WET: Write Efficient Loop Tiling for
Non-Volatile Main Memory

Mohammad Alshboul James Tuck Yan Solihin
North Carolina State University North Carolina State University University of Central Florida
Raleigh, NC Raleigh, NC Orlando, FL

maalshbo@ncsu.edu

Future systems are expected to increasingly include a Non-Volatile
Main Memory (NVMM). However, due to the limited NVMM
write endurance, the number of writes must be reduced. While new
architectures and algorithms have been proposed to reduce writes to
NVMM, few or no studies have looked at the effect of compiler
optimizations on writes.

In this paper, we investigate the impact of one popular compiler
optimization (loop tiling) on a very important computation kernel
(matrix multiplication). Our novel observation includes that tiling on
matrix multiplication causes a 25X write amplification. Furthermore,
we investigate techniques to make tilling more NVMM friendly,
through choosing the right tile size and employing hierarchical tiling.
Our method Write-Efficient Tiling (WET) adds a new outer tile
designed for fitting the write working set to the Last Level Cache
(LLC) to reduce the number of writes to NVMM. Our experiments
reduce writes by 81% while simultaneously improve performance.

1. INTRODUCTION

Emerging Non-Volatile Memories (NVMs), such as Intel Optane
DC Persistent Memory, have recently been integrated into computer
systems as main memory [1] or as storage [2]. As main memory,
it provides non-volatility, byte addressability, higher density and
better scaling potential than DRAM, and has low idle power. On
the flip side, NVMs have critical drawbacks when it comes to write
operations. Writes in NVMs are slow and power/energy hungry. Even
more serious is that NVMs have limited write endurance. This means
that the number of writes to NVMM is a critical factor that determines
the lifetime of memory and the computer system [3]-[5].

The limited write endurance of non-volatile main memory
(NVMM) encouraged many researchers to investigate techniques
to reduce the number of writes and spread writes more uniformly
across memory cells, including new hardware techniques [6]-[8]
as well as new algorithms [9]-[11]. However, few studies, if any,
have investigated the impact of compiler optimizations in translating
algorithms to code and how they affect the number of writes to
NVMM.

In this paper, we investigate the impact of one popular compiler
optimization (loop tiling) on a very important computation kernel
(matrix multiplication). Loop tiling is a heavily used optimization
for loop-based applications because it is very effective in improving
cache locality [12]-[17] that leads to substantially improved perfor-
mance. Tiled Matrix Multiplication is heavily used in different fields;
for example, it contributes to about 80% of the execution time in
the deep learning neural network workload [18], [19]. Tiling divides
the entire matrix into several sub-matrices that fit in the L1 cache,
reducing the number of L1 cache capacity misses. Each sub-matrix
produces an intermediate result of the original matrix multiplication
problem.

jtuck@ncsu.edu

yan.solihin@ucf.edu

In this work, we make a novel observation that there can be a
fundamental tension between making code cache friendly vs. making
it NVMM write friendly. For loop tiling optimization, the tension is
very high: tiling reduces execution time by 89% (i.e. 8.5x speedup)
but increases the number of writes by 25x for matrix multiplication.

We investigate techniques to improve the write efficiency of tiling.
In particular, we consider two techniques. The first technique tinkers
with the tile size used in tiling, and chooses the tile size that
minimizes writing to NVMM. Changing the tile size directly affects
the total number of sub-matrices, and hence affects the number of
times intermediate results are written to NVMM. However, as the
tile size is designed to fit in the fast L1 cache, increasing it may
degrade performance as the L1 cache miss rate may increase. Hence,
the tension between cache friendliness and NVMM write friendliness
persists, and one must be careful in selecting the tile size in this
trade-off space that lies along the Pareto frontier. A second technique
we consider is hierarchical tiling [15]-[17], [20], where two (or
more) tile sizes are chosen. We found that having two tile sizes are
advantageous. The inner tile can chosen to be small and designed to
fit the inner working set in the L1 cache, but the outer tile can be
chosen to fit the outer working set in the last level cache (LLC), which
effectively makes the LLC a write buffer for the NVMM. We found
that hierarchical tiling to be much more effective than tuning the
tile size of traditional tiling, allowing us to break the Pareto frontier.
Compared to the best single level tiling, hierarchical tiling reduces
NVMM writes by 80% while simultaneously increases performance
by 25%.

To summarize, the contributions of this paper are as follows:

1) We made a novel observation that loop tiling, while effective
in improving cache locality, also increases NVMM writes
substantially. The observation highlights the importance of
including compiler transformations in evaluating NVMM write
endurance.

2) We evaluate the effectiveness of tuning the tile size. Varying
the tile size, we found Pareto frontier in the trade-off space of
cache friendliness and NVMM write friendliness.

3) We propose write efficient tiling (WET) that relies on hierar-
chical tiling, with an outer tile tuned to keep most writes at the
LLC. We evaluate WET and found that it effectively reduces
NVMM writes substantially without penalizing performance (it
usually improves performance).

II. BACKGROUND

Matrix multiplication is one of the most heavily used kernels in
scientific computing as well as machine learning [18], [19]. In the
paper, we include two approaches in matrix multiplication: traditional
and divide and conquer. They are described below.

A. Tiled Matrix Multiplication

Figure 1 shows the code for the standard 6-loop implementation
of Tiled Matrix Multiplication (TMM).

/Imoves horizontally on matrix A, and vertically on matrix B
for (k2=0; k2<n; k2+=tsize)
for (i2=0; i2<n;i2+=tsize)// vertical on matrix A and C
for (j2=0; j2<n; j2+=tsize) // horizontal on matrix B and C
for (i=i2; i<(i2+tsize); i++)
for (j=j2; j<(j2+tsize); j++) {
sum = R[]];
for (k=k2; k< (k2+tsize); k++)
sum += A[i][k]<BLKI[j I;
RII]] = sum;

Fig. 1: Tiled Matrix Multiplication code.

In tmm, the matrix multiplication code is divided into two parts.
The first part consists of the outermost 3 loops (i.e. k2, i2, and j2).
These loops are used to define the boundaries of the current tile, as
illustrated lines (2-4) in Figure 1. The second part of tmm consists of
the remaining 3 loops (i.e. i, j, and k) which are shown in lines (5-8) in
Figure 1. These loops are similar to the regular matrix multiplication
code, but it is only performed within the boundaries of the current
tile.

Keep in mind that each k2 iteration will pass over the entire
R matrix and write to all its elements. This is the basis for our
observation that tiling needs to be revisited with NVM in mind due
to the increase in the number of writes. This increase equals to 7—
times per element, as opposed to only one write per element in the
regular non-tiled matrix multiplication implementation.

B. Matrix Multiplication using Divide and Conquer

Another well-known method for performing matrix multiplication
is using the Divide-And-Conquer (DAC) recursive algorithm [21]—
[23].

c*g | c*h d*i | d%

e f i j e*g | e*h i | %

Fig. 2: Tllustration of the Tiled Matrix Multiplication process using Divide
and Conquer cache oblivious algorithm (DAC).

This version of Matrix Multiplication is very popular due to being
cache oblivious [22]. This means that achieving high performance
using this scheme can be done without requiring the programmer
to tune the algorithm according to the cache specification in the
underlying hardware system.

As shown in Figure 2, each of the input matrices will be divided
into 4 quarters, and each of these quarters will be treated as an
element in the matrix. This will make the original matrix multipli-
cation into a 2 X 2 matrix multiplication. As in any 2 X 2 matrix
multiplication, the process will result in 8 different multiplications.
Then each corresponding two of these 8 multiplications will be
added to produce the final multiplication output. This process will
recursively divide the matrices until reaching a threshold matrix size

where the actual multiplication will take place. Most implementations
suggest using a threshold size designed to make matrices fit in the L1
cache, which guarantees performance, but not take number of writes
to NVMM into consideration.

III. RELATED WORK

Works related to NVM. Due to their attractive features, Non-
Volatile Memories (NVM) have been an increasingly hot research
area [24]-[29]. Many of them proposed solutions for improving
NVM write endurance, using hardware techniques [3]-[5], as well
as software techniques [9], [11]. To the best of our knowledge,
no prior studies have investigated loop tiling in the context of
NVMM. A method for reducing the number of writes for DAC matrix
multiplication was suggested in [30], which was used as the base case
we compared WET against.

Tiling Optimization. Tiling is one of the most well-known loop
transformation techniques [31]. It achieves higher locality at the
memory hierarchy by creating blocked algorithms [15]-[17], [32].
Moreover, some works suggested using tiling at multiple levels in the
memory hierarchy [15]-[17], [32]. These multi-level tiling techniques
have only been considered for performance; our work is the first to
investigate and demonstrate their effectiveness for reducing NVMM
writes. Consequently, while multi-level tiling can be applied to any
cache hierarchy, prior multi-level tiling studies typically focused on
adding a new inner tile for the register file (in addition to the L1
cache) [13], [32]-[34]. In contrast, since our goal is to reduce NVMM
writes, WET adds a new outer tile for the LLC to allow coalescing
of writes at the LLC.

IV. WRITE EFFICIENT TILING

In this section, we will discuss our exploration of techniques for
reducing NVMM writes on matrix multiplication.

A. Tuning the Tile Size

The first technique we consider is to tune the tile size. The tile size
directly affects the total number of sub-matrices, and hence affects
the number of times intermediate results are written to NVMM. If
the tile size is small, the cache locality is high for the L1 cache but
not for the LLC. Here, we question whether increasing the tile size
will lead to better result.

! ™M s Tradeoff line
=
Ej 0.8 e s Parcto Frontier
E
g
o 06 TS32
] =
=
2 04
o S~ TS64
E ™~ -
2 02{ HTMM ~ \Jsizs
) ~ TS512 RegMM
z A TS256 =
0 T T T ——
0.95 1.05 1.15 1.25 1.35 2.5 8.5

Normalized Execution Time (X)

Fig. 3: Trade-off between normalized execution Time (x-axis) and nor-
malized number of writes to memory (y-axis) when varying the innerTile
size. Both of the axes are normalized to TMM with innerTile of size 16.

Figure 3 shows the impact of changing the tile size on the execution
time (x-axes) and number of NVMM writes (y-axes), normalized to a
naive tiled matrix multiplication (TMM). At one extreme, TMM uses
the smallest possible tile size, resulting in the best performance but
25x write amplification vs. regular matrix multiplication (RegMM)

with no tiling. At another extreme, RegMM (bottom right corner)
has the lowest number of writes but is the slowest (8.5x slower
compared to TMM). Other tile sizes fare somewhere in between.
We can make several observations. First, the figure shows a Pareto
frontier that includes some tile sizes but not others. For example,
size 128 and 256 achieve nearly identical execution time but size 256
incurs fewer writes (31.2% fewer), which indicates that size 256 is
Pareto efficient but size 128 is not. Size 512 achieves nearly the same
number of writes as RegMM but size 512 is nearly three times faster
than RegMM, indicating that RegMM is also not Pareto efficient.

Overall, our Pareto frontier analysis helps programmers and tuners
to ignore tile sizes that are not Pareto efficient. However, ultimately
the tension between cache friendliness and NVMM write friendliness
still persists.

B. Hierarchical Tiling

With a single tile size, the tension between cache friendliness and
NVMM write friendliness persists, so in the second approach we hy-
pothesize that the tension can be relieved by relying on two tile sizes
simultaneously. This requires a multi-level tiling approach which adds
another hierarchy level to the tiling optimization. Hierarchical tiling
was proposed in the past, primarily for improving locality at the
register level (inner tile) and the L1 cache (outer tile). Here, we
advocate write-efficient tiling (WET), which exploits the outer tile to
improve write locality at the last level cache (LLC), for the purpose of
reducing the number of NVMM writes. This distinguishes WET even
from the techniques that looked into LLC tiling for performance [17],
[20]. Our introduced tiling level outerTile, chosen correctly, can serve
to coalesce writes generated by the tiling algorithm, reducing the
number of writes going out to the NVMM. The inner tile, on the
other hand, can still be chosen to fit L1 cache.

There are subtle differences between WET and prior hierarchical
tiling [15]-[17]. They use hierarchical tiling focuses on fitting the
read/write working set on a particular cache level. In contrast, for
WET, what matters is only the write working set, and only at the
LLC, which is the last cache before NVMM.

k2 A j2 B j2 R
—> —

2 l | 3 kzl] 2 1 |]

tsize 3 . tsize ; tsize y
___ i3 ___J k3 _ i3

outerTile X outerTile = outerTile
—_— —_— —_—
k3 j3 j3

Fig. 4: Illustration of an overview of the matrix multiplication using
Write-Efficient Tiling (WET).

Figure 4 illustrates an overview of matrix multiplication using
WET. The program is divided into several outerTiles with size out-
ersize (shown in light grey), each of these outerTiles is subsequently
divided into several innerTiles with size tsize. This outerTile level will
restrict the movement of the innerTile to only be within the outerTile
boundaries. Thus, as the outerTile is designed to fit into the LLC,
this restriction increases the likelihood that all the data needed for
the multiplication will be contained in the LLC. This significantly
reduces the evictions from LLC to NVMM, and thus lowering the
number of writes.

To better understand the impact of having this extra level of tiling,
Figure 5 illustrates the scheduling of the written innerTiles in the
result matrix R, for both regular tiling and WET. The figure focuses on
the innerTiles visited between writing two consecutive intermediate

ESOU S N S P e
. :
& [N DO I g J
: d =
R R

(a) Regular Tiling (b) Write-Efficient Tiling (WET)

Fig. 5: The scheduling order of the innerTiles in Regular Tiling (a),
as opposed to the proposed Write-Efficient Tiling (WET) (b). The grey
highlighted innerTiles represent the capacity of the Last Level Cache (i.e.
4 tiles).

results to the same output innerTile. As can be observed for the
scheduling arrows in Figure 5(a), regular tiling visits and writes to
all the output innerTiles in the entire R matrix before returning to
write on the first output innerTile again. This increases the likelihood
that the first innerTile would have already been evicted and written
to the NVMM when the innerTile is visited the next time. This is
especially likely since the LLC size is much smaller than the entire
matrix size (as illustrated in the 4 highlighted grey tiles). On the
other hand, WET in Figure 5(b) quickly returns to write again to
the first innerTile when it reaches the boundaries of the outerTile.
This increases the likelihood that the first tile will be found in the
LLC when visited again for the next write, and thus coalesce these
multiple writes at the LLC without the need to write them back to
the NVMM. After finishing the writes corresponding to the outerTile,
the multiplication will move to operate on the next outerTile.

Matrix multiplication with WET only affects the scheduling of
innerTile operations. Thus, matrix multiplication with WET will have
the same number of innerTile operations as in the case with normal
Tiled Matrix Multiplication (TMM). Furthermore, the total number of
intermediate results that the program writes is identical in both TMM
and WET. This guarantees that WET does not lose the performance
gains brought by TMM, because it operates on the same innerTile size
to achieve similar high locality at the L1 cache. However, exploiting
the locality at the Last Level Cache (LLC) using the outerTile helps
to coalesce most of the intermediate results generated by innerTile at
the LLC before reaching the NVMM. This is fine because the LLC
itself is implemented in SRAM or DRAM, hence it does not have a
write endurance limitation.

C. Implementation

The code shown in Figure 6 represents an implementation of WET.
The most important part of this code is the first part (i.e. outerTile
block). The loops in this part (i.e. k3, i3, and j3 loops) are responsible
for defining the boundaries of the outerTile, which will be used to
guide the progress of the rest of the multiplication process. The way
these loops work is similar to the one discussed for normal Tiled
Matrix Multiplication (Section II). The k3 loop moves horizontally
on the A matrix and vertically on the B matrix. The i3 loop moves
vertically in matrix A and R. Finally, the j3 loop divides the B matrix
into square tiles of outersize dimensions.

The rest of the code in Figure 6 is similar to the code already
discussed in Figure 1. However, as shown in the second code block
(i.e. InnerTile block), the limiting condition for all the loops is
modified to limit their iterations to be only within the boundaries of

//Controls the boundaries of the outerTile (o}
for (k3 = 0; k3<n; k3 += outerTile) { E%
for (i3 = 0; i3<n; i3 += outerTile) { i g
for (33 = 0; j3<n; j3 += outerTile) { 5
//Controls the boundaries of the innerTile -
for (k2 = k3; k2<(k3 + outerTile); k2 += innerTile) {] E
for (i2 = i3; 12¢(i3 + outerTile); i2 += innerTile) { |8 E
for (j2 = j3; j2<(j3 + outerTile); j2 += innerTile) { ~ =
//Performs multiplication of the innerTile
for (1 = i2; i<(i2 + innerTile); i++) { 2
for (j = j2; j<(j2 + innerTile); j++) { 2‘
sun = R11[]; “
for (k = k2; ke(k2 + innerTile); ki+) { E
sum += A[1][k] * B[K][]]; S
}//end for k "%
RIEI(H] = sum; g
}//end for j g

Fig. 6: An illustrative code for matrix multiplication using Write-Efficient
Tiling (WET).

the current outerTile. For simplicity, the code in Figure 6 is a single-
threaded version. Our implementation is multi-threaded, where each
thread works on different j3 outerTiles.

D. Design Decisions when using WET

Although WET can be implemented entirely in software and
does not require hardware modifications, achieving good results with
WET and exploiting all of its potential requires careful analysis and
architecture-level understanding. This is because hierarchical tiling in
WET requires tuning the tile sizes based on the number of parallel
threads and cache sizes to achieve high locality at different levels of
caches.

Assuming a reasonable outerTile size (outerSize), increasing the
outerTile size reduces the total number of writes to NVMM. This is
because almost all the writes within the same outerTile boundaries
get coalesced at the LLC and do not reach the NVMM. However,
writes reach the NVMM when switching between outerTiles. In other
words, the total number of writes to the NVMM is proportional to
the ratio of m, where N is the size of the matrix in each
dimension. Thus, the larger the outerTile, the fewer the writes to
NVMM. However, there is a limit. If the outerTile size is too large,
writes cannot be contained in the LLC and will spill to the NVMM.
Hence, we need to find the largest outerTile that does not overflow
the LLC.

Such a selection of the outerTile must also consider the number
of threads that are running simultaneously sharing the LLC. When
dealing with a multi-threaded program, each thread will be working
on a different outerTile, which increases the total number of outer-
Tiles that must fit the LLC. To keep the total size of the outerTile
within the capacity of the LLC, the outerTile size per thread needs
to be reduced. Hence, there is a trade-off between the performance
achieved from thread parallelism and the number of writes to the
NVMM that is affected by the outerTile size. Section VI investigates
these trade-offs in detail.

We suggest the following plan to tune these parameters using the
following steps:

1) Choose InnerTile to fit in the L1 cache.

2) Choose the desired number of threads (P) for performance and
scalability.

3) Choose outerSize such that: outerSize < %

If the number of threads is statically determined apriori, inde-
pendently of desired performance and scalability, the compiler can
generate code that corresponds to a specific outerSize satisfying the
above steps. On the other hand, if the number of threads needs to be
selected to get the best trade-off point, these steps may need to be
repeated several times in conjunction with recompilation and profiling
because the number of threads and outerSize interact in determining
both scalability and write amplification. In our experiments, two
iterations were usually enough to find efficient parameters. Finally,
if the code dynamically auto tunes the thread count, the compiler
needs to generate multiple outerSize and thread count combinations
that will be profiled and selected at run time.

V. METHODOLOGY

Our evaluation methodology consists of experimenting on a real
machine, which is the default setup. We also evaluated on our
simulator that was built on top of gem).

Real-Machine Setup. This part used a machine running 40 Intel
Xeon E5-2650v3 Cores, oparating at 2.30 GHz. Further, each core is
assigned a private L1 instruction and data cache of 32kB each and
a private L2 cache of 256kB; the L3 cache (LLC in this case) is a
single, shared write-back cache of 25MB. Finally, a 32 GB DRAM
is used as main memory due to NVMM-based hardware systems
not being widely available yet for commercial use. Statistics were
collected using Intel performance counter monitor.

Simulation Configuration. We extended gem5 simulator to build
an NVM-based system. This system consists of 8 out-of-order cores
operating on 2GHz. Further, each core is assigned a private L1
instruction and data cache of 64kB each and a shared L2 cache
(LLC in this case) of 512kB. The main memory is NVM-based, with
latencies 60ns and 150ns for read and write operations, respectively.

A. Benchmarks

For our evaluation, we study several Matrix Multiplication-based
benchmarks, shown in Table I.

TABLE I: Summary of all the benchmarks we evaluated.

Benchmark

T™MM
DAC
SNN

Description

8k-square matrix multiplication using tiling
2k-squre Divide-And-Conquer multiplication
32k-input Single-Layer Neural-Networks

In the real machine evaluation, each of these benchmarks was
executed from the beginning to the end. For the simulations, it was
ensured that the simulation window represents identical progress in all
the compared schemes. The simulated window is about %6 of the total
benchmark execution. On average, this simulated window reports
the timing of 500 million instructions for all threads. In addition,
the simulation window is preceded by an average of 300 million
instruction for warm-up. The default number of threads for all our
experiments is 8.

Our evaluation compares two schemes for performing matrix multi-
plication. These schemes are: (1) The base multiplication with regular
tiling (representing base in most figures), and (2) The proposed
write-efficient hierarchical tiling (WET). We also implement non-
tiled matrix multiplication (RegMM).

In the evaluated schemes, Base represents regular tiled matrix
multiplication optimized for performance. For DAC, Base represents
an optimized recursive divide-and-conquer matrix multiplication. The
optimizations include a threshold value that fit in the L1 cache,
scheduling of multiplications that ensure good cache locality, and
a write optimization via a larger dividing factor [30]. On the other
hand, our proposed DAC keeps a dividing factor of two, but with a
threshold value that fits in the LLC.

In all schemes, the default values were chosen to provide the best
configuration on the experimented setup. The default configuration
for the innerTile dimension is 16 elements. The default outerTile
is 256 elements for the real-machine and 64 for the simulation
evaluation (with TMM dimension of 1k).

VI. EVALUATION

We implemented several workloads for performing matrix
multiplication, and focus on comparing the execution time and the
number of writes using the methodology described in Section V.

Figure 7 compares the number of writes to memory (a) and
execution time (b) between our scheme WET (grey) normalized to
the Base (black) which uses regular tiling. WET reduces the number
of writes in all the studied benchmarks to an average of only 19%
compared to Base (ranging from 13.2% to 39%). Interestingly, WET
also reduces the execution time to an average of 81% vs. Base
(ranging from 58% to 97%) due to better locality at the LLC leading
to fewer LLC misses.

WmBase BWET

=)

e
%

>

0.4

I
i

0.2

S
Normalized Execution Time (X)

Normalized Number Of Writes (X)

0.0

54
o

TMM

TMM DAC

DAC SNN GMEAN
(a) Number of Writes

SNN GMEAN

(b) Execution Time

Fig. 7: Comparison for the Number of writes to memory (a) and
Execution Time (b) for all the studied workloads.

To provide more insights on the shown results, we provide a
detailed analysis focusing on the TMM benchmark throughout the
rest of this section. Due to adding a tile specific to LLC, We found
that using WET improved LLC Miss Rate to be 0.4%, compared to
1.1% in BaseTMM. Which explains the improvement in performance.
On the other hand, the instructions needed for the new tiling caused
only a 1% increase in total instruction count, which can be easily
hidden in modern processors without harming the performance.

A. Sensitivity Study

In this section, we report results for WET’s sensitivity to multiple
configuration parameters, focusing on the TMM benchmark.

Figure 8(a) shows the overhead on both execution time and
the number of writes to WET, normalized to BaseTMM with a
corresponding number of threads. This emphasizes the difference
in scalability between the two schemes when varying the number
of threads. As shown in the figure, introducing another level of
tiling didn’t add any negative side-effects on scalability, and thus

having similar ratio with BaseTMM. Furthermore, WET does better
than BaseTMM in number of writes when increasing the number of
threads, since choosing reasonable outerTile size for WET mitigates
the thread competition on the LLC, which is not protected in
BaseTMM. This explains the increase in the difference in the number
of writes between Base and WET when increasing the number of
threads, as shown in Figure 8(a).

Another factor that has an important impact on WET is the
outerTile size. As discussed in Section IV-D, increasing the outerTile
size usually comes with a reduction in the number of writes to the
NVMM. This is because of exploiting more locality at the LLC,
and also helps to divide the entire matrix into a smaller number of
outerTile blocks. However, the benefits of increasing the outerTile
size are only applicable while the total size of the outerTile blocks
by all the threads do not exceed the capacity of LLC. Figure 8(b)
illustrates the sensitivity study for WET when varying the outerTile
size, normalized to an outerTile size of 32 (leftmost column). As
shown in the figure, increasing the outerTile size comes with a
reduction in the number of writes (as in outerTile size 32 to 256).
However, with outerTile size of 512, the total size of the outerTile
blocks from the threads exceed the LLC capacity. Thus, this increased
the contention on the LLC and caused more writes to the NVMM.
On the other hand, the execution time is not very sensitive to the
outerTile size, because all of these setups already have two levels of
tiling.

MExec @Writes

1.0

Normalized Overhead (X)
Normalized Overhead (X)

0.0

TI T2 T4 T8 TI6 32 64 128 ° 256 512

(a) Number of Threads (b) Outer Tile Size

Fig. 8: Sensitivity study of the execution time and the number of writes
for WET when varying the number of threads (a) and the outerTile size
(b). Each column in (a) is normalized to BaseTMM with a corresponding
number of threads. Due to running on lower number of threads on (a),
we had to use a different setup (TMM dimension 1k, outerTile 64). All
the columns in (b) are normalized to outerTile size 32 (leftmost group).

B. Simulation-Based Evaluation

This section evaluates WET on the simulation-based system de-
scribed in Section V. Figure 9(a) illustrates the impact on execution
time when varying the LLC size on WET compared to BaseTMM.
As shown in the figure, increasing the LLC size improves the
performance for both of the schemes. Furthermore, WET benefits
more from increasing the LLC size due to its better utilization of
LLC locality. This can be observed by the reducing gap between
the performance of WET and BaseTMM when increasing the LLC
size. Similarly, as shown in Figure 9(b) the number of writes for both
schemes also decreases when increasing the LLC size. This is because
more data can be kept at the LLC without being evicted and written
back to the NVMM. Similar to the execution time comparison, the
number of writes for WET also benefits more from increasing the
LLC size compared to BaseTMM, for the same reason. Moreover,
This variation in LLC size explains the difference in the achieved

gains for WET in the simulation-based evaluation compared to real-
machine evaluation. Due to the long simulation time, we had to
simulate a smaller kernel, running on a smaller system (LLC size:
512kB vs. 25MB), as described in Section V.

WBaseTMM BWET

Normalized Execution Time (X)
Normalized Number of Writes (X)

128kB 256kB 512KB 1MB 128kB 256kB 512KB 1MB

(b) Number of writes

(a) Execution Time

Fig. 9: Sensitivity study of the execution time (a) and the number of
writes (b) when varying the size of the Last-Level-Cache (LLC). All
columns are normalized to leftmost column.

ACKNOWLEDGEMENT

Solihin was supported in part by NSF grant 1914717 and 1908079,
and by UCF. Alshboul and Tuck were supported in part by NSF grant
1717486 and by NC State.

VII. CONCLUSION

In this work, we made a novel observation that loop tiling, a
well-known and effective performance optimization technique, sig-
nificantly increases the number of writes to NVMM (about 25X
for matrix multiplication compared to no tiling). We investigated
the resulting tension between performance efficiency vs. NVMM
write efficiency. We then advocated Write-Efficient Tiling (WET), a
multi-level tiling that adds a new outer tile for the Last Level Cache
(LLC) to reduce the number of writes to the NVMM. We evaluated
WET across several matrix multiplication benchmarks on both a real
machine and the gem5 simulator. Our results show that WET reduces
the number of writes on average to only 19% compared to regular
tiling, while simultaneously adds 1.23x speedup due to better LLC
hit rates.

REFERENCES
[1] Intel. apache pass. [Online]. Available:
https://ark.intel.com/content/www/us/en/ark/products/ codename/

67560/apache-pass.html

[2] Intel et al., “Intel and micron produce breakthrough memory technol-
ogy,” 2015.

[3] J. S. Meena et al., “Overview of emerging nonvolatile memory tech-
nologies,” Nanoscale Research Letters, Sep 2014.

[4] A. Akel et al., “Onyx: A protoype phase change memory storage array,”
HotStorage, 2011.

[5] X. Dong et al., “Pcramsim: System-level performance, energy, and
area modeling for phase-change ram,” in 2009 IEEE/ACM International
Conference on Computer-Aided Design-Digest of Technical Papers,
2009.

[6] B. C. Lee et al., “Architecting phase change memory as a scalable dram

alternative,” in Proceedings of the 36th Annual International Symposium

on Computer Architecture, 2009.

M. K. Qureshi et al., “Improving read performance of phase change

memories via write cancellation and write pausing,” in HPCA - 16 2010

The Sixteenth International Symposium on High-Performance Computer

Architecture, 2010.

[8] M. K. Qureshi, “Pay-as-you-go: Low-overhead hard-error correction for
phase change memories,” in 2011 44th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2011.

[7]

[9]

(10]
(11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]
(32]
[33]

[34]

G. E. Blelloch et al, “Parallel write-efficient algorithms and data
structures for computational geometry,” in Proceedings of the 30th on
Symposium on Parallelism in Algorithms and Architectures, ser. SPAA
’18. New York, NY, USA: ACM, 2018, pp. 235-246.

G. Blelloch er al., “Efficient algorithms with asymmetric read and write
costs,” arXiv preprint arXiv:1511.01038, 2015.

S. D. Viglas, “Write-limited sorts and joins for persistent memory,” Proc.
VLDB Endow., vol. 7, no. 5, pp. 413-424, Jan. 2014.

A. Buttari et al., “A class of parallel tiled linear algebra algorithms for
multicore architectures,” Parallel Comput., vol. 35, no. 1, pp. 38-53, Jan.
2009. [Online]. Available: http://dx.doi.org/10.1016/j.parco.2008.10.002
M. Wolf et al., “A data locality optimizing algorithm,” in Proceedings
of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), June 1991.

I. E. Venetis et al., “Mapping the lu decomposition on a many-core
architecture: Challenges and solutions,” in Proceedings of the 6th ACM
Conference on Computing Frontiers, ser. CF 09, 2009.

L. Renganarayana et al., “Towards optimal multi-level tiling for stencil
computations,” in 2007 IEEE International Parallel and Distributed
Processing Symposium, 2007.

D. Kim et al., “Multi-level tiling: M for the price of one,” in SC ’07:
Proceedings of the 2007 ACM/IEEE Conference on Supercomputing,
2007.

C. Yount et al., “Multi-level spatial and temporal tiling for efficient hpc
stencil computation on many-core processors with large shared caches,”
Future Generation Computer Systems, vol. 92, pp. 903 — 919, 2019.

Y. Jia, “Learning semantic image representations at a large scale,” Ph.D.
dissertation, University of California at Berkeley, 2014.

K. Osawa et al., “Accelerating matrix multiplication in deep learning
by using low-rank approximation,” in 2017 International Conference on
High Performance Computing Simulation (HPCS), 2017.

K. Goto et al., “Anatomy of high-performance matrix multiplication,”
ACM Trans. Math. Softw., vol. 34, 2008.

R. D. Blumofe et al., “An analysis of dag-consistent distributed shared-
memory algorithms,” in Proceedings of the Eighth Annual ACM Sym-
posium on Parallel Algorithms and Architectures, ser. SPAA, 1996.

M. Frigo et al., “Cache-oblivious algorithms,” in Proceedings of the 40th
Annual Symposium on Foundations of Computer Science, ser. FOCS,
1999.

R. D. Blumofe et al., “Dag-consistent distributed shared memory,” in
Proceedings of the 10th International Parallel Processing Symposium,
ser. IPPS, 1996.

M. Alshboul et al., “Lazy persistency: A high-performing and write-
efficient software persistency technique,” in 20/8 ACM/IEEE 45th An-
nual International Symposium on Computer Architecture (ISCA), June
2018, pp. 439-451.

M. Alshboul et al., “Efficient checkpointing with recompute scheme for
non-volatile main memory,” ACM Trans. Archit. Code Optim., vol. 16,
no. 2, 2019.

H. Elnawawy et al., “Efficient checkpointing of loop-based codes for
non-volatile main memory,” in 2017 26th International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2017.

S. Shin et al., “Proteus: A flexible and fast software supported hard-
ware logging approach for nvm,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, 2017.

S. Pelley et al., “Memory Persistency,” in Proceedings of International
Symposium on Computer Architecture (ISCA), 2014.

D. R. Chakrabarti et al., “Atlas: Leveraging locks for non-volatile
memory consistency,” in Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages &
Applications, ser. OOPSLA 14, 2014.

G. E. Blelloch et al., “Sorting with asymmetric read and write costs,” in
Proceedings of the 27th ACM Symposium on Parallelism in Algorithms
and Architectures, ser. SPAA, 2015.

Y. Solihin, Fundamentals of Parallel Multicore Architecture. Chapman
& Hall, CRC Computational Science, 2015, iSBN-13 978-1482211184.
M. Jimenez et al., “A cost-effective implementation of multilevel tiling,”
IEEE Transactions on Parallel and Distributed Systems, 2003.

S. Carr, “Memory-hierarchy management,” Rice University, Tech. Rep.,
1992.

I. Kodukula et al., “Data-centric multi-level blocking,” in Proceedings of
the ACM SIGPLAN 1997 Conference on Programming Language Design
and Implementation, ser. PLDI *97, 1997.

