the WPQ: (1) its small size (2) the fact that its encryption pads
can be pre-calculated at boot-up time; WPQ content encrypted by
Mi-SU will be written to NVM only if a crash is detected. Moreover,
Mi-SU meets the security requirements of its content upon crashes
by encryption and integrity verification, however, it relegates the
run-time protection to the major security unit (Ma-SU). Finally, for
crash consistency, Mi-SU ensures the recoverability of its encrypted
and integrity-verifiable content in case a power failure event occurs.
During run-time, before any entry is evicted from WPQ by Ma-
SU, Ma-SU ensures that the entry has been persisted to NVM in a
crash consistent manner by employing schemes like Triad-NVM[6]
or Anubis[26]. In this work, Ma-SU uses Anubis as the Ma-SU
mechanism for crash consistency of run-time updates.

4.3 Minor Security Unit (Mi-SU)
Mi-SU is perhaps the most critical design element in Dolos due
to its direct impact on the latency of data persistence operations.
Thus, we will first discuss the possible design options. In particular,
we will discuss three design options that have different trade-offs
between the effective WPQ size that can be used to buffer write
requests and the amount of work needed before the write request
is considered persisted. A discussion of each design option follows.
Design Option 1: One possible design is to use direct encryption
before inserting an entry in the WPQ and calculating a MAC value
on all the WPQ entries, similar to Merkle Tree. The encryption key

Dolos: Improving the Performance of Persistent Applications in ADR-Supported Secure Memory MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Minor Security
Unit

Major Security
Unit

Security
Metadata
Caches

Persistent Domain

flushed cachelines and evictions from LLC

NVM Module

Memory Controller Backend
(e.g., DDR PHY IP)

Draining path upon
crash detection

Dolos Design

WPQ

Figure 7: System Overview

used to encrypt the content of the WPQ will change upon boot-
up (after recovering the previously flushed WPQ content). Such
a scheme is sub-optimal due to the common issues of direction
encryption (latency and security and MAC calculation latency to
update the WPQ root); a 64-entry WPQ would require two MAC
computations to update the tree root (assuming 8-byte MAC com-
puted over each WPQ entry). This totals up to one encryption and
two MAC calculations before insertion, which totals to 360 cycles
(40 for encryption and 320 for two MAC calculations) in the critical
path. An alternative option would be to use counter-mode encryp-
tion where each entry is associated with a unique counter value
generated at boot-up time, and thus the encryption pads can be
pre-generated. After encryption, the WPQ’s Merkle Tree can be
updated through two MAC calculations. However, even though this
scheme replaces the encryption latency by a simple XOR operation
with a pre-generated pad, this scheme still incurs two MAC calcula-
tions before insertion. Moreover, to be able to recover the content
of WPQ after system restoration, the counters (not confidential as
discussed earlier in Section 2) need to be recovered. Finally, guar-
anteeing no reuse of counters used to pre-generate pads highly
depends on the perfectness of the random number generator used
at boot-up time to generate such counters corresponding to each
WPQ entry. Thus, we opt for using a persistent counter register
that is incremented by the number of entries inWPQ at each reboot.
By doing this, we can know the counters used for encryption of
the previously flushed WPQ and guarantee the uniqueness of the
counters that will be used for encrypting WPQ the next time it
gets drained; each WPQ entry will be encrypted with the persis-
tent counter register value plus the entry number. Note that even
though the pre-generated pads will be used many times to encrypt
the same entry in WPQ, it will be visible to the attacker only once,
upon the draining event, and it will never be re-used again. Since
this scheme leverages the ADR support to drain the whole WPQ,
without the need to drain additional data, e.g., MACs of data, we
call this scheme Full-WPQ-MiSU.

Minor Security
Unit

flushed cachelines and
 evictions from LLC

WPQ

Pre-generated Encryption Pads

Persistent counter register

Level 1 MACs

Persistent WPQ Root

Next_free index

New entry

Encrypted

1

2

3

4

Figure 8: The Full-WPQ-MiSU scheme for Mi-SU.

As shown in Figure 8, processing a request arrival to Full-WPQ-
MiSU design consists of the following steps: 1○ the pre-generated
encryption pad of the free spot in the WPQ is XOR’ed with the
new entry. Note that this step is cryptographically secure since the
pads are generated using AES CTR mode encryption where the
counters are never repeated (each counter value will be used for
a single draining operation), i.e., its generated ciphertext appears
externally only once. Step 2○ involves using the ciphertext (along
with its siblings) to re-calculate their parent L1 MAC. Later, in Step
3○, the root will be re-calculated based on the value of L1 MAC.
Finally, in Step 4○, the new encrypted entry, the L1 MAC and the
new root will be atomically written to the persistent WPQ Root,
Level 1 MAC register, and the WPQ. Finally, since we manage WPQ
as a circular buffer, the Next_time index will be incremented. Note
that a cleared bit will be used along with each entry to indicate if
it was fetched by and fully processed by the Ma-SU. The obvious
overhead in this design is the need for two MAC calculations (steps
2○ and 3○) in the critical path.
Design Option 2: One observation we make is that since the en-
cryption counters of WPQ do not change when new WPQ-entries
are inserted during the same run, using a scheme similar to a Bonsai
Merkle Tree (BMT) can possibly minimize the MAC calculations to
a single one. In particular, BMT in this context calculates a MAC
over a WPQ entry and the encryption counter. However, since
the persistent counter register can be used to securely deduce the
counter used to encrypt each WPQ entry before the crash, we do
not need to calculate a tree over the counters since we can securely
recover their values. We can use such securely recovered counter
values to verify the MAC values written with each WPQ-entry at
draining time. Thus, the only way to forge a WPQ entry is to replay
the internal persistent register, which is impossible since it is inside
the processor. Accordingly, at recovery time, each WPQ is verified
by calculating the MAC over the ciphertext and the internally-
recovered corresponding counter. If the MAC value matches what
has been written with the WPQ entry to memory, then the entry is
successfully recovered. Note that when an entry is marked cleared
by the Ma-SU, its MAC does not need to be re-calculated since re-
writing it again upon recovery will not cause any security concern;
the same ciphertext will appear. However, this scheme requires
book-keeping the MACs that will be written with each WPQ entry
upon draining, and thus would either require extra ADR support or

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Xijing Han, James Tuck, and Amro Awad

limit the number of WPQ entries can be flushed upon crash. Since
we are limited by the standard ADR, we opt for using a slightly
smaller WPQ; since MACs are only 1

9 th of WPQ(8-byte for each
72-byte WPQ entry), we make only 8

9 of the WPQ used for entries
while the rest is for MACs. Accordingly, we call this design Partial-
WPQ-MiSU, where the trade-off here is smaller usable WPQ but
only one MAC calculation (instead of two in Full-WPQ-MiSU).

Minor Security
Unit

Next_free index

Persistent counter register

New entry

Encrypted

Pre-generated Encryption Pads

Level 1 MACs

+off

Flushed cachelines and
Evictions from LLC

1

23

Figure 9: The Partial-WPQ-MiSU scheme for Mi-SU.

Minor Security
Unit

Next_free index

Persistent counter register

New entry

Encrypted

Pre-generated Encryption Pads

Level 1 MACs

+off

Flushed cachelines and
Evictions from LLC

1

23

Persistent Domain

Figure 10: The POST-WPQ-MiSU scheme for Mi-SU.

As shown in Figure 9, processing a request arrival to Partial-
WPQ-MiSU design consists of the following steps: 1○ Same as Full-
WPQ-MiSU, the pre-generated encryption pad of the free spot in
the WPQ is XOR’ed with the new entry. 2○ Calculate MAC using
the generated ciphertext and its own counter value. 3○ Atomically
update L1 MAC and encrypted entry. The obvious overhead in this
design is the need for one MAC calculation (steps 2○).
Design Option 3: To further reduce the secure latency of Partial-
WPQ-MiSU before committing writes, the secure operation of the
Partial-WPQ-MiSU can be delayed after committing a write by
leveraging ADR to finish the remaining operation on the already
committed write upon a crash. To avoid adding extra ADR budget,
we reduce the number of WPQ entries to make up for ADR support
for one secure operation in Partial-WPQ-MiSU, which is a single

MAC computation. To maintain a reasonably-sized WPQ, we only
allow one committed write with a delayed secure operation. We
choose to allow a single delayed MAC operation based on our ob-
servation that the average WPQ request arrival time is 473 cycles
(excluding idle time). We call this design Post-WPQ-MiSU. Inside,
the implementation of the Post-WPQ-MiSU is similar to Partial-
WPQ-MiSU except that the timing of the secure operation (MAC
calculation and XOR with encryption pad) for the new write to be
allocated in WPQ. Post-WPQ-MiSU secures the write immediately
after it is committed while Partial-WPQ-MiSU secures the write
before it is committed. Note that even in the case of a power outage
between the time the entry is inserted and its secure operation is
completed, we reserve enough ADR to complete that secure opera-
tion (by using a smaller number of WPQ entries), and hence it is as
secure as all other schemes. In Post-WPQ-MiSU, persistent domain
starts from Post-WPQ-MiSU once a write request is accepted (i.e.,
MiSU is not full or busy), as shown in Figure 10. The trade-off here
is almost zero overhead of secure operations at insertion time to
persistence domain, but even smaller effective WPQ size (due to
reserving some ADR for delayed secure operations).
Recovery scheme: Next, we discuss our recovery scheme for Mi-
SU and WPQ. During boot-up, the processor fetches the flushed
data of Mi-SU from NVM. In the case of the Full-WPQ-MiSU, it only
fetches the WPQ content and verifies its integrity using the kept
tree root. In the case of Partial-WPQ-MiSU and Post-WPQ-MiSU,
it fetches MACs along with WPQ content and verifies its integrity
by recalculating the MACs using the kept counter. As has been
discussed, upon recovery from a crash, encryption pads will be
updated with new values. Before that, the old WPQ content needs
to be decrypted using old encryption metadata. Encryption pads
are re-generated using the old counters. To avoid extra storage for
the plaintext of WPQ content, WPQ content is drained to Ma-SU
as it is decrypted. After all WPQ entries go to Ma-SU, counter and
secrete key are updated and pre-generated pads are calculated.

4.4 Major Security Unit (Ma-SU)
In Dolos, Ma-SU performs the job of conventional security unit,
responsible for full-memory protection before extracting an entry
from the WPQ. Different from a conventional secure unit, it per-
forms an extra XOR operation to decrypt WPQ content using the
same encryption pad that was used upon insertion to the Mi-SU.
Then, Ma-SU works on protecting data confidentiality and integrity,
just as conventional security unit. In Dolos, there is no specific re-
striction on how to encrypt data and protect integrity, as long as
the requirement for security and recoverability is met. For simplic-
ity, the following discussion is based on the implementation of a
counter-mode-scheme and BMT. To be able to recover, we imple-
ment the recovery scheme proposed by Osiris[23] and Anubis[26],
which will be described in Section 6. In other words, before remov-
ing an entry from WPQ, its corresponding security metadata and
any extra status information needed for recovery are atomically
persisted as done in Anubis[26]. Thus, at any point of time, a write
request will be either recoverable through Mi-SU or persistent in a
crash consistent manner through Ma-SU.

The steps of Ma-SU upon a single WPQ entry are shown in
Figure 11. 1○ Use the next_fetch_index to fetch one WPQ entry,

Dolos: Improving the Performance of Persistent Applications in ADR-Supported Secure Memory MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Major Security
Unit

Pre-generated Encryption Pads

XOR

Decrypted entry
Root

Encrypted Entry MACs Counter Temp root

NVM

Secure Metadata
Cache

1

2

4

3

Ready

Next fetch index

Evicted block &
Recovery data

Figure 11: Ma-SU Scheme.

XOR its content with stored encryption pad to obtain the decrypted
WPQ entry. Step 2○ involves encrypting data, calculating MAC
and updating BMT nodes. Before overwriting the secure metadata
cache and NVM, generated results (encrypted data, MACs, counter,
temp root) are stored in persistent registers used as redo logging
buffer (only set as ready when all needed updates are logged, e.g.,
ciphertext, tree root and intermediate nodes etc.). Once all tenta-
tive updates are logged (by the end of Step 2○), Step 3○ updates
metadata cache and memory with tree/counter updates and recov-
ery info (shadow tracker in Anubis[26]) along with the ciphertext,
respectively. 4○ Atomically set state and evict WPQ entry (advance
next fetch index). Before working on the next WPQ entry, the ready
bit of the redo logging buffer is cleared. Note that Steps 3○ and 4○
can be parallelized since once the redo logging buffers are filled
we can redo the write request securely and in a crash consistent
fashion, thus the WPQ entry managed by Mi-SU can be simply
discarded and considered finished. Note that 3○ and 4○ do not need
to occur atomically; the worst case is that the WPQ entry is not
cleared while step 3○ has written its corresponding ciphertext to
memory. In that case, the same entry will be written again upon
recovery but encrypted using a different pad than the one used by
Ma-SU, and thus still secure but incurs extra work upon recovery.
Note that the other scenario is that the WPQ entry is cleared but
step 3○, however this is straightforward as the updates are saved
in the intermediate redo logging buffer, and thus can be performed
again upon recovery.

Integrity tree type and update scheme: Both the eager up-
date scheme and the lazy update scheme can be adopted in MaSU
depending on the integrity tree type used to protect the main mem-
ory (Merkle Tree vs. ToC). As shown in prior work, for regular MT,
it is sufficient to maintain an up-to-date root to enable recovery af-
ter crashes, thus merely updating the root eagerly and persistently
while updating other levels only upon eviction is sufficient, as long
as the counters are recoverable. Similar to prior works that use MT
(AGIT[26] and Triad-NVM[6]) we assume the counters are recover-
able using Osiris[23]. Hence, we adopt AGIT[26] for MT where the

root is eagerly updated. For ToC, as shown by prior works[2, 26],
eagerly updating the root persistently is insufficient to recover the
tree due to inter-level dependencies in SGX-style trees[26]. There-
fore, state-of-the-art schemes[2, 26] use an additional integrity tree
(shadow tree) that is eagerly-updated to protect the cache of a
lazily-updated ToC. Leveraging the parallelism of ToC to update
all levels in parallel is left untapped due to the need to update all
levels persistently to enable recovery, and thus a lazily-updated
ToC covering memory with a MT-based integrity tree covering the
cache is adopted for ToC-based integrity protection, i.e., we use
Phoenix[2] for ToC.

Recovery scheme: In this paragraph, we will discuss the recov-
ery scheme for Ma-SU. During boot-up, the processor will check the
ready bit. If the ready bit is not set, redo logging in the persistent
buffer is discarded. Secure metadata is recovered to a state consis-
tent with the value in the root register. Ma-SU resumes from step 1○.
If ready bit is set, secure metadata is recovered to a state consistent
with value in temp root register. Ma-SU resumes from step 3○. In
this case, we assume that the corresponding WPQ entry is already
evicted, in other words, step 4○ is skipped during recovery so that
an untouched WPQ entry will not be evicted by mistake.

4.5 Write Coalescing and Reads fromWPQ
The encryption of WPQ entries (data and address) by the Mi-SU
prevents look-up operations needed for maintaining consistency
and optimizations like write-coalescing. To enable such operations,
a volatile structure that maintains the address of each WPQ entry
is added to enable quick look-ups of potential duplicates or to serve
read requests (but note that another decryption would be needed).
Another possible approach is to simply not encrypt the address part
of WPQ entries, which would achieve the same level of security
since an attacker can observe the addresses sooner or later regard-
less of whether or not a crash occurs. In either implementation, a
read request that hits in the WPQ needs to be decrypted. Since such
a decryption would merely take an XOR operation (one cycle) and
because the chance of a hit in the small WPQ is minute, the addi-
tional overheads are negligible. Thus, in Dolos, we use a parallel
volatile tag array for WPQ entries to enable write coalescing and
for resolving reads to entries in the WPQ.

4.6 Security Discussion
During normal execution, the whole memory is protected by a
conventional security unit, therefore the behavior of detecting such
attacks is maintained. When there is a crash, the WPQ content
protected by a dedicated security unit in Dolos is flushed into the
memory. This dedicated security unit ensures detecting the attacks
onWPQ content by assigning a unique counter value for eachWPQ
entry and calculating a MAC value over a new allocation in the
WPQ entry with its associated counter. Note that the counters used
to encrypt WPQ contents upon a crash are kept persistently inside
the processor, and thus cannot be tampered with. Therefore, any
unexpected change on the WPQ content will be detected.

5 EVALUATION
In this section, we describe our evaluation methodology followed
by our experimental results and analysis of Dolos.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Xijing Han, James Tuck, and Amro Awad

Table 1: Simulation Configuration Parameters

Processor
Core 1 Core, X86, OoO, 4GHz
L1 Cache 2 cycles, 32KB,2-Way
L2 Cache 20 Cycles, 512KB, 8-Way
LLC 32 Cycles, 8MB, 16-Way

DDR based PCMMemory
Size 16 GB
Access Latency read latency 150ns. write latency 500ns.

Secure Memory Parameters
Counter Cache 128kB, 4-way, 64B Block
MT Cache 256kB, 8-way, 64B Block
AES Latency 40 Cycles
Hash Latency in Mi-SU 160 Cycles in Partial-WPQ-MiSU&Post-WPQ-MiSU

320 Cycles in Full-WPQ-MiSU
Hash Latency in Ma-SU 160X10 Cycles for Eager Update;

160X4 Cycles for Lazy Update
Integrity Tree 8-ary Merkle Tree; 8-ary TOC
Tree Update Policy Eager Update(Merkle Tree); Lazy Update(TOC)

5.1 Simulation Setup
We use GEM5[7], a cycle-level simulator to evaluate the perfor-
mance overheads of Dolos. As illustrated in Table 1, we simulate
a single X86-64 Out-of-Order core with 16GB DDR based PCM1.
We also use six database benchmarks from WHISPER[16]. For each
benchmark, we fast-forward to where the transactions start and
simulate 50000 transactions. We simulate all the integrity protec-
tion and data encryption aspects in both of Mi-SU and Ma-SU. We
model both MT with eager update (as in AGIT[26]) and ToC with
lazy update (as in Phoenix[2]). For the update of ToC, AES-GCM
and conservatively assume parallel AES-GCM engines with a de-
sign and latency based on prior work[22], i.e., the update different
levels of ToC happen in parallel. For the update of the small BMT in
lazy update scheme and regular BMT in eager update scheme, we
use MAC latency of 160 cycles and all levels are updated serially,
similar to prior work[6, 15, 26]. A counter cache and MT cache are
included in Ma-SU. In our model, a single MAC computation takes
160 cycles, similar to prior work[6, 15, 26]. Full-WPQ-MiSU has two
MAC computations and both Partial-WPQ-MiSU and Post-WPQ-
MiSU have one MAC calculation. Ma-SU has ten MAC calculations
for eager update scheme and four MAC calculations for lazy update
scheme. Unless mentioned otherwise, we use the state-of-the-art
secure NVM controller, Anubis[26] – AGIT scheme, as our baseline
and representative of the pre-WPQ secure NVM implementations
where all secure memory back-end operations occur before persis-
tence. This is denoted Pre-WPQ-Secure in some figures. Note that
Dolos can be combined with any secure NVM scheme which can
be used to further improve the Ma-SU performance; as mentioned
earlier, we use Anubis[26] as the Ma-SU’s implementation in Dolos.
For all applications, we use 1024B as the default transaction size
and eager update scheme unless stated otherwise.

5.2 Dolos Performance
5.2.1 Overall Performance in Eager Update Scheme. In this section,
we show the performance improvement of Dolos when adopting
three different designs of Mi-SU with Eager Update of Merkle Tree.

1Due to the lack of full support of atomic x86 instructions in Gem5, several applications
failed in multi-threaded mode and thus we limited our evaluation to single-core.
However, since our scheme improves the latency of persistence operations, we believe
that our evaluation is sufficient and can directly apply to the multi-threaded version
of the workloads.

Table 2: Number of WPQ Insertion Re-try Events Per Kilo
Write Requests (KWR)

Benchmark Number of WPQ Insertion Re-try-KWR
Full-WPQ-MiSU Partial-WPQ-MiSU Post-WPQ-MiSU

Hashmap 182.32 293.00 359.30
Ctree 88.19 207.22 285.24
Btree 106.55 214.17 280.80
RBtree 120.00 209.89 261.22
NStore:YCSB 1.09 68.55 181.95
Redis 106.93 215.10 274.43

Figure 12: Speedup of Dolos with Full-WPQ-MiSU, Partial-
WPQ-MiSU, Post-WPQ-MiSU using Eager Update Scheme(
transaction size = 1024B)

Figure 12 shows an average speedup of 1.66x, 1.66x, 1.59x for Full-
WPQ-MiSU, Partial-WPQ-MiSU and Post-WPQ-MiSU design. Since
Partial-WPQ-MiSU and Post-WPQ-MiSU need ADR energy to also
flushMACs and computeMAC, respectively, we use smaller number
WPQ entries. In particular, the Full-WPQ-MiSU design has a 16-
entry WPQ, whereas the Partial-WPQ-MiSU and the Post-WPQ-
MiSU designs have 13-entry and 10-entry WPQ sizes, respectively.
As shown in Figure 12, Post-WPQ-MiSU has a slightly less speedup
than the other two designs. This is because of the high number
of writebacks that arrived when the WPQ was full, mainly due to
its smaller WPQ size. As shown in Table 2, the number of retry
events (i.e. these occur when attempting to insert an entry in the
WPQ when it is full) per kilo write requests (KWR) of the Post-
WPQ-MiSU is much higher than the other two designs. For the
case of Nstore, Partial-WPQ-MiSU has speedup of 1.98x and Full-
WPQ-MiSU has speedup of 1.90x. This is because of smaller latency
in Partial-WPQ-MiSU (1 MAC calculation vs. 2 MAC calculations)
while the number of retry events to WPQ remains relatively low in
both designs.

5.2.2 Variable Transaction Size. To study the performance improve-
ment of Dolos when different transaction sizes are used, we run
each application with transaction sizes of 128B, 256B, 512B, 1024B
and 2048B. Compared to the baseline (16-entry WPQ in Pre-WPQ-
Secure design), a 13-entry Partial-WPQ-MiSU design consistently

Dolos: Improving the Performance of Persistent Applications in ADR-Supported Secure Memory MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Figure 13: Number of WPQ insertion Re-try-KWR of Dolos
with Partial-WPQ-MiSU on single transaction size of 128B,
256B, 512B, 1024B, 2048B

Figure 14: Speedup of Dolos with Partial-WPQ-MiSU on sin-
gle transaction size of 128B, 256B, 512B, 1024B, 2048B

achieves higher speed-ups in small transactions compared to large
transactions. The reason is that large transactions can quickly fill
the WPQ buffer and thus render the WPQ buffer less effective, as
shown in Figure 13. However, we observe that even for transactions
as large as 2048B, delaying secure operations to occur after insertion
in WPQ can effectively improve performance, as shown in Figure
14. The main reason behinds this is that even for large transactions,
large part of the transaction will be effectively buffered, whereas in
the baseline each cacheline arriving to the memory controller will
need to go through secure operations immediately before insertion.

5.3 Sensitivity Study
Dolos’ performance improvement is directly affected by the WPQ
size; Dolos tries to effectively leverage the WPQ in hiding the
data persistence latency. Thus, we change the WPQ size to better
understand the robustness of Dolos in improving the performance.
For a fair comparison, we use the full WPQ for the baseline (Pre-
WPQ-Secure design) and a 8

9 of full WPQ for Partial-WPQ-MiSU.
As shown in Figure 15, the performance of Dolos with Partial-
WPQ-MiSU improves when WPQ size increases. Dolos achieves
an average speedup of 1.66x, 1.85x, 1.87x and 1.88x for WPQ size
of 13, 28, 57 and 113. This is because the WPQ is occasionally full
at 13 and rarely full at 28 or higher. Experimental results confirm
that the average number of retry events per KWR is 201.32, 29.03,
13.55 and 11.08 for a WPQ of size 13, 28, 57 and 113. The speedup
changes little with 28 or more entries in the WPQ.

Figure 15: Speedup of Dolos with Partial-WPQ-MiSU on
WPQ size of 13, 28, 57, 113 (transaction size = 1024B)

5.4 Dolos Performance in Lazy Update Scheme
In this section, to better illustrate Dolos performance, we show the
performance improvement of Dolos when adopting three different
designs of Mi-SU with Lazy Update of ToC[2]. Figure 16 shows
an average speedup of 1.044x, 1.079x, 1.071x for Full-WPQ-MiSU,
Partial-WPQ-MiSU and Post-WPQ-MiSU design. In the lazy update
scheme, Dolos with Full-WPQ-MiSU design has an obviously lower
performance than the other two designs. This is because the lazy
update scheme, MaSU has less MAC computation latency (com-
putation of 4 levels Merkle tree over the secure metadata cache).
Therefore, doubling the MAC computation latency in MiSU has an
obvious impact on the performance. Simulation results show that
Dolos with Post-WPQ-MiSU design has a slightly worse speedup
than Dolos with Partial-WPQ-MiSU. This is because of the high
number of writebacks that arrived when the WPQ was full, which
is mainly due to its smaller WPQ size.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Xijing Han, James Tuck, and Amro Awad

Figure 16: Speedup of Dolos with Full-WPQ-MiSU, Partial-
WPQ-MiSU, Post-WPQ-MiSU using Lazy Update Scheme(
transaction size = 1024B)

Table 3: Storage Overhead of Mi-SU

Full-WPQ-MiSU Partial-WPQ-MiSU Post-WPQ-MiSU
Persistent Counter 8B 8B 8B
MACs 192B 128B 128B
Encryption PAD 72B * 16 80B * 13 80B * 10

5.5 Estimated Overheads of Mi-SU
We estimate the storage overhead and recovery overhead of Mi-SU
using a 16-entry WPQ size. Table 3 lists the overheads for Dolos
with Full-WPQ-MiSU, Partial-WPQ-MiSU and Post-WPQ-MiSU re-
spectively. To allow the mechanism of write coalescing, additional
volatile registers holding the unencrypted address information are
needed. The additional area overhead is 8B * WPQ_SIZE. For the re-
covery time of Mi-SU, the main steps in recovering Mi-SU involves:
1. Read back WPQ content and secure metadata from NVM. 2. Re-
generate encryption PADs using old secure metadata. 3. Decrypt
and drain WPQ entries. 4. Update secure metadata and calculate
encryption PADs. We assume a read latency for 64B block takes
600 cycles. In Full-WPQ-MiSU, only the WPQ content is read back,
so the total read latency is 16*600 cycles. In Partial-WPQ-MiSU
and Post-WPQ-MiSU, the WPQ content and two 64B MAC blocks
are read back, however, there are fewer WPQ entries in these two
designs. So the total read latency for Partial-WPQ-MiSU and Post-
WPQ-MiSU is 15*600 cycles and 12*600 cycles, respectively. We
assume that a single encryption pad generation takes 40 cycles. The
latency for draining a single WPQ entry takes 2100 cycles(including
NVM write latency and Ma-SU latency). Under this assumption,
the recovery time for the Full-WPQ-MiSU takes 600 cycles * 16 + 40
cycles * 16 + 2100 cycles * 16 + 40 cycles * 16 = 44480 cycles, which
is marginal (≈0.01ms).

6 RELATED WORK
In this section, we will discuss the recovery schemes of secure NVM
proposed in prior work. We will also discuss the relevant prior work
on reducing the overheads of secure NVMs.

Secure Metadata recovery: In secure NVM, especially for persis-
tent applications, data blocks need to be crash-consistent along
with its associated secure metadata, i.e., counter and integrity tree.
To reduce the extra memory traffic caused by secure operations, a
secure metadata cache is implemented in the memory controller
which introduces the crash consistency issue as discussed in Sec-
tion 2.3. Prior works[4, 6, 10, 14, 23, 26, 27] propose mechanisms to
speed up recovery of security metadata. Osiris[23] utilizes ECC bits
(co-located with ciphertexts) to verify the correctness of the counter
value. By matching ECC re-calculated from decrypted data with the
ECC stored with ciphertext, the processor can recognize the cor-
rect counters (we refer the readers to the original Osiris paper[23]
for more details). Osiris has a long recovery time as it needs to
rebuild the whole integrity tree based on recovered counters. Thus,
Anubis[26] solves the problem by introducing a shadow cache
in NVM to record the address information of the cached secure
metadata. Upon a crash, the processor can pinpoint all potential
inconsistent secure data blocks by utilizing address information
kept in the shadow cache. While Dolos leverages Anubis for the
Ma-SU implementation, it is orthogonal and can be integrated with
any crash consistency scheme of secure NVMs. However, Dolos is
fundamentally different in that it shortens the latency for inserting
the data in the persistence domain than reducing recovery time or
crash consistency overheads as in Anubis.
Reducing secure Non-volatile memory overhead: Prior works
[15, 19, 24, 27] reduce the overhead of secure NVM in general. Mor-
phable Counters[19] reduces the accesses of off-chip secure meta-
data by providing more counters per counter cacheline block. To
reduce counter overflows, it creates two types of counter blocks
depending on the number of zero-value minor counter in the block.
DEUCE[24] propose a scheme to only re-encrypt changed words
in a single cacheline, thus reducing flipped bits per writeback. Zuo
et al.[27] leverage a lightweight hash function to quickly detect
memory duplication on the granularity of a cacheline when dealing
with writes. If a duplicate is detected, writeback and encryption
is canceled by maintaining the mapping relationship between the
canceled write and the duplicate cacheline. Janus[15] breaks down
these backend memory operations including encryption, integrity
protection and duplication detection and optimize them by exe-
cuting independent operations in parallel and pre-execution. All
of these works target reducing the performance overheads and
writes to NVM, and how to efficiently implement secure memory
backend operations to improve throughput (as in Janus[15]). Unlike
prior works, Dolos aims to remove these overheads from the critical
path of persistence operations by leveraging WPQ, while efficiently
leverage any of the memory backend optimizations for the major
security unit. In other words, Dolos can use any of the prior works
however it adds a unique angle: persist quickly then do the security
operations in a quick fashion vs. do the security operations quickly
then persist.

7 CONCLUSION
In this paper, we propose Dolos, a novel secure memory controller
that allows delaying the expensive secure memory operations after
the data is inserted in the persistence domain of ADR-supported
persistent memories. Thus, it brings significant improvement in

Dolos: Improving the Performance of Persistent Applications in ADR-Supported Secure Memory MICRO ’21, October 18–22, 2021, Virtual Event, Greece

the performance of persistent applications. Based on our evalua-
tion, Dolos improves the performance of persistent workloads by
an average of 1.66x over the state-of-the-art schemes where the
potential of WPQ backed by ADR support is untapped. To the best
of our knowledge, Dolos is the first work that explores the design
space and possible implementations for leveragingWPQ to improve
persistent workloads in secure NVMs.

We hope that Dolos will further facilitate the adoption of secure
NVMs and enable efficient execution of persistent workloads in
such systems. We also hope that this work opens up a new research
direction for efficiently exploiting WPQ in secure NVM implemen-
tations.

ACKNOWLEDGEMENT
This research was developed with funding from the Defense Ad-
vanced Research Projects Agency (DARPA), the Office of Naval
Research (ONR), and National Science Foundation (CNS-1717486).
The views, opinions and/or findings expressed are those of the
authors and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S. Govern-
ment. Approved for public release. Distribution is unlimited.

REFERENCES
[1] Mohammad Alshboul, James Tuck, and Yan Solihin. 2018. Lazy Persistency: a

High-Performing and Write-Efficient Software Persistency Technique. In 2018
ACM/IEEE 45TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER AR-
CHITECTURE (ISCA). 439–51. https://doi.org/10.1109/ISCA.2018.00044

[2] Mazen Alwadi, Kazi Zubair, David Mohaisen, and Amro Awad. 2020. Phoenix:
Towards Ultra-Low Overhead, Recoverable, and Persistently Secure NVM. IEEE
Transactions on Dependable and Secure Computing (2020), 1–1. https://doi.org/10.
1109/TDSC.2020.3020085

[3] Amro Awad, Pratyusa Manadhata, Stuart Haber, Yan Solihin, and William Horne.
2016. Silent Shredder: Zero-Cost Shredding for Secure Non-Volatile Main Mem-
ory Controllers. In Proceedings of the Twenty-First International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS ’16). Association for Computing Machinery, New York, NY, USA, 263–276.
https://doi.org/10.1145/2872362.2872377

[4] Amro Awad, Suboh Suboh, Mao Ye, Kazi Abu Zubair, and Mazen Al-Wadi. 2019.
Persistently-secure processors: Challenges and opportunities for securing non-
volatile memories. In 2019 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). IEEE, 610–614.

[5] A. Awad, Y. Wang, D. Shands, and Y. Solihin. 2017. ObfusMem: A low-
overhead access obfuscation for trusted memories. In 2017 ACM/IEEE 44th
Annual International Symposium on Computer Architecture (ISCA). 107–119.
https://doi.org/10.1145/3079856.3080230

[6] A. Awad, M. Ye, Y. Solihin, L. Njilla, and K. A. Zubair. 2019. Triad-NVM: Per-
sistency for Integrity-Protected and Encrypted Non-Volatile Memories. In 2019
ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA).
104–115.

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (Aug. 2011), 1–7. https://doi.org/10.1145/2024716.2024718

[8] Chenyu Yan, D. Englender, M. Prvulovic, B. Rogers, and Yan Solihin. 2006. Improv-
ing Cost, Performance, and Security of Memory Encryption and Authentication.
In 33rd International Symposium on Computer Architecture (ISCA’06). 179–190.
https://doi.org/10.1109/ISCA.2006.22

[9] Siddhartha Chhabra and Yan Solihin. 2011. I-NVMM: A Secure Non-Volatile
Main Memory System with Incremental Encryption. SIGARCH Comput. Archit.
News 39, 3 (June 2011), 177–188. https://doi.org/10.1145/2024723.2000086

[10] Alexander Freij, Shougang Yuan, Huiyang Zhou, and Yan Solihin. 2020. Persist
Level Parallelism: Streamlining Integrity Tree Updates for Secure Persistent Mem-
ory. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 14–27.

[11] Intel. 2020. Build Persistent Memory Applications with Reliability Availability
and Serviceability. [Online; accessed 7-March-2021].

[12] Intel. 2020. The Challenge of Keeping Up with Data. [Online; accessed 7-March-
2021].

[13] Intel. 2020. Deprecating the PCOMMIT Instruction. https://software.intel.com/
content/www/us/en/develop/blogs/deprecate-pcommit-instruction.html [On-
line; accessed 7-March-2021].

[14] S. Liu, A. Kolli, J. Ren, and S. Khan. 2018. Crash Consistency in Encrypted Non-
volatile Main Memory Systems. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 310–323. https://doi.org/10.1109/
HPCA.2018.00035

[15] Sihang Liu, Korakit Seemakhupt, Gennady Pekhimenko, Aasheesh Kolli, and
Samira Khan. 2019. Janus: Optimizing Memory and Storage Support for Non-
Volatile Memory Systems. In Proceedings of the 46th International Symposium on
Computer Architecture (ISCA ’19). Association for Computing Machinery, New
York, NY, USA, 143–156. https://doi.org/10.1145/3307650.3322206

[16] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris Volos, and
Kimberly Keeton. 2017. An Analysis of Persistent Memory Use with WHISPER.
SIGARCH Comput. Archit. News 45, 1 (April 2017), 135–148. https://doi.org/10.
1145/3093337.3037730

[17] PMDK. 2020. Persistent Memory Programming. "https://pmem.io/pmdk/". [On-
line; accessed 7-March-2021].

[18] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin. 2007. Using Address Indepen-
dent Seed Encryption and Bonsai Merkle Trees to Make Secure Processors OS-
and Performance-Friendly. In 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 2007). 183–196. https://doi.org/10.1109/MICRO.2007.16

[19] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, J. A. Joao, andM. K. Qureshi.
2018. Morphable Counters: Enabling Compact Integrity Trees For Low-Overhead
Secure Memories. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 416–427. https://doi.org/10.1109/MICRO.2018.00041

[20] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and M. K. Qureshi. 2018.
SYNERGY: Rethinking Secure-Memory Design for Error-Correcting Memories.
In 2018 IEEE International Symposium on High Performance Computer Architecture
(HPCA). 454–465. https://doi.org/10.1109/HPCA.2018.00046

[21] S. Shin, J. Tuck, and Y. Solihin. 2017. Hiding the long latency of persist barriers
using speculative execution. In 44th Annual International Symposium on Computer
Architecture (ISCA 2017). 175–86. https://doi.org/10.1145/3079856.3080240

[22] Bo Yang, Sambit Mishra, and R. Karri. 2005. A High Speed Architecture for
Galois/Counter Mode of Operation (GCM). IACR Cryptol. ePrint Arch. 2005 (2005),
146.

[23] M. Ye, C. Hughes, and A. Awad. 2018. Osiris: A Low-Cost Mechanism to Enable
Restoration of Secure Non-Volatile Memories. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 403–415. https://doi.org/
10.1109/MICRO.2018.00040

[24] Vinson Young, Prashant Nair, and Moinuddin Qureshi. 2015. DEUCE: Write-
Efficient Encryption for Non-Volatile Memories. ACM SIGPLAN Notices 50 (05
2015), 33–44. https://doi.org/10.1145/2775054.2694387

[25] J. Zhou, A. Awad, and J. Wang. 2020. Lelantus: Fine-Granularity Copy-On-
Write Operations for Secure Non-Volatile Memories. In 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA). 597–609. https:
//doi.org/10.1109/ISCA45697.2020.00056

[26] K. A. Zubair and A. Awad. 2019. Anubis: Ultra-Low Overhead and Recovery Time
for Secure Non-Volatile Memories. In 2019 ACM/IEEE 46th Annual International
Symposium on Computer Architecture (ISCA). 157–168.

[27] P. Zuo, Y. Hua, M. Zhao, W. Zhou, and Y. Guo. 2018. Improving the Performance
and Endurance of Encrypted Non-Volatile Main Memory through Deduplicating
Writes. In 2018 51st Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO). 442–454. https://doi.org/10.1109/MICRO.2018.00043

https://doi.org/10.1109/ISCA.2018.00044
https://doi.org/10.1109/TDSC.2020.3020085
https://doi.org/10.1109/TDSC.2020.3020085
https://doi.org/10.1145/2872362.2872377
https://doi.org/10.1145/3079856.3080230
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/ISCA.2006.22
https://doi.org/10.1145/2024723.2000086
https://software.intel.com/content/www/us/en/develop/blogs/deprecate-pcommit-instruction.html
https://software.intel.com/content/www/us/en/develop/blogs/deprecate-pcommit-instruction.html
https://doi.org/10.1109/HPCA.2018.00035
https://doi.org/10.1109/HPCA.2018.00035
https://doi.org/10.1145/3307650.3322206
https://doi.org/10.1145/3093337.3037730
https://doi.org/10.1145/3093337.3037730
https://doi.org/10.1109/MICRO.2007.16
https://doi.org/10.1109/MICRO.2018.00041
https://doi.org/10.1109/HPCA.2018.00046
https://doi.org/10.1145/3079856.3080240
https://doi.org/10.1109/MICRO.2018.00040
https://doi.org/10.1109/MICRO.2018.00040
https://doi.org/10.1145/2775054.2694387
https://doi.org/10.1109/ISCA45697.2020.00056
https://doi.org/10.1109/ISCA45697.2020.00056
https://doi.org/10.1109/MICRO.2018.00043

	Abstract
	1 Introduction
	2 Background
	2.1 Memory Encryption
	2.2 Integrity Verification
	2.3 Persistent Security

	3 Motivation
	4 Dolos Implementation
	4.1 Threat Model
	4.2 High-level Overview of Dolos
	4.3 Minor Security Unit (Mi-SU)
	4.4 Major Security Unit (Ma-SU)
	4.5 Write Coalescing and Reads from WPQ
	4.6 Security Discussion

	5 Evaluation
	5.1 Simulation Setup
	5.2 Dolos Performance
	5.3 Sensitivity Study
	5.4 Dolos Performance in Lazy Update Scheme
	5.5 Estimated Overheads of Mi-SU

	6 Related Work
	7 Conclusion
	References

