Research Data Management Track Paper

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

SharPer: Sharding Permissioned Blockchains Over
Network Clusters

Mohammad Javad Amiri
University of Pennsylvania
mjamiri@seas.upenn.edu

Abstract

Scalability is one of the main roadblocks to business adoption
of blockchain systems. Despite recent intensive research on us-
ing sharding techniques to enhance the scalability of blockchain
systems, existing solutions do not efficiently address cross-shard
transactions. In this paper, we introduce SharPer, a scalable permis-
sioned blockchain system. In SharPer, nodes are clustered and each
data shard is replicated on the nodes of a cluster. SharPer supports
networks consisting of either crash-only or Byzantine nodes. In
SharPer, the blockchain ledger is formed as a directed acyclic graph
and each cluster maintains only a view of the ledger. SharPer in-
corporates decentralized flattened protocols to establish cross-shard
consensus. The decentralized nature of the cross-shard consensus
in SharPer enables parallel processing of transactions with non-
overlapping clusters. Furthermore, SharPer provides deterministic
safety guarantees. The experimental results reveal the efficiency
of SharPer in terms of performance and scalability especially in
workloads with a low percentage of cross-shard transactions.

CCS Concepts

» Networks — Network protocol design; - Information sys-
tems — Distributed database transactions; - Computer sys-
tems organization — Dependable and fault-tolerant systems
and networks.

Keywords
Blockchain, Scalability, Sharding, Consensus, Permissioned

ACM Reference Format:

Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2021.
SharPer: Sharding Permissioned Blockchains Over Network Clusters. In
Proceedings of the 2021 International Conference on Management of Data
(SIGMOD °21), June 18-27, 2021, Virtual Event , China. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3448016.3452807

1 Introduction

A blockchain is a distributed data structure for recording transac-
tions maintained by nodes without a central authority [10]. Block-
chain systems are classified into two categories: permissionless and
permissioned systems. While in a permissionless blockchain system,
e.g., Bitcoin [34], the network is public, and anyone can participate
without a specific identity, a permissioned blockchain system, e.g.,
Hyperledger Fabric [6], consists of a set of known, identified but

(0 @

This work is licensed under a Creative Commons Attribution International 4.0 License.

SIGMOD 21, June 20-25, 2021, Virtual Event, China.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8343-1/21/06.
https://doi.org/10.1145/3448016.3452807

Divyakant Agrawal
University of California Santa Barbara
agrawal@cs.ucsb.edu

76

Amr El Abbadi
University of California Santa Barbara
amr@cs.ucsb.edu

possibly untrusted nodes which might be placed in data centers,
public clouds, or local infrastructures.

Scalability is the ability of a blockchain system to process an
increasing number of transactions by adding nodes to the system.
Partitioning the data into multiple shards that are maintained by
different subsets (i.e., clusters) of non-malicious nodes is a proven
approach to improve the scalability of distributed databases, e.g.,
Spanner [14]. In such an approach, the performance of the system
scales linearly with the number of clusters. Recently, sharding has
been utilized in both permissionless and permissioned blockchain
systems in the presence of Byzantine nodes. Sharded permissionless
blockchains, e.g., Elastico [32], OmniLedger [27], and Rapidchain
[45], ensure probabilistic safety by randomly assigning nodes to
committees resulting in a uniform distribution of faulty nodes to
the different committees. OmniLedger and Rapidchain also support
cross-shard transactions using Byzantine consensus protocols.

Sharding techniques have also been used by different permis-
sioned blockchain systems, e.g., Fabric [6], Cosmos [21], RSCoin
[22], and AHL [16]. AHL[16], similar to OmniLedger, provides a
probabilistic safety. AHL, however, employs a trusted hardware
(the technique presented in [13][43][42]) to reduce the size of each
committee from ~600 in OmniLedger to 80 nodes. In AHL [16], con-
sensus on the order of cross-shard transactions not only requires an
extra set of nodes (called a reference committee) but also results in a
large number of inter- and intra-committee communications. Fur-
thermore, since a single reference committee processes cross-shard
transactions, AHL is not able to process cross-shard transactions
in parallel.

In general, large-scale sharded systems, such as Spanner [14],
typically partition data into shards and replicate each shard on
the nodes of a pre-determined fault-tolerant cluster, e.g., based on
physical constraints such as a data center with a majority of non-
faulty nodes, to guarantee deterministic safety. Maintaining data on
pre-determined fault-tolerant clusters for the purpose of scalability
has also been studied in permissioned blockchains ResilientDB [24]
and Blockplane [35]. However, most sharded blockchain systems,
e.g., Elastico, OmniLedger, and AHL, operate on a flat homogen-
eous network of peers and hence configure fault-tolerant units by
randomly assigning nodes to clusters and provide a probabilistic
safety guarantee. To guarantee safety with a high probability, such
systems need to uniformly distribute faulty nodes across all clusters,
resulting in large-size clusters, e.g., ~600 nodes in OmniLedger.

In our previous work [3], we presented a model including a block-
chain ledger for sharded permissioned blockchains. In this paper,
we expand this model and develop a sharded permissioned block-
chain system, SharPer, to improve scalability with deterministic
safety guarantees. In the presence of pre-determined fault-tolerant
clusters, SharPer, similar to large-scale sharded systems, provides

https://doi.org/10.1145/3448016.3452807
https://doi.org/10.1145/3448016.3452807
https://creativecommons.org/licenses/by/4.0/

Research Data Management Track Paper

deterministic safety guarantees when more than a half (if nodes are
crash-only) or two-thirds (if nodes are Byzantine) of the nodes of
each cluster are non-faulty. Without such pre-determined clusters,
however, and in order to guarantee deterministic safety, SharPer
assumes that the number of available nodes is much larger than the
number of faulty nodes and assigns nodes to clusters so that ensure
more than a half (if nodes are crash-only) or two-thirds (if nodes are
Byzantine) of the nodes of each cluster are non-faulty. This assump-
tion is reasonable in sharded systems that strive for high scalability,
as such systems typically use more reliable infrastructure.
SharPer assigns data shards to the clusters where each cluster
processes the transactions that access its shard. If a transaction
accesses only a single shard, i.e., an intra-shard transaction, the cor-
responding cluster orders and executes the transaction locally. As a
result, intra-shard transactions of different clusters are independent
of each other and are processed in parallel. However, for a cross-
shard transaction, agreement among all and only involved clusters
is required. Nevertheless, if two cross-shard transactions have no
overlapping clusters, they still are processed in parallel. Since the
ordering of different transactions might be performed in parallel
and due to the existence of cross-shard transactions, the blockchain
ledger of SharPer is represented as a directed acyclic graph including
all intra- and cross-shard transactions. Nonetheless, for the sake
of performance, the entire blockchain ledger is not maintained by
any nodes, and nodes of each cluster maintain a view of the ledger
including the intra-shard transactions of the cluster and only the
cross-shard transactions involving this particular cluster. Unlike
traditional single-primary consensus protocols, e.g., PBFT [11], in
SharPer, multiple clusters each with its own primary compete with
each other to order cross-shard transactions. We believe this setting
has been encountered neither in traditional consensus protocols nor
in coordinator-based sharded systems, leading us to resolve chal-
lenges such as conflicting transactions, deadlock situations as well
as the failure of primary nodes across different replicated domains.
The main contributions of this paper are:

o SharPer, a permissioned blockchain system that supports the
concurrent processing of transactions by clustering nodes
into clusters and sharding both data and the ledger. SharPer
supports intra-shard as well as cross-shard transactions.

o Two decentralized flattened consensus protocols for ordering
cross-shard transactions among all and only the involved
clusters in networks consisting of either crash-only or Byz-
antine nodes. The protocols order cross-shard transactions
with no overlapping clusters in parallel.

The rest of this paper is organized as follows. The SharPer model
is introduced in Section 2. Sections 3 and 4 present consensus in
SharPer. Section 5 evaluates the performance of SharPer. Section 6
discusses related work, and Section 7 concludes the paper.

2 The SHARPER Model

In SharPer, the network consists of a set of clusters. The data
is partitioned into data shards and a data shard that represents
the blockchain state and a view of the blockchain ledger are rep-
licated on nodes of each cluster to provide fault tolerance. This
section presents the SharPer infrastructure, cluster formation, and
the blockchain ledger.

77

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

2.1 SharPer Infrastructure

SharPer consists of a set of nodes in an asynchronous distributed
system where nodes might be placed in data centers, public clouds,
or local infrastructures. Nodes in SharPer either follow the crash or
Byzantine failure model. Crash fault-tolerant protocols, e.g., Paxos
[31], guarantee deterministic safety in an asynchronous network
using 2f+1 crash-only nodes to overcome the simultaneous crash
failure of any f nodes while in Byzantine fault-tolerant protocols,
e.g., PBFT [11], 3f+1 nodes are needed to provide deterministic
safety in the presence of f malicious nodes [8].

SharPer uses point-to-point bi-directional communication chan-
nels to connect nodes. Network channels are pairwise authenticated,
which guarantees that a malicious node cannot forge a message
from a correct node. Furthermore, messages might contain public-
key signatures and message digests [11]. We denote a message m
signed by replica r as (m)., and the digest of a message m by D(m).
For signature verification, we assume that all nodes have access
to the public keys of all other nodes. We assume that a strong
adversary can coordinate malicious nodes and delay communica-
tion to compromise the replicated service. However, the adversary
cannot subvert standard cryptographic assumptions.

2.2 Cluster and Shard Formation

In sharded database systems, data shards are assigned to pre-
determined fault-tolerant clusters, e.g., cloud environments, to guar-
antee deterministic safety. In particular, if the system has |P| =
{p1,p2, ...} fault-tolerant clusters and each cluster p; includes 3 f; +1
Byzantine nodes, the network size would be 3f + |P| where f =

Zlill fi is the total number of faulty nodes in the system.

Some Sharded blockchain systems, e.g., OmniLedger [27] and
AHL [16], on the other hand, configure fault-tolerant clusters (called
committees) themselves and provide probabilistic safety guarantees.
Given the lack of well-defined fault-tolerant clusters, such systems,
assign nodes randomly to the clusters in order to uniformly dis-
tribute faulty nodes. In particular, clusters are formed such that for
every cluster p;, with a high probability, |p;| > 3f; + 1 where f;
is the number of faulty nodes within cluster p;. To achieve a high
probability, e.g., 1-2720, however, the clusters need to be large-
sized, e.g., 80 nodes in AHL. Moreover, to prevent security attacks,
clusters are reconfigured periodically.

SharPer in the presence of pre-determined fault-tolerant clusters,
i.e., similar to large-scale sharded databases provides deterministic
safety guarantees with 2f + |P| crash-only or 3f + |P| Byzantine
nodes where f is the total number of faulty nodes in the system
and |P| is the number of clusters. In SharPer, the goal is to provide
deterministic safety guarantees, hence, without such pre-determined
clusters, the number of nodes, N, is assumed to be much larger
than f, thus, nodes are partitioned into clusters each large enough
to tolerate f failures. The trusted hardware technique can also be
utilized in SharPer resulting in enhanced performance.

Nodes are assigned to clusters based on their geographical dis-
tribution, i.e., nodes that are in close proximity are assigned to the
same cluster to reduce the latency of intra-cluster communication.
We denote the set of clusters by P = {p1,p2,...,p|p|}. Since there
are |P| clusters, the data is also sharded into |P| shards, i.e., di, ...,
d|p|, shard d; is replicated on the nodes of cluster p;.

Research Data Management Track Paper

Figure 1: (a): A ledger consisting of four shards, (b), (c), (d),
and (e): The views of the ledger from different shards

To ensure high performance, an appropriate sharding needs to
be workload-aware, i.e., have prior knowledge of the data and how it
is accessed by transactions. Workload-aware sharding increases the
probability of transactions accessing records in a single shard [15].
If sharding is not workload-aware, transactions will be processed by
multiple, possibly far apart, clusters. Establishing consensus among
all those involved clusters, although correct, will severely impact the
overall performance. Different approaches have been proposed to
minimize the number of cross-shard transactions [37], nevertheless,
there might still be a portion of transactions that accesses records
across multiple shards. As a result, SharPer supports both intra-
shard and cross-shard transactions.

2.3 Blockchain Ledger

Blockchain systems record transactions in the form of a hash
chain in an append-only data structure, called the blockchain ledger.
In SharPer, each data shard is replicated on all nodes of a cluster.
As a result, to ensure data consistency, a total order among transac-
tions (both intra- and cross-shard) that access the same data shard
is needed. Note that the total order imposed by blockchain is less
flexible than serializability, the common correctness criterion in
databases, that allows transactions to be executed in a different
order. The total order of transactions in the blockchain ledger is
captured by chaining transaction blocks, i.e., each block includes a
sequence number or the cryptographic hash of the previous transac-
tion block. For simplicity and without loss of generality, we assume
each block consists of a single transaction!. Since more than one
cluster is involved in each cross-shard transaction, similar to Caper
[2], the ledger is formed as a directed acyclic graph. The ledger also
includes a unique initialization block, called the genesis block.

Fig. 1(a) shows a blockchain ledger created in the SharPer model
consisting of four clusters p; to ps (data shards d; to dy4). In this
figure, A is the genesis block. Intra- and cross-shard transactions are
also specified. For example, t19, t11, t13, and t14 are the intra-shard
transactions of cluster p;. Each cross-shard transaction is labeled
with t, .. o, Where k is the number of involved clusters and o; in-
dicates the order of the transaction among the transactions of the ith

! Each block could include multiple consecutive intra-shard or consecutive cross-shard
transactions (but no combination of both). It is indeed a performance trade-off, while in
highly loaded geo-distributed settings, batching transactions into blocks is beneficial,
in lightly loaded workloads where nodes are placed in close proximity, as demonstrated
in StreamChain [26], batching transactions into blocks reduces performance.

78

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

involved cluster. For example, t12, 2 is a cross-shard transaction that
accesses data shards d; and dy. A cross-shard transaction requires
a sequence number from every involved cluster to ensure that the
transactions are ordered correctly with respect to the intra-shard
transactions of all involved clusters. Transactions that access a data
shard form a total order e.g., 110, 111, t12,22, 113, t14, and t15,25,35,45
are chained. Intra-shard transactions of different clusters, e.g., t11,
t21, as well as non-overlapping cross-shard transactions, e.g., t12,22
and 132 42, can be appended to the ledger in parallel.

In SharPer, the entire blockchain ledger is not maintained by any
cluster and each cluster maintains only its view of the ledger. The
ledger is indeed the union of all these physical views. Fig. 1(b)-(e)
show the views of the ledger for clusters p1, p2, p3, and p4 respect-
ively. As can be seen, each cluster p; maintains only a (linear) view
of the ledger consisting of the intra-shard transactions of p; and
the cross-shard transactions that access d;.

3 Consensus with Crash-Only Nodes

In a permissioned blockchain system, nodes establish consensus
on a unique order in which entries are appended to the blockchain
ledger. To establish consensus, asynchronous fault-tolerant proto-
cols have been used. Fault-tolerant protocols use the State Machine
Replication (SMR) algorithm [29] where nodes agree on an order-
ing of incoming requests. The algorithm has to satisfy four main
properties [9]: (1) agreement: every correct node must agree on the
same value, (2) Validity (integrity): if a correct node commits a value,
then the value must have been proposed by some correct node, (3)
Consistency (total order): all correct nodes commit the same value in
the same order, and (4) termination: eventually every node commits
some value. The first three properties are known as safety and the
termination property is known as liveness. Consistency is a trivial
property in consensus protocols with a single ordering routine,
however, since multiple clusters with different ordering routines
are involved in SharPer, consistency between different instances
of the consensus algorithm needs to be guaranteed. As shown by
Fischer et al. [20], in an asynchronous system, where nodes can fail,
consensus has no solution that is both safe and live. Based on that
impossibility (FLP) result, in SharPer, safety is guaranteed in an
asynchronous network, however, a synchrony assumption is needed
to ensure liveness. Due to the trust assumptions of blockchains,
most existing blockchain systems employ Byzantine fault-tolerant
protocols. Studying crash fault-tolerant protocols, however, is be-
neficial for two main reasons. First, it can be used in permissioned
blockchain systems with more federated settings, e.g., Hyperleger
Fabric [6] uses crash fault-tolerant protocol Raft [36]. Second, from
a development point of view, it is pedagogically easier to introduce
the complex concepts used in Byzantine consensus protocols. In this
section, we first show how consensus is established in SharPer for
intra-shard and cross-shard transactions in the presence of crash-
only nodes. Then, the primary failure handling routine of SharPer
is presented and finally, the correctness of SharPer is proven.

3.1 Intra-shard consensus

Crash fault-tolerant protocols, e.g., Paxos [31], guarantee safety
in an asynchronous network using 2 f+1 nodes to overcome the sim-
ultaneous crash failure of any f nodes. SharPer uses multi-Paxos,
a variation of Paxos, where the primary (a pre-elected node that
initiates consensus) is relatively stable, to establish consensus on

Research Data Management Track Paper

Algorithm 1 Cross-shard Consensus with Crash-Only Nodes

1: init():

2: r:=node_id

3: p; := the cluster that initiates the consensus (initiator cluster)

4: 7(p) := the primary node of cluster p

5. P :=set of involved clusters

6: upon receiving valid request m and (r == 7(p;))

7 multicast (PROPOSE, h;, d, m) to P

8: upon receiving valid (PROPOSE, h;, d, m) from primary 7 (p;)

9: if r is not waiting for commit message of request m’ where m and m’ intersect
in some other cluster pg

10: send (ACCEPT, h;, hj, d, r) to primary 7 (p;)

11: upon receiving f+1 valid matching (AccepT, h;, hj, d, r) from every cluster p; in
P and node is 7(p;)

12: multicast (COMMIT, [y, hj, ..., hy], d)g”(m) to P

13: append the transaction and commit message to the ledger

14: upon receiving (COMMIT, [h;, hj, ..., hi], d>“7f(pi) from 7 (p;)

15: append the transaction and commit message to the ledger

the order of intra-shard transactions. In SharPer, upon receiving a
signed request (i.e., transaction) from a client, the primary assigns
a sequence number to the request (to provide a total order among
requests) and multicasts a propose message (called accept in Paxos)
including the transaction to every node within the cluster. Instead of
a sequence number, the primary can also include the cryptographic
hash of the previous transaction block, H(b), in the message where
H(.) denotes the hash function and b is the previous block that is
ordered by the cluster. Upon receiving a valid propose message from
the primary, each node sends an accept (i.e., accepted) message to
the primary. The primary waits for f accept messages from differ-
ent nodes (plus itself becomes f + 1), multicasts a signed commit
message to every node within the cluster, appends the transaction
block including the transaction and the signed commit message
(as evidence of the transaction’s validity) to the blockchain ledger,
executes the transaction, updates the blockchain state (data shard),
and sends a reply to the client. We assume that all transactions are
executed deterministically in the system. Upon receiving a commit
message from the primary, each node appends the transaction block
(i.e., the transaction and the received commit message) to its block-
chain ledger, executes the transaction and updates the state. The
client also waits for a valid reply from the primary to accept the res-
ult. Since commit messages include the digest (cryptographic hash)
of the corresponding transactions, appending valid signed commit
messages to the blockchain ledger in addition to the transactions,
provides the same level of immutability guarantee as including the
cryptographic hash of the previous transaction in the transaction
block, i.e., any attempt to alter the block data can easily be detected.

3.2 Cross-Shard Consensus

Cross-shard transactions access records from data shards which
are maintained by different clusters. This section presents how
SharPer processes cross-shard transactions on crash-only nodes.

Algorithm 1 presents the normal case operation for SharPer to
process a cross-shard transaction in the presence of crash-only
nodes. Although not explicitly mentioned, every sent and received
message is logged by the nodes. As indicated in lines 1-5 of the
algorithm, p; is the initiator cluster, i.e., the cluster that initiates
the transaction, z(p) is the primary node of cluster p, and P is the
set of involved clusters in the transaction.

A cross-shard transaction is sent by a client to the (pre-elected)
primary node of a cluster (i.e., one of the clusters that store data
records accessed by the transaction). Note that once a primary

79

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

node of a cluster is elected, it initiates all intra-shard transactions
of the cluster as well as cross-shard transactions that are sent to
the cluster by clients. As shown in lines 6-7, upon receiving a
valid signed cross-shard transaction m = (RequesT, op, tc, ¢)5, from
an authorized client ¢ (with timestamp t.) to execute operation
op, the primary node 7(p;) of cluster p; (called initiator primary)
assigns sequence number h; to the request and multicasts a propose
message (PROPOSE, hj, d, m) to all nodes of all involved clusters, i.e.,
clusters that store data records accessed by the transaction, where
m is the client’s request message and d = D(m) is digest of m.
Timestamp ¢, is used to ensure exactly-once semantics for the
execution of requests and prevent replay attacks. The timestamps
for each client’s requests are totally ordered. The sequence number
h; represents the correct order of the transaction in cluster p;. Since
all nodes are crash-only, there is no need to sign messages.

Upon receiving a propose message, as indicated in lines 8-10,
each node r of an involved cluster p; validates the message and
its sequence number. If node r of cluster p; is currently waiting
for a commit message of some cross-shard request m” where the
involved clusters of two requests m and m” intersect in p; as well as
some other cluster pg, the node does not process the new request
m (only buffers m) before the earlier request m” gets committed.
This ensures that cross-shard requests are committed in the same
order on overlapping clusters (consistency), e.g., m and m’ are
committed in the same order on both p; and py. Otherwise, the
node sends an accept message (AcCeT, h;, hj,d,r) to the initiator
primary node 7(p;) where h; is the sequence number assigned by
r, which represents the correct order of request m in cluster p;.

Once initiator primary 7z(p;) receives valid matching accept mes-
sages from f+1 nodes (out of 2f+1 nodes) of every involved cluster
pj with matching h; and also h; and d that match its sent propose
message, as presented in lines 11-13, it collects all valid sequence
numbers (e.g., hj, hj, ..., hg) from the accept messages of all in-
volved clusters (e.g., pi, pj, ..., pk) and multicasts a commit message
(commit, [hi, hj, ..., by], d)gn(pi) to the nodes of all involved clusters.
The order of sequence numbers h;, hj, ..., by in the message is in as-
cending order determined by their cluster ids. In fact, the sequence
number consists of multiple sub-sequence numbers where each
sub-sequence number presents the local order of the transaction in
one of the involved clusters. The initiator primary signs its commit
messages because they might be used later by nodes to prove the
correctness of the transaction block.

Finally, as shown in lines 14-15, once a node of some cluster p;
receives a valid signed commit message from the initiator primary
7(pi), the node considers the transaction as committed (even if the
node has not sent an accept message for that request). If all transac-
tions with lower sequence numbers than h; have been committed,
the node appends the transaction and the corresponding commit
message to the ledger, executes it, and updates the state. This en-
sures that all replicas execute requests in the same order as required
to ensure safety. The primary also sends a reply (RepLy, tc, ¢, 0)o, .
to client ¢ where t. is the timestamp of the corresponding request
and o is the execution result. If the client does not receive reply soon
enough, it multicasts the request to all nodes within the cluster.
If the request has already been processed, the nodes simply send
the execution result back to the client. Otherwise, if the node is

Research Data Management Track Paper

Algorithm 2 Dealing with Conflicting ACCEPT Messages

pre—

****** The configuration is the same as Algorithm 1
1: if accept messages of cluster p; not matching and r == 7(p;)
2. multicast (SUPER-PROPOSE, h;.d, m) to 7r(p;)
3: upon receiving (SUPER-PROPOSE, h;,d, m) from 7 (p;) and r == 7 (p;)
4 multicast (SUPER-ACCEPT, h;, hj, d, r) to 7(p;) and all nodes of p;
5: upon receiving (SUPER-ACCEPT, h;, h;,d, (p;)) from m(p;) and rep;
6 send (SUPER-ACCEPT, h;, hj, d, r) to 7 (p;)

not the primary, it relays the request to the primary. If the primary
does not multicast the request to the nodes of the cluster, it will
eventually be suspected to be faulty by the nodes.

3.3 Dealing with Conflicting Messages

In the presented consensus protocol and after multicasting a pro-
pose message, the primary might not receive a quorum of matching
accept messages from f+1 nodes of every involved cluster after a
predefined time 7, because the primary nodes of different clusters
might multicast their propose messages in parallel, hence, differ-
ent nodes in an overlapping cluster might receive these conflicting
messages in different orders and assign them inconsistent sequence
numbers in their corresponding accept messages. A special case of
conflicting messages is when there is more than one cluster in the
intersection of conflicting propose messages, hence, to ensure con-
sistency, as explained earlier, nodes of overlapping clusters do not
send accept messages for later transactions before committing the
earlier ones, thus, the system might face a deadlock situation. We
propose two techniques, the first for the general case of conflicting
messages and the second to deal specifically with deadlocks.
Conflicting Messages. Algorithm 2 demonstrates an optimiza-
tion to deal with conflicting messages. In case of non-matching
accept messages, as indicated in lines 1-2 of Algorithm 2, the ini-
tiator primary z(p;) needs to re-initiate the request in only the
conflicting clusters, i.e., clusters that have not sent f + 1 matching
accept messages to the initiator primary. However, to preventing
any further conflicts, the initiator primary 7 (p;) multicasts a super-
propose message with the same structure as propose messages to
only the primary nodes of the conflicting clusters. Once the initiator
primary 7(p;) sends a super-propose message for transaction m to
the primary node of a cluster, 7(p;) does not accept any further
accept messages for transaction m from that cluster. As shown in
lines 3-4, the primary node of each conflicting cluster then assigns
a sequence number and multicasts a super-accept message (with
the same structure as accept messages) to the nodes of its cluster
and also the initiator primary 7 (p;). Upon receiving a super-accept
message from the primary of its cluster, as presented in lines 5-
6, each node logs the message and sends a super-accept message
with the same sequence number to 7(p;). Nodes also remove the
previous sent accept messages for m from their logs. Once 7(p;)
receives matching super-accept messages from f+1 nodes of every
conflicting cluster, it returns to its normal operation, as presented
in lines 11-13 of Algorithm 1, and multicasts commit messages.

Well-designed sharded systems attempt to reduce cross-shard
transactions, distribute the load on geographically distributed work-
loads, and balance heavy and light workloads. Nevertheless, SharPer
might still incur heavy workloads with a high percentage of cross-
shard transactions where the probability of receiving conflicting
accept messages is high. In such circumstances, instead of multic-
asting propose messages, waiting for probably conflicting accept

80

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

messages and then re-initiating the transaction by multicasting
super-propose messages, the initiator primary can initially multic-
ast super-propose messages to the primary nodes of the involved
clusters. In this way, since the primary of each cluster assigns all
sequence numbers for both intra-shard and cross-shard transac-
tions, no conflicts will occur. This solution, however, comes with
an extra intra-cluster message passing. Depending on the type of
workload and percentage of cross-shard transactions, SharPer can
dynamically switch between these two techniques to deal efficiently
with conflicting messages.

Deadlock Situations. If different overlapping clusters receive pro-
pose messages for concurrent cross-shard transactions in conflicting
orders, the system might face a deadlock situation. In particular,
if two clusters p; and py receive propose messages for cross-shard
transactions m and m’ in conflicting orders, e.g., p; receives m be-
fore m’ and p; receives m’ before m, to ensure the consistency
property (as explained in Algorithm 1, line 9), clusters do not pro-
cess the second transaction before committing the first one, i.e., p
waits for the commit message of m and p, waits for the commit mes-
sage of m’. However, since committing a cross-shard transaction
requires f + 1 accept messages from every involved cluster, neither
of m and m’ can be committed (i.e., deadlock situation). In such
a situation, similar to conflicting messages, the initiator primary
nodes of deadlocked transactions multicast super-propose messages
to the primary node of clusters that are involved in the deadlocked
transactions. All involved clusters must then reach a unique order
between deadlocked transactions and based on that undo their sent
accept messages if needed. Note that at that point, primary nodes
do not add any new transaction m’’ into the deadlock situation
before all existing transactions get committed to preventing any
possible starvation. We explain the technique in two cases. First, if
both m and m’ have been initiated by the same cluster, the primary
nodes of other clusters, which are involved in both m and m’, can
detect the correct order by comparing the sequence numbers of
m and m’ and in case a node has already sent an accept message
for the request with the higher sequence number, it needs to undo
its sent accept message by sending a super-accept message with a
different sequence number. The primary node multicasts the super-
accept message to the nodes of its cluster, hence, they also send the
super-accept message to the initiator primary (i.e., to prevent any
further conflict the primary assign sequence numbers to deadlocked
transactions). Nodes as well as the initiator primary also remove
the previous sent accept messages from their logs. Second, when m
and m’ have been initiated by different clusters, e.g., m is initiated
by ps where p1, p2, and ps are involved in m and m’ is initiated by
pa where p1, p2, and py are involved in m’. In such a situation and
to determine a unique order, transactions m and m’ are ordered
based on the id of their initiator clusters. As a result, if a node
has already sent an accept message for the request with the higher
initiator cluster id, it sends an super-accept message to the initiator
primary with a different sequence number. Both the nodes and the
initiator primary also remove the previous sent accept messages
from their logs. Note that this deadlock resolution technique can
easily be generalized for situations with more overlapping clusters
and more conflicting messages. In particular, while in deadlocks of
length greater than two, clusters have no global knowledge of all
deadlocked transactions, the partial knowledge of each cluster does

Research Data Management Track Paper

not violate the global ordering of the deadlocked transactions, i.e.,
transactions will be processed in the same order, although some
transactions might incur more waiting time.

3.4 Primary Failure Handling

The goal of the primary failure handling routine is to improve
liveness by allowing the system to make progress when a primary
node fails. The routine is triggered by timeout. When node r of
some cluster p; receives a valid propose message from a primary
for either an intra-shard or a cross-shard transaction, it starts a
timer that expires after some predefined time 7. Time 75 for cross-
shard transactions is longer than 7y of intra-shard transactions
because processing cross-shard transactions usually takes more
time. Moreover, time 7 for cross-shard transactions is much longer
than 7, (i.e., the timeout for resolving conflicting messages) to allow
primary nodes to resolve conflicts and deal with deadlock situations.
If the timer has expired and node r has not committed the request,
the node suspects that the primary might be faulty. We need to
address three cases. First, a cross-shard transaction where node r
(of cluster p;) and the initiator primary 7 (p;) which is suspected
to be faulty, i.e., it has not sent super-propose (if accept messages
are conflicting) or commit messages, are in different clusters (i.e.,
i # j). Second, a cross-shard transaction where node r is not in
the initiator cluster (i.e., i # j), however, 7(p;) is suspected to be
faulty, i.e., it has not sent super-accept messages (if accept messages
are conflicting or if the system uses the optimization discussed for
heavy workloads), and third, an intra- or a cross-shard transaction
where node r and the initiator primary which is suspected to be
faulty, i.e., it has not sent propose, super-propose, super-accept, or
commit messages, are in the same cluster (i.e., i = j).

In the first case, node r multicasts a (coMMmIT-QUERY, hj, hj,d,)
message to every node of the initiator cluster p; where h; and h;
are the sequence numbers assigned to the transaction by clusters
pi and p; (in the corresponding propose and accept (or super-accept)
messages). There are indeed three possible situations: (1) The re-
quest has already been committed, thus, the corresponding commit
message will be sent back to node r by the initiator primary, (2)
The initiator primary is still waiting for super-accept messages of
some involved cluster, and (3) The initiator primary itself has failed,
hence, the nodes of p; need to elect a new primary. The nodes of p;
can easily distinguish between cases 2 and 3 (waited or failed initi-
ator primary) by exchanging messages and electing a new primary
only if the primary has failed. The primary failure handling routine
is performed by the nodes of the same cluster as the faulty primary.

In the second case, when 7(p;) has failed, if node r has not
detected that 7m(p;) is failed, similar to the first case, r multicasts
a commit-query message to every node of the initiator cluster p;
(assuming that the initiator primary has failed). Upon receiving a
commit-query message, the initiator primary multicasts super-propose
messages to every node of p;, hence, nodes of p; suspect that z(p;)
is faulty. Note that, this case is very unlikely to happen because, on
one hand, node r usually is able to detect that the z(p;) is faulty
(from intra-shard messages) and on the other hand, the timer 7, of
7(p;) will expire much earlier than the timer T of node r, hence,
7(p;i) will send super-propose messages to nodes of cluster p; earlier
(the first time 7, expires, 7(p;) multicasts super-propose messages to

81

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

the primary nodes of the conflicting clusters, the second time, it mul-
ticasts super-propose to every node. For heavy workloads, however,
it multicasts super-propose to every node from the beginning).
Third, when node r and the initiator primary are in the same
cluster, node r initiates the leader election phase of Paxos [31] to
elect the new primary, and the new primary handles all the uncom-
mitted intra- and cross-shard transactions, and takes care of new
client requests. Due to space limitation, the detailed explanation is
omitted and is provided in the extended version of the paper [5].

3.5 Correctness Arguments

Consensus protocols have to satisfy safety and liveness. Safety
means all correct nodes receive the same requests in the same order
whereas liveness means all correct requests are eventually ordered.
In this section, the safety (agreement, validity, and consistency)
and liveness (termination) properties of SharPer in the presence of
crash-only nodes are demonstrated. Since intra-shard transactions
follow Paxos, we mainly focus on cross-shard transactions.

LEMMA 3.1. (Agreement) If node r commits request m with se-
quence number A, no other correct node commits request m’ (m #
m’) with the same sequence number h.

Proor. Let m and m’ (m # m’) be two committed requests
with sequence numbers h = [hj, hj, hi,...] and ' = [h;c, h;, hlys -]
respectively. Committing a request requires matching accept (or
super-accept) messages from f + 1 different nodes of every involved
cluster. Therefore, if the involved clusters of m and m’ intersect in
cluster py., at least f+1 nodes of cluster p;. have sent matching accept
(or super-accept) messages for m, and similarly, at least f + 1 nodes
of cluster py have sent matching accept (or super-accept) messages
for m’. Since each cluster includes 2f + 1 nodes and nodes are
non-malicious, hy # h;(. Note that the same proof logic applies
in special cases where m or m’ is an intra-shard transaction (i.e.,
h=hgorh’ = hp).

If the primary fails, since each committed request has been rep-
licated on a quorum Q; of f + 1 nodes and to be elected primary,
agreement from a quorum Q; of f + 1 nodes is needed, Q; and Q;
must intersect in at least one node that is aware of the latest com-
mitted request. Hence, SharPer guarantees the agreement property
for both intra-shard as well as cross-shard transactions. O

LeEmMA 3.2. (Validity) If a correct node r commits m, then m
must have been proposed by some correct node 7.

ProoF. Since crash-only nodes do not send fictitious messages,
validity is ensured. m]

Lemma 3.3. (Consistency) Let P, denote the set of involved clusters
for a request p. For any two committed requests m and m’ and any
two nodes r; and rp such that r; € p;, 2 € pj, and {p;,p;} €
P, N Py, if mis committed before m” in r1, then m is committed
before m’ in rs.

PRrROOF. As shown in Section 3.2, once node ry of some cluster p;
receives a propose message for some cross-shard transaction m, if the
node is involved in another uncommitted cross-shard transaction
m’ where |Pp, N Pyy| > 1, ie., some other cluster pj is also involved
in both transactions, node r; does not send an accept message for
transaction m before m’ gets committed. Since committing request
m requires f + 1 accept messages from every involved cluster, m

Research Data Management Track Paper

cannot be committed until m’ is committed. As a result, the order
of committing messages is the same in all involved nodes. O

Note that ensuring consistency might result in deadlock situ-
ations which can be resolved as explained in Section 3.3.

PROPERTY 3.4. (Termination) A request m issued by a correct
client eventually completes.

SharPer, as mentioned earlier and due to the FLP impossibility
result [20], guarantees liveness only during periods of synchrony.
To show that a request issued by a correct client eventually com-
pletes, we need to address three scenarios. First, if the primary is
non-faulty and accept messages are non-conflicting. As shown in Al-
gorithm 1, the protocol ensures that a correct client receives a reply
from the primary. Second, if a non-faulty primary has multicast a
propose message but not received matching accept messages from
f + 1 nodes of every involved cluster. As explained in Sections 3.3,
the initiator primary re-initiates the transaction by multicasting
super-propose messages to only the primary nodes of the involved
clusters. Since the primary node of each cluster assigns the se-
quence number (in its super-accept message), super-accept messages
that are received from each cluster must match, thus increasing the
chances of termination. In case of a deadlock situation, i.e., different
clusters receive transactions in conflicting orders, upon receiving a
super-propose message from the initiator primary, a unique order is
determined and nodes within different clusters might need to send
a new super-accept message. Third, if the (initiator) primary fails,
as explained in Sections 3.4, nodes involved in an uncommitted
transaction (initiated by the faulty primary) detect its failure (using
timeouts) resulting in triggering the failure handling routine.

4 Consensus with Byzantine Nodes

In this section, intra- and cross-shard consensus in the presence
of Byzantine nodes are presented followed by the primary failure
handling routine. Then, the correctness of SharPer is proven.

4.1 Intra-shard consensus

Most Byzantine fault-tolerant protocols, e.g., PBFT [11], require
3f+1 nodes to guarantee safety in the presence of at most f ma-
licious nodes. In PBFT, the replicas move through a succession
of configurations called views [18][19] where in each view, one
replica, called the primary, initiates the protocol and the others
are backups. SharPer uses PBFT to establish consensus on the or-
der of intra-shard transactions. During normal case execution, a
client ¢ requests an intra-shard transaction by sending message
m = (REQUEST, 0p, I¢, C)o, to the primary where op is the reques-
ted intra-shard transaction, and . is a timestamp used to ensure
exactly-once semantics (prevent replay attacks). When the primary
receives a valid request from an authorized client, it initiates the
consensus protocol by assigning a sequence number and multicast-
ing a signed propose (called pre-prepare in PBFT) message including
the requested transaction to all nodes within the cluster. Note that
in the presence of Byzantine nodes and to provide validity, all mes-
sages sent by all nodes are signed. Once a node receives a valid
propose message from the primary, it multicasts an accept (prepare)
message to every node within the cluster. Each node then waits for
2f valid accept messages from different nodes (including itself) that
match the propose message and then multicasts a commit message
to all nodes of the cluster. Once a node receives 2f valid commit

82

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Algorithm 3 Cross-shard Consensus with Byzantine Nodes

1: init():

2: r:=node_id

3: p; := the cluster that initiates the consensus

4: 7(p) := the primary node of cluster p

5. P :=set of involved clusters

6: upon receiving valid transaction m and (r == 7(p;))

7 multicast (PROPOSE, hy,),). m) to P

8: upon receiving valid ((PROPOSE, h;, d>6n(p,-)‘ m) from 7 (p;)

9: if r is not involved in any uncommitted request m’ where m and m’ intersect
in some other cluster p

10: multicast (ACCEPT, hy, hj, d, r)oy to P

11: upon receiving valid matching (ACCEPT, k;, hj, d, r)o, from 2f+1 different nodes
of every cluster p; in P

12: multicast (COMMIT, [k, hj, ..., k], d, r)oy to P

13: upon receiving valid (COMMIT, [h;, hj, ..., hi], d, r)o, from 2f + 1 nodes of every
cluster in P

14: append the transaction and commit messages to the ledger

messages from different nodes that match its own commit message,
it appends the transaction as well as all 2f + 1 commit messages
to the ledger (to ensure immutability), executes the transaction,
updates the state, and sends a reply to the client. Finally, the client
waits for f + 1 valid matching responses from different replicas to
ensure at least one correct replica executed its request.

4.2 Byzantine Cross-shard Consensus

In the presence of malicious nodes, a Byzantine fault-tolerant
protocol is needed where for each cross-shard transaction, similar to
the crash-only case, agreement from all involved clusters is needed.
Unlike in the case of crash failure where the quorum size is f + 1,
in consensus with Byzantine nodes, the quorum size is 2f + 1. In
addition and due to the potential malicious behavior of the primary
node, all non-faulty nodes of every involved cluster multicast both
accept and commit messages to each other.

The normal case operation (i.e., when the primary is non-faulty)
for SharPer to process a cross-shard transaction in the presence of
Byzantine nodes is presented in Algorithm 3. Similar to Algorithm 1
and as shown in lines 1-5, p; is the initiator cluster, P is the set of
involved clusters, and 7(p) indicates the primary node of cluster p.

Once the initiator primary 7 (p;) receives a valid signed cross-
shard request from an authorized client, as presented in lines 6-7,
7(p;) assigns sequence number h; to the request and multicasts
a propose message including sequence number h; and digest d of
the request to all nodes of every involved cluster. Requests are
piggybacked in propose messages to keep propose messages small.

Upon receiving a propose message for a request m, node r of an
involved cluster pj, as indicated in lines 8-10, validates the request,
signature and message digest. If the node belongs to the initiator
cluster (i = j), it also checks h; to be valid, i.e., within a predefined
range to prevent a malicious primary from exhausting the space of
sequence numbers by choosing a very large value [11]. Furthermore,
if the node is currently involved in an uncommitted cross-shard
request m’ where the involved clusters of two requests m and m’
overlap in some other cluster as well, as explained in the crash-only
case, the node does not process the new request m (only buffers m)
before the earlier request m” is processed. This is needed to ensure
concurrent requests are committed in the same order on overlap-
ping clusters (consistency property). The node then multicasts an
accept message including the corresponding sequence number h;
(that represents the order of m in cluster p;) as well as the digest
d = D(m) to every node of all involved clusters.

Research Data Management Track Paper

Each node waits for valid accept messages with matching se-
quence numbers from 2 f+1 nodes of every involved cluster with
hi, and d that match the propose message which is sent by initiator
primary z(p;). If a node receives accept messages without receiv-
ing a propose message, the node contacts the primary node (or its
neighbors to reduce the load on the primary) to get the propose
message. We define the predicate accepted—localpj (m, hi, hj,r) to
be true if and only if node r has received request m, a propose for m
with sequence number h; from the initiator cluster p; and 2f + 1
accept messages from different nodes of an involved cluster p; that
match the propose message. The predicate accepted(m, h, r) where
h = [hi, hj, ..., hi] is then true on node r if and only if accepted-
localp; is true for every involved cluster p; in cross-shard trans-
action m. The order of sequence numbers in the predicate is an
ascending order determined by their cluster ids. Here, since nodes
might behave maliciously, each cluster includes 3 f + 1 nodes and
2f + 1 matching messages from every involved cluster for each
step of the protocol are needed. The propose and accept phases of
the algorithm basically guarantee that non-faulty nodes agree on a
total order for the transactions. When accepted(m, h, r) becomes
true, as presented in lines 11-12, node r multicasts a commit message
(commiT, h,d, 1), to every node of all involved clusters.

Finally, as shown in lines 13-14, each node waits for valid match-
ing commit messages from 2 f + 1 nodes of every involved clusters
that match its commit message. Predicate committed-localp, (m, h, 1)
is defined to be true on node r if and only if accepted (m, h, r) is true
and node r has accepted 2f + 1 valid matching commit messages
from different nodes of cluster p; that match the propose message
for cross-shard request m. Predicate committed(m, h, r) is then true
on node r if and only if committed-local; is true for every involved
cluster p; in request m. The committed predicate indeed shows
that at least f + 1 nodes of each involved cluster have multicast
valid commit messages. When the committed predicate becomes
true, the node considers the transaction as committed. If the node
has executed all transactions with lower sequence numbers than
hj, it appends the transaction and 2f + 1 commit messages to the
ledger, executes the transaction, updates the state, and sends a
(REPLY, t¢, ¢, 0,7) 5, message to client ¢ where . is the timestamp of
the corresponding request and r is the execution result. The client
waits for f + 1 valid matching responses from different replicas to
ensure at least one correct replica executed its request. If the client
does not receive reply messages soon enough, it multicasts the re-
quest to all nodes within the cluster. If the request has already been
processed, the nodes simply re-send the reply message to the client
(nodes remember the last reply message they sent to each client).
Otherwise, if the node is not the primary;, it relays the request to
the primary. If the primary does not multicast the request to the
nodes, it will eventually be suspected to be faulty by nodes to cause
a primary failure handling routine.

4.3 Dealing with Conflicting Messages

In the consensus protocol with Byzantine nodes, similar to the
crash-only case, a quorum of 2f + 1 matching accept messages
from every cluster might not be received due to conflicting propose
messages coming from different primary nodes in parallel. We first
address conflicting messages and then discuss deadlock situation,
a special case of conflicting messages where there is more than

83

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Algorithm 4 Dealing with Conflicting ACCEPT Messages

.

******The configuration is the same as Algorithm 3
1: if accept messages of cluster p; not matching and (r == 7(p;))
2 multicast (SUPER-ACCEPT, h;, hj, d, r)o, to nodes of p;

3: upon receiving (SUPER-ACCEPT, h;, hj, d, H(Pj))g”(P_) and rep;
J

4: if (less than f accept messages have non-matching h;) and ((less than 2f+1
matching accept from p; for m are logged) or (the transaction is deadlocked))
5: multicast (SUPER-ACCEPT, h;, hj, d, r)oy to P

one cluster in the intersection of conflicting propose messages. The
(accepT, hi, hj, d, r>0n(p,~) messages might be non-matching for two
reasons. First, the initiator primary 7 (p;) is malicious and sends
inconsistent messages, i.e., assigns inconsistent sequence numbers,
to different nodes, hence, there is no quorum of 2f + 1 nodes
from a cluster with matching sequence number h; for the same
request. Note that a malicious initiator primary might also assign
invalid digest d or sign its message incorrectly, however, it will
be easily detected by all nodes as an invalid message. The only
malicious behavior that is not detected by nodes alone and requires
communication among them (i.e., sending accept messages) is when
the initiator primary assigns inconsistent sequence numbers to the
same request. Second, when different nodes of the same cluster,
similar to the crash-only case, assign inconsistent sequence number
h;j. We address the first case, in the primary failure handling routine.
In the second case, as presented in lines 1-2 of Algorithm 4, the
primary node of each conflicting cluster p;, i.e., a cluster where at
least 2f + 1 of accept messages have matching h; and d (to ensure
that the initiator primary is non-faulty) but less than 2 f +1 of accept
messages have matching h;, multicasts a super-accept message (with
the same structure as accept messages) to the nodes of its own
cluster after a predefined time 7,,. Note that this is in contrast to
the crash-only case where only the initiator primary multicasts
super-accept messages. Once a node receives a super-accept message
for some cross-shard transaction m from the primary node of its
cluster, as shown in lines 3-5, it first validates the message, the
digest, and its sequence number to be within a predefined range.
Node also checks the received accept messages from nodes of its
cluster to ensure that the initiator primary is non-malicious, i.e., less
than f accept messages have non-matching h;. If (1) the node has
received less than 2f + 1 matching accept messages, i.e., messages
with matching hj, for transaction m from the nodes of its cluster or
(2) the transaction is in a deadlock situation, hence, there is a need
to undo accept messages by sending super-accept messages, the node
(including the primary node) multicasts a super-accept message to
all nodes of every involved cluster.

In heavy workloads with a high percentage of cross-shard trans-
actions where the probability of receiving conflicting accept mes-
sages is high, similar to the crash-only case, the initiator primary
initially multicasts super-propose messages to all nodes of other
involved clusters. The primary of each involved cluster then multic-
asts a super-accept message (with piggybacked super-propose message
received from the initiator primary) to the nodes of its cluster.

To address deadlock situations, i.e., where overlapping clusters
receive propose messages in conflicting orders, similar to the crash-
only case, the initiator primary multicasts super-propose messages
to the primary nodes of the overlapping clusters. The overlapping
clusters then reach a unique order among concurrent transactions
using either the sequence number of transactions (if concurrent

Research Data Management Track Paper

transactions are initiated by the same cluster) or the id of the initi-
ator clusters (if transactions are initiated by different clusters).

4.4 Primary Failure Handling

The primary failure handling routine, similar to the crash-only
case, is triggered by timeout. If the timer of some node r of cluster
pj expires (after some predefined time 7¢) node r suspects that the
primary might be faulty. There are three cases. First, a cross-shard
transaction where node r and the initiator primary z(p;), which
is suspected to be faulty, i.e., it has not sent valid propose or super-
propose messages, are in different clusters (i.e., i # j). Second, a
cross-shard transaction where node r is not in initiator cluster p;,
however, 7(p;) is suspected to be faulty, i.e., it has not sent valid
super-accept messages. Third, an intra- or a cross-shard transaction
where node r and the initiator primary, which is suspected to be
faulty, i.e., it has not sent valid propose, super-propose, or super-accept
messages, are in the same cluster (i.e., i = j).

In the first case, if the propose message has an incorrect digest or
signature, node r discards it. However, if propose messages are
valid but more than f of accept messages that node r receives
from nodes of an involved cluster have non-matching h;, then
initiator primary 7(p;) is malicious. Therefore, node r multicasts
an (ACCEPT-QUERY, h;, d, r)gﬂ(r) messages to every node of initiator
cluster p;. Note that, node r still processes all intra-shard transac-
tions as well as all transactions coming from all other clusters. If
a node receives accept-query messages from 2 f + 1 different nodes
of another cluster with matching d, the node suspects that the
primary of its cluster is faulty and initiates the primary failure
handling routine (explained later). Second, when primary 7(p;) is
malicious and multicasts super-accept messages with (consistent
sequence number h; but) inconsistent sequence numbers #; to the
nodes of its cluster. In this case, node r will receive inconsistent
super-accept messages from different nodes of p;, suspects that z(p;)
is faulty and initiates the primary failure handling routine. Note
that, this case happens when either accept messages are conflicting
or the optimization presented for heavy workloads is used. Third,
when node r and the faulty primary are in the same cluster, node
r initiates the primary failure handling routine by multicasting
a failure-query message including all received valid accept, accept-
query, and commit messages for all intra-shard as well as cross-shard
transactions to every node of the cluster. To decrease the size of
failure-query messages, SharPer uses checkpoints as PBFT [11], i.e.,
each node sends the last stable checkpoint that it knows, proof of
its correctness, and messages with a sequence number higher than
the checkpoint sequence number. An accept-query message is valid
if it is received from at least 2 f + 1 different nodes of a cluster. Upon
receiving 2 f failure-query messages, the next primary (determined in
a round-robin manner based on node ids) handles the uncommitted
transactions by multicasting a new-primary message including 2f +1
failure-query messages and a propose message for each uncommitted
request (either intra-shard or cross-shard) to every node within the
cluster. For uncommitted cross-shard requests where the cluster
has initiated the requests, the new primary multicasts a new-primary
message including 2f + 1 failure-query messages and the related
propose messages to every node of all involved clusters. If other
clusters have already accepted the request, they simply send back
their accept (or super-accept) messages. Once node r multicasts a

84

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

failure-query message, it starts a timer that expires after some time
7p. If the timer expires before it receives a valid new-primary mes-
sage, it starts the routine again. In the worst case, the system might
incur f consecutive faulty primary nodes.

4.5 Correctness Arguments

We demonstrate how SharPer satisfies the safety and liveness
properties in the presence of Byzantine nodes.

LEMMA 4.1. (Agreement) If node r commits request m with se-
quence number A, no other correct node commits request m’ (m #
m’) with the same sequence number h.

ProoF. The propose and accept phases of the Byzantine cross-
shard consensus protocol guarantee that correct nodes agree on
a total order of all requests. Indeed, if the accepted(m, h,r) pre-
dicate where h = [hj, hj, ..., hi] is true, then accepted(m’, h, q) is
false for any non-faulty node g (including r = q) and any m’ such
that m # m’. This is true because (m, h, r) implies that accepted-
localp, (m, i, hj) is true for each involved cluster p; and since each
cluster include 3 f + 1 nodes, at least 2 f + 1 nodes within the cluster
(from which at least f + 1 nodes are non-faulty) have sent accept
(or propose) messages for request m with sequence number h;. As a
result, for accepted(m’, h, q) to be true, at least one of those non-
faulty nodes needs to have sent two conflicting accept messages
with the same sequence number but different message digest. This
condition guarantees that first, a malicious primary cannot violate
safety and second, at most one of the concurrent conflicting trans-
actions can collect the required number of messages (2f + 1) from
each overlapping cluster.

The primary failure handling routine of SharPer guarantees
that the non-faulty nodes of any cluster p; agree on the sequence
number of requests that are committed-local at different nodes. The
committed-local,; predicate becomes correct on node r if r has
received a quorum Q; of matching commit messages from 2f + 1
nodes of cluster p;. To change the primary node of cluster p;, a
quorum Q7 of 2f + 1 valid failure-query messages is needed. Since
there are 3 f + 1 nodes in each cluster, Q1 and Q3 intersect in at least
one correct replica, thus if a request is accepted by the previous
primary node, it is propagated to subsequent primary nodes. O

LemMmaA 4.2. (Validity) If a correct node r commits m, then m
must have been proposed by some correct node 7.

ProoF. In the presence of Byzantine nodes, validity is guaran-
teed mainly based on standard cryptographic assumptions about
collision-resistant hashes, encryption, and signatures which the
adversary cannot subvert (as explained in Section 2). Since the
request as well as all messages are signed and either the request
or its digest is included in each message (to prevent changes and
alterations to any part of the message), and in each step, 2f + 1
matching messages (from each cluster) are required, if a request is
committed, the same request must have been proposed earlier. O

LeEmMma 4.3. (Consistency) Let P, denote the set of involved clusters
for a request p. For any two committed requests m and m’ and any
two nodes ry and ry such that r; € p;, r2 € pj, and {p;,p;} €
P, N Py, if mis committed before m” in r1, then m is committed
before m’ in ry.

Research Data Management Track Paper

Proor. Consistency is guaranteed similar to crash-only nodes
(lemma 3.3) except that committing request m requires 2f + 1
matching commit messages (out of 3f + 1) from each cluster. O

PROPERTY 4.4. (Termination) A request m issued by a correct
client eventually completes.

To provide termination during periods of synchrony, similar
to the crash-only case, several scenarios need to be addressed. If
the primary is non-faulty and accept messages are non-conflicting,
following Algorithm 3, request m completes. Next, if the primary
is non-faulty, but more than f accept messages of some involved
cluster p; have inconsistent sequence number h;, as explained in
Section 4.3, 7(p;) multicasts a super-accept message including a
hj to the nodes of its cluster. In case of a deadlock situation, i.e.,
where different clusters receive transactions in different orders,
a unique order is determined by the primary of each cluster and
clusters might need to send new super-accept messages. Finally,
the primary failure handling routine (Section 4.4) handles primary
failures in several cases where (1) an initiator primary multicasts
incorrect propose or super-propose messages to other clusters (2)
the primary of an involved cluster multicasts incorrect super-accept
messages for a cross-shard transaction to nodes of its cluster, and
(3) a primary node multicasts incorrect propose, super-propose, or
super-accept messages to the nodes of its cluster.

Note that in the optimization explained in Section 4.3 for heavy
workload where the initiator primary multicasts super-propose mes-
sages to the nodes of all other involved clusters, assigning an in-
consistent sequence number, h; will be detected in the accept phase.
Furthermore, if either the initiator primary does not multicast the
super-propose message to an involved primary (or cluster) or an
involved primary does not multicast the super-accept message to the
nodes of its cluster, since all nodes of all involved clusters multicast
super-accept messages to each other, as long as nodes of one involved
cluster multicast super-accept messages, other involved clusters will
be informed (i.e. no liveness issue will happen). If a node receives
valid super-accept messages from nodes of other clusters without
receiving super-accept message from the primary of its cluster (and
super-propose message from the initiator primary), it multicasts a
query message to all nodes of the initiator cluster. The primary of
an involved cluster multicasts the query message to the nodes of
its cluster as well in case they received the message (since nodes
of a cluster are in proximity, it reduce the latency of processing a
request). If nodes of the initiator cluster receive such queries from
2f + 1 nodes of an involved cluster for a request, they suspect
that the initiator primary is faulty. If nodes of an involved cluster
do not receive the super-accept message from their primary after
some predefined time, they suspect that their primary is faulty. In
the worst case, a faulty initiator primary node might continue to
operate maliciously by not sending super-propose messages to the
primary nodes of the involved clusters. However, in this case, the
primary node of each involved cluster can obtain the actual request
probably from a node in its cluster, since these nodes are in closer
proximity, hence the safety and liveness are not affected.

5 Experimental Evaluations

In this section, we conduct several experiments to evaluate
SharPer. In our implementation of SharPer, Algorithms 1 and 3
are followed in normal workloads (and Algorithms 2 and 4 in case

85

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

-©- APR-C
100 F-Paxos
~@- SharPer
& AHL-C

-©- APR-C

F-Paxos
-@- SharPer
~A- AHL-C

-©- APR-C

F-Paxos
~@- SharPer
- AHL-C

5
8

300

g
8

200

g
8

Latency [ms]
Latency [ms]

100

3
8

0 5 10 15 20 3 6 9 12 3 6 9
Throughput [Ktrans/sec]

Throughput [ktrans/sec] Throughput [Ktrans/sec]

(a) 20% Cross-shard (b) 80% Cross-shard (c) 100% cross-shard
Figure 2: Cross-Shard Transactions with Crash-Only Nodes
of conflicts) in the presence of crash-only and Byzantine nodes. In
heavy workloads, however, the optimization explained at the end
of sections 3.3 and 4.3 has been used. SharPer is able to dynam-
ically switch between these two different techniques depending
on the workload. We have also deployed an accounting applic-
ation on SharPer where clients initiate transactions to transfer
assets between accounts in the same or different shards. The exper-
iments were conducted on the Amazon EC2 platform. Each VM is
a c4.2xlarge instance with 8 vCPUs and 15GB RAM, Intel Xeon E5-
2666 v3 processor clocked at 3.50 GHz. When reporting throughput
measurements, we use an increasing number of clients running on
a single VM, until the end-to-end throughput is saturated, and state
the throughput (x axis) and latency (y axis) just below saturation.

5.1 Cross-Shard Transactions with Crash-Only
Nodes

In the first set of experiments, we measure the performance of
SharPer for workloads with different percentages of cross-shard
transactions where nodes are crash-only. We compare SharPer with
the two main approaches for exploiting the availability of extra
resources: the active/passive replication technique and Fast Paxos
[30]. In the active/passive replication technique, the protocol re-
lies only on 2f+1 active nodes to establish consensus and updates
the passive replicas asynchronously whereas Fast Paxos use 3 f+1
replicas instead of 2f+1 to reduce one phase of communication.
We implemented two permissioned blockchain systems referred to
as APR-C and FPaxos where their consensus protocols follow the
active/passive replication and Fast Paxos designs respectively. In
addition to SharPer and these two systems, we also implemented
a modified version of the sharded permissioned blockchain sys-
tem AHL [16]. AHL has two novel aspects: first, its intra-shard
consensus protocol that uses trusted hardware to restrict the ma-
licious behavior of nodes, and second, its cross-shard consensus
protocol where a reference committee uses 2PC to order the trans-
actions. Since the emphasis of the experiments is on cross-shard
transactions, we implemented a modified version of AHL, called
AHL-C where the intra-shard transactions are processed similar
to SharPer, however, the cross-shard transactions are performed
similar to AHL [16] where the classic two-phase commit (2PC) runs
in two communication phases (prepare and commit) between the
reference committee and involved clusters.

We consider a network with 12 nodes (15 nodes in AHL-C). In
SharPer and AHL-C, the nodes are divided into four clusters where
each cluster consists of 3 nodes and uses Paxos with f = 1 to
establish consensus. AHL-C includes a reference committee of 3
crash-only nodes as well. Each cluster further maintains a data
shard of 10000 records (clients). In APR-C, 3 nodes are used as the
active replicas and the execution results are sent to the remaining 9
nodes whereas FPaxos uses 4 nodes (3 f + 1) to establish consensus.

Research Data Management Track Paper

We consider four different workloads with (1) no cross-shard,
(2) 20% cross-shard, (3) 80% cross-shard, and (4) 100% cross-shard
transactions. We also assume that two (randomly chosen) shards
are involved in each cross-shard transaction. Note that since APR-
C and FPaxos do not use sharding, the percentage of cross-shard
transactions does not affect their performance. The load is also
equally distributed among all the nodes.

When there are no cross-shard transactions, SharPer is able to
process 35230 transactions with 91 ms latency before the end-to-
end throughput is saturated where every 5 ms, ~ 45 requests from
different clients are sent to each cluster. Note that in this setting,
since there are no cross-shard transactions, each cluster orders and
executes its transactions independently, thus the throughput of the
entire system will increase linearly with the increasing number of
clusters. Since for intra-shard transactions, AHL-C uses the same
technique as SharPer, its results are identical to SharPer. APR-C and
FPaxos are also able to process 8800 and 10700 transactions with 95
ms and 75 ms latency respectively (as can be seen in Figure 2(a)).
Since FPaxos establishes consensus in less number of phases, it has
better performance than APR-C. However, they both have much
lower throughput in comparison to SharPer (25% and 33% of SharPer
at 60 ms latency). The results mainly demonstrate the effectiveness
of employing the sharding technique in blockchains.

By increasing the percentage of cross-shard transactions to 20%
(Figure 2(a)), the throughput is reduced due to the overhead of cross-
shard transactions. In this setting, SharPer is still able to process
23000 transactions with 100 ms latency whereas AHL-C processes
21000 transactions at the same latency. This is expected because first,
SharPer, in contrast to AHL-C, is able to process non-overlapping
cross-shard transactions in parallel, and second, the cross-shard
protocol of SharPer involves less number of communication phases.
As mentioned before, since the sharding technique is not utilized
by APR-C and FPaxos, the percentage of cross-shard transactions
does not affect their performance.

Similarly, increasing the percentage of cross-shard transactions
to 80% (Figure 2(b)) and finally, 100% (Figure 2(c)) reduces the peak
throughput of SharPer to 12300 and 10500, respectively. Note that by
increasing the percentage of cross-shard transactions, SharPer still
shows much better performance compared to AHL-C (44% better in
their peak throughput with 100% cross-shard transactions) because
SharPer is still able to process non-overlapping cross-transactions
in parallel and also needs less number of communication phases.
In these two scenarios, since APR-C and FPaxos order the transac-
tions using only three (2f+1) and four (3 f+1) nodes, their latency
is lower than SharPer. Specially FPaxos processes transactions with
significantly lower latency due to its fast consensus routine. How-
ever, since a large percentage of transactions is cross-shard, SharPer
needs the participation of all involved clusters to order transactions
and using sharding has no significant advantage. In fact, Figures 2(c)
and 2(d) demonstrate that if sharding is not workload-aware the
performance will be severely impacted.

To evaluate the impact of primary failure, we terminate the pro-
cess of a primary node in the first two scenarios (0% and 20% cross-
shard transactions). This failure and the failure handling routine
reduce the throughput to 26000 (73.8%) and 17100 (74.3%) and the
cluster was temporarily out of service for 18 and 23 ms respectively.

86

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

600

-©- APR-B
FaB

~@-SharPer

A AHL-B

8

800

-@- SharPer
A AHL-B

~@- SharPer

=
3
H

600

]
8

400

Latency [ms]
Latency [ms]
Latency [ms]

g

200 200

0 5 10 15 20
Throughput [ktrans/sec]

0 2 4 6

Throughput [Ktrans/sec] ‘Throughput [Ktrans/sec]

(a) 20% Cross-shard (b) 80% Cross-shard (c) 100% cross-shard
Figure 3: Cross-Shard Transactions with Byzantine Nodes

5.2 Cross-Shard Transactions with Byzantine
Nodes

In the second set of experiments, we repeat the previous scen-
arios on networks with Byzantine nodes. Similar to the previous
section, we implement four permissioned blockchain systems: (1)
SharPer, (2) APR-B where its consensus protocol follows the act-
ive/passive replication technique on Byzantine nodes, (3) FaB where
its consensus protocol follows Fast Byzantine consensus protocol
[33] and uses 5f + 1 nodes (instead of 3 f + 1) to establish consensus
in two phases (instead of three as in PBFT), and (4) AHL-B where
its intra-shard transactions are processed using PBFT (similar to
SharPer) and its cross-shard transactions follow AHL [16].

We consider a network with 16 nodes. In SharPer and AHL-B, the
nodes are partitioned into 4 clusters where each cluster consists of
4 nodes and uses PBFT protocol with f=1 to establish consensus on
its transactions. In addition to these 16 nodes, in AHL-B, a reference
committee of 4 Byzantine nodes is also considered. In APR-B, 4
nodes are used as the active replicas and finally, FaB uses 6 nodes
(5f + 1) to establish consensus. Similar to the previous case, since
APR-B and FaB do not use sharding, the percentage of cross-shard
transactions does not affect their performance.

With no cross-shard transactions, SharPer is able to process
more than 25000 transactions with 200 ms latency. As before, since
for intra-shard transactions, AHL-B uses the same technique as
SharPer, the results of SharPer and AHL-B are identical. APR-B
and FaB also process 5900 and 6800 transactions (23% and 27% of
SharPer) with 220 ms and 130 ms latency respectively (as shown
in Figure 3(a)). Note that since transactions are processed in two
phases (instead of 3), FaB has lower latency in comparison to APR-B.

Increasing the percentage of cross-shard transactions to 20%, as
shown in Figure 3(a), reduces the peak throughput of SharPer to
18700 (with 240 ms latency). In this scenario compared to AHL-
B, SharPer processes 15% more transactions (at their respective
peak throughput) because of the parallel ordering of cross-shard
transactions and establishing cross-shard consensus in less number
of phases. The peak throughput of SharPer is also 320% and 270%
of the peak throughput of APR-B and FaB respectively.

With 80% cross-shard transactions, as can be seen in Figure 3(b),
the peak throughput of SharPer reduces to 8600 which is still 34%
higher than the peak throughput of AHL-B (6400) due to parallel pro-
cessing of non-overlapping cross-shard transactions. Finally, when
all transactions are cross-shard, as shown in Figure 3(c), SharPer
is able to process 7500 transactions with 700 ms latency whereas
AHL-B processes 5000 transactions (67% of SharPer) with the same
latency. In the last two scenarios (80% and 100% cross-shard transac-
tions), because of the high percentage of cross-shard transactions,
using sharding techniques has no significant advantage (which
again demonstrates the advantages of workload-aware sharding)

Research Data Management Track Paper

—+ 6 nodes 600
& 9 nodes
-@ 12 nodes
-4~ 15 nodes

=+ 8 nodes
- 12 nodes
-@- 16 nodes
A 20 nodes

400

Latency [ms]
Latency [ms]

200

0 6 12
Throughput [ktrans/sec]

18 24 30 36) 5 10 15 20 25
Throughput [ktrans/sec]

(a) Crash-Only Nodes (b) Byzantine Nodes

Figure 4: Increasing the Number of Nodes
and since APR-B and FaB rely on only four (3f+1) and six (5f+1)
nodes to order transactions respectively, their latency is lower than
SharPer. However, in SharPer, simultaneous processing of non-
overlapping transactions results in improved throughput.

To evaluate the impact of primary failure, we terminate the pro-
cess of a primary node in the first two scenarios (0% and 20% cross-
shard transactions). This failure and the failure handling routine
reduce the throughput to 18900 (75.6%) and 14200 (75.9%) and the
cluster was temporarily out of service for 30 and 42 ms respectively.

5.3 Increasing the Number of Nodes

In the last set of experiments, we measure the performance of
SharPer in networks with a different number of nodes. We evaluate
SharPer in networks including 6, 9, 12, and 15 crash-only nodes
as well as 8, 12, 16 and 20 Byzantine nodes (2, 3, 4 and 5 clusters).
The workloads include 90% intra- and 10% cross-shard transactions
(typical settings in partitioned databases [41] [40]).

As can be seen in Figure 4(a), when nodes follow the crash failure
model, by increasing the number of nodes (clusters) the throughput
of the system increases almost linearly. This is expected because 90%
of transactions are intra-shard transactions and, as shown earlier,
for intra-shard transactions, the throughput of the entire system will
increase linearly with the increasing number of clusters. In addition,
since cross-shard transactions access two clusters, by increasing
the number of clusters, the chance of parallel processing of such
transactions increases. As shown in Figure 4(a), in the settings
with five clusters, SharPer processes 37000 transactions with 100
ms latency. When nodes follow the Byzantine failure model, as
shown in Figure 4(b), SharPer demonstrates the similar behavior
and processes more than 27000 transactions with 240 ms latency
on a network with 5 clusters. These experiments demonstrate the
scalability of SharPer as the number of clusters increases.

6 Related Work

A permissioned blockchain system, e.g., Tendermint [28], Quorum
[12], Parblockchain [4], Fast Fabric [23], Fabric++ [39], FabricSharp
[38] ResilientDB [24], and Caper [2], consists of a set of known,
identified nodes that might not fully trust each other. Scalability is
the ability of a blockchain system to process an increasing number
of transactions by adding nodes to the system. Data sharding tech-
niques are commonly used in globally distributed databases such as
Amazon Dynamo [17] to improve scalability. In such systems, nodes
are assumed to be crash-only and a centralized approach is used
to process crash-shard transactions. SharPer, on the other hand,
supports both crash-only and Byzantine nodes and introduces a
decentralized approach to process crash-shard transactions.

Sharding techniques have been used in both permissionless, e.g.,
Elastico [32], OmniLedger [27], Monoxide [44], Ethereum 2 [1]
and Rapidchain [45], and permissioned blockchain systems, e.g.,

87

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

multi-channel Fabric [7], AHL [16], Cosmos [21], and RSCoin [22]
to improve scalability. Ethereum 2 [1], which as a permissionless
blockchain is supposed to be used for the development of permis-
sioned blockchain applications, consists of different shards (cur-
rently planned for 64 shards) where every shard block is processed
by a randomly chosen set of validators. In multi-channel Fabric
[6][7], channels (i.e., disjoint partitioned states of the full system)
are introduced to shard the system [7]. Using channels, Fabric
processes intra-shard transactions efficiently. However, processing
cross-shard transactions, in contrast to SharPer, requires either
the existence of a trusted channel among the participants or an
atomic commit protocol (inspired by two-phase commit) [7]. Sim-
ilarly, in Cosmos [21], interacting chains in any Inter-Blockchain
Communication must be aware of the state of each other which
requires establishing a bidirectional trusted channel between two
blockchains. AHL [16] employs a trusted hardware (the technique
that is presented in [13, 42, 43]) to restrict the malicious behavior
of nodes which results in committees of 2f + 1 nodes (instead of
3f + 1). The system also relies on an extra set of nodes, called
a reference committee, to process cross-shard transactions in a
centralized manner using the classic two-phase commit (2PC) and
two-phase locking (2PL) protocols. SharPer, in contrast to AHL, pro-
cesses cross-application transactions in a decentralized manner. In
addition, cross-shard transactions are ordered in only three commu-
nication phases. Furthermore, cross-shard transactions with non-
overlapping committees can be processed simultaneously. Note that
since the intra-shard consensus is pluggable, the trusted hardware
technique can be employed to reduce the cluster size. Finally, CEr-
BERUS [25] eliminates the reference committee of AHL by adding
one extra phase of communication across the involved clusters. CEr-
BERUS includes three protocols of which OCERBERUS is the most
similar to SharPer. OCERBERUS focuses on malicious failures while
SharPer supports both crash and malicious failures. Furthermore,
OCERBERUS detects all faulty behavior unlike SharPer where, as
discussed in Section 4.5, a faulty node might continue to operate
maliciously in a restrictive manner. However, this malicious beha-
vior has no ramifications on the correct execution and termination
of transactions, i.e., safety and liveness.

7 Conclusion

In this paper, we proposed SharPer, a permissioned blockchain
system to improve scalability. SharPer uses the sharing technique
and provides deterministic safety guarantees in networks where
more than a half (if nodes are crash-only) or two-thirds (if nodes
are Byzantine) of the nodes of each cluster are non-faulty. Two
decentralized flattened consensus protocols are introduced to order
cross-shard transactions without relying on centralized entities
or trusted participants. Furthermore, SharPer is able to process
cross-shard transactions with non-overlapping clusters in parallel.
Base on our experiments, in workloads with a low percentage of
cross-shard transactions (typical settings), SharPer demonstrates
better performance with both crash-only and Byzantine nodes in
comparison to other approaches and the throughput of SharPer
improves semi-linearly with the increasing number of clusters.

Acknowledgments

This work is funded by NSF grants CNS-1703560 and CNS-
1815733.

Research Data Management Track Paper

References

(1]

[9

=

[10

[11]

[n. d.]. The Beacon Chain Ethereum 2.0 explainer you need to read first.
https://ethos.dev/beacon-chain/. ([n. d.]).

Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. CAPER:
a cross-application permissioned blockchain. Proceedings of the VLDB Endowment
12, 11 (2019), 1385-1398.

Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. On
Sharding Permissioned Blockchains. In Int. Conf. on Blockchain. IEEE, 282-285.
Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. ParBlock-
chain: Leveraging Transaction Parallelism in Permissioned Blockchain Systems.
In Int. Conf. on Distributed Computing Systems (ICDCS). IEEE, 1337-1347.
Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. SharPer:
Sharding Permissioned Blockchains Over Network Clusters. arXiv preprint
arXiv:1910.00765 (2019).

Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, et al. 2018.
Hyperledger Fabric: a distributed operating system for permissioned blockchains.
In European Conf. on Computer Systems (EuroSys). ACM, 30.

Elli Androulaki, Christian Cachin, Angelo De Caro, and Eleftherios Kokoris-
Kogias. 2018. Channels: Horizontal scaling and confidentiality on permissioned
blockchains. In European Symposium on Research in Computer Security (ESORICS).
Springer, 111-131.

Gabriel Bracha and Sam Toueg. 1985. Asynchronous consensus and broadcast
protocols. Journal of the ACM (JACM) 32, 4 (1985), 824-840.

Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. 2011. Introduction to
reliable and secure distributed programming. Springer Science & Business Media.
Christian Cachin and Marko Vukoli¢. 2017. Blockchain Consensus Protocols in
the Wild. In Int. Symposium on Distributed Computing (DISC). 1-16.

Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine fault tolerance.
In Symposium on Operating systems design and implementation (OSDI), Vol. 99.
USENIX Association, 173-186.

[12] JP Morgan Chase. 2016. Quorum white paper. (2016).

[13]

[14

[15]

[16]

[17

=
&

[19]

[20

[21]

[22

[23]

Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatowicz. 2007.
Attested append-only memory: Making adversaries stick to their word. In Oper-
ating Systems Review (OSR), Vol. 41-6. ACM SIGOPS, 189-204.

James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, et al. 2013. Spanner:
Google’s globally distributed database. ACM Transactions on Computer Systems
(TOCS) 31, 3 (2013), 8.

Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. 2010. Schism: a
workload-driven approach to database replication and partitioning. Proceed-
ings of the VLDB Endowment 3, 1-2 (2010), 48-57.

Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin,
and Beng Chin Ooi. 2019. Towards Scaling Blockchain Systems via Sharding. In
SIGMOD Int. Conf. on Management of Data. ACM.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: amazon’s highly available key-value store.
In Operating Systems Review (OSR), Vol. 41. ACM SIGOPS, 205-220.

Amr El Abbadi, Dale Skeen, and Flaviu Cristian. 1985. An efficient, fault-tolerant
protocol for replicated data management. In SIGACT-SIGMOD symposium on
Principles of database systems. ACM, 215-229.

Amr El Abbadi and Sam Toueg. 1985. Availability in partitioned replicated
databases. In SIGACT-SIGMOD symposium on Principles of database systems. ACM,
240-251.

Michael J Fischer, Nancy A Lynch, and Michael S Paterson. 1985. Impossibility
of distributed consensus with one faulty process. Journal of the ACM (JACM) 32,
2 (1985), 374-382.

Ethan Frey and Christopher Goes. [n. d.]. Cosmos Inter-Blockchain Communica-
tion (IBC) Protocol. https://cosmos.network. ([n. d.]). 2018.

Danezis George and Sarah Meiklejohn. 2016. Centrally Banked Cryptocurrencies.
In Network and Distributed System Security Symposium (NDSS).

Christian Gorenflo, Stephen Lee, Lukasz Golab, and Srinivasan Keshav. 2019.
Fastfabric: Scaling hyperledger fabric to 20,000 transactions per second. In Int.

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Conf. on Blockchain and Cryptocurrency (ICBC). IEEE, 455-463.

Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi.
2020. ResilientDB: Global Scale Resilient Blockchain Fabric. arXiv preprint
arXiv:2002.00160 (2020).

Jelle Hellings, Daniel P Hughes, Joshua Primero, and Mohammad Sadoghi. 2020.
Cerberus: Minimalistic Multi-shard Byzantine-resilient Transaction Processing.
arXiv preprint arXiv:2008.04450 (2020).

Zsolt Istvan, Alessandro Sorniotti, and Marko Vukoli¢. 2018. StreamChain: Do
Blockchains Need Blocks?. In Workshop on Scalable and Resilient Infrastructures
for Distributed Ledgers (SERIAL). ACM, 1-6.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. 2018. Omniledger: A secure, scale-out, decentralized ledger
via sharding. In Symposium on Security and Privacy (SP). IEEE, 583-598.

Jae Kwon. 2014. Tendermint: Consensus without mining. Draft v. 0.6, fall (2014).
Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed

system. Commun. ACM 21, 7 (1978), 558-565.

Leslie Lamport. 2006. Fast paxos. Distributed Computing 19, 2 (2006), 79-103.
Leslie Lamport et al. 2001. Paxos made simple. ACM Sigact News 32, 4 (2001),
18-25.

Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert,
and Prateek Saxena. 2016. A secure sharding protocol for open blockchains. In
SIGSAC Conf. on Computer and Communications Security (CCS). ACM, 17-30.
J-P Martin and Lorenzo Alvisi. 2006. Fast byzantine consensus. Transactions on
Dependable and Secure Computing 3, 3 (2006), 202-215.

Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
Faisal Nawab and Mohammad Sadoghi. 2019. Blockplane: A global-scale byzant-
izing middleware. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 124-135.

Diego Ongaro and John K Ousterhout. 2014. In search of an understandable
consensus algorithm.. In Annual Technical Conference (ATC). USENIX Association,
305-319.

Andrew Pavlo, Carlo Curino, and Stanley Zdonik. 2012. Skew-aware automatic
database partitioning in shared-nothing, parallel OLTP systems. In SIGMOD Int.
Conf. on Management of Data. ACM, 61-72.

Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta, Meihui Zhang, Gang Chen,
and Beng Chin Ooi. 2020. A Transactional Perspective on Execute-order-validate
Blockchains. In SIGMOD International Conference on Management of Data. ACM,
543-557.

Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich.
2019. Blurring the lines between blockchains and database systems: the case of
hyperledger fabric. In SIGMOD International Conference on Management of Data.
ACM, 105-122.

Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J Elmore,
Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. 2014. E-store: Fine-
grained elastic partitioning for distributed transaction processing systems. Pro-
ceedings of the VLDB Endowment 8, 3 (2014), 245-256.

Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao,
and Daniel J Abadi. 2012. Calvin: fast distributed transactions for partitioned
database systems. In SIGMOD Int. Conf. on Management of Data. ACM, 1-12.
Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and Lau Cheuk
Lung. 2010. EBAWA: Efficient Byzantine agreement for wide-area networks. In
Int. Symposium on High Assurance Systems Engineering (HASE). IEEE, 10-19.
Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk
Lung, and Paulo Verissimo. 2013. Efficient byzantine fault-tolerance. IEEE Trans.
Comput. 62, 1 (2013), 16-30.

Jiaping Wang and Hao Wang. 2019. Monoxide: Scale out blockchains with
asynchronous consensus zones. In 16th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 19). 95-112.

Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. RapidChain:
Scaling blockchain via full sharding. In SIGSAC Conf. on Computer and Commu-
nications Security. ACM, 931-948.

	Abstract
	1 Introduction
	2 The SHARPER Model
	2.1 SharPer Infrastructure
	2.2 Cluster and Shard Formation
	2.3 Blockchain Ledger

	3 Consensus with Crash-Only Nodes
	3.1 Intra-shard consensus
	3.2 Cross-Shard Consensus
	3.3 Dealing with Conflicting Messages
	3.4 Primary Failure Handling
	3.5 Correctness Arguments

	4 Consensus with Byzantine Nodes
	4.1 Intra-shard consensus
	4.2 Byzantine Cross-shard Consensus
	4.3 Dealing with Conflicting Messages
	4.4 Primary Failure Handling
	4.5 Correctness Arguments

	5 Experimental Evaluations
	5.1 Cross-Shard Transactions with Crash-Only Nodes
	5.2 Cross-Shard Transactions with Byzantine Nodes
	5.3 Increasing the Number of Nodes

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

