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Abstract. The disparity in the impact of COVID-19 on minority populations

in the United States has been well established in the available data on deaths,
case counts, and adverse outcomes. However, critical metrics used by public

health officials and epidemiologists, such as a time dependent viral reproductive

number (Rt), can be hard to calculate from this data especially for individ-
ual populations. Furthermore, disparities in the availability of testing, record

keeping infrastructure, or government funding in disadvantaged populations
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can produce incomplete data sets. In this work, we apply ensemble data
assimilation techniques which optimally combine model and data to produce a
more complete data set providing better estimates of the critical metrics used by
public health officials and epidemiologists. We employ a multi-population SEIR
(Susceptible, Exposed, Infected and Recovered) model with a time dependent
reproductive number and age stratified contact rate matrix for each population.

We assimilate the daily death data for populations separated by ethnic/racial
groupings using a technique called Ensemble Smoothing with Multiple Data

Assimilation (ESMDA) to estimate model parameters and produce an Rt(n)
for the n

th population. We do this with three distinct approaches, (1) using
the same contact matrices and prior Rt(n) for each population, (2) assigning
contact matrices with increased contact rates for working age and older adults to
populations experiencing disparity and (3) as in (2) but with a time-continuous
update to Rt(n). We make a study of 9 U.S. states and the District of Columbia
providing a complete time series of the pandemic in each and, in some cases,
identifying disparities not otherwise evident in the aggregate statistics.

1. Introduction. The COVID-19 pandemic has amplified social and economic
inequities that impact the wellness of racial and ethnic minority populations. In-
equities in socio-economic conditions (e.g. undocumented workers being ineligible
for unemployment benefits, types of jobs, square footage per household, ability to
use delivery services, access to private transport, access to healthcare) among these
populations have led the epidemic to evolve unevenly among them, frequently with
catastrophic outcomes. Often times, members of disproportionately affected racial
or ethnic minority populations fit the description of “front line workers” who have
kept and continue to keep vital services running during the pandemic. Diverse
responses and counter-measures implemented by certain states have also affected
the way we understand viral spread within different populations and have made
it difficult to track viral behavior in regions with differing levels of government
intervention and population compliance. Matters are further complicated by the
scarcity of COVID-19 data for different ethnic and racial groups, especially minority
populations within a particular state. In cases where data alone cannot provide a
clear understanding of events, the combination of data and a realistic model can
provide a more complete picture of events.

Combining model and data estimates is referred to as data assimilation (DA).
DA has been widely and successfully employed in geophysics, numerical weather
prediction, and climate studies. Data Assimilation has lead to massive improvements
in weather prediction over the years [19]. In addition, reconstructions of global
weather patterns are routinely done by marrying available historical data to large
scale weather models through DA. Having a time record of global observations is
key for advancement, however they are irregular in space, time and quality. By
combining data and model, a complete picture of a global weather pattern time series
can be formed. An example of such a reanalysis can be found through the European
Center for Medium Range Weather Forecasting (ECMWF) [24]. These data sets
provide researchers with the tools to understand geophysical processes, changing
climate conditions, and develop new tools to improve predictions. There are also
instances where neither model nor data alone can provide an accurate picture of
a given phenomena. Through the use of both model and data, the prediction of
an outcropping event that resulted in a mass fish kill in the Sea of Galilee was
predicted 9 hours before the event [31]. This would not have been possible through
solitary data analysis or model runs alone. DA has also been used to improve the
predictability of cancer models to improve patient outcomes [32].
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With DA being such a powerful tool for understanding complex systems, we aim to
apply the methodology to new problems in epidemiology. Some notable works have
used data assimilation in the context of epidemiology, employing both variational
[11] and Kalman filter-like methods [13]. Most of the studies use sequential filtering
approaches, e.g., the iterative filter and the Ensemble Kalman filter (EnKF) or the
Ensemble Adjustment Kalman Filter (EAKF). Recent studies on SARS-CoV-2 still
mostly use a filtering approach. A filter will update bias in the solution, however,
it does not adjust the parameters that can lead to that bias. Instead of filtering,
we make use of an Ensemble Smoother with Multiple Data Assimilation (ESMDA)
updating the parameters that lead to bias in the solution. This method allows
for the estimation of time dependent parameters (such as a time dependent viral
reproductive number (Rt)) since fitting their values at a given time can be adjusted
to predict data at later times. In this way, we are updating the parameters in the
past to remove the bias in the solution before it happens. Other examples of iterative
ensemble smoothers can be found in [12, 14], in the geosciences in [15] or petroleum
reservoir modeling in [29].

For our model, we develop a multi-population SEIR (Susceptible, Exposed,
Infected, and Recovered) model that can be used to study how the SARS-CoV-2
virus spreads in different populations, detect inequities, and provide estimates of
crucial metrics that can be used to understand any disparities, even those not caught
by poorly-collected, inconsistent, or improperly reported data. Our model is an
extension of Evensen et al.’s SEIR model [18] to a multi-population one. In this
model, each population has an age stratified contact rate matrix with different
risk factors for severe illness and death for each age group within it. In addition,
each population has their own time dependent viral reproductive number Rt(n)
driving infections for the population. We assimilate COVID-19 deaths separated by
race/ethnicity from the states of Alaska, California, Connecticut, Delaware, Hawaii,
Maryland, Michigan, Utah, and Washington, as well as the District of Columbia.
These locations are chosen on account of their more complete reporting of deaths by
race/ethnicity. The data is assimilated using ESMDA resulting in a complete time
series estimate of viral reproductive number, infections, hospitalizations, deaths,
and other relevant static parameters for each racial/ethnic population within each
location. The result of the data assimilation is referred to as the analysis. We
approach the DA in three distinct ways. In the first approach, we assign the same
age stratified contact rate matrices to each population as well as the same prior
for the time dependent reproductive number, Rt(n). Then we assimilate the daily
death data for each population which adjusts its Rt(n) so that the solution of the
SEIR model better predicts the observed deaths. This method quantifies potential
disparities between populations with no prior assumption on such. Populations
whose analysis Rt(n) curves show higher rates of spread over time indicate disparity,
especially when they make up a smaller proportion of the total population. In the
second approach, we make more assumptions on the causes of disparity between
different populations. Specifically, that disparity exists when the bulk of a given
population is employed in jobs where they cannot work from home, may live in
smaller housing situations with inter-generational households, and may not have
access to financial reserves or resources that facilitate the ability to self isolate.
We build this assumption into the age stratified contact matrix by increasing the
contact rates among working age adults as well as rates among older individuals
with the other age groups for those populations. We refer to this matrix as the
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Disproportionately Affected Population (DAP) matrix. The decision on whether or
not a given population should be assigned this matrix is based only on the implication
of disparity in the aggregate statistics as discussed in section 1.1. Each population
is given the same prior for Rt(n) which is allowed to be adjusted by the update
step, up or down, by the same amount over the time interval we consider. With
this piece-wise update, we allow for the uncertainty in Rt(n) to be high, finding an
analysis curve for Rt(n) that establishes the bulk difference in the rate of spread for
each population. With the third approach, we also use different contact matrices for
any DAP, but we use the analysis Rt(n) curves for each population computed in the
piecewise update from approach two as a prior. Further, we use a lower uncertainty
and apply a time-continuous update to Rt(n). It is this time-continuous update that
allows us to also update the driving rate of spread in the past to remove bias in the
solution before it happens. It is this final approach for which we obtain parameters
that produce solutions of the SEIR model most consistent with the data.

The outline of the paper is as follows: Section 1.1 provides our working definition
of a DAP, Section 2 describes the SEIR model used, and in Section 3 we give a
brief introduction to the ESMDA method itself. In Section 4 we describe how we
choose the representative age-stratified contact matrices for a DAP and a Non-
Disproportionately Affected Population (NDAP). We also show how the choice of
those matrices affects model predictions with free (no DA) model runs. In Section 4.2
we provide the general setup for our ESMDA runs, and present the individual results
for the different states we consider. In Section 5 we highlight the importance of the
choice of prior estimates of model parameters specifically discussing the results for
the State of Connecticut. Finally, in Section 6 we conclude by making an overall
assessment of the results obtained across the modeled populations within the 9 states
previously mentioned and the District of Columbia, as well as presenting some next
steps.

1.1. Classification of a disproportionately affected population (DAP). In
this work, we consider “Disproportionately Affected Populations” (DAPs) to be sub-
populations of the overall population disproportionately affected by the pandemic
than other sub-populations. Here our sub-populations will be comprised of the
different racial/ethnic populations within a given locality.

We adopt the same criteria used in [7] to identify a DAP. A population is flagged
for likely disparity when case counts or deaths meet the following criteria: (1) is
at least 33% higher than the census percentage of total population, (2) remains
elevated whether including or excluding cases/deaths with unknown race/ethnicity,
(3) is based on at least 30 actual cases or deaths. If these criteria are met for a given
population we will consider them a disproportionately affected population and refer
to them as a DAP. Populations which meet none of the criteria above will be referred
to as Non-Disproportionately Affected Populations (NDAPs). It is this criteria that
we use to assign a DAP contact matrix with increased contact rates when applying
the methodology of approach two or three outlined in the introduction.

It is important to note that these criteria can still fail to detect disparities. For
example, one population may be flagged as a DAP in terms of confirmed cases while
another may not and a disparity goes unnoticed due to a lack of testing or case
reporting for that population. Using ESMDA techniques, we can estimate the actual
infections in a population through the assimilation of the death data and detect
some of these kinds of possible disparities. Indeed, as is discussed in Section 4.2.6,
for the state of Connecticut we see that while the LatinX population is flagged
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for a disparity in terms of confirmed cases, we find that the Black population may
in fact make up more of the total infections despite representing 6% less of the
total population. The Black population, however, was not flagged as having a high
percentage of confirmed cases compared to the percentage of the total population.
In this way a population that might not be considered a DAP from the aggregate
statistics alone may be revealed to be one through the DA analysis.

We would also like to note that in total there are 9 possible racial/ethnic classifi-
cations reported in the data, White, Black, LatinX, American Indian and Alaskan
Native (AIAN), Asian, Native Hawaiian and Pacific Islander (NHPI), Multiple,
Other and Unknown. Each locality that we study may report some data from these
populations differently or not at all, and in some cases they may even be double
counted. This is particularly true with individuals in the multi-racial grouping.
Some states my also count them as members of each grouping to which they belong.
It may also be that a multi-racial person chooses one grouping to report themselves
as. The Unknown grouping is more a measure of deaths not assigned to any group
and is not considered other than to gauge uncertainty as it is not a racial/ethnic
classification.

2. Model.

2.1. Evensen et al. original (one population) model. The original Evensen
et al. model [18] has na compartments/equations for susceptible (Si), exposed
(Ei), and infectious (Ii) individuals in each age group, with i = 1, . . . , na. The
remaining compartments and equations are for the following infected individuals:
quarantined individuals with mild (Qm), severe (Qs), or fatal (Qf ) symptoms;
hospitalized individuals with severe (Hs) or fatal (Hf ) symptoms; individuals with
fatal symptoms who are put into a care home (Cf ); recovered individuals who had
mild (Rm) or severe (Rs) symptoms; and dead individuals (D).

An infectious individual from the age group j (Ij) can infect a susceptible
individual in any age group i (Si). They will do so at a rate Rij(t), which highlights
the different contact/infection rates between each age group. These values compose

the matrix R̂. We also have a scalar function R(t) (note that this is equivalent to the
function Rt(n) mentioned previously with n = 1 and with simplified notation) which
is the effective reproductive number at time t. Multiplying these two quantities
together gives R(t) = R(t)R̂. This matrix is then re-scaled so that R(t) solely
determines the effective reproductive number at any time. The system runs through
three different intervention periods: (1) “pre-lockdown” (before any mitigation
measures), (2) “lockdown” (when people were asked or required to stay home and
avoid gathering), and (3) “post-lockdown” (when a state began to reopen businesses
and lessen restrictions on gatherings). For each of these time periods, we can have

different R̂ matrices, R̂i to reflect different contact rates between different age groups
in each time period.

We have the following parameters for this model: the proportion of the population
that has mild symptoms and is from age group i (pim), the proportion of the
population that has severe symptoms, and is from age group i (pis), the proportion of
the population that has fatal symptoms and is from age group i (pif ), the proportion

of infected individuals with fatal symptoms who are hospitalized (ph), the average
length of the incubation period (τinc), the average length of the infectious period
(τinf), the average length of hospitalization (τhosp), the average recovery time for
individuals with mild symptoms (τrecm), the average recovery time for individuals
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with severe symptoms (τrecs), and the average time to death for individuals with
fatal symptoms (τdeath).

2.2. Multi-population model extension.

2.2.1. New model assumptions & clarifications. Now we employ a modified version of
the original Evensen et al. model, extending it from a single population of interest to
nc populations and na age classes within each population. Here, different populations
could represent different countries, states, localities, or a specific population within a
locality. For this work we consider each population to be the different racial/ethnic
populations in a state. In Equation 1, we use the following notation: n,m are indices
running over all nc populations and i, j are indices running over all na age groups
within each population. The total population of any two populations, n and m, are
denoted by Nn and Nm respectively.

We model the interaction between groups using the elements of RC ∈ R
nc×nc

(the diagonal must always be 1) and RA ∈ R
na×na . The effective reproductive

number per population is a scalar function of time, Rt(n), and is a parameter that
we estimate. We model the relative differences in infectiousness between age groups
using the coefficients in RA

ij(n), which can differ between populations. The model

default is “null”, such that all elements are set to RA
ij(n) = 1, which assumes equal

transmission rates among all age groups. In Equation 1, we use the RA
ij(n) for

age group i as it interacts with age group j. The only sound alternative to this
choice would be to set RA

ij(n) = 1 when m 6= n, given the number of coefficients we

would otherwise need to specify. An example of such a matrix RA
ij(n) can be seen in

Figure 1.
The fractions of mildly, fatally, and severely ill (pm, pf, and ps, respectively) can

differ between populations. We have used the same hospitalization fraction of fatally
ill, ph, for all populations.

In the case with only one population n = m = 1, we have Nm/Nm = 1, as well
as RC(n,m) = 1. Thus, Equation 1 reduces to the standard SEIR model as in
Section 2.1. The use of a multi-compartment model only changes the nonlinear
interaction term present in the Si(n) and Ei(n) subequations. Outside of this
interaction term, each population evolves independently of every other.
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particular, we take inspiration from Evensen et al.’s use of an ensemble smoother with
multiple data assimilation (ESMDA) in their extended SEIR model of COVID-19
upon which we build [18].

3.1. The inverse problem. Ensemble smoother techniques can be derived by
assuming a perfect forward model.

y = g(x) (2)

In general, x is the realization of model parameters, and y consists of the
uniquely predicted measurements. For the case of COVID-19, x consists of the
initial conditions, parameters, and time-reliant effective reproductive numbers. We
relate the predictions y, to the parameters x through the model operator g(x),
where g is the model in Equation 1.

d← y + e (3)

In our model, y then consists of the predicted measurements of deaths, cases and
hospitalizations given some model error, e. Here, d is the observed data. To solve
the inverse problem, it is efficient to frame it into an equation using Bayes’ theorem:

f(x | d) ∝ f(d | g(x))f(x) (4)

Equation 4 represents the so-called smoothing problem, which can be approxi-
mated using ensemble methods. We refer the reader to Evensen’s analysis of solving
inverse problems for a full derivation and well-constructed analysis in [17]. We also
note that Equation 4 is also the basis of sequential filtering problems.

3.2. ESMDA. The assimilation method used is an iterative ensemble smoothing
method called an ensemble smoother with multiple data assimilation. The method,
which is similar to an ensemble smoother, solves the parameter-estimation problem
and is formally derived from the Bayesian formulation using a tempering procedure
[30]. What separates this method from other similar methods is that it approximates
the posterior recursively, gradually introducing information to alleviate the impact
of nonlinear approximation. After updating through to the last time step, it begins
the assimilation process over again - resampling the perturbation in the vector
of perturbed observations, which reduces sampling error [16]. The simplicity and
effectiveness of ESMDA are what make it an optimal assimilation method for this
particular application.

For simplicity, we lay out the ensemble methods without the mathematical details,
as laid out in [18].

• First, sample a large ensemble of realizations of the prior uncertain parameters
(age groups, the functions Rt(n), and the initial infected and exposed), given
their prescribed first-guess values and standard deviations.

• Integrate the ensemble of model realizations forward in time to produce a prior
ensemble prediction, which also characterizes the uncertainty.

• Compute the posterior ensemble of parameters by using the misfit between
prediction and observations, and the correlations between the input parameters
and the predicted measurements.

• Finally, compute the posterior ensemble prediction by a forward ensemble
integration. The posterior ensemble is then the “optimal” model prediction
with the ensemble spread representing the uncertainty.



A STUDY OF DISPROPORTIONATELY AFFECTED POPULATIONS BY RACE/ETHNICITY 487

4. Case studies. In this section, we highlight how the model behaves when using
different age-stratified matrices for two populations, one DAP and one NDAP. During
the different intervention periods, we make the assumption that DAPs will have
increased contact rates to varying degrees across all age groups. The matrices are
described below. We then describe our assumptions and various approaches to the
ESMDA problem and interpret the results obtained for each state in our study. First
we make some remarks on the model parameters and data chosen for assimilation.

For the model parameters explained in Section 2, we use the same initial guesses
as in [18] and show them in Tables 8 and 9 in Appendix A. The initial values for
theses parameters are based off values obtained from available data and some initial
model tuning experiments. However, the DA will fine tune these parameters if
necessary. We use the same initial parameters for all populations including the
p-numbers and case fatality rates. While there is some evidence that different
racial/ethnic populations may have more members with underlying conditions, this
is also true of members of the same population who live in different regions. We
do not find enough available data to make confident guesses in any differences in
these parameters amongst the different populations or localities. We also believe
the differences to be relatively small and that any discrepancies can be accounted
for by a small increase or decrease in Rt(n) as estimated by the ESMDA scheme.
In general, we find that for our best obtained results, these initial parameters are
good estimates and that Rt(n) is the primary differentiator between populations.
It should be noted though that some populations such as the AIAN population in
Alaska may not have as much access to needed medical care in Arctic rural areas.
This could mean a higher CFR and lower Rt(n) is warranted, however the DA will
still detect discrepancies through Rt(n).

For this work, we choose only to assimilate death data for each of the racial/ethnic
populations. While the model and ESMDA scheme can assimilate case counts and
hospitalizations, we find this data to currently be of too poor quality for assimilation.
Case counts can be very misleading when the actual percentage of cases captured is
unknown and changing through time while hospitals may not report racial/ethnic
data at all or quickly enough. However as deaths are recorded by each local
government and each reports a deceased individual’s race, there is more consistency
in the reporting. At the time of writing this manuscript, the race/ethnic data set is
somewhat incomplete for most states and is changing as the COVID-19 pandemic
unfolds. We choose states for which there is at least 93% reporting up to January 3,
2021, for our analysis. We also increase the uncertainty in the death data to account
for unknown cases while keeping it low enough for the ESMDA to actually make
informative updates. We believe more analysis should be done when the data is
more complete; for example, when more data, such as hospitalizations, can be made
readily available. However, we believe there is still much that can be learned in this
analysis. The data that we use is compiled by The Covid Tracking Project who
themselves compile the data from local government authorities [7].

4.1. Non-DA runs. We begin our simulations by working with two “toy” pop-
ulations to see how the model performs with no DA. For clarity, this run is not
assimilating populations by race/ethnicity. This is simply a run to test that our
multi-population model is working as expected given certain initial conditions. To
this effect, we consider two populations with the following initial conditions: pop-
ulation 1 has an initial exposed of 500, initial infected of 350, and a case fatality
ratio (CFR) of 0.009; population 2 has an initial exposed of 1000, initial infected
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of 700, and a CFR of 0.01. We use the following parameters for Equation 1 in our
simulation, τinf = 3.8, τinc = 5.5, τrecm = 14, τrecs = 5, τhosp = 6, and τdead = 16.
We use a continuous function for Rt(n) with data from [9]. For this run, we use the
time varying estimates of the effective reproductive number for the state of Utah
obtained from [9] (see bottom left plot of Figures 3, 4). The interactions between age
groups are taken into account in the RA

ij(n) matrix entries (see Table 1 and Figure 2).
Our decisions on the chosen values are based on assumptions that population 2 will
be a DAP while population 1 will be a NDAP. We chose two scenarios with different
proportions of the DAP and NDAP present in the total population.

For the non DA runs, each matrix in (i), (ii) of Figure 2, is used to indicate
the different “intervention periods” in the model: top =“pre-lockdown”, middle
=“lockdown”, and bottom =“post-lockdown”; (i) represents contact matrices for a
NDAP and (ii) represents contact matrices for a DAP. For both (i) and (ii), the
top matrices are the same. We used a contact matrix from a statistical survey of
Europe [18] to describe the transmission between different age groups as a basis for
such matrices. In Table 1, we note the parameter values that were used to scale the
top matrix for each intervention period for both the DAP and the NDAP. During
the lockdown intervention period, contact rates are decreased across all age groups,
but more so for school-age children and older adults, in line with school closures and
assumed caution amongst the most vulnerable populations. After a “re-opening”
(i.e., entering the “post-lockdown” period), rates are increased across all age groups
but more so for working-age adults and children, while assuming caution remains
amongst the older population. For a DAP, contact rates between working adults and
older adults are higher than for a NDAP. This builds in the assumption that DAP
jobs tend to be in places where exposure is more likely (grocery stores, construction,
etc) and that there are more inter-generational households connecting working-age
adults and children with older adults in such populations. Identifying the scaling
parameters is a difficult task and more data would be needed to directly estimate
them. We take an ad-hoc approach to estimation but note that the normalization
of RA

ij means that the primary control of the rate of spread is in the scaling factor
Rt(n) for the DA runs in Section 4.2. We choose scaling factors which provide
differentiation in the results of the non DA runs between the populations without
being too extreme. In (iii) we see the inter-population contact matrix between
our two populations where the diagonal elements, RC

nn, are 1 and the off-diagonal
elements are very small (<< 1). The results show that the model takes into effect
the population size as well as the contact matrices.

In Figure 3, both populations have about the same number of people. Since we
are not assimilating data for these runs, we have only included the averages in the
plots (which in this case is the same as if we were simply integrating a basic SEIR
model). In all plots, the blue curves represent the NDAP while the red is the DAP.
We can clearly note that the total amount of projected deaths and cases for the
DAP tend to be higher since the intra-population contact rates for each intervention
period are also higher for the DAP. In the bottom-left figure, we use data on the
state of Utah as the effective reproductive number Rt(n) for this simulation (black
curve) retrieved from [9]; the shaded gray area around the curve represents the cone
of uncertainty provided by the site [9]. The blue and green curves represents Rt(n)
(they are the same in this case since we have no DA). In Figure 4, colors have the
same meaning as in Figure 3. The NDAP represents a significant amount of the
population (about 70%) in this scenario. The total amount of projected deaths and
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Model runs with no DA
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Figure 3. Results for non-DA runs with DAP and NDAP at about the
same population.

each racial/ethnic population and state are estimated using data from the Institute
for Health Metrics and Evaluation (IHME) [5] which provides an estimate of actual
cases for each day of the pandemic. We take this estimate from the start date of our
simulations and scale it by the proportion of the total population each population
represents. This provides an initial guess for the number of infected and then we
double this for the number of exposed. We note that these initial conditions are also
fine tuned by the ESMDA algorithm. Our population by age group data for each lo-
cality comes from the 2018 U.S. Census Bureau estimates. We use the age groupings
described in [18], however, this type of data is not available in each racial/ethnic
category. As an estimate we take the age grouping data from the specific locality
and scale it by the proportion of the total population each population represents.
This is not completely ideal, but serves as a reasonable estimate. We also note that
some population percentages for a given state may add up to more than 100%. This
could be due to double counting in some cases. In the end, population estimates
will have inaccuracies in general and we believe these estimates are sufficient for the
current work. We anticipate more accurate information on age groups coming from
the 2020 U.S. census when it is made available.

4.2.2. Inter population contact matrices. In our analysis, we employ three different
inter-population matrices for each of the three intervention periods as in Table 2.
In the first period before any mitigation measures, RC

nm = 0.001 for n 6= m; during
the lockdown periods, we reduce the off-diagonal terms by an order of magnitude
to RC

nm = 0.0001; and finally after the lockdown, we take the off-diagonal terms to
be RC

nm = 0.0005, assuming caution in the population. We choose the off-diagonal
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Figure 4. Results for non-DA runs with NDAP at 70% of the total
population.

mixing terms to be fairly small by the following reasoning. Most of the spread of this
virus occurs during mask-less, indoor, and sustained close contact. This implies that,
especially during and after the lockdown periods, most of the spread will happen
in the home or group settings where precautions are not taken or are infeasible to
maintain, an assumption supported by a recent CDC study [21]. This implies that
for the majority of the pandemic, members of these specific racial populations are
not often having the type of contact conducive to spreading SARS-CoV2 with people
outside of their family nor their group of close friends, both of which are likely to
consist of members of the same racial/ethnic population. This also implies that
these populations may in fact evolve somewhat independently of each other with
transmissions between racial populations being less common than within populations.
To illustrate, a member of a particular population may become exposed at a place
with other populations present, i.e. work or large gathering. This would represent
one new infection for this individual and their population. However, they may then
spread infection to several immediate or extended family members who likely share
race/ethnicity. Thus, one infection across populations can become many infections
within the population. This effect would be amplified during times when people are
taking precautions when outside of the home.

In practice, when repeating our experiments over a range of values for 10−5 ≤
Rc

nm ≤ 1, we find that we can best explain the data in the range of 10−4 to 10−2

as measured by the χ-squared statistic. In addition, the Rt(n) curves for each
population retain the general trend of the initial prior, which is desirable. For values
of large mixing (≥ 10−1) the populations with the highest number of infections per
capita tend to drive the dynamics with the other populations having values for Rt(n)
well below the exponential threshold of R = 1. This is unrealistic as it would imply
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one population is primarily responsible for the majority of transmission which is
incompatible with the fact that most of the transmission happens in the home or
close friend or work settings.

This effect can be understood through equations (1a) and (1b). Large values
for RC

nm would require a large reduction in Rt(n) to scale down the transmissions
from population m (with a large number of infections) to population n (with far
fewer infections) so that they are consistent with the number of deaths in the data.
Likewise, if RC

nm is too small, Rt(n) may be driven up. However, if a particular
population is a very small proportion of the total population, then an Rt(n) below
R = 1 is realistic as interactions with their own population are less likely and
interactions with other populations would be the primary driver of spread. As a
result, Rt(n) would not be driven down just because of a large mixing value. We
illustrate some of these differences in Figure 5. We also note that parameters that
are well understood, such as the CFR, must change somewhat significantly between
populations as well in order to fit the data for large mixing values. For all of the
reasons above we keep the off-diagonal mixing values around the order of 10−4 to
10−3.

Analysis Rt(n) curves for various group mixing values

Figure 5. Examples of analysis runs for various values of RC
nm from

the District of Columbia (DC). Top: left RC
nm = 0, right RC

nm = 10−3.
Bottom: left RC

nm = 10−1, right RC
nm = 6× 10−1.

4.2.3. Experimental setup. We take three approaches to our DA analysis. In approach
one, we use age contact matrices of all ones (RA

ij(n) = 1 for all age groups i, j
and populations 1, . . . , n) which would remove any possible effect resulting from
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differences between the age group contact matrices of the DAPs and the NDAPs.
We do this in an effort to detect any possible disparities among populations without
making prior assumptions of how their contact rates might differ. We further assume
the same piece-wise prior for each population on the effective reproductive scaling
factor Rt(n) with large uncertainty (σ = 3), allowing the ESMDA smoothing to
adjust this based on the data. The prior itself is taken from rt.live [9] for each state
that we study. By piece-wise we mean that the update to the Rt(n) prior is done
on the whole, shifts up or down for the curve given rather than time dependent
adjustments. As a result, we would expect the recovered Rt(n) for each population
to be somewhat stratified with larger values on average belonging to the DAPs.
This is shown in Figure 6 for the District of Columbia where we see a stratification
indicating the Black and LatinX populations having the largest values for Rt(n). We
do note the somewhat poor data fit when doing piece-wise updates, this is remedied
when allowing for a time-continuous update to Rt(n) discussed below.

Case: Piece-wise updates to Rt(n) (DC)
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Figure 6. Analysis results for the District of Columbia (DC) with
RA

ij = 1 and piece-wise updates to Rt(n).

In approach two, we repeat the same experiment as above with the exception
of using different age contact matrices. Here we use the DAP and NDAP matrices
described in Section 4.1. We assign the DAP matrices to populations that meet the
criteria for disparity as described in covidtracking.com [7], also outlined in Section 1.1.
With approach two, using DAP and NDAP contact matricies, we typically expect
the stratification to be somewhat less dramatic as the increased contact rates among
working age and elderly groups in the DAPs can explain increased transmissions
and deaths without higher values for Rt(n), which here is also updated piece-wise.
An example of these runs is shown in Figure 7 where we see a stratification among
populations with the analysis Rt(n) values typically a bit lower than for the case
without age stratification. This is because of the increased contact rates among
adults in the age-stratified matrices, who are more likely to suffer death, as compared
to that of children, who are less likely to suffer death from SARS-Cov2. This means
that less spread is needed to account for the number of deaths in the data.

This effect can also be understood through equations (1a) and (1b), specifically
the product RA

ij(n)Iij(m) when n = m. If contact rates for working-age and older
individuals are higher, the number of infections attributed to those age groups is
increased. As a result, the scaling factor Rt(n) may need to be reduced if those
infections are overestimated and inconsistent with the number of deaths in the data.
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Case: Piece-wise updates to Rt(n) (DC)
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Figure 7. Analysis results for the District of Columbia (DC) with age
stratified RA and piece-wise updates to Rt(n).

The specific contact rates are difficult to determine and a study to compute them is
encouraged.

Finally, we employ approach three where we allow for a time-continuous estimation
of Rt(n) using a decorrelation length of 10 days, the CDC recommended time that
an individual should quarantine after exposure [6]. Here the priors for Rt(n) used
for each population are taken directly from the analysis Rt(n) that comes from
approach two. We decrease the uncertainty to σ = 0.5 and employ the DAP and
NDAP matrices in the same way as previously described in Section 4.1.

For all three approaches, we have three intervention periods where we begin with
large contact rates at the beginning of the pandemic, severely reduced contact rates
during a given state’s mitigation (lockdown) period, and slightly reduced contact
rates after a given state re-opening date. How we scale these rates for each age
group is discussed in Section 4.1 and given in Table 1. The dates, in addition to
the starting date of each simulation, for each of the states we study can be found
in Table 2. The start date is chosen to be the first day given by our prior which
comes from rt.live. The date of the first intervention is chosen when a state began to
close schools and the beginning of the introduction of the White House Coronavirus
Task Force’s initial “15 days to slow the spread” campaign which prompted many
Americans to take precautions ahead of their individual states mandates.

To briefly summarize, we take three approaches to our DA experiments. In
approach one, with results shown in appendix B, we are agnostic to the differences
in contact rates between age groups among the different racial/ethnic populations
as well as government interventions periods during safety restrictions. For this run,
the contact matrices for all populations are comprised of all ones for the entire
integration window. In approach two, with the results also shown in appendix B,
we use contact matrices with different rates of contact between age groups which
decrease during times of safety restrictions. In addition, populations which meet the
criteria to be considered DAPs are assigned contact matrices with slightly increased
contact rates among working age individuals as well as working age and senior
individuals. This is to build in the assumption that members of DAPs would likely
have employment in jobs where work form home is not possible and have a larger
proportion of inter-generational households. In approach three we use the analysis
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results for Rt(n) from approach two as priors and allow for time-continuous updates
to Rt(n). This allows us to correct bias in the solution before it happens and provides
results which best fit the available data.

In the following sections we discuss the results obtained for each state and also
present the results from approach three. We make observations and at times speculate
on the causes of what we see in the analysis results with supporting information
when available.

Information on Intervention Periods by State and the District of Columbia
Interventions AK CA CT DC DE HI MD MI UT WA

Start date 3/8/20 2/25/20 2/27/20 2/27/20 3/1/20 2/28/20 2/25/20 2/21/20 2/29/20 1/9/20
1st Phase 3/19/20 3/19/20 3/19/20 3/17/20 3/17/20 3/17/20 3/17/20 3/17/20 3/17/20 3/17/20
2nd Phase 5/27/20 5/27/20 5/27/20 5/29/20 5/31/20 5/15/20 5/15/20 5/19/20 5/5/20 5/28/20

Table 2. Date breakdown by intervention periods for all states and the
District of Columbia.

Percentage of Population per State and the District of Columbia
Race/Ethnicity AK CA CT DC DE HI MD MI UT WA

AIAN 0.15 0.076 X X X X X 0.005 0.023 0.01
Asian 0.06 0.14 0.04 0.0435 0.045 0.38 0.06 0.035 0.038 0.08
Black 0.03 0.06 0.1 0.4453 0.22 0.02 0.29 0.14 0.021 0.04
LatinX X 0.39 0.16 0.113 0.09 X 0.1 X 0.142 0.13
Multi X X 0.02 X 0.02 X X X X 0.05
NHPI 0.01 0.039 X X X 0.1 X X 0.016 0.008
Other 0.08 X 0.01 0.01 X 0.24 X 0.03 0.01 0.005
White 0.65 0.37 0.67 0.4196 0.62 0.25 0.51 0.78 0.78 0.69

Table 3. Demographic breakdown by race/ethnicity (where data is
available) for all states and the District of Columbia. Groups that meet
the criteria to be a DAP are in bold. AIAN = American Indian and
Alaska Native, NHPI = Native Hawaiian and Pacific Islander.

4.2.4. The state of Alaska (AK). Table 3 displays a population breakdown by
race/ethnicity for all states that we study. We will frequently refer to this table
to make comparisons between population statistics and the model outputs such as
the number of exposed, recovered, infected, hospitalized individuals, and deaths.
Furthermore, Figure 36 displays various analyses among these populations in the
state of Alaska. Immediately striking is a major disparity revealed in the number
of deaths between the White and American Indian and Alaskan Native (AIAN)
populations. The White population makes up about 65% of the total population of
the state while the AIAN population is only about 15%, yet they have comparable
numbers of deaths. This can be seen in the analysis for hospitalized and dead
plots in Figure 36. This disparity may be due to the large proportion of the AIAN
population which lives far north of the Arctic Circle in regions where it is desirable
to be indoors (where transmission is more likely) most of the year, particularly in the
winter months. There is also far less medical infrastructure in these regions which
can contribute to higher death rates. There is also a noticeable disparity amongst the
Native Hawaiian and Pacific Islander (NHPI) population which makes up only about
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1% of the population. In the analysis of exposed and infected plots of Figure 36, the
number of infections of this population is above both that of the Asian and Black
populations which make up 6% and 3% of the total population respectively. In the
same three figures, we also see that the number of total infections–as estimated by
the analysis up to the last data point on January 3, 2021–for the NHPI population
is higher than that of the Black population. We also see evidence of these disparities
in the analysis of the Rt(n) functions for all three types of runs. In the ensemble of
Rt(n) plots for the first two approaches with piece-wise updates and large uncertainty,
we see that in Figure 18 (Appendix B) stratification of the curves occurs with the
most affected populations above the least effected populations for the majority of
the integration interval. In the first scenario, where all entries of the age contact
matrices are equal to one, we observe slightly higher values for Rt(n) than in the
second case where we employ the age-based contact matrices described in Section 4.1.
This is due to the higher contact rates in the contact matrices for more susceptible
age groups (adults) in the second case. Otherwise, Rt(n) must be larger to account
for the rate of spread. It is also notable that in the first two cases, the rapid increase
in death during the winter surge is somewhat missed by the analysis.

In the most realistic case where we allow for a continuous update of Rt(n) with a
10-day decorrelation length, this winter surge is captured and we see a far richer
difference in the analysis Rt(n)’s between populations. For the White population, we
notice a significantly higher Rt(n) from the start of the pandemic through mid-April,
which suggests that this was the first population affected, likely because the virus
would have arrived in larger cities, such as Anchorage, where a large proportion
of the state’s White population resides. After that time, we see Rt(n) typically
below R = 1 while spread becomes exponential for most of the other racial/ethnic
populations once the virus reaches beyond cities, into the regions with larger AIAN
populations. With the exception of the beginning of the pandemic, we also note that
Rt(n) dips further below R = 1 and more often for the White population. Notably,
Rt(n) remains well below R = 1 for the “Other” population, while Other represents
8% of the total population. The reason for this may be that many deaths actually
in this population are yet unreported or were reported as members of one of the
other populations the state of Alaska considers.

4.2.5. The state of California (CA). The populations we consider for California are
shown in Table 3. The LatinX and White populations make up 39% and 37% of the
population of California respectively. As can be seen in the analysis for hospitalized
and dead plots, both populations in Figures 19 (Appendix B) and 37 evolve very
similarly early on but begin to diverge from each other after the first set of restrictions
are lifted at the end of May 2020. The LatinX population begins to overtake the
White population in deaths and infections for all three approaches with a continually
widening gap. The LatinX population is the majority in the state of California,
however, only by about 3%. The disparity between infections and deaths between
the LatinX and White populations after the lifting of restrictions may be related to
which type of employment is more common in each population. According to the U.S.
Equal Employment Opportunity Commission, White/Asian individuals comprise
about 87% and 90% of the high tech jobs in the San Francisco-Oakland-Fremont and
Santa Clara County regions, respectively, while Black/Hispanic individuals comprise
only about 10% and 8% of the high tech jobs in each of those regions [3]. In March
2020, out of the roughly 19.17 million individuals that make up the labor force in
California [4], about 1.87 million of those jobs were in the technology field [1]. That
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Case: Continuous updates to Rt(n) (AK)

May 2020 Jul 2020 Sep 2020 Nov 2020 Jan 2021

Time

0

10

20

30

40

50

60

70

80

N
u

m
b

e
r 

o
f 

P
e

o
p

le

Analysis for hospitalized and dead

D AIAN

Hosp AIAN

ObsD AIAN

D Asian

Hosp Asian

ObsD Asian

D Black

Hosp Black

ObsD Black

D NHPI

Hosp NHPI

ObsD NHPI

D Other

Hosp Other

ObsD Other

D White

Hosp White

ObsD White

May 2020 Jul 2020 Sep 2020 Nov 2020 Jan 2021

Time

200

400

600

800

1000

1200

1400

1600

1800

N
u
m

b
e
r 

o
f 
P

e
o
p
le

Analysis for exposed and infected

Expo AIAN

Infec AIAN

Expo Asian

Infec Asian

Expo Black

Infec Black

Expo NHPI

Infec NHPI

Expo Other

Infec Other

Expo White

Infec White

May 2020 Jul 2020 Sep 2020 Nov 2020 Jan 2021

Time

0

2000

4000

6000

8000

10000

12000

14000

16000

N
u
m

b
e
r 

o
f 
P

e
o
p
le

Analysis for recovered and total cases 

Act AIAN

Recov AIAN

Act Asian

Recov Asian

Act Black

Recov Black

Act NHPI

Recov NHPI

Act Other

Recov Other

Act White

Recov White

Figure 8. Analysis results for the continuous update case for the state
of AK.

is, almost 1 in every 10 working-aged individuals in California would have a job
considered in the technology sector of the economy. Since such jobs are more easily
amicable to being conducted remotely, and because of the large racial disparity we
see for the demographics of such jobs, this could be one influencing factor in the
disproportionate spread of COVID-19 in the LatinX population.

In the case of California, the LatinX population met the criteria to be classified
as a DAP as described in Section 1.1. When we examine the analysis Rt(n) curves
for the case of a contact matrix of all ones (Figure 19, top, Appendix B), we do
see some stratification occurring among populations with the LatinX population
a bit above the others. However, when employing the age-based contact matrices
(Figure 19, bottom, Appendix B) this stratification disappears between the two
majority populations. In the case of a time-continuous update to the Rt(n) curve
(Figure 37), the curve for the LatinX population is, on average, above or similar to
the White population.

4.2.6. The state of Connecticut (CT). The populations we consider for Connecticut
are shown in Table 3. In the state of Connecticut, the LatinX and Multi-Racial
populations meet the criteria for the disparity in the disproportionate number of
confirmed cases as outlined in Section 4.2. The LatinX population makes up about
16% of the state’s population, while the Black and White populations make up 10%
and 67%, respectively. All other populations considered in this state’s analysis make
up less than 5% of the population, with the Multi-Racial population making up
about 2%. According to the case count data, 26% of confirmed cases come from
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Case: Continuous updates to Rt(n) (CA)
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Figure 9. Analysis results for the continuous update case for the state
of CA.

the LatinX population while only 11% come from the Black population. However
the Black population has more deaths, and for all three approaches, they exhibit
more overall cases. It is important to again note that confirmed cases may not be
representative of all the actual cases, which is the reason why we do not assimilate
that data. It may be possible that one population has more access to testing than
another or maybe more likely to get tested in general. The fact that the Black
population makes up 6% less of the population of Connecticut, yet accounts for 3%
more of the deaths (at the time of writing this manuscript) may be an indication of
disparities. The low number of confirmed cases compared to the LatinX population
suggests either a higher case fatality rate (CFR) or poor access to testing for the
Black population. The CFR for each population is estimated in our ESMDA process,
however, we do not detect any appreciable difference between these populations in
this state for any of the approaches.

When we examine the analysis Rt(n) functions using piece-wise priors (Figure 20,
Appendix B), we see that during the first intervention period, Rt(n) is much lower
for the White population than all of the others, possibly relating to the types of
jobs held by the populations, their access to C.A.R.E.S. act aid, or reserve funds to
fall back on. This apparent difference is lessened somewhat in the time-continuous
case. In Figure 38 we do see the effect of the first intervention period on Rt(n)
between April and May with a sharper dip for all populations with a minimum value
amongst the White population. After the reopening, we see an increase in Rt(n) for
all populations with the White and Black populations sustaining the highest, and
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Case: Continuous updates to Rt(n) (CT)
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Figure 10. Analysis results for the continuous update case for the state
of CT.

comparable, values for Rt(n). The LatinX population maintains Rt(n) values less
than that of the White and Black populations even though they represent a larger
proportion of the total population than that of the Black population. This again
suggests the detection of some disparity for the Black population.

4.2.7. The state of Delaware (DE). The populations we consider for Delaware are
shown in Table 3. The LatinX population fits the criteria described in Section 4.2 for
a DAP, making up about 9% of the population but accounting for 18% of confirmed
cases. When examining the analysis Rt(n) values for the case with a contact matrix
of all ones, in Figure 21 we see a stratification of Rt(n) amongst the populations.
During the intervention period, we find that the White population has the lowest
values of Rt(n) of the three most crowded populations in the state while the LatinX
population has the highest. The very low value for the Asian population is notable
given that they are 4% of the total population; however, the state of Delaware
includes the NHPI group in this population and some deaths may be reported in
the Other or Multi populations. When using the age-based contact matrices and
piece-wise updates to Rt(n), with the LatinX population as a DAP, this stratification
is lessened during the intervention period (Figure 21, Appendix B). This deeper dip
in Rt(n) for the White population during the intervention period is also present in
the continuous update case shown in Figure 40. Interestingly, the Black population
maintains a much higher value for Rt(n) during this same time period suggesting
that they may also be better classified as a DAP in this state even though they are
not flagged as being such. This is another example of how reanalysis through DA
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Figure 11. Analysis results for the continuous update case for the state
of DE.

can be used to understand historical dynamics in further depth than on can through
summary statistics.

4.2.8. The district of Columbia (DC). The populations we consider for the District
of Columbia are shown in Table 3. In the District of Columbia, the Black and LatinX
populations meet the criteria of a DAP. The Black population comprises 46% of the
population and represents 75% of the deaths, while the LatinX population comprises
about 11% of the population and represents 25% of confirmed cases and 13% of
deaths. In stark contrast, the White population comprises 41% of the population
and makes up only 10% of the deaths. In the cases with piece-wise updates to Rt(n),
we see in Figure 22 (Appendix B) that the stratification of the Rt(n) curves with
our DAPs are consistently above those for the NDAPs. We note that the Black
and LatinX populations have similar analysis Rt(n) curves for these runs, however,
the Black population has a much more substantial population total. In terms of
the number of active cases and total cases, we see in the relevant analysis plots
that the LatinX population overtakes the White population despite being a much
smaller proportion of the total population. A possible disparity unique to the LatinX
population may be evident in the analysis Rt(n) curves for the continuous-time
update runs shown in Figure 39 where we see the Black and White populations’
Rt(n) values well below that of the LatinX population’s during the intervention
period. These disparities may be related to a population’s ability to remain in
“lockdown” by receiving stimulus money or boosted unemployment coming from the



A STUDY OF DISPROPORTIONATELY AFFECTED POPULATIONS BY RACE/ETHNICITY 501

Case: Continuous updates to Rt(n) (DC)

Mar 2020 May 2020 Jul 2020 Sep 2020 Nov 2020 Jan 2021

Time

0

100

200

300

400

500

N
u
m

b
e
r 

o
f 
P

e
o
p
le

Analysis for hospitalized and dead

D Black

Hosp Black

ObsD Black

D LatinX

Hosp LatinX

ObsD LatinX

D Asian

Hosp Asian

ObsD Asian

D Other

Hosp Other

ObsD Other

D White

Hosp White

ObsD White

Mar 2020 May 2020 Jul 2020 Sep 2020 Nov 2020 Jan 2021

Time

2000

4000

6000

8000

10000

12000

14000

16000

18000

N
u

m
b

e
r 

o
f 

P
e

o
p

le

Analysis for exposed and infected

Expo Black

Infec Black

Expo LatinX

Infec LatinX

Expo Asian

Infec Asian

Expo Other

Infec Other

Expo White

Infec White

Mar 2020 May 2020 Jul 2020 Sep 2020 Nov 2020 Jan 2021

Time

0

2

4

6

8

10

N
u

m
b

e
r 

o
f 

P
e

o
p

le

10
4 Analysis for recovered and total cases 

Act Black

Recov Black

Act LatinX

Recov LatinX

Act Asian

Recov Asian

Act Other

Recov Other

Act White

Recov White

Figure 12. Analysis results for the continuous update case for the
District of Columbia.

C.A.R.E.S. act. In many cases, undocumented workers were unable to receive this
federal assistance [27], hindering one’s ability to remain home possibly contributing
to increased rates of spread. After the reopening, we see both the LatinX and Black
populations’ Rt(n) curves go above the exponential spread threshold of R = 1, while
the White population remains below this threshold until September, where it then
moves slightly above that threshold. In the absence of federal financial assistance,
populations that have more individuals able to work from home will likely have less
spread.

4.2.9. The state of Hawaii (HI). The populations we consider for Hawaii are shown
in Table 3. The Asian and NHPI populations meet the DAP criteria outlined in
Section 4.2. The Asian population makes up 38% of the population and 57% of
the deaths, while the NHPI population makes up 10% of the population with 43%
of confirmed cases and 31% of the deaths. In the run with contact matrices of all
ones, we see in Figure 23 (Appendix B) that there is a stratification in the analysis
Rt(n) with the Asian and NHPI populations maintaining higher values of R over
all the other populations. The stratification persists when using the age-based
contact matrices with the piece-wise updates to Rt(n), as shown in the bottom row
of Figure 23. When examining the analysis Rt(n) for the time-continuous update
case in Figure 41, the stratification during the initial intervention period is reduced
but still present with the NHPI population having the largest values of Rt(n). After
the reopening, the stratification persists and increases into the summer months
with the Asian population having the largest values of R followed by the NHPI
population. After September, Rt(n) is below R = 1 for all populations through
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Figure 13. Analysis results for the continuous update case for the state
of HI.

the end of October before surging again. In this period, the Asian population has
the lowest values of Rt(n) possibly due to the period before where they had the
largest, causing enough infections to lower the number of susceptible individuals in
the population.

4.2.10. The state of Maryland (MD). The populations we consider for Maryland
are shown in Table 3. For the state of Maryland, the LatinX population meets the
threshold for a DAP as outlined in Section 4.2, as they comprise 10% of the population
yet account for 20% of the confirmed cases. Indeed, for all three approaches, we
see that the LatinX population has the highest values of the analysis Rt(n) during
the intervention period, compared to the other populations observable in Figures 24
(Appendix B), and 42. After the intervention period, we do see an almost steady
spread around R = 1 for this population when piece-wise updates to Rt(n) are used
(Figure 24). In the case of continuous-time updates to Rt(n), we see evidence of a
fall surge beginning in October for all populations shown in Figure 42. While the
Black population did not meet the threshold for a DAP, we see evidence that they
could still be one according to our runs and analysis Rt(n). Comprising 29% of the
population of the state, they suffer 37% of the deaths compared to that of the White
population which makes up 51% of the total population and 49% of the deaths.
Indeed, in the analysis for the exposed and infected plots in Figure 42, we see that
before April and between May and September, the Black and White populations
have roughly the same number of infections and exposures despite the differences
in percent make up of the total population. This suggests a disparity that may be
tied to the types of work that the majority of people in each population comprise,
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Figure 14. Analysis results for the continuous update case for the state
of MD.

such as stay-at-home work versus working at a place of high exposure. It may also
be that the case fatality rate is higher for one population than the other and there
were fewer infections in the Black population than predicted by the assimilation.

4.2.11. The state of Michigan (MI). The populations we consider for Michigan are
shown in Table 3. In the state of Michigan, the Black population meets the criteria
outlined in Section 4.2 to be a DAP. The Black population makes up 14% of the
state’s population and comprises 24% of the deaths, while the White population
makes up 78% of the state’s population and comprises 69% of the deaths. In all three
approaches, we see that during the intervention period, the White population has
the lowest values of the analysis Rt(n) curves, again possibly signaling an ability to
stay home due to the types of jobs held or as a result of reserve wealth. This is shown
in Figures 25 (Appendix B), and 43. We also see that early on in the pandemic,
the Black and White populations have comparable numbers of infections despite
the difference in population proportions. This is also shown in the aforementioned
figures in the analysis of the exposed and infected as well as the recovered and total
cases plots. We can also observe that for all three approaches, in the same figures,
that the Black population maintains a higher value of Rt(n) for the vast majority of
the data window.

4.2.12. The state of Utah (UT). The populations we consider for Utah are shown
in Table 3. In the state of Utah, none of the populations reported on meet the
criteria to be a DAP as described in 4.2. In Figures 26 (Appendix B), and 44, we
see a stratification of the analysis Rt(n) curves amongst the populations, with the
White and Asian populations usually having the lowest values compared to the
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Figure 15. Analysis results for the continuous update case for the state
of MI.

others. In the analysis plot for Rt(n) in the time-continuous case, we see a striking
rise in the reproductive rate beginning at the end of the intervention period for the
AIAN population (see Figure 44). Utah has a sizable amount of Native American
reservation land, a population that was shown to be disproportionately affected by
the pandemic. This spike is less apparent in the cases with piece-wise updates to
Rt(n), and we note that the time-continuous update runs are better able to track
time-dependent differences in the spread between populations. We also see a large
spike in the continuous case at the end of the summer for the Other population.
Also interesting here is that the disparity between different populations during the
intervention period is somewhat less apparent than in other states. One possible
reason for this is the large population of members of the Latter Day Saints (LDS)
faith. The LDS church often offers financial and food assistance to its members.
This could act as a cushion for LDS members of the LatinX population who were
ineligible to receive assistance from the C.A.R.E.S. act, allowing them to remain
home longer. While we were unable to find the specific proportions of the LatinX
population in Utah that are also Mormon, we do note that according to the LDS
church, 68% [10] of the state is LDS. We cannot be sure how much of an effect this
would have however.

4.2.13. The state of Washington (WA). The populations we consider for the state
of Washington are shown in Table 3. In Washington, the LatinX, NHPI, and AIAN
populations meet the criteria for a DAP, as described in Section 4.2. The LatinX
population comprises 13% of the total population with 34% of the confirmed cases;
the NHPI population is less than 1% of the total population yet makes up 2%
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Figure 16. Analysis results for the continuous update case for the state
of UT.

of the deaths; and the AIAN population comprises 1% of the population while
accounting for 2% of the deaths. The disparity for the AIAN and NHPI populations
is evidenced in all three approaches with their analysis Rt(n) values predominately
above R = 1 in all three cases shown (Figures 27, Appendix B, and 45). We also
observe in the analysis for Rt(n) plots in the continuous update case (Figure 45)
that the LatinX population has higher values for the reproductive rate than all other
populations–except for the NHPI and AIAN populations–during the intervention
period.

5. A remark on priors. We would like to make a remark on the importance of
priors used in DA and how they can be used to explore a dynamical system and test
assumptions. For simplicity, we focus on a specific example from this work stemming
from the state of Connecticut. In section 4.2.6 we note the possible detection of a
disparity otherwise not apparent in the aggregate statistics available at the time.
There, the Black population did not meet the criteria for disparity as defined in
section 1.1 (in terms of the number of confirmed cases) while the LatinX population
did. Yet the Black population had a higher number of deaths despite making up
a smaller part of the population than the LatinX population. This presents two
distinct scenarios: either the Black population has a higher case fatality rate than
the other populations or the number of actual cases was under-sampled. The latter
could be due to a lack of access to testing or an avoidance of testing due to fear of
cost or ability to take time off of work. In all of the previous runs we take our prior
on the CFR to be 0.009, just under one percent. While we refer to this as the CFR,
because of the way our model is constructed, this is really the infection fatality rate
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Figure 17. Analysis results for the continuous update case for the state
of WA.

(IFR). The IFR is the percent of deaths that occur out of all infections, detected or
not. The value of 0.009 is the average over all age populations and is inline with
W.H.O. estimates [23] and seroprevalence studies [20]. While the CFR for each
population could be estimated directly from the data, this is currently difficult. If
there is disparity in access to testing then the CFR estimated directly from the
data will clearly be skewed. A study in New York observed that the number of
total tests significantly increased with the increasing proportion of White residents
[26]. In one study [28], wildly varying CFRs between racial/ethnic populations were
observed ranging from 7.35% for the non-Hispanic White population to 1.39% for
the Hispanic population in Ohio. Further, data on the race of persons tested is
much more difficult to curate than that of deaths. This has to do primarily with
the volume of testing but also to do with the fact that death reporting is far more
standardized by state laws. In situations where some data is more reliable than
others, DA is a powerful tool for investigation. With the use of a well designed
model, inconsistencies in data can be tempered to produce reasonable and feasible
posterior estimates consistent with the reality reflected in the data.

To investigate the two scenarios discussed above, we complete several different
runs for Connecticut using various priors and compare the results. In the first set we
take the prior for Rt(n) to be that given by rt.live for all populations and assign a
standard deviation of 1.5. Using this we then complete assimilation runs with CFR
priors of 0.02, 0.009, and 0.001 with large uncertainties. The priors, posteriors and
observation χ2 statistic for this first experiment are shown in Table 5 and Figures 28,
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Table 4. CFR estimates coming from the run presented in Section 4.2.6

Population Prior,σ = 0.009 Post,χ2 = 31
Asian 0.0900 0.0089
Black 0.0900 0.0100
LatinX 0.0900 0.0090
Multi 0.0900 0.0093
Other 0.0900 0.0094
White 0.0900 0.0094

Table 5. Results for the CFR using the same Rt(n) prior for all popula-
tions with σR(t) = 1.5.

Population Prior,σ = 0.05 Post,χ2 = 112 Prior,σ = 0.05 Post,χ2 = 92 Prior,σ = 0.03 Post,χ2 = 87
Asian 0.009 0.0074 0.020 0.0093 0.001 0.0070
Black 0.009 0.0126 0.020 0.0157 0.001 0.0084
LatinX 0.009 0.0213 0.020 0.0246 0.001 0.0147
Multi 0.009 0.0103 0.020 0.0104 0.001 0.0086
Other 0.009 0.0065 0.020 0.0042 0.001 0.0065
White 0.009 0.0229 0.020 0.0271 0.001 0.0134

Table 6. Results for the CFR using Rt(n) priors taken from piece-wise
assimilation first assuming a CFR of 2% for all populations.

Population Prior,σ = 0.05 Post,χ2 = 89 Prior,σ = 0.002 Post,χ2 = 41
Asian 0.020 0.0282 0.020 0.0199
Black 0.020 0.0337 0.020 0.0199
LatinX 0.020 0.0317 0.020 0.0200
Multi 0.020 0.0316 0.020 0.0202
Other 0.020 0.0299 0.020 0.0204
White 0.020 0.0259 0.020 0.0195

Table 7. Results for the CFR assuming a CFR of 2% for only the Black
Group.

Population Prior,σ = 0.05 Post,χ2 = 302 Prior,σ = .1x Post,χ2 = 38 Prior, σ = 0.05 χ2 = 83
Asian 0.0090 0.0101 0.0090 0.0091 0.0090 0.0249
Black 0.0200 0.0226 0.0200 0.0201 0.0200 0.0371
LatinX 0.0090 0.0211 0.0090 0.0092 0.0090 0.0299
Multi 0.0090 0.0097 0.0090 0.0092 0.0090 0.0285
Other 0.0090 0.0053 0.0090 0.0093 0.0090 0.0234
White 0.0090 0.0248 0.0090 0.0090 0.0090 0.0256

29 and 30. Here all of the figures relating to this section can be found in appendix
C. In the second set of runs, we repeat the original process outlined in section 4.2
substituting in a prior of 0.02 over 0.009 for the CFR with an uncertainty of 0.002 to
obtain a prior for the continuous update. The Rt(n) resulting from this is then used
with a prior CFR of 0.02 for all populations with uncertainties of 0.05 and 0.002
with the results displayed in Table 6 and Figures 31 and 32. Finally, we assume a
CFR of 0.009 for all populations except the Black population to which we assume a
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prior of 0.02 (results in Table 7 and Figures 33, 34 and 35). It is in this last case
alone that we find a solution for which case counts for the Black population can
be lower while deaths can be higher. This single solution requires low uncertainty
in the CFR with the CFR of the Black population being at least twice that of the
others (columns 4 and 5 of Table 7 with the Rt(n) curves shown in Figure 34). In
all other scenarios a disproportionate under-counting of cases is supported by the
solution. In this last experiment, the second and third columns in table 7 come from
a run where all populations have the same Rt(n) prior and large uncertainty while
the last four instead use different priors for each population coming from an initial
piece-wise assimilation assuming a CFR of 0.02.

We now make some general observations on the results of the experiments described
above. In the cases where the uncertainty in Rt(n) and the CFR were large, we
obtain our poorest fits with the posterior CFR tending to be larger for the three
populations making up the largest proportion of the total population, White, LatinX
and Black. When all populations are given the same prior for Rt(n), the posterior
CFR for the Black population is lower than that of the White and LatinX populations
in all cases (see Table 5). The resulting posteriors for an individual populations
are similar whether a prior of 0.009, 0.02 or 0.001 are chosen. For the three largest
populations, the posterior CFR obtained is larger than that of the W.H.O. estimate
of 0.009. This however is a result of the fact that the Rt(n) prior assigned is averaged
over all of the populations and for some will be too low. In this case, this may drive
the CFR up to account for the number of deaths observed with less infections. In
general, larger priors for the CFR drive Rt(n) estimates down and for lower CFR
priors the opposite is true. This illustrates why a good estimate of the CFR is
important when reconstructing the time varying Rt(n) curves.

In our primary analysis of each state, first we take a prior for Rt(n) from rt.live
and assign this to each population with large uncertainty assuming a CFR of 0.009
with a low uncertainty. We then perform a piece-wise assimilation of the data to
obtain new priors for each population to be used in the time continuous case. This
is done to roughly separate the Rt(n) curves based on which populations would
have had more spread given the assumption of our CFR. The new priors used in the
continuous assimilation are assigned lower uncertainty than before and the same
CFR prior is then used. In these cases, we always obtained our best fits to the
data. In a parallel experiment, we repeat this process substituting a prior CFR of
0.02 but add a continuous assimilation with larger uncertainty in the CFR. In the
case where only the CFR is changed, we see a reasonably good fit to the data and
note that the posterior Rt(n) generally takes on lower values due to the increase in
CFR. When assigning a larger uncertainty to the CFR of 0.05, we see the posterior
CFRs increase to 3% for all populations. This has to do with a sampling bias that
is introduced through a requirement that the CFR be greater than zero. With a
standard deviation of 5% and an assumed mean of 2% sampling which throws away
negative or zero values otherwise obtained from a Gaussian distribution, we will end
up with a bias toward larger values not discarded. The results of these experiments
are shown in Table 6 and Figures 31 and 32.

Finally we looked at a scenario where the death rate was only higher for the Black
population, 0.02 compared to 0.009. In the first instance, we assign the same Rt(n)
prior to all populations with large uncertainty for this and the CFR priors. A poor
fit is obtained with posterior CFRs near 0.025 for the most crowded populations,
the increase again likely due to sampling bias as discussed above. In the next two
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instances, piece-wise assimilations are again performed first to provide new priors
and then continuous assimilation done with low and high uncertainty in the CFR.
The best fit is obtained using a lower uncertainty for the CFR and is the only case
where a solution which allows the number of infections in the Black population
to be less than that of the LatinX population but with more deaths. Incidentally,
the posterior Rt(n) curve for the Black population takes on lower values than that
obtained under the assumption of a CFR of 0.009.

While our best results for Connecticut, in terms of data fit, comes from the
assumption of a CFR of 0.009 for all populations (Table 4 and Figure 38), we do
obtain a comparable quality of fit in one case when assuming a CFR of twice that
of all other populations using low uncertainty (columns 4 and 5 of Table 7 and
Figure 34) which is also the only case that does not suggest an under-counting of
infections for the Black population. While there are estimates of higher CFR rates
for minorities, they are difficult to pin down and vary wildly by location. Part of
the reason for this is that the CFR estimated directly from data depends on having
a good estimate of the actual number of cases. If a population is under-served in
testing, a CFR may appear higher as less over all cases were captured compared to
deaths. In addition, the CDC currently estimates the risk of death for the LatinX
population to be 2.3 times that of White’s while the Black population is 1.9 times
more at risk [8]. This would not support the prior which assumes a CFR for the
Black population twice that of the LatinX population and instead suggest that the
Black population was under-served in terms of testing.

The ability to test a wide array of assumptions and view the implications of
those assumptions through the lens of both model and data is a major feature of
the methods of Data Assimilation. Under the prior of a CFR around 1% consistent
with W.H.O. estimates, the detection of a disparity not apparent in the aggregate
statistics for the Black population was possible. Through the marriage of model and
data, information otherwise not determinable can be brought to light. For these
reasons the authors believe DA can be used to complete a rigorous reanalysis of
the course of the pandemic to provide other scientists invaluable data to improve
responses and design mitigation measures for future events. As more and more data
become available, tools like the ones outlined in this manuscript can be applied with
more accuracy.

6. Conclusion and discussion. We have developed a multi-population SEIR
model with age classes and employed an ESMDA scheme to perform an initial
re-analysis of the spread of SARS-CoV2 among different racial/ethnic populations.
We find disparities in the rate of spread for different populations and estimate that
rate as a function of time. We believe the primary driver of these disparities is the
ability of these populations to self-quarantine and avoid exposure. Factors that
impact one’s ability to self-quarantine include an individual’s type of employment
(work from home or not), access to reserve funds such as generational wealth, and
access to healthcare or the general infrastructure in their specific locality. Groups for
which many members cannot work from home or do not have reserve funds naturally
will be exposed more often to the disease, eventually bringing the virus home to
their family and close friends where spread happens robustly and rapidly [21].

In our analyses, we find that typically the Black, LatinX, American Indian
and Alaskan Native (AIAN), and Native Hawaiian and Pacific Islander (NHPI)
populations exhibit Rt(n) curves suggestive that they fit the criteria to be considered
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a DAP. This is typically most notable during and following the intervention period
(lockdown). For the LatinX population, many were ineligible to receive financial
assistance from the C.A.R.E.S. act due to immigration status making isolation at
home during these periods difficult. Stimulus funds may also be less deliverable to
DAPs, such as the Black population, which is often underbanked complicating fund
distribution. After these intervention periods, DAPs risked increased exposure by
returning to work in jobs that cannot be done from home. We consistently find that
the White population, while a larger proportion of the overall population, had lower
Rt(n) values until the beginning of the Fall surge, around October. This suggests
that this population was better able to self isolate for a far longer period of time
than the other populations we consider. This is consistent with what is known about
wealth disparities between the White population and minority populations in the
United States [2].

In some cases, we find evidence that a population is a DAP even though they do
not fit the specific criteria outlined in Section 1.1. This is the case in the state of
Connecticut where we see evidence that the LatinX population meets the criteria to
be a DAP in terms of a disproportionate number of confirmed cases while the Black
population does not. However, the analysis suggests more infections among the
Black population than the LatinX population, despite being a smaller percentage of
the total population. This is based on the assimilation of the number of deaths and
suggests that the Black population in the state may have poor access to testing or
are less likely to seek a test. With the time-continuous analysis, we can also detect
when spread began for a specific population. We note that in the state of Alaska,
spread begins in the White population and later into the AIAN population. This
suggests major cities like Anchorage were hit first then spread to the rural regions
later. The disparity in the number of deaths between the majority White population
and the AIAN population also suggests how important healthcare infrastructure is in
reducing the impact of the virus. Many of the far north rural populations in Alaska
have little healthcare infrastructure and deliveries of supplies can be extremely
difficult. We argue that lessons can be learned from these types of analyses to
improve planning for a future pandemic.

Our main goals in this work were to study disparity in the spread of SARS-
Cov2 and to demonstrate the utility of models and data assimilation to aid in
understanding how the pandemic evolved among different racial/ethnic populations
in various regions of the United States. This kind of analysis can provide important
insight into successes and failures of policy as well as highlight causes for disparities.
Using techniques such as ESMDA can allow us to “fill in the data gaps” presented
when only considering things like confirmed cases or looking at general statistics.
Armed with more complete information and better policy, more effective planning
can be implemented to help avoid such disparities and reduce the loss of life in
a future pandemic. We note that at this stage the data available is a bit sparse
and somewhat incomplete. While we make some conjectures as to the causes of
disparities we find in our analyses, we stress that direct causation is not assured.
However, as the data is better curated in the coming months and years, analyses
such as these can be a powerful tool for social scientists, epidemiologists, and other
experts to understand how and why events unfolded as they did and to find better
ways to prepare in the future.
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Appendix A. Model parameter priors. In Table 8 we show the first guess
parameters used for all populations and in Table 9 we show the p-factors and CFR
initially chosen and used for all populations.

Parameter First guess Description
τinc 5.5 Incubation period
τinf 3.8 Infection time
τrecm 14.0 Recovery time mild cases
τrecs 5.0 Recovery time severe cases
τhosp 6.0 Time until hospitalization
τdeath 16.0 Time until death
pf 0.009 Case fatality rate
ps 0.039 Hospitalization rate (severe cases)
ph 0.4 Fraction of fatally ill going to hospital

Table 8. The table gives a set of first-guess model parameters. As we
could not find scientific estimates of these parameters, we set their values
based on available information from the internet and initial model-tuning
experiments. We leave it to the data assimilation system to fine-tune the
parameter values.

Age group 1 2 3 4 5 6 7 8 9 10 11
Age range 0–5 6–12 13–19 20–29 30–39 40–49 50–59 60–69 70–79 80–89 90–105
Population 351159 451246 446344 711752 730547 723663 703830 582495 435834 185480 45230
p–mild 1.0000 1.0000 0.9998 0.9913 0.9759 0.9686 0.9369 0.9008 0.8465 0.8183 0.8183
p–severe 0.0000 0.0000 0.0002 0.0078 0.0232 0.0295 0.0570 0.0823 0.1160 0.1160 0.1160
p–fatal 0.0000 0.0000 0.0000 0.0009 0.0009 0.0019 0.0061 0.0169 0.0375 0.0656 0.0656

Table 9. The p-numbers indicate the fraction of sick people in an age
group ending up with mild symptoms, severe symptoms (hospitalized),
and fatal infection.

Appendix B. Piece-wise assimilation. Here we present the analysis for hospi-
talized and dead as well as Rt(n) when applying piece-wise updates to Rt(n) in the
cases that RA

ij(n) = 1 and when using our age stratified matrices for the DAPs and
NDAPs discussed in Section 4.1.
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Figure 18. Analysis results when using piece-wise updates to R(t) for
AK. Top row: RA with entries of all ones. Bottom Row: RA for DAPs
and NDAPs.
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Case: Piece-wise updates to Rt(n) (CA)
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Figure 19. Analysis results when using piecewise updates to R(t) for
CA. Top row: RA with entries of all ones. Bottom Row: RA for DAPs
and NDAPs.

Case: Piece-wise updates to Rt(n) (CT)
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Figure 20. Analysis results when using piecewise updates to R(t) for
CT. Top row: RA with entries of all ones. Bottom Row: RA for DAPs
and NDAPs.
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Case: Piece-wise updates to Rt(n) (DE)
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Figure 21. Analysis results when using piecewise updates to R(t) for
DE. Top row: RA with entries of all ones. Bottom Row: RA for DAPs
and NDAPs.
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Figure 22. Analysis results when using piecewise updates to R(t) for
DC. Top row: RA with entries of all ones. Bottom Row: RA for DAPs
and NDAPs.
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Case: Piece-wise updates to Rt(n) (HI)
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Figure 23. Analysis results when using piecewise updates to R(t) for
HI. Top row: RA with entries of all ones. Bottom Row: RA for DAPs
and NDAPs.

Case: Piece-wise updates to Rt(n) (MD)
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Figure 24. Analysis results when using piecewise updates to R(t) for
MD. Top row: RA with entries of all ones. Bottom Row: RA for DAPs
and NDAPs.
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Case: Piece-wise updates to Rt(n) (MI)

Mar 2020 May 2020 Jul 2020 Sep 2020 Nov 2020 Jan 2021

Time

0

1000

2000

3000

4000

5000

6000

7000

8000

N
u

m
b

e
r 

o
f 

P
e

o
p

le
Analysis for hospitalized and dead

D AIAN

Hosp AIAN

ObsD AIAN

D Asian

Hosp Asian

ObsD Asian

D Black

Hosp Black

ObsD Black

D Other

Hosp Other

ObsD Other

D White

Hosp White

ObsD White

Mar 2020 May 2020 Jul 2020 Sep 2020 Nov 2020 Jan 2021

Time

0

1000

2000

3000

4000

5000

6000

7000

8000

N
u
m

b
e
r 

o
f 
P

e
o
p
le

Analysis for hospitalized and dead

D AIAN

Hosp AIAN

ObsD AIAN

D Asian

Hosp Asian

ObsD Asian

D Black

Hosp Black

ObsD Black

D Other

Hosp Other

ObsD Other

D White

Hosp White

ObsD White

Figure 25. Analysis results when using piecewise updates to R(t) for
MI. Top row: RA with entries of all ones. Bottom Row: RA for DAPs
and NDAPs.

Case: Piece-wise updates to Rt(n) (UT)
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Figure 26. Analysis results when using piecewise updates to R(t) for
UT. Top row: RA with entries of all ones. Bottom Row: RA for DAPs
and NDAPs.
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Case: Piece-wise updates to Rt(n) (WA)
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Figure 27. Analysis results when using piecewise updates to R(t) for
WA. Top row: RA with entries of all ones. Bottom Row: RA for DAPs
and NDAPs.

Appendix C. Prior experiments for Connecticut.

Prior Experiment Results
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Figure 28. Analysis results with a CFR prior of 0.009 (σCFR = 0.05)
and the same Rt(n) (σR(t) = 1.5) prior for all populations. This figure
corresponds to columns 2 and 3 in Table 5
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Prior Experiment Results
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Figure 29. Analysis results with a CFR prior of 0.020 (σCFR = 0.05)
and the same Rt(n) (σR(t) = 1.5) prior for all populations. This figure
corresponds to columns 4 and 5 in Table 5.
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Figure 30. Analysis results with a CFR prior of 0.001 (σCFR = 0.03)
and the same Rt(n) (σR(t) = 1.5) prior for all populations. This figure
corresponds to columns 6 and 7 in Table 5.
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Prior Experiment Results
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Figure 31. Analysis results with a CFR prior of 0.020 (σCFR = 0.05)
and prior Rt(n) (σR(t) = 0.5) curves coming from initial piece-wise
assimilation also assuming a 0.020 CFR prior. This figure corresponds
to columns 2 and 3 in Table 6.
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Figure 32. Analysis results with a CFR prior of 0.020 (σCFR = 0.002)
and prior Rt(n) (σR(t) = 0.5) curves coming from initial piece-wise
assimilation also assuming a 0.020 CFR prior. This figure corresponds
to columns 4 and 5 in Table 6.
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Prior Experiment Results
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Figure 33. Analysis results with a CFR prior of 0.020 (σCFR = 0.05)
for the Black population only and a CFR Prior of 0.009 (σCFR = 0.05)
for all other populations. The prior Rt(n) (σR(t) = 1.5) curves are the
same for all populations. This figure corresponds to columns 2 and 3 in
Table 7.
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Figure 34. Analysis results with a CFR prior of 0.020 (σCFR = 0.002)
for the Black population only and a CFR Prior of 0.009 (σCFR = 0.0009)
for all other populations. The prior Rt(n) (σR(t) = 0.5) curves coming
from initial piece-wise assimilation also assuming a 0.020 CFR prior. This
figure corresponds to columns 4 and 5 in Table 7 and is the only case
where Black infections can be lower than that of the LatinX population
and still have more deaths.
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Prior Experiment Results
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Figure 35. Analysis results with a CFR prior of 0.020 (σCFR = 0.05)
for the Black population only and a CFR Prior of 0.009 (σCFR = 0.05)
for all other populations. The prior Rt(n) (σR(t) = 0.5) curves coming
from initial piece-wise assimilation also assuming a 0.020 CFR prior.
This figure corresponds to columns 6 and 7 in Table 7



522 FLEURANTIN, SAMPSON, MAES, BENNETT, FERNANDES-NUNEZ, MARX AND EVENSEN

Appendix D. Main results figures enlarged.

Case: Continuous updates to Rt(n) (AK)
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Figure 36. Analysis results for the continuous update case for the state
of AK.
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Case: Continuous updates to Rt(n) (CA)
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Figure 37. Analysis results for the continuous update case for the state
of CA.
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Case: Continuous updates to Rt(n) (CA)
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Figure 37. Analysis results for the continuous update case for the state
of CA.
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Case: Continuous updates to Rt(n) (CT)
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Figure 38. Analysis results for the continuous update case for the state
of CT.
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Case: Continuous updates to Rt(n) (CT)
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Figure 38. Analysis results for the continuous update case for the state
of CT.
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Case: Continuous updates to Rt(n) (DC)
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Figure 39. Analysis results for the continuous update case for the state
of DC.
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Case: Continuous updates to Rt(n) (DC)
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Figure 39. Analysis results for the continuous update case for the state
of DC.
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Case: Continuous updates to Rt(n) (DE)
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Figure 40. Analysis results for the continuous update case for the state
of DE.
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Case: Continuous updates to Rt(n) (DE)
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Figure 40. Analysis results for the continuous update case for the state
of DE.
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Case: Continuous updates to Rt(n) (HI)
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Figure 41. Analysis results for the continuous update case for the state
of HI.
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Case: Continuous updates to Rt(n) (HI)
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Figure 41. Analysis results for the continuous update case for the state
of HI.
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Case: Continuous updates to Rt(n) (MD)
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Figure 42. Analysis results for the continuous update case for the state
of MD.
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Case: Continuous updates to Rt(n) (MD)
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Figure 42. Analysis results for the continuous update case for the state
of MD.
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Case: Continuous updates to Rt(n) (MI)
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Figure 43. Analysis results for the continuous update case for the state
of MI.
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Case: Continuous updates to Rt(n) (MI)
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Figure 43. Analysis results for the continuous update case for the state
of MI.
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Case: Continuous updates to Rt(n) (UT)
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Figure 44. Analysis results for the continuous update case for the state
of UT.
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Case: Continuous updates to Rt(n) (WA)
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Figure 45. Analysis results for the continuous update case for the state
of WA.
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Case: Continuous updates to Rt(n) (WA)
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Figure 45. Analysis results for the continuous update case for the state
of WA.
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