
Poisson Vector Graphics (PVG)
Fei Hou , Qian Sun, Zheng Fang, Yong-Jin Liu , Senior Member, IEEE,

Shi-Min Hu , Hong Qin, Aimin Hao, and Ying He

Abstract—This paper presents Poisson vector graphics (PVG), an extension of the popular diffusion curves (DC), for generating

smooth-shaded images. Armed with two new types of primitives, called Poisson curves and Poisson regions, PVG can easily produce

photorealistic effects such as specular highlights, core shadows, translucency and halos. Within the PVG framework, the users specify

color as the Dirichlet boundary condition of diffusion curves and control tone by offsetting the Laplacian of colors, where both controls

are simply done by mouse click and slider dragging. PVG distinguishes itself from other diffusion based vector graphics for 3 unique

features: 1) explicit separation of colors and tones, which follows the basic drawing principle and eases editing; 2) native support of

seamless cloning in the sense that PCs and PRs can automatically fit into the target background; and 3) allowed intersecting primitives

(except for DC-DC intersection) so that users can create layers. Through extensive experiments and a preliminary user study, we

demonstrate that PVG is a simple yet powerful authoring tool that can produce photo-realistic vector graphics from scratch.

Index Terms—Poisson vector graphics, diffusion curves, Poisson equations, hue and tone editing, seamless cloning

Ç

1 INTRODUCTION

VECTOR graphics provides several practical benefits
over traditional raster graphics, including sparse

representation, compact storage, geometric editablity, and
resolution-independence. Early vector graphics supports
only linear or radial color gradients, diminishing their
applications for photo-realistic images. Orzan et al. [1] pio-
neered diffusion curve images (DCIs), which are curves
with colors defined on either side. By diffusing these colors
over the image, the final result includes sharp boundaries
along the curves with smoothly shaded regions between
them. Thanks to its compact nature and the ability of pro-
ducing smoothly shaded images, diffusion curves quickly
gain popularity in the graphics field and inspired many fol-
low-up works, such as improving runtime performance and
numerical stability [2], [3], [4], and generalization to 3D and
non-euclidean domains [3], [5], [6].

Recent research has been focused on extending the
expressiveness with more user control. Since diffusion

curves do not allow direct manipulation of color gradients,
higher-order interpolation is a possible way for gradient
control. Using thin-plate splines (TPS), Finch et al. [7]
extended diffusion curves to provide smooth interpolation
through color constraints while omitting the diffusion
curve’s blur operation. Although TPS allows more user
control and is able to mimic smooth shading, it often pro-
duces unwanted local extremals (hereby unpredicted
colors) due to the violation of the maximal principle of a
harmonic function. Moreover, solving a bi-Laplace’s equa-
tion is more computationally expensive than solving
Laplace’s equation, and it may suffer from serious numeri-
cal issues since the system is less well-conditioned. To
remove the undesired extremals, Jacobson et al. [8] pro-
posed a non-linear optimization guided by a harmonic
function. Their method allows the user to specify the exact
locations and values of the local extrema, which is a highly
desired feature to authoring and editing. Lieng et al. [9]
proposed shading curves, which associate shading profiles
to each side of the curve. These shading profiles, which
can be manually manipulated, represent the color gradient
out from their associated curves. Recently, Jeschke [10]
proposed generalized diffusion curve images (GDCIs),
which spatially blend multiple DCIs. Thanks to more
degrees of freedom, GDCI is able to provide a similar
expressive power as the TPS model and its solver is highly
efficient and numerically stable. However, GDCI has lim-
ited support of local shading control. For example, it is dif-
ficult to move specular highlights. GDCI is often applied
to image vectorization, so that the source DCIs are auto-
matically computed from a given image.

This paper aims at overcoming the above-mentioned lim-
itations of DCI and developing a simple yet powerful
authoring tool. Towards this goal, we present a new type of
vector graphics, called Poisson vector graphics (PVG),
which extends DCI with non-zero Laplacians. To make a
PVG, the users first sketch a set of sparse geometric

� F. Hou is with the State Key Laboratory of Computer Science, Institute of
Software, Chinese Academy of Sciences and University of Chinese Acad-
emy of Sciences, Beijing 100190, China. E-mail: houfei@ios.ac.cn.

� Q. Sun is with the School of Software, Tianjin University, Tianjin 300350,
China. E-mail: qian.sun@tju.edu.cn.

� Z. Fang and Y. He are with the School of Computer Science and Engineer-
ing, Nanyang Technological University, Singapore 639798.
E-mail: zfang004@e.ntu.edu.sg, yhe@ntu.edu.sg.

� Y.-J. Liu and S.-M. Hu are with the BNRist, Department of Computer
Science and Technology, Tsinghua Unviersity, Beijing 100084, China.
E-mail: {liuyongjin, shimin}@tsinghua.edu.cn.

� H. Qin is with Department of Computer Science, Stony Brook University,
Stony Brook, NY 11794. E-mail: qin@cs.sunysb.edu.

� A. Hao is with the State Key Laboratory of Virtual Reality and Technology
and Systems, Beihang University, Beijng 100083, China.
E-mail: ham_buaa@163.com.

Manuscript received 4 Apr. 2018; revised 7 Aug. 2018; accepted 7 Aug. 2018.
Date of publication 28 Aug. 2018; date of current version 3 Jan. 2020.
(Corresponding author: Ying He.)
Recommended for acceptance by P. Wonka.
Digital Object Identifier no. 10.1109/TVCG.2018.2867478

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 2, FEBRUARY 2020 1361

1077-2626� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 01,2021 at 15:57:37 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8226-6635
https://orcid.org/0000-0001-8226-6635
https://orcid.org/0000-0001-8226-6635
https://orcid.org/0000-0001-8226-6635
https://orcid.org/0000-0001-8226-6635
https://orcid.org/0000-0001-5774-1916
https://orcid.org/0000-0001-5774-1916
https://orcid.org/0000-0001-5774-1916
https://orcid.org/0000-0001-5774-1916
https://orcid.org/0000-0001-5774-1916
https://orcid.org/0000-0001-7507-6542
https://orcid.org/0000-0001-7507-6542
https://orcid.org/0000-0001-7507-6542
https://orcid.org/0000-0001-7507-6542
https://orcid.org/0000-0001-7507-6542
https://orcid.org/0000-0002-6749-4485
https://orcid.org/0000-0002-6749-4485
https://orcid.org/0000-0002-6749-4485
https://orcid.org/0000-0002-6749-4485
https://orcid.org/0000-0002-6749-4485
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:


primitives (e.g., curves and/or regions) fgigNi¼1. Then, for
each primitive gi, specify its Laplacian of color 4gi ¼ fi,
where fi is a piecewise constant function defined on gi. The
final image uðxÞ is obtained by solving the following Pois-
son’s equation

DuðxÞ ¼ f; x 2 V n @V
uj@V ¼ g; x 2 @V;

�
(1)

where V is the 2D domain and the constraint f partitions
V ¼ S N

i¼1Vi into disjoint sub-regions, so that f jVi
¼ fi is a

constant, i ¼ 1; . . . ; N .
PVG is a natural extension of DCI, which are rasterized

via Laplacian diffusion (i.e., solving a Laplace’s equation
Du ¼ 0). The seemingly minor change of replacing the zero
Laplacian by a piecewise constant function f is indeed cru-
cial for globally and locally controlling shading profiles,
which is difficult or tedious to achieve within the diffusion
curve framework. Intuitively speaking, diffusion curve
images are the result of diffusing the colors defined along
control curves until the color field reaches an equilibrium,
which is a harmonic function. Since a harmonic function is
completely determined by the Dirichlet boundary condi-
tion, diffusion curves do not allow manipulating of color
gradients. Although bi-Laplacian based diffusion curves [7]
support explicit gradient control, there are too many types
of primitives, making it difficult to learn.

PVG is the solution of Poisson’s equation, whose solution
space is much larger than that of Laplace’s equation, hereby
providing users more control of the image. Armed with two
new types of primitives, called Poisson curves (PC) and
Poisson regions (PR), PVG can easily produce photorealistic
effects such as specular highlights, core shadows, translu-
cency and halos (see Fig. 1). Within the PVG framework, the
users specify colors as the Dirichlet boundary condition of
diffusion curves and control tone by offsetting the Laplacian
of colors, where both controls are simply done by mouse
click and slider dragging. The separation of color and tone
not only follows the basic drawing principle that is widely
adopted by professional artists (e.g., see page 58 [11]), but
also allows the users to edit hue and tone in a direct and
easy manner. In fact, many popular image processing soft-
ware (e.g., Adobe Photoshop) provides dodging and burn-
ing tools for tone editing, following the same principle. Yet
none of the existing vector graphics allows tone editing in a
way as easy and intuitive as what the dodging and burning

tools of Photoshop could offer. PVG provides a simple yet
effective solution to bridge such gap.

PVG natively supports seamless cloning in the sense that
PCs and PRs, carrying on relative colors, can automatically
fit into the target background. PVG also allows users to cre-
ate layers by supporting intersecting primitives (except for
DC-DC intersection). Moreover, the solution of Poisson’s
equation is not sensitive to small change of boundary condi-
tion, therefore, PVG can apply to simple animation
with small changes in-between frames. Through extensive
experiments and a preliminary user study, we demonstrate
that PVG is a simple yet powerful authoring tool that can
produce photo-realistic vector graphics from scratches.

2 RELATED WORK

This section briefly reviews the related work on diffusion
curve images and gradient domain image editing.

2.1 Diffusion Curve Images

To rasterize a diffusion curve image, one needs to solve a
Laplace’s equation defined on the entire image domain.
Since a direct solver is expensive, Orzan et al. [1] adopted
a multigrid solver, which uses a coarse version of the
domain to efficiently solve for the low frequency compo-
nents of the solution, and a fine version of the domain to
refine the high frequency components. Although being
fast, this solver suffers from flickering artifacts due to the
rasterization of the curves over a discrete multi-scale
pixel grid. Jeschke et al. [2] used finite differences with
variable step size to accelerate the convergence rate of
Jacobi iterations, which guarantees the convergence to the
right solution. Their method also supports zoom-in of
arbitrary resolution by solving Laplace equation only for
the region of interest. However, it ignores the primitives
that are outside of the region but still have impact to the
color diffusion inside, the solver is sensitive to boundary
conditions and may produce unpleasing visual artifacts,
such as color jumps. Boy�e et al. [12] developed a finite
element method (FEM) based bi-Laplacian solver that can
directly deal with gradient constraints. However, it is
only C0 continuous on the triangle edges.

Motivated by the parallel between diffusion curve ren-
dering and final gathering in global illumination, Bowers
et al. [13] developed a stochastic ray tracing method that

Fig. 1. A Poisson vector graphics (PVG) consists of the popular diffusion curves (DCs), specifying the boundary colors, and two new types of primi-
tives, called Poisson curves (PCs) and Poisson regions (PRs), which are associated with Laplacian of colors. The key idea of PVG is to explicitly sep-
arate colors and tones so that editing hue and tone is easy and intuitive. For example, we can make a green apple by simply changing only the DCs’
color from red to green. Note that all the PCs and PRs remain unchanged. PVG natively supports seamless cloning: The water droplet can be directly
copied to the target and then it automatically fits into the new background. DCs, PCs and PRs are depicted by solid lines, dashed lines and loops with
hatches, respectively.

1362 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 01,2021 at 15:57:37 UTC from IEEE Xplore.  Restrictions apply. 



allows trivial parallelism by using shaders and provides a
unified treatment of diffusion curves with classic vector and
raster graphics. However, it densely computes values even
in smooth regions and sacrifices support for instancing and
layering. Later, Prevost et al. [14] improved the ray tracing
method by using an intermediate triangular representation
with cubic patches to synthesize smooth images faithful to
the per-pixel solution.

Another family of methods for rasterizing DCIs is to use
boundary element method (BEM), which is based on
Green’s third identity and rephrases Laplace’s equation as a
boundary integral along control curves. Sun et al. [3] formu-
lated the solution as a sum of Green’s functions of the Lapla-
cian. Thanks to the random-access formula, this approach is
efficient and enables integrating the solution over any rect-
angular region and supports anti-aliasing. However, it
requires pre-calculating the weights of the Green’s function
kernels, which depends on normal derivatives along the
control curves. As a result, it can only take a DCI with fixed
geometry and color constraints as input, and is not suitable
for interactive authoring. Ilbery et al. [15] proposed a BEM
based solver for rendering TPS vector graphics in a line-by-
line manner. Sun et al. [4] presented a fast multipole repre-
sentation for random-access evaluation of DCIs. Their
method is able to achieve real-time performance for raster-
ization and texture-mapping DCIs of up to millions of
curves. Note that these Green’s identity based solvers are
only applicable to Laplace/bi-Laplace equations.

Most DCI solvers require GPU acceleration to achieve
real-time performance. Aiming at efficiently rendering DCIs
on devices with only a CPU, Pang et al. [16] developed a
mesh-based approach, which sets the diffusion curves as
constraints in the triangulation and employs mean value
coordinate-based interpolant to estimate vertex colors. Their
algorithm supports random access evaluation, but the pro-
duced DCI is only an approximation.

2.2 Gradient Domain Image Editing

Solving 2D Poisson’s equations plays an important role in
various image processing tasks, such as composition [17],
[18], alpha matting [19], colorization [20], filtering and
relighting [21]. Fast Fourier transformation is a popular
method to solve Poisson’s equation in rectangular domains
due to its high performance. For irregular domains, one
often adopts the finite element method (FEM), which subdi-
vides the domains into smaller parts and solves a large
sparse linear system.

Poisson image editing [17] enables seamless cloning by
matching the gradients of the source and the target images,

which is formulated as a Poisson’s equation. However,
directly solving such an equation is computationally expen-
sive. Agarwala [18] improved the scalability by using quad-
trees to substantially reduce bothmemory and computational
requirements. McCann and Pollard [22] presented a multi-
grid Poisson solver on GPUs, with which they can achieve
real-time performance. Their method allows the users to edit
the color gradient along curves, whereas our method sup-
ports gradient domain editing for both curves and regions.
Using mean value coordinates [23], Farbman et al. [24] devel-
oped a closed-form Laplacian solver for seamless cloning of
opaque images.

3 POISSON VECTOR GRAPHICS

Poisson vector graphics extends the DC framework by add-
ing two new geometric primitives, namely Poisson curves
and Poisson regions. The former is tomodel color discontinu-
ity across curves, while the latter is to design smooth shading
within the user specified regions. Mathematically speaking,
PVG solves a Poisson’s equation with piecewise constant
Laplacians f . As the Laplacian diffusion, PVG takes DCI as a
special case with f � 0. Extending the zero Laplacian to a
piecewise constant function f brings 4 unique advantages.
First, the users can explicitly control the local and/or global
shading profiling via manipulating f (which is a scalar for
each color channel). Second, the users can easily control the
color extrema,which are either on the curves (for PC andDC)
or inside a region (for PR). Third, PVG allows intersection
among the geometric primitives (except DC andDC). Fourth,
PVGnatively supports seamless cloning.

Although a PVG can have an arbitrary number of PCs
and PRs, it must contain at least one diffusion curve, serving
as the boundary condition g. In the following, we detail
Poisson curves and Poisson regions.

3.1 Poisson Curves

Similar to diffusion curves, a Poisson curve g is two-sided,
denoted by gþ and g�, and can be either open or closed. We
associate each side a Laplacian value, denoted by fþ and f�
respectively, such that fþ þ f� ¼ 0 (see Fig. 3). To discretize

Fig. 3. A Poisson curve is a two-sided curve created by cubic B-splines,
where each side is associated with a Laplacian constraint. The numbers
in the close-up view (a) are the weights to discretize the Laplacian opera-
tor and also ensure the zero sum condition. Notice that the zero sum is a
necessary condition for local shading control. If it is not satisfied,
unwanted artifacts occur (c). The rectangular boundary in (a) is a diffu-
sion curve, which specifies the boundary condition of the Poisson’s
equation.

Fig. 2. The 1D analogy of Poisson curve. (a) We define a Poisson curve
(which becomes a point in 1D) at p ¼ 50 in the domain V ¼ ½0; 100� and
set the Laplacian constraints fðpþÞ ¼ 10 (red) and fðp�Þ ¼ �10 (green)
so that the zero-sum condition is met. (b) Given the Dirichlet boundary
condition gð0Þ ¼ 0 and gð100Þ ¼ 100, we solve4uðxÞ ¼ f and uj@V ¼ g to
compute uðxÞ.

HOU ET AL.: POISSON VECTOR GRAPHICS (PVG) 1363

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 01,2021 at 15:57:37 UTC from IEEE Xplore.  Restrictions apply. 



g, we assign each pixel of gþ or g� a weight: a pixel receives
a weight �n if has exactly n neighboring pixels on the other
side of g. These non-constant weights are used to define the
discrete Laplacian and also ensure that they add up to zero.
The requirement for zero sum is for local shading control.
To explain this, consider a region D � g that bounds the
diffusion of g. The divergence theorem

RR
D DudA ¼ H

@D ru�
ndl relates the double integral of Du to the line integral of
ru. Since the color function u remains unchanged on @D,
the line integral of ru is a constant, implying that the dou-
ble integral of Laplacian is also a constant. Based on this
observation, we set ðDuÞjgþ þ ðDuÞjg� ¼ 0 (see Figure 3).
Although the zero-sum is only a necessary condition to
ensure local shading control, it works pretty well in our

experiments. To better understand the concept, we show
the 1D analogy of Poisson curve in Fig. 2.

The zero-sum condition is hidden to users, who simply
drag over a slider to specify fþ. As long as fþ 6¼ 0, the Pois-
son curve corresponds to a sharp edge. The larger the value
jfþj, the stronger the sharp feature. Since we model Poisson
curves as cubic splines, the users can also specify spatially
varying constraints ðDuÞjg by setting weights on the control
points. See Fig. 4.

3.2 Poisson Regions

We develop Poisson regions to produce photorealistic effects,
such as specular highlights, core shadows, translucency and
halos. Observe that the Laplacian of a specular highlight is a
“bell” shaped curve (see Fig. 6). To discretize such a function,
we decompose a Poisson region into two disjoint sub-regions
D1 andD2, where the outer partD1 is relatively thin so that it
preserves the geometry of @D well. We assign a constant con-
straint fi to each sub-region Di, so that they have opposite
signs f1f2 < 0 and satisfy

P2
i¼1

RR
Di

fidA ¼ 0 for local shad-
ing control. As Fig. 6 shows, fis with decreasing values form a
U-shaped curve, which simulate the Laplacian of specular
reflection, while fis with increasing values are bell-shaped,
which simulate the Laplacian of core shadows. To simulate
halo, we also provide additional control that offsets fis. Fig. 5
shows the 1D counterpart of Poisson region (which is an
interval).

To determine the sub-regions D1 and D2, we take the
boundary @D as the source and compute the euclidean dis-
tance transform. Let dmax be the maximal distance to the
boundary. We then define D1 ¼ fxjdðxÞ 	 0:05dmax; x 2 Dg
and D2 ¼ D nD1 (see Fig. 6d). To produce halos with small
change of gradients in a Poisson region, we also allow the
user to add an increment d to fi (see Fig. 7).

There are 2 differences between PC and PR: First, a PC is
a double-sided curve, which can be either open or closed,
and a PR is a region whose boundary is closed. Second, PC

Fig. 4. Poisson curves are used to model color discontinuity in a bounded region. (a)-(b): A diffusion curve is used to create the beak of the Rubber
Duck. (c)-(e): We can create a sharp edge using a Poisson curve g (dashed line). Increasing the Laplacian constraint jf j makes a stronger edge. (f)
We can also use a spatially varying constraint to define sharp edges with varying strength.

Fig. 6. (a) A shiny sphere rendered using the Phong illumination model.
(b) The specular highlight is cos ku, where u is the angle between the
viewing vector and the reflection vector, and the exponent k is the shini-
ness constant. (c) The Laplacian of cos ku is U-shaped. (d) A Poisson
regionR consists of two disjoint sub-regionsD ¼ D1 [D2, each of which
is associated with a Laplacian constraint fi. We set f1 / �1

AðD1Þ, where �1

is the user-specified value and AðD1Þ is the area of D1. We then com-

pute f2 ¼ �f1
AðD1Þ
AðD2Þ. (e) The fis are to approximate the U-curve of

D cos ku, simulating specular highlights. (f) Similarly, the fis are to model
the Laplacian of core shadows.

Fig. 5. The 1D analogy of Poisson curve is an interval ½30; 70� 
 V. (a)
Define the Laplacian constraints with zero-sum f1AðD1Þ þ f2AðD2Þ ¼ 0.
(b) The function uðxÞ with the Dirichlet boundary condition gð0Þ ¼
gð100Þ ¼ 50.

Fig. 7. We can produce halos in a Poisson region by adding each Lapla-
cian constraint fi an increment d, where fi þ d, i ¼ 1; 2, have opposite
signs. (a) There are two Poisson regions (loops with hatches) in this
PVG. (b) Rendering without PR, i.e., fi ¼ 0, d ¼ 0. (c) Rendering without
increments, i.e., fi 6¼ 0, d ¼ 0. (d) Rendering with increments i.e., fi 6¼ 0,
d 6¼ 0.

1364 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 01,2021 at 15:57:37 UTC from IEEE Xplore.  Restrictions apply. 



is mainly designed for modeling color discontinuity,
whereas PR is to produce smooth shadings, such as specular
highlights and core shadows (see Fig. 8).

4 FEATURES

PVG has 3 salient features: explicit separation of hues and
tones, supporting layers by allowing intersecting primitives
(except for DC-DC intersection), and native support for
seamless cloning, that are favorable for authoring. It is
worth noting that none of the existing methods (e.g., DCI,
TPS, GDCI) has all of the above-mentioned features.

4.1 Separation of Hues and Tones

Although both PCs and DCs are able to produce color dis-
continuity across the curves, they are fundamentally differ-
ent. Using DCs, the users explicitly specify the boundary
condition (i.e., colors) on both sides of a curve. To change
hue either locally or globally, the users have to re-assign the
colors for all the curves involved, which is tedious. In con-
trast, PVG separates colors and tones by specifying the Lap-
lacian constraint of PC, which is a relative value. Since the
color of a PC is determined by the surrounding DC. Chang-
ing hue does not require any modification of PCs. See Fig. 9

for an example of local hue editing. Poisson regions also
enable local tone control, since the area integral of the Lapla-
cian on a PR is zero. See Fig. 10 for an example of changing a
specular highlight.

4.2 Layers

When two diffusion curves are intersecting, their attached
colors compete with each other, often leading to undesired
effects (see Fig. 11a). Hence, within the diffusion curve
framework, the users have to split those curves into disjoint
segments with different colors and re-adjust the boundary
colors for each segment to obtain smooth colors. This extra
operation becomes a serious drawback to designers, who
have to deal with a large amount of short segments and
their constraints. In contrast, PCs and PRs can intersect any
type of primitives, including themselves. Note that Lapla-
cian is a linear operator, we have DðfðxÞ þ gðxÞÞ ¼ DfðxÞþ
DgðxÞ for any differentiable functions f and g. When PC and
PR intersect each other, we simply add their Laplacian con-
straints for the intersection point. In fact, the DC-DC inter-
secting issue can also be partially solved if one DC is
converted to a PC. Such a strategy is adopted in seamless
cloning (see Fig. 13). This feature not only simplifies the
drawing process, but also allows the users to use layers,
which is a powerful technique for making complex
drawings.

Fig. 8. PVG simulates a specular highlight and core shadow using Poisson regions. See the accompanying video for the animation.

Fig. 9. Changing hue in the Warrior’s cloak, The region of interest R is
bounded by a closed diffusion curve, whose inner side color is dark
brown. Row 1 (PVG): We simply changed the boundary color of @R to
blue, then the Poisson curves inside R (dashed lines in (a) and (c)), still
with the same Laplacian constraints, can automatically adjust to the new
boundary condition so that the hues in R are coherent with the boundary
color. Rows 2 and 3 (DCI): Replacing each Poisson curve to a diffusion
curve with proper color conditions (see colored lines in (e)), one can gen-
erate a DCI image (see (h)) similar to the PVG image in (b). However,
simply changing the boundary color of @R (see (f)) in the DCI produces
strange hue, due to the significant difference between the colors of the
interior DCs and the boundary DC. To fix this, one has to manually adjust
the boundary condition for each interior DC (see (g)), which is tedious
and error prone.

Fig. 10. The user can easily change tone by manipulating the Laplacian
constraints of PRs. See the accompanying video.

Fig. 11. Intersecting primitives. (a) The colors attached to two intersect-
ing DCs compete with each other, leading to undesired artifacts. (b)
Within the diffusion curve framework, the users have to split the curves
into disjoint segments and re-adjust the boundary colors for each seg-
ment in order to produce smooth colors. (c)-(e) In contrast, PVG allows
all types of intersection except for DC-DC intersection.

HOU ET AL.: POISSON VECTOR GRAPHICS (PVG) 1365

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 01,2021 at 15:57:37 UTC from IEEE Xplore.  Restrictions apply. 



4.3 Seamless Cloning

P�erez et al. [17] proposed a set of image editing tools that per-
mits seamless importation of opaque and transparent source
image regions into a destination region. The key idea is to
compute a function that agrees with the target image on the
boundary of the target region,whose gradient field is as close
as possible to that of the source image. P�erez et al. [17]
showed that such a function is the solution of a Poisson’s
equation with Dirichlet boundary condition which specifies
the Laplacian over the domain of interest. Since PVG allows
the users to directly specify the Laplacian for all its primi-
tives, it natively supports gradient domain editing.

We use subscripts s and t to distinguish the source and
target PVGs for cloning. The user clones a region Ps 
 Ds in
the source to a region Pt 
 Dt in the target, where Ps and Pt

have identical boundary. Notice that the source region Ps

may contain an arbitrary number of DCs, PCs and PRs.
If the source region Ps is opaque, we clear all the primi-

tives in the target region Pt. Since PCs and PRs carry the
Laplacian of colors (i.e., offset), they can be directly copied
to the target region Pt. Therefore, we only need to convert
each DC g inside Ps to a PC whose Laplacian constraint is
readily available with f jg ¼ ð4usÞjg .

If Ps is transparent, we keep the original PCs and
PRs inside the target region Pt and convert the remaining
DCs of Pt to PCs. Then we take the sum of Laplacians of Ps

and Pt as the new Laplacian constraint for Pt. The pseudo
code of seamless cloning is shown in Algorithm 2.

It is worth noting that PVG based seamless cloning is
fundamentally different from the DC counterpart [2], [4]
for 2 reasons. First, our method can directly combine the
primitives of the source and target PVGs, since the source

DCs are converted to PCs, which can automatically adapt
to the target PVG. In contrast, the DC based seamless
cloning needs to re-compute the boundary color of the
source DCs using the information of the target domain.
Figs. 12c and 12e shows that we can easily clone a opaque
source PVG to different targets without using the target
domain information. Second, the users can easily edit
tone and hue in the composite PVG (Figs. 12d and 12f),
taking advantage of the converted PCs. In contrast, to
change the tone in the DC based framework, the users
have to re-compute the boundary colors of all affected dif-
fusion curves, which is tedious.

Algorithm 1. Seamless Cloning with PVG

Require: Source PVG us : Ds ! R, 4us ¼ fs and usj@Ds
¼ gs;

target PVG ut : Dt ! R, 4ut ¼ ft and utj@Dt
¼ gt; a patch

Ps 
 Ds and a patch Pt 
 Dt with identical boundary.
Ensure: The blended PVG ut where Ps is seamless cloned to Pt.
1: if the source region Ps is opaque then
2: Clear the destination region Pt, 8p 2 Pt, fðpÞ ¼ 0
3: else
4: for each DC g 
 Pt do
5: Convert g to a PC with Laplacian f jg ¼ ð4utÞjg ;
6: end for
7: end if
8: Copy the PCs and PRs in Ps to Pt;
9: for each DC g 0 
 Ps do
10: Convert g 0 to a PC with Laplacian

f jg0 ¼ ð4usÞj0g þ ð4utÞj0g ;
11: Copy the PC to Pt;
12: end for

Fig. 13. Seamless cloning with transparent PVG, where the source and target gradients are mixed. The DCs in the source PVG (colored solid lines in
(a)) are converted into PCs (see the dashed lines in (c) and (d)). The DCs that are outside the region of interest in the target PVG remain unchanged.

Fig. 12. Seamless cloning with PVG. We convert the DC (the boundary of the sphere) of the source PVG to a Poisson curve and copy it together with
the PRs inside to the destination region. Unlike diffusion curve based cloning, our method does not need to re-compute the boundary color of the
DC. Since the source PVG can automatically adapt to the new environment, making the cloning task easy. We can also edit the hue by changing the
boundary color of DCs.

1366 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 01,2021 at 15:57:37 UTC from IEEE Xplore.  Restrictions apply. 



5 USER STUDY

We conducted a preliminary user study to explore benefits
(efficiency and usability) of PVG and compared it with TPS
based vector graphics developed by Finch et al. [7]. They
developed 5 types of basic curves, namely, tear, crease,
slope, contour and value curves, for controlling color values
and their directional derivatives. Since the basic curves, in
general, cannot be used alone, users need to combine a few
types of curves to produce the desired effects. Their system
consists of more than 50 combinations of the basic curves.
On one hand, it is highly flexible and provides users
advanced controls to produce photo-realistic images. On
the other hand, the learning curve is usually steep, due to
its complexity. In contrast, PVG provides only three types
of primitives with simple purposes—DC is used for hue
and PC and PR are for tone.

We recruited 12 professional 2D artists who are from 3
different studios/institutions and with 9.3 years painting
experience on average. Before going to the tasks in the
experiments, we introduced the key concepts of DC, PR, PC
and TPS to the participants, and gave them 20 minutes to
familiarize themselves with both pieces of software. After
that, they were asked to complete two painting tasks. To
help the participants complete the tasks, we showed them
the expected results.

We designed two tasks to evaluate local shading control
and permission of intersection among geometric primitives
in the user study. In experiment #1, the participants were
given a colorful windmill and they were asked to add a
highlight on it (see Fig. 14). With TPS, they sketched two VS
curves—the compound value and slope curve—each curve
has at least 4 control points for specifying the boundary col-
ors. Note that, four colors are the least number of colors to
simulate the rich colors of the area we provided. With PVG,
participants sketched one Poisson region and then specified

Fig. 14. Experiment #1: Local tone control.

Fig. 15. Experiment #2: Handling intersecting primitives. DC and TPS do
not allow intersecting primitives. Therefore, one has to partition the
closed curve into two disjoint segments (labeled 1 and 2 in (a)). With
PVG, one can draw Poisson curves/regions anywhere.

Fig. 17. Poisson regions produce translucency on the balloons.

Fig. 16. PVG supports simple animation, where the change of frame-to-
frame geometry is small. See the accompanying video.

Fig. 19. The colors produced by shading curves are not as realistic as
those of PVG and diffusion curves. Image courtesy of Lieng et al.

Fig. 18. Comparing with TPS vector graphics [7]. To add a specular high-
light to the billiard ball, the PVG user sketches a PR and then tunes its
Laplacian to increase/decrease the highlight. No color manipulation is
required in this process. The TPS user specifies a closed contour curve
to bound the highlight region and then adds a value point inside to con-
trol the color (highlighted by the red arrow). He assigns light yellow to
the value point to match the PVG result. However, since the value point
is close to the contour, color oscillation occurs, leading to unexpected
color (green) in the specular highlight.

HOU ET AL.: POISSON VECTOR GRAPHICS (PVG) 1367

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 01,2021 at 15:57:37 UTC from IEEE Xplore.  Restrictions apply. 



its Laplacian constraint using slider, which is much easier
than specifying discrete colors. Also, it is non-intuitive to
explicitly specifying colors for shaded objects with spatially-
varying colors but the same tone. As Fig. 14c shows, PVG
reduces roughly 75 percent of drawing time as compared to
DC and TPS.

In experiment #2, they were given a “ladybug” and
required to add a highlight on its back (see Fig. 15). To sim-
plify the task, the ladybug has only one spot. Since the high-
light crosses the black spot, the participants had to partition
DCs and TPS into disjoint segments and then specify their
colors separately. With PVG, they simply sketched one PC
in a single stroke and specified only one Laplacian con-
straint. As a result, PVG saves 40 percent of the drawing
time as compared to DC and TPS (see Fig. 15e).

To evaluate the ease of learning, we asked the partici-
pants to repeat each experiment 8 times. As the learning
curves in Figs. 14d and 15f show, the PVG curves tend to
stabilize in only 3 or 4 trials, whereas the TPS curves take
longer, from trial 6 onwards, to become stable implying that
PVG is easier to learn compared to TPS. See the accompa-
nying video for details.

The participants commented that PVG faithfully follows
the basic painting principle by separating color and tone. In
painting theory [25], tones are comprised of highlight, half-
tone, core shadow, reflected light and cast shadow, which
are the key factors to produce photorealistic rendering.
With PC and PR, they can simulate various types of tones
and control them in an easy and intuitive manner (e.g.,
experiment #1). Although raster graphics naturally supports
this painting style (e.g., the dodging and burning in Adobe
Photoshop), this is the first time that they saw it in vector
graphics. They also commented that PVG is more flexible
than DC and TPS, since it allows geometric primitives inter-
secting each other. This feature enables them to use layers
in complex drawings, such as experiment #2.

6 EXPERIMENTAL RESULTS

PVG is able to express both cartoon-like images (Fig. 25) and
photorealistic images (Fig. 24). Poisson curves, as a double-
sided curve with opposite Laplacian constraint, create high
contrast (i.e., color discontinuity) across the curve, which is
desired to model object boundaries and sharp features.
Poisson regions, on the other hand, have controllable “soft”
boundaries, are effective to produce highlights, core shad-
ows, halos and transparency. See Figs. 8, 7 and 17. In addi-
tion, we allow PRs to intersect each other and other types of
primitives, providing more flexibility and expressive power
to mimic complex shadings in photorealistic images.

It is known that the solution of Poisson/Laplace’s equa-
tion is less sensitive to the change of boundary condition
than that of bi-Laplace equation. Therefore, PVG can be
applied to animation with small inter-frame changes of col-
ors and/or geometries. See Figs. 8 and 16 and the accompa-
nying video for the animation examples. Bi-Laplacian based
vector graphics often suffers from visual artifacts, such as
color jumps.

Comparing with diffusion curves, PVG is superior in tone
and hue control, since PCs and PRs, constraining Laplacians
of colors, are loosely coupled with the neighboring diffusion
curves. Fig. 9 shows an example where the user wants to
change the color of a region of interest R. For DCI, the user
has to manually adjust the colors for all DCs inside R. With
PVG, the user only needs to change the color of the bound-
ary DC @R, then the Poisson curves inside R, still with the
same Laplacian constraint, automatically adapt to the new
boundary color.

It is known that unintended derivative discontinuities
may arise in DCI [7]. Although a post-process image blur-
ring [1] can reduce the artifacts, it does not allow explicit
control over the value or position of color extrema. As

Fig. 20. The TPS vector graphics [Finch et al. 2011] consists of 53 primitives in 13 categories. Our PVG, producing a similar image, contains 51 prim-
itives in only 3 categories: 26 DCs, 1 PCs and 24 PRs. GDCI consists of 28 diffusion curves and each DC is associated with 2 different boundary
colors.

Fig. 21. PVG allows users to create layers. In a typical design, diffusion
curves are placed in the base layer. Then the users can create additional
layers with an arbitrary number of Poisson curves and Poisson regions,
which can intersect each other and/or the diffusion curves.

1368 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 01,2021 at 15:57:37 UTC from IEEE Xplore.  Restrictions apply. 



discussed above, PVG is C1 continuous everywhere except
where creases (diffusion curves) are explicitly specified.

As mentioned in Section 4, diffusion curves are not
allowed to intersect each other, since their associated colors
are competing. In contrast, PCs and PRs can intersect any
type of primitives, including themselves. Moreover, by con-
verting DC to PC, PVG can also solve the DC-DC intersec-
tion issue (see Figs. 12 and 13). This feature enables the PVG
users to create layers and provides them more flexibility in
the design process. Take the Apple (Fig. 1) as an example.
Note that there are a large number of intersections among
the primitives.

Comparison with Constrained Diffusion Curves. Bezerra
et al. [26] proposed several techniques, such as diffusion
barriers, diffusion anisotropy, and spatially varying color
strength to control the diffusion process. Their approach is
able to diffuse both colors and normal maps, hereby pro-
ducing interesting non-photorealistic effects. However, the
constrained diffusion has two limitations. First, it is non-
intuitive to specify the boundary condition for normals. Sec-
ond, since normals are diffused within a closed diffusion
curve, some artifacts (such as color discontinuity) may
occur on the region boundary. With PVG, the users can
directly produce specular reflection using Poisson regions.

Comparison with Thin-Plate Splines. In contrast, PVG pro-
vides only three types of primitives, each of which has a
clear definition and purpose. A preliminary user study
shows that PVG is more intuitive and easy to use than TPS.
Moreover, as pointed out in [8], [9], the biharmonic func-
tions can be negative and have prevalent local extrema,
leading to unstable colors (see Fig. 18). Therefore, TPS is not

applicable to animation. As Fig. 16 shows, PVG can be
applied to animation with small frame-to-frame change of
geometry and colors. PVG naturally supports seamless
cloning, whereas it would be difficult for TPS, since the bi-
Laplacian model does not fit for gradient domain editing.

Comparison with Shading Curves. Lieng et al. [9] proposed
shading curves to simulate chiaroscuro drawing, providing
strong contrasts between light and dark. Users first draw
areas of constant tone with curves, fill in each individual
area with constant color and specify the influence of that
color to adjacent areas. Colors are then smoothed out with
shading profiles, which are associated with each side of the
curve. Finally, shading curves are converted to 3D control
meshes and rendered as Catmull-Clark subdivision surfaces.
Shading curves allow explicit control over color gradients,
however, the generated image is not as realistic as PVG (see
Fig. 19). Moreover, due to the limitation of their region grow-
ing algorithm, shading curves are not able to handle curves
with high curvatures and/or intersecting curves.

Comparison with Generalized Diffusion Curves. Generalized
diffusion curves [10] takes multiple conventional DCIs as
input and then spatially blend them to produce the final
result. The source DCIs often share the same geometric
primitives, but they are associated with different boundary
colors. Technically speaking, one DCI determines the colors
for pixels which are close to the diffusion curves, whereas
the other controls the region away from the curves. Thanks
to the more degrees of freedom provided in the source
DCIs, GDCI can provide a similar expressive power of
TPS [7]. However, GDCI has limited support of local shad-
ing control. For example, it is difficult for the users to move
a specular highlight, whereas doing so within PVG is
straightforward (see Fig. 8).

Fig. 22. Color dependency on the curve geometry. We scale the boundary diffusion curve and fix the Poisson region inside. Since PR specifies only
the relative value, the resulting colors scale with the curve geometry. If the change of curve geometry is significant, over saturation artifact occurs.
We observe that GDCI’s color extrema also depends on the curve geometry. The GDC image is courtesy of S. Jeschke.

Fig. 24. PVG is able to produce photo-realistic images with sparse geo-
metric primitives. This PVG consists of 85 diffusion curves (solid lines),
71 Poisson curves (dashed lines) and 24 Poisson regions (loops with
hatches).

Fig. 23. Color artifacts due to inaccurate curve discretization. The snail’s
feeler is a two-sided diffusion curve with inner boundary color dark brown
and outer boundary color yellow. However, the region is not completely
bordered by the discretized yellow curve, resulting in “color leaking”
artifacts.

HOU ET AL.: POISSON VECTOR GRAPHICS (PVG) 1369

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 01,2021 at 15:57:37 UTC from IEEE Xplore.  Restrictions apply. 



Since GDCI blends two harmonic functions using affine
combination, it guarantees that the color range is invariant
under the uniform scaling of curve geometry. However its
color extrema are geometry dependent (see Figs. 22b and 22c).
PVG’s color extrema also depend on the geometry of curves.
As Fig. 22a shows over saturation artifacts occur when the
curves are changed significantly. Similar to DCI, GDCI does
not allow intersecting primitives. In contrast, PCs and PRs can
intersect any type of primitives, including themselves. As a
result, the users can create layers in PVG, as shown in Fig. 21.

7 CONCLUSION

We presented Poisson vector graphics, an extension of the
popular diffusion curves, for generating smooth-shaded
images. Armed with two new types of primitives, Poisson
curves and Poisson regions, PVG can easily produce photore-
alistic effects such as specular highlights, core shadows, trans-
lucency and halos. PVG distinguishes itself from the existing
drawing tools by separating color and tone, which brings
three unique features, i.e., local tone and hue editing, permis-
sion of intersecting primitives (except for DC-DC intersection)
to enable layers, and native support for seamless cloning. Our
preliminary user study confirms that PVG is more intuitive
and easy to use than diffusion curves and its variants.

Limitations. To render PVG images, we need to discretize
all geometric primitives using a quad-tree data structure,
even though they are smooth B-spline curves. The computed
color function relies on the user-specified resolution and the
error increases when the resolution decreases. Discretization
errors often occur near diffusion curves with high curvature,
resulting in “color leaking” artifacts (see Fig. 23). A possible
solution is to adopt an accurate and robust curve discretiza-
tion algorithm (e.g., [2]). PVG is able to handle animation
with small frame-to-frame change of geometry. If the change
of curve geometry is significant, over saturation artifacts
occur (see Fig. 22). Since color dependency on curve geome-
try is a common problem to other non-harmonic color func-
tions, it deserves further investigation and improvement.
The zero-sum condition is only a necessary condition to
ensure the local hue and tone control for PCs and PRs. It is
desired to derive a sufficient condition.

ACKNOWLEDGMENTS

This project was partially supported by the Alibaba-NTU
Singapore Joint Research Institute, Singapore Ministry of
Education Grant RG26/17, Special Plan for the Develop-
ment of Distinguished Young Scientists of ISCAS
(Y8RC535018), NSFC Grants(61872347, 61725204, 61772016,
61532002, 61661146002, 61672149, 61672077, 61702363), USA
NSF IIS-1715985, and CAS Key Research Program of Fron-
tier Sciences (QYZDY-SSW-JSC041). F. Hou and Q. Sun con-
tributed equally to the paper.

REFERENCES

[1] A. Orzan, A. Bousseau, H. Winnem€oller, P. Barla, J. Thollot, and
D. Salesin, “Diffusion curves: A vector representation for smooth-
shaded images,”ACMTrans. Graph., vol. 27, no. 3, pp. 92:1–92:8, 2008.

[2] S. Jeschke, D. Cline, and P. Wonka, “A GPU Laplacian solver for
diffusion curves and Poisson image editing,” ACM Trans. Graph.,
vol. 28, no. 5, pp. 116:1–116:8, 2009.

[3] X. Sun, G. Xie, Y. Dong, S. Lin, W. Xu, W. Wang, X. Tong, and
B. Guo, “Diffusion curve textures for resolution independent texture
mapping,”ACMTrans. Graph., vol. 31, no. 4, pp. 74:1–74:9, 2012.

[4] T. Sun, P. Thamjaroenporn, and C. Zheng, “Fast multipole repre-
sentation of diffusion curves and points,” ACM Trans. Graph.,
vol. 33, no. 4, pp. 53:1–53:12, 2014.

[5] S. Jeschke, D. Cline, and P. Wonka, “Rendering surface details
with diffusion curves,” ACM Trans. Graph., vol. 28, no. 5,
pp. 117:1–117:8, 2009.

[6] K. Takayama, O. Sorkine, A. Nealen, and T. Igarashi, “Volumetric
modeling with diffusion surfaces,” ACM Trans. Graph., vol. 29,
no. 6, 2010, Art. no. 180.

[7] M. Finch, J. Snyder, and H. Hoppe, “Freeform vector graphics
with controlled thin-plate splines,” ACM Trans. Graph., vol. 30,
no. 6, pp. 166:1–166:10, 2011.

[8] A. Jacobson, T. Weinkauf, and O. Sorkine, “Smooth shape-aware
functions with controlled extrema,” Comput. Graph. Forum, vol. 31,
no. 5, pp. 1577–1586, 2012.

[9] H. Lieng, F. P. Tasse, J. Kosinka, and N. A. Dodgson, “Shading
curves: Vector-based drawing with explicit gradient control,”
Comput. Graph. Forum, vol. 34, no. 6, pp. 228–239, 2015.

[10] S. Jeschke, “Generalized diffusion curves: An improved vector
representation for smooth-shaded images,” Comput. Graph. Forum,
vol. 35, no. 2, pp. 71–79, 2016.

[11] R. Hale, Drawing Lessons from Great Masters. New York, NY, USA:
Watson-Guptill Publications, 1964.

[12] S. Boy�e, P. Barla, and G. Guennebaud, “A vectorial solver for free-
form vector gradients,” ACM Trans. Graph., vol. 31, no. 6,
pp. 173:1–173:9, 2012.

Fig. 25. A gallery of poisson vector graphics.

1370 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 01,2021 at 15:57:37 UTC from IEEE Xplore.  Restrictions apply. 



[13] J. C. Bowers, J. Leahey, and R. Wang, “A ray tracing approach to
diffusion curves,” in Proc. 22nd Eurographics Conf. Rendering, 2011,
pp. 1345–1352.

[14] R. Pr�evost, W. Jarosz, and O. Sorkine-Hornung , “A vectorial
framework for ray traced diffusion curves,” Comput. Graph. Forum,
vol. 34, no. 1, pp. 253–264, 2015.

[15] P. Ilbery, L. Kendall, C. Concolato, and M. McCosker,
“Biharmonic diffusion curve images from boundary elements,”
ACM Trans. Graph., vol. 32, no. 6, pp. 219:1–219:12, 2013.

[16] W. Pang, J. Qin, M. Cohen, P. Heng, and K. Choi, “Fast rendering
of diffusion curves with triangles,” IEEE Comput. Graph. Appl.,
vol. 32, no. 4, pp. 68–78, Jul./Aug. 2012.

[17] P. P�erez, M. Gangnet, and A. Blake, “Poisson image editing,”
ACM Trans. Graph., vol. 22, no. 3, pp. 313–318, 2003.

[18] A. Agarwala, “Efficient gradient-domain compositing using
quadtrees,” ACM Trans. Graph., vol. 26, no. 3, pp. 94:1–94:5, 2007.

[19] J. Sun, J. Jia, C.-K. Tang, and H.-Y. Shum, “Poisson matting,” ACM
Trans. Graph., vol. 23, no. 3, pp. 315–321, 2004.

[20] A. Levin, D. Lischinski, and Y. Weiss, “Colorization using opti-
mization,” ACM Trans. Graph., vol. 23, no. 3, pp. 689–694, 2004.

[21] P. Bhat, C. L. Zitnick, M. Cohen, and B. Curless, “Gradientshop: A
gradient-domain optimization framework for image and video fil-
tering,” ACM Trans. Graph., vol. 29, no. 2, pp. 10:1–10:14, 2010.

[22] J. McCann and N. S. Pollard, “Real-time gradient-domain
painting,” ACM Trans. Graph., vol. 27, no. 3, pp. 93:1–93:7, 2008.

[23] M. S. Floater, “Mean value coordinates,” Comput. Aided Geom.
Des., vol. 20, no. 1, pp. 19–27, 2003.

[24] Z. Farbman, G. Hoffer, Y. Lipman, D. Cohen-Or, and D. Lischinski,
“Coordinates for instant image cloning,” ACM Trans. Graph.,
vol. 28, no. 3, pp. 67:1–67:9, 2009.

[25] K. Staiger, The Oil Painting Course You’ve Always Wanted: Guided
Lessons for Beginners and Experienced Artists. New York, NY, USA:
Watson-Guptill Publications, 2006.

[26] H. Bezerra, E. Eisemann, D. DeCarlo, and J. Thollot, “Diffusion
constraints for vector graphics,” in Proc. 8th Int. Symp. Non-Photo-
realistic Animation Rendering, 2010, pp. 35–42.

Fei Hou received the PhD degree in computer sci-
ence from Beihang University, in 2012. He is cur-
rently a research associate professor of Institute of
Software, Chines Academy of Sciences. He was a
postdoctoral researcher with the Beihang Univer-
sity from 2012 to 2014 and a research fellow in
School of Computer and Science and Engineering,
Nanyang Technological University from 2014 to
2017. His research interests include geometry
processing, image based modeling, and data vec-
torization andmedical image processing etc.

Qian Sun received the PhD degree in computer
science from Nanyang Technological University,
Singapore. She is currently an associate profes-
sor with the School of Computer Software, Tianjin
University, China. Her current research interests
include human-computer interaction and com-
puter graphics.

Zheng Fang received the BS degree in computer
science and technology from Tianjin University,
China. He is currently working toward the PhD
degree with the School of Computer Science and
Engineering, Nanyang Technological University,
Singapore. His current research interests include
computational geometry and computer graphics.

Yong-Jin Liu received the BEng degree from
Tianjin University, China, in 1998, and the PhD
degree from the Hong Kong University of Science
and Technology, Hong Kong, China, in 2004. He
is currently a full professor with the BNRist,
Department of Computer Science and Technol-
ogy, Tsinghua University, China. His research
interests include computational geometry, com-
puter graphics and computer-aided design. He is
a senior member of the IEEE and a member
of ACM.

Shi-Min Hu received the PhD degree from
Zhejiang University, in 1996. He is currently a full
professor with Department of Computer Science
and Technology, Tsinghua University, Beijing.
His research interests include digital geometry
processing, video processing, computer anima-
tion and computer-aided geometric design. He is
the editor-in-chief of Computational Visual Media,
and on the Editorial Board of several journals,
including the IEEE Transactions on Visualization
and Computer Graphics, and Computer Aided
Design and Computer and Graphics.

Hong Qin received the BS and MS degrees in
computer science from Peking University, China,
the PhD degree in computer science from the Uni-
versity of Toronto (UofT), in 1995. He is a full pro-
fessor of computer science with the Department
of Computer Science, State University of New
York at Stony Brook (Stony Brook University). His
research interests include geometric and solid
modeling, graphics, physics-based modeling and
simulation, computer aided geometric design,
human computer interaction, visualization, and
scientific computing.

Aimin Hao received the PhD degree from
Beihang University, in 2006. He is a professor in
computer school, Beihang University and vice
director of the State Key Laboratory of Virtual
Reality Technology and Systems. His research
interests include virtual reality, database applica-
tion, and information system development.

Ying He received the BS and MS degrees in
electrical engineering from Tsinghua University,
China, and the PhD degree in computer science
from Stony Brook University. He is currently an
associate professor with School of Computer Sci-
ence and Engineering, Nanyang Technological
University, Singapore. His research interests fall
into the general areas of visual computing and he
is particularly interested in the problems which
require geometric analysis and computation.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

HOU ET AL.: POISSON VECTOR GRAPHICS (PVG) 1371

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 01,2021 at 15:57:37 UTC from IEEE Xplore.  Restrictions apply. 


