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Abstract (Athalye et al., 2018; Carlini & Wagner, 2017; Goodfel-

The accuracy of modern machine learning algo-
rithms deteriorates severely on adversarially ma-
nipulated test data. Optimal adversarial risk quan-
tifes the best error rate of any classifer in the 
presence of adversaries, and optimal adversarial 
classifers are sought that minimize adversarial 
risk. In this paper, we investigate the optimal ad-
versarial risk and optimal adversarial classifers 
from an optimal transport perspective. We present 
a new and simple approach to show that the opti-
mal adversarial risk for binary classifcation with 
0 − 1 loss function is completely characterized by 
an optimal transport cost between the probability 
distributions of the two classes. We propose a 
novel coupling strategy that achieves the optimal 
transport cost for several univariate distributions 
like Gaussian, uniform, and triangular. Using the 
optimal couplings, we obtain the optimal adver-
sarial classifers in these settings and show how 
they differ from optimal classifers in the absence 
of adversaries. Based on our analysis, we evalu-
ate algorithm-independent fundamental limits on 
adversarial risk for CIFAR-10, MNIST, Fashion-
MNIST and SVHN datasets, and Gaussian mix-
tures based on them. 

1. Introduction 
Modern machine learning algorithms based on deep learn-
ing have had tremendous success in recent times, producing 
state-of-the-art results in many domains such as image clas-
sifcation, game playing, speech and natural language pro-
cessing. Along with the success, it was also discovered that 
these algorithms exhibit surprising vulnerability to adversar-
ial perturbations that are imperceptible to humans. Since the 
discovery in (Szegedy et al., 2013), there has been a slew 
of adversarial attacks on neural network based classifers 
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low et al., 2014) and defense methods against such attacks 
(Madry et al., 2018; Papernot et al., 2016; Cisse et al., 2017). 
Often, the defense methods either fall short of new attacks 
or are computationally intractable for large neural networks. 
Recent work has focused on certifable defenses that are 
provably robust against a pre-specifed class of adversaries 
(Cohen et al., 2019; Sinha et al., 2017; Raghunathan et al., 
2018; Diochnos et al., 2018). Existence of adversarial ex-
amples has been attributed to various causes: concentration 
phenomena in high-dimensional spaces (A. et al., 2019; 
Mahloujifar et al., 2019; Gilmer et al., 2018; Fawzi et al., 
2018); linearity of decision boundaries (Goodfellow et al., 
2014); and reliance on non-robust features (Tsipras et al., 
2019; Ilyas et al., 2019). 

In this paper, we take a step back from deep learning-
focused adversarial machine learning. We consider the 
simplest setting: binary classifcation with the 0 − 1 loss 
and known data distributions. Our goal is to investigate 
the notions of adversarial risk and robustness in this set-
ting. In particular, we are interested in analyzing algorithm-
independent (information-theoretic) limits on optimal adver-
sarial risk. The frst question we investigate is the following: 

Question 1. How much can the optimal adversarial risk 
differ from optimal standard risk? 

It is easy to see that the optimal adversarial risk is at least as 
large as optimal standard risk (see Section 2). Is it possible 
to derive a tighter lower bound for the optimal adversarial 
risk? Recent works derive upper and lower bounds on the op-
timal adversarial risk with respect to a fxed set of classifers, 
by extending the PAC learning theory to encompass adver-
saries. For instance, (Khim & Loh, 2018) and (Yin et al., 
2019) develop risk bounds based on a notion of adversarial 
Rademacher complexity, that is a function of both the data 
generating distribution and class of classifers under consid-
eration. In a similar vein, several works (Attias et al., 2018; 
Cullina et al., 2018) derive sample-complexity bounds for 
robust learning. More recent works (Diochnos et al., 2019; 
Gourdeau et al., 2019) specifcally focus on lower bounds 
for sample-complexity, in order to characterize the hardness 
of robust learning. However, deriving lower bounds on the 
optimal adversarial risk that are classifer agnostic has not 
received much attention. Another related question is the fol-
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lowing: How much adversarial perturbation is suffcient to 
make the optimal adversarial risk signifcantly greater than 
the optimal standard risk? Relevant works in this direction 
have again focused on developing robustness metrics that 
are specifc to the classifer (Weng et al., 2018; Zhang et al., 
2018; Hein & Andriushchenko, 2017). 

In addition to Question 1, one might also consider the nature 
of the optimal classifer under the standard and adversarial 
settings. This motivates the following question: 
Question 2. Does the optimal classifer in the adversarial 
setting differ from that in the standard setting? 

(Moosavi-Dezfooli et al., 2019) empirically observed that 
adversarial training signifcantly reduces the curvature of 
the loss function with respect to the input. Another line of 
work attempts to construct a provably robust classifer from 
a baseline classifer using randomized smoothing (Cohen 
et al., 2019). A more recent line of work pursues data-
preprocessing strategies that make a classifer more robust 
(Yang et al., 2020; Bhattacharjee & Chaudhuri, 2020). These 
works suggest ways in which the optimal adversarial clas-
sifer differs from the optimal standard classifer. Even so, 
many other interesting questions remain. For instance, is the 
optimal classifer without an adversary approximately the 
same as the optimal classifer with a small adversary (i.e., 
small �)? If decision boundaries change, do they change 
smoothly with increasing strength of an adversary, or do 
they change drastically? 

The closest work to ours is Bhagoji et al. (2019), who de-
velop the frst classifer-agnostic lower bounds for learning 
in the presence of an adversary. Specifcally, they present a 
similar result to our Theorem 2 which gives the optimal ad-
versarial risk in terms of an optimal transport cost between 
the probability distributions of the two classes. We provide 
a new, simpler proof of this characterization by applying 
the Kantorovich duality of optimal transport for 0 − 1 cost 
functions. 

Our Contributions 

In this paper, we consider two types of adversaries: (i) data 
perturbing and (ii) distribution perturbing. We focus on 
the binary classifcation setting under 0 − 1 loss function. 
We answer Question 1 by providing universal bounds for 
adversarial risk under the two notions of adversaries that are 
agnostic to the classifer. We answer Question 2 by deriving 
the optimal adversarial classifer in some special settings. 
Our contributions are listed below. 

1. We provide a new and simple proof for the charac-
terization of optimal adversarial risk for 0 − 1 loss 
functions in terms of an optimal transport cost between 
the two data generating distributions, where the trans-
port cost is given by c�(x, x0) = 1{d(x, x0) > 2�} 

and � is the perturbation budget of the adversary. This 
completely answers Question 1 for this setting. Our 
proof establishes connections between adversarial ma-
chine learning and well-known results in the theory of 
optimal transport. 

2. We propose a novel coupling strategy that achieves 
the proposed optimal transport cost between the two 
class-conditional densities for several univariate distri-
butions like Gaussian, triangular and uniform. Using 
the analysis of optimal couplings, we obtain the op-
timal adversarial classifers for these settings. This 
answers Question 2 in these settings, and shows how 
the decision boundary of the optimal classifer changes 
in the presence of adversaries. In certain cases, we 
show that the decision boundary can change arbitrarily, 
even for small changes in the adversary budget �. 

3. Using our analysis for 0−1 loss, we obtain the exact op-
timal risk attainable for a range of adversarial budgets 
under ` 2-norm and ` ∞-norm perturbation of data, for 
several real-world datasets, namely CIFAR10, MNIST, 
Fashion-MNIST, and SVHN. In addition, we analyze 
Gaussian mixtures based on these datasets and com-
pute lower bounds on the optimal adversarial risk for 
them. These bounds indicate the optimal adversarial 
error achievable with data augmentation via Gaussian 
perturbations. 

Structure: The rest of the paper is structured as follows: 
In Section 2, we introduce the two types of adversaries: (1) 
data perturbing and (2) distribution perturbing, and show 
that the optimal risk in the data perturbing case is lower. We 
also present a simple example to show that the optimal risk 
and optimal classifer can deviate signifcantly in the pres-
ence of adversaries. In Section 3, we deal with Question 1 
by introducing the D� distance that completely character-
izes the optimal adversarial risk. In Section 4, we deal with 
Question 2 by presenting the coupling strategy used to ob-
tain optimal adversarial classifers in special cases. Finally, 
in Section 5, we present adversarial risk lower bounds for 
real world datasets and evaluate our bounds for 0 − 1 loss. 

Notation: The complement of a set A is denoted by Ac . 
Defne 1{C} to be the indicator function that maps all the 
inputs satisfying condition C to 1 and the rest to 0. For 
a set A in a Polish space (X , d), the set A� denotes the 
�-expansion of A in X . That is, A� = {x ∈ X : d(x, x0) ≤ 

c
� for some x0 ∈ A}. We defne A−� := ((Ac)�) . For any 
two probability measures µ and ν defned over the Polish 
space (X , d), we use Π(µ, ν) to denote the set of all joint 
probability measures over X ×X with marginals µ and ν, 
respectively. We use DTV (µ, ν) and Wp(µ, ν) to denote the 
total variation distance and p-Wasserstein distance between 
µ and ν. We use k·k to denote a norm and k·k∗ to denote its 



	

Adversarial Risk via Optimal Transport and Optimal Couplings 

dual norm. The cumulative distribution function (cdf) of the 
standard normal distribution is denoted by Φ. We use the 
shorthand w.l.o.g. for ‘without loss of generality’. 

2. Preliminaries 
2.1. Types of Adversaries 

Consider a binary classifcation setting with the 0 − 1 loss 
function. Consider a metric space (X , d). Let B�(x) denote 
the open ball of radius � around x. Let the output label, 
Y = {0, 1}, where the input x ∈ X is drawn with equal 
probability from two distributions p0 (for label 0) and p1 

(for label 0). Consider a set of binary classifers of the 
form 1{x ∈ A}, where A ⊆ X . That is, the classifer 
corresponding to the set A assigns the label 1 for x ∈ A 
and the label 0 for x ∈/ A. The 0 − 1 loss is given by 
`((x, y), A) = 1{x ∈ A, y = 0} + 1{x ∈/ A, y = 1}. For 
technical reasons that will be made clear in Section 3, we 
assume that the sets A that defne the classifers are closed. 

We shall consider two such notions of adversarial risk that 
have appeared in the literature: (i) adversary perturbs data 
points, and (ii) adversary perturbs data distributions. 

Data perturbing adversary: Defne two functions 
T0, T1 : X → X . Given (x, y) ∈ X ×{0, 1} and a classifer 
corresponding to set A, the data perturbing adversary of bud-

0get � transports x to Ty(x) ∈ argmaxx0∈B�(x) `((x , y), A). 
0Hence, T0(x) ∈ argmax 1{x ∈ A} andx0∈B�(x) 

0T1(x) ∈ argmax 1{x ∈/ A}. Then the ad-x0∈B� (x) 
versarial risk corresponding to A is given by, R�(A) = 
1 [p0(A

�) + p1 ((A
c)�)]. The optimal adversarial risk (or 2 

the optimal robust risk) is given by, � � 
1 � � � 

R ∗ = inf R�(A) = 1 − sup p1 A−� − p0(A
�) .� 

A⊆X 2 A 

1Note that for � = 0, R∗ = [1 − supA(p1(A) − p0(A))] = 0 2 
1 [1 − DTV (p0, p1)], which is the Bayes risk. Moreover, 2 
p1(A) − p0(A) ≥ p1(A−�) − p0(A�). Hence, we get the 
following trivial lower bound on adversarial risk: R∗ 

� ≥ R0 
∗ . 

Distribution perturbing adversary: Given a classifer 
corresponding to A, the distribution perturbing adversary 
perturbs the distributions p0, p1 to p̃0 ∈ B�(p0), p̃1 ∈ 
B�(p1), where B�(.) denotes 1-Wasserstein ball around a 
distribution. Then the adversarial risk is given by Rb 

�(A) = 
1 supp̃0 ∈B�(p0) [p̃0(A) + p̃1(Ac)]. The optimal robust risk 2 

p̃1 ∈B�(p1) bis given by infA⊆X R�(A) as follows. ⎡ ⎤ 

1 ⎢ ⎥
Rb∗ = ⎣1 − sup inf {p̃1(A) − p̃0(A)}⎦ . (1)� 2 ˜A⊆X p0∈B�(p0) 

p̃1∈B�(p1) 

In the following theorem, we will show that a distribution 
perturbing adversary is stronger than a data perturbing ad-
versary on the same budget. bTheorem 1. R�(A) ≤ R�(A) for all A ⊆ X . Moreover, 
R∗ ≤ Rb∗ 

� � . 

Proof. Consider a classifer corresponding to the set A. We 
observe that the transport map T0 used by the data per-
turbing adversary satisfes d(x, T (x)) < � for all x ∈ X . 
Hence the push-forward measure T0]p0 ∈ B�(p0). Simi-
larly, T1]p1 ∈ B�(p1). Hence, 

1 
R�(A) = [T0]p0(A

�) + T1]p1((A
c)�)}]

2 
1 b≤ sup [p̃0(A) + p̃1(A

c)] = R�(A). 
p̃0∈B� (p0) 2 
p̃1∈B� (p1) 

Taking infmum over A, we get R∗ ≤ Rb 
� 
∗ .� 

A remark on the risk bounds for adversaries: All risk 
bounds proved in this paper are valid for both adversaries. 
Since the distribution perturbing adversary is stronger than 
the data perturbing adversary, any lower bound that holds 
for the latter holds for the former. Analogously, any upper 
bound for the distribution perturbing adversary holds for the 
data perturbing adversary. 

2.2. A Motivating Example 

Here, we present a simple binary classifcation problem 
with Gaussian class conditional densities which shows that 
the adversarially optimal classifer indeed differs from the 
Bayes optimal classifer. We explicitly compute the optimal 
adversarial risk and the optimal adversarial classifer for a 
data perturbing adversary as a function of �. The detailed 
proof of this fact is found in Theorem 7. 

Let x|(y = i) ∼ N (0, σi 
2) for i = 0, 1 (σ1 < σ0). Let the 

class labels 0 and 1 be equally likely. Consider classifers 
parametrized by W = {w ∈ R : w > 0} as follows: � � 

σ2+σ2 
0 1f(x) = 1{x ∈ [−w, w]}. Let k = . Then the 

σ2−σ2 
0 1 

optimal adversarial risk and classifer are given by s 
�2(k2 − 1)∗ ∗ w = w 1 + + �k, (2)� 0 ∗(w )2 � � �0 � � ���∗ ∗1 w� − � w� + � 

R ∗ = 1 − 2 Φ − Φ . (3)� 2 σ1 σ0 

Equation (3) shows that the optimal adversarial risk in-
creases with increasing power of the adversary (i.e., increas-
ing �). Moreover, we see from (2) the optimal adversarial 
classifer can differ signifcantly from the Bayes optimal 



	

Adversarial Risk via Optimal Transport and Optimal Couplings 

Figure 1. Optimal classifer in the standard setting and (data per-
turbing) adversarial setting for two centered Gaussian distributions. 
Here, σ0 = 1, σ1 = 0.5, and � = 0.3. The optimal adversarial 
boundary bisects the line segment of length 2� that matches φ0 

and φ1. 

classifer when σ0 is close to σ1 (i.e., when k is large). Fig-
ure 1 shows a specifc instance of this example. 

Evaluating Rb∗ in this case is more challenging, as it involves � 
optimizing over distributions in Wasserstein balls. Suppose 
we take B�(ρ) to be the 2-Wasserstein ball around the dis-
tribution ρ. We can exploit the fact that Gaussian measures 
on R form a Riemannian manifold with 2-Wasserstein dis-
tance as the Riemannian metric (Takatsu, 2011). Moreover, 
{N (0, σ2)}t∈[0,1] is a geodesic from N (0, σ0

2) to N (0, σ1
2),t 

where σt = (1−t)σ0 +tσ1. Hence, a suitable choice for the 
adversarially perturbed distributions p̃0 and p̃1 in (1) is to 
pick N (0, (σ0 − �)2) and N (0, (σ1 − �)2) as the perturbed 
versions of N (0, σ0

2) and N (0, σ1
2) respectively. Fixing this 

choice of p̃0 and p̃1 and maximizing over A in (1), we get 
the following lower bound on Rb 

� 
∗ . 

Rb 
� 
∗ ≥ 

1

2 

� 
1 − DTV (N (0, (σ0 − �)2), N (0, (σ1 − �)2)) 

� 
� � � � � ��� 

1 wb� wb� 
= 1 − 2 Φ − Φ , (4)
2 σ1 + � σ0 − � 

where wb� is the positive real number for which the probabil-
ity densities of N (0, σ0

2) and N (0, σ1
2) coincide. 

3. Adversarial Risk via Optimal Transport 
In this section, we present our results on adversarial risk 
under 0 − 1 loss in the binary classifcation setting. 

Defnition 1 (Optimal transport cost). Consider two proba-
bility measures µ and ν over a metric space (X , d). For 
� ≥ 0, defne the cost function c� : X × X → R as 
c�(x, y) = 1{d(x, y) > 2�}. The optimal transport cost 
D� is defned as 

D�(µ, ν) = inf E(x,x0)∼πc�(x, x 0). (5) 
π∈Π(µ,ν) 

For � = 0, the optimal cost is equivalent to the total variation 
distance, i.e., D0(µ, ν) = DTV (µ, ν). For � > 0, this cost 
does not defne a metric over the space of distributions. 
This is because D�(µ, ν) = 0 does not imply µ and ν are 
identical. Moreover, it also does not defne a pseudometric 
since the triangle inequality is not satisfed. To see this, 
observe that if µ1, µ2, and µ3 are unit point masses at 0, 
2�, and 4�, then D�(µ1, µ3) = 1 > 0 = D�(µ1, µ2) + 
D�(µ2, µ3). 

Next, we present the main theorem of this section that gives 
the optimal risk under the binary classifcation setup for a 
data perturbing adversary. 

Theorem 2. The adversarial risk with the data perturbing 
adversary of budget � for the binary classifcation setting 
presented in Section 2 is given by 

R ∗ = 
1
[1 − D�(p0, p1)] . (6)� 2 

Instantiating Theorem 2 for � = 0, we get R∗ = 0 
1 [1 − DTV (p0, p1)], which is the Bayes risk. It is also pos-2 
sible to derive weaker bounds in terms of the p-Wasserstein 
distance between the distributions of the two data classes, 
as shown in the following corollary: 

Corollary 3.1. Under the setup considered in Theorem 2, 
we have the following bound for p ≥ 1: � � �p� 

1 Wp(p0, p1)
R ∗ ≥ 1 − . (7)� 2 2� 

Proof sketch of Theorem 2. A key ingredient of our proof 
is the Strassen’s theorem [Corollary 1.28 in (Villani, 2003)], 
which states that � 

D�(p0, p1) = sup p0(A) − p1(A
2�) . 

A 

1To prove the equality R∗ = [1 − D�(p0, p1)], notice that � 2 
it is enough to prove that for measures µ and ν, 

sup µ(A−�) − ν(A�) = sup µ(A) − ν(A2�). (8) 
A A 

To do so, we make use of the properties of closed sets 
and their �-expansions. The full proof is included in the 
supplementary material. 

Comparison with Bhagoji et al.(2019): We note that a 
similar result was obtained recently in Bhagoji et al.(2019). 
While the duality in their proof was established for a larger 
hypothesis class of measurable sets A, our proof relies on 
Strassen’s duality theorem and properties of closed sets. 
Using closed sets and directly using Strassen’s theorem 
allows us to considerably simplify the technical details as 
compared with Bhagoji et al.(2019). 
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4. Adversarial Classifers via Couplings 
Instead of using D�, we have shown in Corollary 3.1 that the 
optimal adversarial risk can be lower-bounded using other 
well-understood metrics such as the Wp distances. However, 
these bounds are often too loose to use in practice, and this 
motivates us to study the optimal cost D� directly. Given 
measures µ and ν corresponding to the two (equally likely) 
data classes, the general strategy we employ consists of the 
following steps: (1) Propose a coupling π between µ and ν. 
(2) Using this coupling, obtain the upper bound D�(µ, ν) ≤ 
E(x,x0)∼π c�(x, x0). (3) Identify a closed set A and compute 
a lower bound using D�(µ, ν) ≥ µ(A−�)−ν(A�). (4) Show 
that the lower and upper bounds match. This shows that the 
proposed coupling is optimal, and the sets A and Ac defne 
the two regions of the optimal robust classifer. 

In the examples we consider, guessing the set A correspond-
ing to the optimal robust classifer is easy. The challenging 
part is proposing a coupling and establishing its optimality. 
Although we shall focus on univariate random variables, 
some of our results will also naturally extend to higher di-
mensional distributions. 

4.1. Gaussian Distributions with Identical Variances 

Theorem 3. Let p0 = N (µ0, σ2) and p1 = N (µ1, σ2) in 
the metric space (R, | · |). Assume µ0 < µ1 w.l.o.g. Let A ⊆ 
R denote the set over which the optimal robust classifer 
assigns a label 1. If � ≥ |µ0 − µ1|/2, then A = R and 
R∗ = 1/2. If � < |µ0 − µ1|/2, then A = [(µ0 + µ1)/2, ∞)� 
and R∗ = p0(A).� 

µ1 −µ0Proof. If � ≥ , the transport map T defned by2 
T (x) = x + (µ1 − µ0) transports p0 to p1 by moving 
the mass at each x by 2�. Thus, the optimal transport cost 
for this coupling is 0, and therefore so is D�(p0, p1). Hence, 
R∗ = 1/2 and the constant classifer achieves it. � 

µ1 −µ0For � < , we consider the coupling shown in Figure 2.2 
Let p̃1 be the distribution obtained by shifting p1 to the left 
by 2�. It is evident that the overlapping area between p̃1 and 
p0 maybe be translated by 2� so that it lies entirely with p1. 
This means that the overlapping area may be transported at 
0 cost. It is easily verifed that the overlapping area contains 
2p0(A) mass where A = [(µ0 + µ1)/2, ∞) corresponds to 
the MLE classifer. So, the total cost of transportation is 
at most 1 − 2p0(A). Plugging this into Theorem 2, we get 
R∗ = p0(A), which is the risk achieved by the classifer � 
corresponding to A i.e. the MLE classifer. 

Theorem 3 can be easily extended to d-dimensional Gaus-
sians with the same identity covariances. Our results may 
be summarized in the following theorem: 

Theorem 4. Let p0 = N (µ0, σ2Id) and p1 = N (µ1, σ2Id) 

Figure 2. Optimal coupling for two Gaussians with identical vari-
ances. The shaded region within p0 is translated by 2� to p1, 
whereas the remaining is mass in p0 is moved at a cost of 1 per 
unit mass. 

in the metric space (R, || · ||2). If � ≥ ||µ0 − µ1||2/2, 
then A = R and R∗ = 1/2. If � < ||µ0 − µ1||2/2, then� 
A = {x : kx − µ0k ≥ kx − µ1k} and R∗ = p0(A).� 

Comparison to Bhagoji et al. (2019): Bhagoji et al. also 
explore optimal classifers for multivariate normal distribu-
tions. In fact, they show a more general version of our The-
orems 3 and 4 by considering data distributions N (µ0, Σ) 
and N (µ2, Σ), and an adversary that perturbs within Lp 

balls. In the following subsections, we shall generalize The-
orem 3 in a novel way by considering various interesting 
examples of univariate distributions and identifying optimal 
couplings for these. 

4.2. Gaussians with Arbitrary Means and Variances 

We shall introduce a general coupling strategy and apply it 
to the special case of Gaussian random variables. Given two 
probability measures µ and ν on R, our strategy consists of 
partitioning R into disjoint intervals and defning transport 
maps between the measures restricted to the intervals. Our 
frst result identifes a necessary and suffcient condition for 
D�(µ, ν) = 0 for arbitrary measures on Rd . 

Theorem 5. Let µ and ν be fnite positive measures on Rd 

that are absolutely continuous with respect to the Lebesgue 
measure and have bounded supports. Then D�(µ, ν) = 0 
if and only if W∞(µ, ν) ≤ 2�. Here, W∞(µ, ν) = 
limp→∞ Wp(µ, ν). 

Calculating W∞ is non-trivial in general, but in the univari-
ate case it may be calculated using the monotone transport 
map, which is known to be optimal. 

Theorem 6. Let µ and ν be fnite positive measures on R 
that are absolutely continuous with respect to the Lebesgue 
measure with Radon-Nikodyn derivatives f(·) and g(·), 
respectively. The cumulative distribution function (cdf) 
of µ is defned as F (x) = µ((−∞, x]), and for t ∈ 
[0, 1], the inverse cdf (or quantile function) is defned as 
F −1(t) = inf{x ∈ R : F (x) ≥ t}. The cdf G(·) and 
inverse cdf G−1(·) are defned analogously. Suppose that 
µ(R) = ν(R) = U . Then D�(µ, ν) = 0 if and only if 
kF −1 − G−1k∞ ≤ 2�. 
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µ−− (−∞, −m − �] 
µ− (−m − �, −r] 
µ0 (−r, +r) 
µ+ [r, m + �) 
µ++ [m + �, ∞) 

ν−− (−∞, −m + �] 
ν− (−m + �, −r] 
ν0 (−r, +r) 
ν+ [r, m − �) 
ν++ [m − �, ∞) 

Table 1. The real line is partitioned into fve regions for µ and ν, 
as shown in the table. 

Checking the condition kF −1 − G−1k ≤ 2� is not always 
easy. We identify a simple but useful characterization in the 
following corollary: 

Corollary 4.1. Let µ and ν be as in Theorem 6. Suppose 
that for every x ∈ R, we have F (x) ≥ G(x) and F (x) ≤ 
G(x + 2�). Then D�(µ, ν) = 0. 

Theorem 7. Let µ and ν be the Gaussian measures 
N (0, σ1

2) and N (0, σ2
2), respectively. Assume σ2 > σ2

2 
1 

w.l.o.g. Let m > 0 be such that f(m + �) = g(m − �). Then 
the optimal adversarial classifer decides label 1 on the set 
A = (−∞, −m] ∪ [m, +∞). The corresponding optimal 
adversarial risk is R∗ = (1 − µ(A−�) + ν(A�))/2.� 

Proof of Theorem 7. First, we partition R into the fve re-
gions for µ and ν, as shown in Table 1, where r > 0 is 
such that such that µ([−m − �, −r)) = ν([−m + �, −r)). 
The transport plan from µ to ν will consist of fve maps 
transporting µ−− → ν−−, µ− → ν−, µ0 → ν0, µ+ → ν+, 
and µ++ → ν++. In each case, we use Corollary 4.1 to 
show that D�(µ∗, ν∗) = 0, where ∗ ranges over all possi-
ble subscripts. Note that these measures do not necessarily 
have identical masses, and we are transporting a quantity 
of mass equal to the minimum mass among the two mea-
sures. For this reason, even though the transport cost is 
D�(µ∗, ν∗) = 0, it does not mean D�(µ, ν) = 0. We upper 
bound D�(µ, ν) using this transport plan as follows. X 
D�(µ, ν) ≤ 1 − min(µ∗, ν∗) 

∗∈{−−,−,0,+,++} 

= 1 − µ([−m − �, m + �]) − 2ν([m − �, ∞)) 
= µ(A−�) − ν(A�). 

However, we also have D�(µ, ν) ≥ µ(A−�) − ν(A�). The 
lower and upper bounds match and this concludes the proof. 
R∗ is given by Theorem 2. The robust risk of the classifer � 
that decides 1 on the set A is easily seen to be R∗ 

� . 

We extend the above proof strategy to demonstrate the opti-
mal coupling for Gaussians with arbitrary means and arbi-
trary variances in the following theorem. 

Theorem 8. Let µ and ν be Gaussian measures N (µ1, σ1
2) 

and N (µ2, σ2
2) respectively. Assume σ2 > σ2 w.l.o.g. Let1 2 

m1,m2 > 0 be such that f(−m1 − �) = g(−m1 + �) and 

Figure 3. Optimal transport coupling for centered Gaussian dis-
tributions µ and ν. The transport plan from µ to ν consists of 
fve maps transporting µ−− → ν−− (blue regions to the left), 
µ− → ν− (orange regions to the left), µ0 → ν0 (green re-
gions in the middle), µ+ → ν+ (orange regions to the right), 
and µ++ → ν++ (blue regions to the right). 

f(m2 + �) = g(m2 − �). Then the optimal adversarial 
classifer decides label 1 on the set A = (−∞, −m1] ∪ 
[m2, ∞). The corresponding optimal adversarial risk is 
R∗ = (1 − µ(A−�) + ν(A�))/2.� 

4.3. Beyond Gaussian Examples 

The coupling strategy for Gaussian random variables can 
also be applied to other univariate examples that share some 
similarities with the Gaussian case. To illustrate, we de-
scribe the optimal classifer and optimal coupling for uni-
form distributions and triangular distributions. The precise 
proof details in these cases may be reconstructed from the 
proofs of Theorems 7 and 8. 

Theorem 9 (Uniform distributions). Let µ and ν be uniform 
measures on closed intervals I and J respectively. w.l.o.g., 
we assume |I| ≤ |J |. Then the optimal robust risk is ν(I2�) 
and the optimal classifer is given by A = I� . 

Proof sketch of Theorem 9. Like in the proof for Theo-
rem 7, we prove Theorem 9 by partitioning the real line 
into several regions for µ and ν, and transporting mass be-
tween these regions. Figure 4 shows the optimal coupling 
for the case when I2� ⊆ J . 

Theorem 10 (Triangular distributions). Denote a triangu-
lar distribution with support [m − δ, µ + δ] as Δ(m, δ). 
Let µ and ν correspond to the triangular distributions 
Δ(m1, δ1) and Δ(µ2, δ2) with pdfs f and g respectively. 
w.l.o.g., assume δ1 < δ2. Let l < m1 < r be such that 
f(l+�) = g(l−�) and f(r−�) = g(r+�). (In case of multi-
ple such points, pick l to be the largest among all such points, 
and r to smallest.) Then the optimal adversarial classifer 
decides label 1 on the set A = [l, r]. The corresponding 
optimal adversarial risk is R∗ = (1 − µ(A−�) + ν(A�))/2.� 

Proof sketch of Theorem 10. We omit all proof details and 
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Figure 4. Optimal coupling for two uniform distributions. The 
region shaded in green is kept in place (at no cost). The two regions 
shaded in orange are transported monotonically from either side 
at a cost not exceeding 2� per unit mass. The remaining region in 
blue is moved at the cost of 1 per unit mass. 

point to Figure 5 which shows the coupling in a special 
case. 

Figure 5. Optimal transport coupling for triangular distributions 
µ and ν. The transport plan from µ to ν consists of fve maps 
transporting µ−− → ν−− (blue regions to the left), µ− → ν− 

(orange regions to the left), µ0 → ν0 (green regions in the middle), 
µ+ → ν+ (orange regions to the right), and µ++ → ν++ (blue 
regions to the right). 

5. Experiments 
In this section, we present lower bounds on the optimal 
adversarial risk for empirical distributions derived from 
several real world datasets. 

For the case of empirical distributions, the computation of 
the optimal transport cost in (5) can be formulated as a lin-
ear program and solved effciently. When the number of 
data points in the two empirical distributions is the same, 
the problem reduces to an optimal matching problem be-
tween the two datasets (see Proposition 2.11 in (Peyré & 
Cuturi, 2019)). Using this methodology, we evaluate the 
optimal risk for ` 2 and ` ∞ adversaries for classes 3 and 5 
in CIFAR10, MNIST, Fashion-MNIST and SVHN datasets. 
The results for other pairs of classes are very similar, and are 
therefore omitted for brevity. For MNIST, Fashion-MNIST 

(a) CIFAR10 ` 2 Bounds (b) CIFAR10 ` ∞ Bounds 

(c) MNIST ` 2 Bounds (d) MNIST ` ∞ Bounds 

(e) Fashion-MNIST ` 2 Bounds (f) Fashion-MNIST ` ∞ Bounds 

(g) SVHN ` 2 Bounds (h) SVHN ` ∞ Bounds 

Figure 6. Lower bounds on adversarial risk computed using Theo-
rem 2. The curves with σ = 0 gives the optimal risk for empirical 
distributions, while the other curves give lower bounds on optimal 
risk for Gaussian mixtures based on the empirical distributions 
using the coupling in Theorem 4. 

and SVHN datasets, we evaluate the optimal adversarial risk 
given in Theorem 2 by randomly sampling 5000 data points 
from each class. The results are showing in Figure 6 with 
the legend σ = 0. 

Since a major fraction of the data points in the empirical 
distributions are well-separated in ` 2 and ` ∞ metrics, the 
optimal risk bound remains 0 even for high �. For instance, 
for CIFAR10 dataset, the optimal risk remains 0 for � as 
high as 40/255 for ` ∞. Similar results were also obtained in 
Bhagoji et al. (Bhagoji et al., 2019). However, the optimal 
risk bounds for the true distributions may not be 0 for high 
�, as it is unreasonable to expect a perfectly robust optimal 
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classifer under very strong adversarial perturbations. In 
addition, a common technique while training for a classifer 
is to augment the dataset with Gaussian perturbed samples 
for robustness and generalization (Holmstrom & Koistinen, 
1992; Goodfellow et al., 2016). Motivated by this, we also 
compute optimal risk lower bounds on Gaussian mixture 
distribution with the data points as the centers with scaled 
identity covariances. The variance σ2 = 0 corresponds 
to the empirical distribution of the data points from the 
two classes. As σ increases, the overlap in the probability 
mass between the two classes increases. This allows for the 
cost of optimal coupling that achieves D� to decrease, thus 
leading to a higher, possibly non-trivial bound for R� 

∗ . We 
emphasize that our bounds for Gaussian mixture models on 
datasets are computed using the exact mixture distribution, 
rather than drawing samples and evaluating our bounds on 
the empirical distribution. This exact computation is done 
using our theoretical results on multi-dimensional Gaussians 
in Section 4. 

To compute the optimal risk lower bound for Gaussian mix-
ture, we use a coupling between the mixture distributions in 
two steps. In the frst step, we solve for the optimal coupling 
that gives the exact optimal risk for the empirical distribu-
tions. This gives a pairwise matching of data points between 
the two empirical distributions. In the second step, we use 
the optimal coupling for multidimensional Gaussians from 
Theorem 4 to transport the mass in the Gaussians within 
each pair. Overall, this transport map gives an upper bound 
on the D� optimal transport cost between the two mixture 
distributions. Using this, we obtain the lower bounds on 
adversarial risk shown in Figure 6. 

Figure 6 shows the lower bounds for various values of the 
variance σ used for the Gaussian mixture, where σ∗ is half 
of the mean distance between data points from the two 
distributions. As explained previously, we see in Figure 6 
that the lower bound curves for higher values of σ are above 
those for lower values. For instance, the optimal risk for 
CIFAR10 dataset under ` 2 perturbation with � = 3 is 0.25 
for σ = σ∗ . That is, the adversarial error rate for CIFAR10 
with � = 3 for any algorithm cannot be less than 0.25 
even when trained with Gaussian data augmentation (with 
σ = σ∗). In comparison, the lower bound obtained in 
Bhagoji et al. (Bhagoji et al., 2019) (which is equivalent 
to the case of σ = 0) is 0 for � = 3. Computation of non-
trivial lower bounds for higher values of � on adversarial 
error rate as in Figure 6 is made possible by our analysis 
on the optimal coupling to achieve D� between multivariate 
Gaussians in Section 4.1. 

The bounds in Figure 6 indicate the best error rates 
achievable on the training datasets for CIFAR10, 
MNIST, Fashion-MNIST and SVHN. The curves 
for σ > 0 show the limits on error rate even when 

trained with Gaussian data augmentation. Moreover, 
the bounds hold irrespective of the classifcation 
algorithm. The code accompanying Figure 6 is made avail-
able at http://github.com/munisreenivas/ 
adv-risk-optimal-transport. 

6. Discussion and Open Problems 
In this paper, we have analyzed two notions of adversarial 
risk - one resulting from a distribution perturbing adver-
sary (Rb∗) and the other from a data perturbing adversary � 
(R∗). We have introduced the D� optimal transport distance � 
between probability distributions. Through an application 
of duality in the optimal transport cost formulation (via 
Strassen’s theorem), we have shown that D� completely 
characterizes the optimal adversarial risk R∗ for the case of� 
binary classifcation under 0 − 1 loss function. Our analysis 
raises several interesting questions: How big is the gap be-
tween Rb∗ and R∗ for different kinds of loss functions? Is it � � 

possible to directly lower bound Rb∗ without appealing to its � 
dependence on R∗? Does there exist an optimal transport � 

distance akin to D� that characterizes Rb∗?� 

In analysing the adversarial risk for 0 − 1 loss, we give a 
novel coupling strategy based on monotone mappings that 
solves the D� optimal transport problem for symmetric uni-
modal distributions like Gaussian, triangular, and uniform 
distributions. Employing the duality in optimal transport, 
we also obtain the optimal robust classifer under these set-
tings. Our coupling analysis calls for an interesting open 
question: Is there a general coupling strategy, akin to the 
maximal coupling strategy to achieve the total variation 
transport cost, that works for a broader class of distribu-
tions? If yes, this gives us a handle on analyzing the nature 
of optimal decision boundaries in the adversarial setting. 

Our analysis for 0 − 1 loss reveals how the optimal risk 
smoothly changes from Bayes risk as the data perturbing 
budget � is increased. Somewhat more surprisingly, our 
analysis shows that in some cases, the optimal classifer can 
change abruptly in the presence of an adversary even for 
small changes in �. It remains to be seen if these observa-
tions on optimal risk and optimal classifer also hold for the 
distribution perturbing adversary. 

Using our characterization of R∗ in terms of D�, we ob-� 
tain the optimal risk attainable for classifcation of real-
world datasets like CIFAR10, MNIST, Fashion-MNIST and 
SVHN. Moreover, levaraging our optimal coupling strategy 
for Gaussian distributions, we also obtain lower bounds on 
optimal risk for Gaussian mixtures based on these datasets. 
These lower bounds have implications for the limits of data 
augmentation strategies using Gaussian perturbations. We 
note that our bounds on adversarial risk are classifer agnos-
tic, and only depend on the data disributions. In addition, 

http://github.com/munisreenivas/adv-risk-optimal-transport
http://github.com/munisreenivas/adv-risk-optimal-transport
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our bounds are effciently computable for empirical/mixture 
distributions via reformulation as a linear program. 

Finally, we remark that analzing the D� optimal transport 
cost may be interesting in itself. The optimal transport cost 
c�(x, x0) = 1{d(x, x0) > 2�} is discontinuous and does not 
satisfy triangle inequality. This makes it hard to analyse 
D� using standard techniques in optimal transport literature. 
For instance, it would be interesting to see how fast D� 

between empirical distributions converges to D� between 
the true data-generating distributions. This may be used to 
obtain fnite-sample lower bounds for adversarial error. Re-
cent work (Jog, 2020) in this line of research derives sample 
complexity bounds for estimating D� from empirical distri-
butions using a reverse Gaussian isoperimetric inequality 
for sets of the form A� . Another recent work (Yu, 2019) 
implies a sharp threshold for the asymptotics of D� between 
product distributions in terms of the 1-Wasserstein metric. 
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