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Structure Correction for Robust Volume
Segmentation in Presence of Tumors

Pranjal Sahu

Abstract—CNN based lung segmentation models in ab-
sence of diverse training dataset fail to segment lung vol-
umes in presence of severe pathologies such as large
masses, scars, and tumors. To rectify this problem, we pro-
pose a multi-stage algorithm for lung volume segmentation
from CT scans. The algorithm uses a 3D CNN in the first
stage to obtain a coarse segmentation of the left and right
lungs. In the second stage, shape correction is performed
on the segmentation mask using a 3D structure correction
CNN. A novel data augmentation strategy is adopted to
train a 3D CNN which helps in incorporating global shape
prior. Finally, the shape corrected segmentation mask is
up-sampled and refined using a parallel flood-fill operation.
The proposed multi-stage algorithm is robust in the pres-
ence of large nodules/tumors and does not require labeled
segmentation masks for entire pathological lung volume
for training. Through extensive experiments conducted on
publicly available datasets such as NSCLC, LUNA, and
LOLA11 we demonstrate that the proposed approach im-
proves the recall of large juxtapleural tumor voxels by at
least 15% over state-of-the-art models without sacrificing
segmentation accuracy in case of normal lungs. The pro-
posed method also meets the requirement of CAD software
by performing segmentation within 5 seconds which is
significantly faster than present methods.

Index Terms—Lung volume segmentation, tumors, CNN.

|. INTRODUCTION
A. Problem Formulation and Prior Work

UNG VOLUME segmentation is a primary step in any

lung computer aided diagnosis (CAD) system for nodule
detection from CT scans [1]-[3]. Convolution Neural Networks
(CNN) based segmentation models have shown huge success
in performing segmentation and models such as U-Net, 3D
U-Net, V-Net [4]-[7] have become ubiquitous. However, one
major limitation of these methods is that during the training
phase they require labelled data for pathological cases as well. A
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Fig. 1.
large tumor is not captured by the segmentation algorithm (U-Net) due
to similar intensity values as the non-lung volume. Each row shows the
axial, coronal and sagittal sections of the pathological CT volume. Red
colored region in coronal section highlights the mis-segmented tumor.

Figure illustrating two pathological lung CT volumes where a

CNN model trained entirely on normal lung volumes will fail to
segment the abnormality as shown in Fig. 1. The primary reason
for such failures is that CNN based segmentation algorithms
such as U-Net, V-Net are trained using cross entropy or dice
score based loss functions and have no understanding of the
shape characteristics of the object to be segmented [8] leading
to failures in above mentioned cases. Typical solution for this
problem is to collect human annotated segmentation masks for
pathological cases and adding it in the training set. However,
obtaining such masks from expert radiologists is very labour
intensive and not cost effective.

Classical lung segmentation methods typically rely on CT
intensity to perform segmentation and such methods also fail to
segment cases with severe pathological changes (such as mass,
scars, and large tumors). There have been attempts in the past to
segment such cases using shape prior for example in [9]-[17].
These methods relied on techniques such as sparse PCA [12],
active contour [15], graph cut [16], atlas-driven [17], [18] etc.
These methods are not readily parallelizable and have slow
execution time [19]. This has also been demonstrated in [10],
where authors provided running time comparisons for a number
of state-of-the-art lung segmentation methods [12]-[15]. The
mean running time for these methods is in the range of 189—
586 seconds. A segmentation algorithm which alone takes more
than 3 minutes is unsuitable for a typical commercial nodule
detection software that usually needs to complete the entire
nodule detection pipeline within 5 minutes [20].
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Example of segmentation failures as shown in Fig. 1 could
lead to loss of nodules and tumors in the CAD system. This
problem is particularly severe in cases where the nodule or tumor
is wall attached. Ad-hoc measures such as smoothing, binary
closing operation, curvature based methods etc. have limitations
as they cannot capture wall attached large nodule/tumors (jux-
tapleural tumors) [21]-[23]. A data driven method which could
seamlessly integrate with a CNN based segmentation model is
needed.

Apart from the general purpose segmentation CNN such as
U-Net, there have been attempts to design CNN architectures
specific to lung volume segmentation [24]-[27]. For example,
in [24], authors proposed a dilated convolution based lung seg-
mentation method to reduce computational requirement. Their
work showed promising results for few ILD cases (Interstitial
Lung Disease), however due to absence of global shape prior
their method fails to perform satisfactorily in presence of large
tumors. In [25], authors proposed a progressive growing dense
V-Net CNN for lung volume segmentation. In their work they
tried to solve the problem of slow speed of inference and large
memory requirement for 3D CNN based lung segmentation
network when applied on lung CT volumes. They proposed
to obtain the segmentation output by refining it in progression
so that the number of filters operating at full resolution in a
CNN could be reduced. In [26], authors proposed a progressive
multi-path scheme called progressive holistically-nested net-
works (P-HNN). Here, again the major idea is to progressively
refine the segmentation output and to use the VGG-16 [28] as the
base network for doing segmentation. Similarly in [27], authors
proposed a multi-resolution CNN for lung volume segmentation
where they showed that incorporating both local and global fea-
tures results in more accurate segmentation. They demonstrated
that current approaches of performing slice based segmentation
is sub-optimal and showed how a 2D slice based segmentation
model sacrifices global context for high resolution details while
a low resolution volumetric model sacrifices high resolution
detail for global contexts. They also showed how different image
sampling strategies can influence the resolution, GPU memory
requirement and volumetric context of the segmentation model.
A recurring theme across these models has been to perform
segmentation in progression so as to reduce computation re-
quirement. However, despite employing novel architectures the
common limitation with the above mentioned CNN methods is
the requirement of training data for pathological cases.

B. Our Contribution

Taking into account the above mentioned problems of data
availability, efficiency and robustness, we propose a multi-stage
CNN based segmentation algorithm which incorporates the
shape information of lung volume into the segmentation pipeline
using a 3D structure correction CNN. It is known that the shape
properties of volume or image resides in the low frequency
component and hence by only focusing on low resolution in-
put the shape characteristics can be captured [27], [29]. The
proposed segmentation framework is divided into three stages
where the first two stages work on the low resolution CT volume

to segment and correct the shape deformation caused due to
the presence of tumors. A novel training strategy is adopted to
train the structure correction 3D CNN using only normal lung
volumes. The 3D CNN learns the shape characteristics of lung
volume with the help of corrupted and non-corrupted segmen-
tation masks, nullifying the role CT intensity plays during the
training of a segmentation network. By performing the training
in two stages, the network is forced to learn shape characteristics.
Due to shape correction the ground truth mask annotation for
entire pathological lung volume is not needed and a model
trained using only normal volumes is able to capture tumor
regions in pathological volumes. Finally the shape corrected low
resolution volume is up-sampled and refined to obtain the final
volume segmentation. For the refinement of the shape corrected
segmentation mask a parallel flood-fill method is proposed. The
flood-fill method acts as a substitute for the costly convolution
operation at full resolution and improves the average surface
distance. The end product of this pipeline is a fast and robust
lung segmentation method which finishes within 5 seconds.
We demonstrate the advantages of this model by analyzing its
performance on different use cases. Three datasets have been
used for this purpose namely LUNA [30], NSCLC [31] and
LOLAT11 [32].

In Section II we will describe the three stages of the proposed
method. Training and dataset related details are mentioned in
Section III. The results and comparison of the proposed method
with other state-of-the-art lung segmentation methods are dis-
cussed in Section I'V.

[I. OUR METHOD

Designing a segmentation method which can work across a
variety of CT volumes is a challenging task. CT volumes come
in a range of x, y, z resolution. For example in LUNA [30]
challenge dataset the x, y and z resolution are in range [0.48—
0.97] mm, [0.48-0.97] mm and [0.5-2.50] mm respectively.
Having a higher z-resolution results into higher number of CT
slices. A naive 3D CNN architecture which works on the full
resolution is not feasible to be trained on a single GPU due to
memory constraints [27]. To solve this problem we propose a
stage wise segmentation algorithm which significantly reduces
the computation requirement and works across all sizes of input
CT. In the following subsections we describe each stage of the
algorithm. The entire segmentation pipeline is shown in Fig. 2.

A. Stage 1: Coarse Lung Shape Initialization

We use V-Net [6] architecture as our Stage 1 lung segmen-
tation CNN. V-Net is a 3D CNN based volume segmentation
network. In the proposed method we used a V-Net CNN with
an input tensor size of 128 x 128 x 128. All the CT scans
are therefore interpolated using linear interpolation to a voxel
spacing such that the interpolated volume has 128 x 128 x 128
voxels. Output of the first stage V-Net is used to get the low
resolution segmentation masks for trachea, left and right lungs.
The training of the V-Net is done using the segmentation masks
provided in the LUNA dataset [30]. The details of the V-Net
training are discussed in Section III.
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Fig. 2. Pipeline of proposed method for segmenting the lung region from CT volume. Structure correction is done in Stage 2 for the entire lung
volume mask. Parallel flood fill operation is applied to refine the up-sampled mask.
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Fig. 3. Figure illustrating the functioning of structure correcting 3D CNN for lung mask. 3D CNN is trained using artificially generated data. The
output of V-Net is multiplied with a tumor corruption mask and fed into the 3D CNN which is trained to reconstruct the ground truth mask.
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of tumors and hence requires structural correction. The left and
right lung masks are then passed to the Stage 2 for the shape
correction using a 3D CNN. Next we describe the second stage
of the segmentation pipeline where correction in the shape of
the lung masks is performed with the help of a 3D CNN.

The output of the first stage V-Net is not robust to the presence r

A Increasing size of corruption mask

A

B. Stage 2: 3D CNN for Shape Correction Fig. 4. Samples of nodule shapes extracted from LIDC nodule anno-

. . tations used for introducing tumor corruption in V-Net output mask.
The major component of the second stage of the segmentation

pipeline is the 3D structure correction CNN. The segmentation
mask for left and right lung obtained from Stage 1 are used in
this stage. Training of the network in this stage is performed in  in the LIDC/IDRI dataset. Each nodule is annotated by 2—4
a novel way so that the lung shape prior is encoded in the 3D  radiologists and we take each annotation mask as different for
structure correction CNN. To force the 3D CNN to learn the increasing the number of samples. However, the size of these
shape characteristics we introduce structural corruption in the nodules is smaller compared to the size of tumors. Therefore,
masks obtained from stage 1 V-Net. The structural corruption the nodule shapes obtained from the LIDC dataset are enlarged
is achieved by dropping a tumor shaped region at a randomly by doing nearest neighbour interpolation to make them similar
selected location from the V-Net mask, see Fig. 3. We call this  to size of tumors (10-50 mm diameter). The binary nodule mask
the tumor corruption mask. The 3D binary corruption mask are enlarged separately and the actual CT volume from which it
represents a large nodule or tumor. LUNA dataset takes CT  is extracted is not involved in this process. Example of the tumor
samples from the LIDC/IDRI dataset [33] which comes with  corruption masks are shown in Fig. 4.
the nodule annotations [34]. Here, we make an assumption that the shape characteristics
We use the publicly available PyLIDC tool [35] for extracting  of tumors are similar to an enlarged nodule. The location where
the binary nodule masks from the XML annotation present the corruption is introduced is randomly selected from the edge

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 01,2021 at 15:06:55 UTC from IEEE Xplore. Restrictions apply.



1154

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 25, NO. 4, APRIL 2021

Apply
Sobel Filter

Tumor Mask .

V-Net Mask Edge Voxels Corrupted Mask

Fig. 5.  Output of sobel filter gives the candidate locations to insert the
corruption. A voxel is randomly selected from the candidate voxels.

voxels. Sobel filter is performed along the axial cross-section to
obtain edge voxels. A randomly selected edge voxel then acts as
the center of mass of the tumor corruption mask to be inserted.
The V-Net mask overlapping with the tumor mask is erased while
the region not overlapping with the tumor mask is retained as
shown in Fig. 5.

The corrupted V-Net mask and the ground truth mask then
act as the training data for the structure correction 3D CNN.
The 3D CNN is then trained with the corrupted mask as input
and ground truth mask as output. This results into 3D CNN
learning the shape characteristics of lung volume. The details
of the structure correction CNN architecture are discussed in
Section III. Output of the structure correction is shape corrected
segmentation mask. The resulting mask is then passed to stage
3 for obtaining the full resolution segmentation mask. Next we
describe the up-sampling stage.

C. Stage 3: Up-Sampling

In this stage, the shape corrected segmentation mask is
first up-sampled to the same size as input CT by performing
nearest neighbour interpolation. The up-sampled shape cor-
rected segmentation mask includes the region having large nod-
ules/tumors. However, the output lacks fine boundary details. To
obtain crisp segmentation boundary and to reduce the average
surface distance we perform a parallel flood fill operation. The
lung region in the body is well contained and has a distinct CT
range. We utilize this property to perform a modified flood-filling
of the lung volume starting from the up-sampled segmentation
mask. This step produces mask which is tightly attached to
the lung boundary. In the modified flood fill, the flood index
moves in both directions across X, y and z axes, as shown
in Stage 3 of Fig. 2. The benefit of doing flood-fill in this
manner is that the algorithm can be parallelized easily. Before
performing flood fill a maximum boundary volume is obtained
by performing the dilation operation on the input up-sampled
mask. The dilated mask gives an upper bound of region to be
flooded which is necessary to avoid flooding into the colon
region. The flood filling operation is implemented using Numba
parallel processing library. The pseudo code for the modified
flood fill is shown in Algorithm 1. The cutoff value for lung
region C'in rescaled CT is -500 HU while the mask is dilated by
2 voxels. Example of enhancement of the up-sampled mask after
applying the flood-fill operation is shown in Fig. 6. Quantitative
improvement in the segmentation mask due to the flood-fill
operation is discussed in Section I'V-B.

Coronal

Sagittal

Fig. 6.  Figure illustrating the result after the flood-fill operation on left
lung mask. Top row shows the up-sampled segmentation mask which
is not tightly attached to the lung boundary. After the parallel flood-fill
operation the segmentation mask is tightly attached to the wall.

Algorithm 1: Parallel Flood-Fill.

1 Flood Fill(V, M, C, D, ug, u,, u.)

2 Where V is CT volume, M is up-sampled
segmentation binary mask, C' is the cutoff CT value for
lung region, D is the dilated up-sampled mask,

Ug, Uy, U, are the volume dimensions of the lung CT.
I: fori=0tou,do
for j =0tou, do
for £k = 0 to u, do
if M[i,j, k] ==1& D[i,j,k+ 1] ==1&
Vi, j,k + 1] < C then
Mli,j,k+1] =1
end if
end for
end for
end for
{Repeat the above block with k = u,, to 0, i.e.
opposite direction and perform the same operation
for the other two axis i.e. y and z by iterating over
y and z in the inner loop. }
10:  return M

Rl

Lo

[ll. DATASET AND TRAINING

In this section we describe the dataset, CNN architectures,
loss function and the hyper-parameters used for training deep
networks.

A. LUNA Dataset for Training

The first stage V-Net CNN is trained using the CT volumes
and segmentation masks provided with LUNA dataset. LUNA
dataset takes the CT scans from the publicly available LIDC
dataset [33] and is available in 10 subsets. We used subsets 0 to
6 for training, subset 7 for validation and subset 8 and 9 as the
testing sets. This results in total 519, 86 and 171 CT volumes for
training, validation and testing splits respectively. The dataset
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provided segmentation masks identifies each voxel as either
background, left lung, right lung or trachea. It should be noted
here that the segmentation masks in LUNA are computed using
a sophisticated automated algorithm mentioned in [18] and are
not human annotated. The method in [18] while segmenting lung
CT takes care of error cases such as small nodules, sarcoidosis,
pneumonia etc. Also the study conducted by authors in [18]
shows that their proposed method is able to obtain a mean
intersection over union of 0.95 4 0.05 in comparison to 0.96
=+ 0.04 obtained by a second human observer on LIDC dataset.

Standard dicom CT re-scaling is performed following the
equation:

HU = 1V x slope + intercept (1)

where, HU is Hounsfield Unit, IV is intensity value and slope
and intercept obtained from the dicom tags. After re-scaling
value of 1024 is added. A cutoff value of 0 and 2000 is taken
to ignore non-lung regions. Further all the voxels are divided
by 2000 before feeding to network so that values lie in range
Oto 1.

B. Stage 1 V-Net Training Details

The architecture for stage 1 V-Net is shown in Fig. 7. It is
trained with alearning rate of 0.0001 using Adam Optimizer [36]
and loss function based on dice score. The loss function L for
segmentation is defined in Equation (2):

C
QZSpic*gic

a CZZ ch+z gzc

where, C is the number of segmentation classes, S is the number
of voxels in the outputi.e. 128 x 128 x 128, p; . is the value of
tensor after applying softmax at location ¢ for class ¢, Similarly,
gi,c €{0,1} is the ground truth value at location ¢ for class c.
For stage 1 V-Net, refer Fig. 2, the number of classes C'is 4 (left
lung, right lung, trachea and background). The V-Net model is
trained for a maximum of 20 epochs and the model with the least
validation set loss is selected for getting results from the testing
set.

@)

C. Structure Correction CNN Training Details

The 3D structure correction CNN model is trained with a
learning rate of 0.0001 using Adam Optimizer and the cate-
gorical cross entropy loss (CE). The output of 3D CNN is a

64 x 64 x 64 x 32

128 x 128 x 128

an

Concatenate Add Softmax

V-Net architecture used in the proposed model. It has skip connections in the form of both addition and concatenation [6].

SHH TN

128128x128x8  64x64x64x16 32x32x32x32 32x32x32x32  64x64x64x16  128x128x128x8

) - e :

Input UpSample3D  Conv3D, ReLU MaxPool3D Concatenate  Softmax

Fig. 8.  Architecture of 3D CNN used in Fig. 2 for structure correction.
Below each layer is the tensor size. Skip connection is used here in the
form of concatenation.

tensor of size Sx.J where S is the number of voxels in the input
volume i.e. 128 x 128 x 128, J is the number of classes i.e. 3
(left lung, right lung and background). The loss function CE
used for training the parameters of 3D CNN becomes:

J—

s
EZZ ij - log (i) + (1 — yij) - log (1 — 9i5)
i=0 j=0

3)
where, y;; € {0,1} is the ground truth mask value, g;; is the
output of the softmax layer of 3D structure correction CNN at
voxel 7 and y;; is 1 if the voxel i belongs to class j or else
0. The structure correction 3D CNN is a standard encoder and
decoder architecture with the skip connections between them as
shown in Fig. 8. The skip connection helps in retaining the detail
information from the input to the network’s output. Also to keep
the 3D CNN light weight we use the minimum number of filters
needed to achieve the minimum attainable validation set loss.
Increasing the filters above the chosen values does not decrease
validation loss further. This results in a very computationally
efficient architecture which does not add too much additional
cost to the entire segmentation pipeline. For training the 3D
CNN, artificial data is generated by introducing the corruption in
the mask obtained from V-Net. The V-Net masks are augmented
by 25 times by inserting tumor corruption at randomly selected
edge voxel. Tumor corruption is introduced with a probability
of 0.8 which means that roughly 80% of the augmented samples
are corrupted and 20% samples remain the same. A total of
153 nodule annotations are taken from the LIDC dataset to
be enlarged as tumor corruption mask out of which randomly
selected 80% nodules are used for training split and 20% for
validation split. Tumor corruption masks are rotated by 90° with
equal probability along the three axes (X, y and z) to augment the

,_.
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tumor mask dataset. We train three configuration of 3D structure
correction CNN which differ in the magnification factor of the
tumor masks (10-20 mm, 10-30 mm, 10—-50 mm). The impact of
tumor magnification factor is discussed in Section V-A. The 3D
CNN is trained for a maximum of 50 epochs and the model with
least validation set loss is used for doing inference on the test
set. Training of the models is done using a Titan 2080 Ti GPU
on a linux machine with 19-9900 k CPU and 64 GB RAM. The
model is implemented using the Keras Library with Tensorflow
backend. Training of the Stage 1 V-net model takes around
2.5 hours, while the structure correction CNN takes around
4.7 hours.

D. Comparison CNN Training Details

We compare the proposed method against three strong base-
lines for medical image segmentation namely U-Net (using 2D
CT slices), V-Net and 3D U-Net (using volume) along with
three other publicly available state-of-the-art 2D slices based
lung segmentation models namely P-HNN [26], SegNet [37]
and Dilated CNN [24]. In addition, we also compare a GAN
(Generative Adversarial Network) [38] based lung segmentation
model proposed in [39]. All the models in comparison are trained
using the LUNA dataset following the same protocol used for
training the proposed model i.e. LUNA subset 0-6 is used for
training and subset 7 is used for validation. U-Net, V-Net. 3D
U-Net, SegNet and Dilated CNN are trained with both dice
and categorical cross-entropy loss function using their publicly
available implementation while P-HNN is trained following
the official implementation. The model Multi-instance GAN
model proposed in [39] is implemented following the details
mentioned in the paper as the official implementation is not
publicly available. V-Net and 3D U-Net are trained with an input
volume of size 128 x 128 x 128 and the results obtained from
it is then resized to original CT dimension. All the other 2D
slices based models are trained with input size of 512 x 512
except for P-HNN which takes input of size 400 x 400 and
resizes the result again to 512 x 512 size. The model weights
with least validation loss is used for obtaining the results on the
test datasets. For comparison purposes, we also obtained already
trained P-HNN model weights from the authors.

V. RESULTS AND COMPARISON

In this section we share the results of the experiments which
demonstrate that the proposed algorithm while being fast is
also robust to pathological changes in the lung volume such
as large nodules and tumors. Three datasets have been used
for testing the performance namely NSCLC [31], LUNA [30]
and LOLAI11 [32]. NSCLC dataset is used to demonstrate
the performance in segmenting the lung volumes having large
nodules/tumors. LUNA is used to demonstrate the performance
while segmenting normal lungs and the speed of execution. And
finally, LOLA11 is used to show that the proposed algorithm
also performs satisfactorily in presence of other pathological
changes such as scoliosis, emyphysema etc.

TABLE |
COMPARISON OF RECALL OF TUMOR VOXELS
ON NSCLC DATASET (MEAN =+ STD)

NSCLC split

Juxtapleural ~ Rest Total

Tumors
Nodule Count 47 94 141
U-Net (d) [4] 0.541£0.255 0.888+0.184 0.772+0.266
V-Net (d) [6] 0.566+£0.294 0.92+0.158  0.802+0.271
3D U-Net (d) [5] 0.422+0.253 0.822£0.231 0.689+0.304
SegNet (d) [37] 0.422+0.234 0.794£0.261 0.6740.307
Dilated CNN(d) [24] 0.457+£0.247 0.825+£0.232 0.70240.294
U-Net (ce) [4] 0.506+£0.256 0.856£0.208 0.73940.279
V-Net (ce) [6] 0.461+£0.278 0.88+£0.201  0.741£0.303
3D U-Net (ce) [5] 0.42240.259 0.821£0.227 0.688+0.304
SegNet (ce) [37] 0.454+0.253 0.836£0.226 0.709+0.296
Dilated CNN(ce) [24] 0.562+0.272 0.892+0.183 0.782+0.267
P-HNN (Luna) [26] 0.723+£0.246  0.937£0.145 0.866+0.211
P-HNN (Public) [26] 0.756+£0.224 0.954£0.11  0.888+0.183
Multi-instance 0.516+£0.268 0.888+0.188 0.76440.28
GAN [39]
Our (w/o Flood,10-20)  0.741£0.29  0.94240.127 0.875+0.219
Our (w Flood,10-20) 0.751£0.287 0.946£0.123 0.881+0.215
Our (w/o Flood,10-30)  0.813£0.226 0.94140.123 0.898+0.176
Our (w Flood,10-30) 0.823+0.223 0.955£0.109 0.911£0.168
Our (w/o Flood,10-50)  0.864+0.189 0.94440.123 0.91840.153
Our (w Flood,10-50) 0.869+0.187 0.956+0.108 0.92240.15

(d) is dice loss and and (ce) is cross-entropy loss.

A. NSCLC Dataset Results for Tumor Voxel Recall

We first test the effectiveness of the proposed segmentation
algorithm in preserving large nodules and tumors. For this
purpose we performed the evaluation using the Non-Small Cell
Lung Cancer (NSCLC) dataset [31]. The dataset comprises
lung CT scans with the tumor annotation done by radiation
oncologist. A total of 141 CT volumes are present in NSCLC
with each volume having exactly one annotated tumor mask.
The NSCLC dataset provides the segmentation mask only for
the tumor regions and therefore the metric used for testing the
segmentation performance is Tumor Voxel Recall as shown in
Equation (4):

ZieST M
ZiEST I

where, M = {M; € {0,1},i € ST} is the predicted segmenta-
tion mask at voxel index 4 and S7 is the set of tumor voxel indices
obtained from ground truth annotation. While calculating Tumor
Voxel Recall, both left and right lung mask are taken while the
trachea region is not considered. Results of this experiment is
shown in Table I. To better appreciate the problem, we show
the results of segmentation for cases with large juxtapleural
nodules/tumors (>16 mm diameter) separately in Table I. Quali-
tative results for this experiment are shown in Fig. 9 where along
with the segmentation masks, tumor voxel recall has also been
shown. More qualitative results are shown in the supplementary
material.

Tumor Voxel Recall (TVR) = 4)

B. LUNA Test Set Results

LUNA dataset is devoid of pathologies such as tumors and
only comprises smaller nodules. Therefore, we use LUNA test
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TVR=0.52 TVR=0.37 TVR=0.41

TVR=0.44 TVR=0.41 TVR=0.55 TVR=0.7 TVR=0.99

PP DPDPDPDP

TVR=0.44 TVR=0.49 TVR=0.49

TVR=0.43

TVR=0.39

TVR=0.57 TVR=0.91 TVR=1.0

TVR=0.6 TVR=0.7 TVR=0.67

TVR=0.48 TVR=0.46 TVR=0.46

TVR=0.55

TVR=0.29 TVR=0.38

Fig. 9.

TVR=0.53 TVR=0.47 TVR=0.81 TVR=0.93 TVR=1.0

y

TVR=0.99

TVR=0.39

TVR=0.37 TVR=0.49 TVR=0.88

TVR=0.32 TVR=0.33 TVR=0.48 TVR=0.9 TVR=0.99

Figure illustrating cases from NSCLC dataset. The tumor voxel recall (TVR) is shown below each case. Only the central slice of the tumor

is shown here. Our method is showing results of 3D CNN trained with 10-50 mm tumor masks and after Flood-fill refinement.

split to obtain the performance of segmentation algorithms for
normal cases. Here the ground truth segmentation mask is avail-
able and therefore dice coefficient is taken as the performance
metric [40]. The formulation of dice coefficient is defined below:

2TP
Dice coefficient = TP I EFPLEN’ 5

where, TP is True positive, FP is False positive and FN is False
negative. We follow the convention used in LOLA11 challenge
to evaluate the lung overlap. Due to variability in defining the
lung border, voxels in a 2 mm slack border are not considered
during the evaluation [32]. The dice coefficient results for left
and right lung separately as well as for the entire lung volume are
shown in Table II. As can be seen from Table II that the proposed
model performs on-par with other segmentation models such as
Dilated CNN, SegNet etc.

For some use cases the segmentation masks needs to be very
crisp and should provide good estimate of the volume surface.
For such use-cases the symmetric average surface distance

TABLE Il
Dice COMPARISON OF LUNG VOLUME SEGMENTATION ON LUNA TEST SET.
(MEAN + STD)
Model Left Right Total
lung lung lung
U-Net (d) [4] 0.9973-+0.0038 0.9968+0.0047 0.9977+0.003

0.997340.0024 0.99740.003  0.997340.0023
0.9966£0.0031 0.9958+0.0043 0.9964+0.0031
0.9943+0.0061 0.987640.0178 0.9934+0.0093
0.9940.0355  0.989140.0281 0.990440.031

V-Net (d) [6]

3D U-Net (d) [5]
SegNet (d) [37]
Dilated CNN (d) [24]

U-Net (ce) [4]
V-Net (ce) [6]
3D U-Net (ce) [5]

0.9944+0.0106 0.9931+0.0105 0.994140.0086
0.9973£0.0025 0.9966£0.0039 0.9971+£0.0027
0.995940.0059 0.9946+0.0093 0.995540.0057
SegNet (ce) [37] 0.9968+0.005 0.9967+0.0043 0.997140.0038
Dilated CNN (ce) [24]  0.9975+0.0035 0.9948+0.0103 0.9966+0.0052

P-HNN (Luna) [26] - - 0.9769+0.0116
P-HNN (Public) [26] - - 0.992+0.0113

Multi-instance
GAN [39] 0.9947+0.0055
0.9972+0.0025 0.996540.0027 0.9974+0.0023

Our (w/o Flood,10-20)

Our (w Flood,10-20) 0.9973+0.0025 0.99714+0.0024 0.9973+0.0022

Our (w/o Flood,10-30)  0.997340.0025 0.9968+0.0027 0.9971+0.0023

Our (w Flood,10-30) 0.9974+0.0025 0.9974+0.0026 0.997340.0023
0.9973+0.0025 0.9968+0.0027 0.99724+0.0023

Our (w/o Flood,10-50)
Our (w Flood,10-50) 0.9975+0.0024 0.99744+0.0024 0.9975+0.0022

(d) is dice loss and and (ce) is cross-entropy loss.
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TABLE Il
AVERAGE SURFACE DISTANCE COMPARISON OF LUNG VOLUME SEGMENTATION ON LUNA TEST SET (in mm). (MEAN £ STD)
Distance 90% 95% All
Percentile
Lung Left Right Total Left Right Total Left Right Total
U-Net [4] 0.1+0.19 0.24+0.75 0.08+0.11 0.24+0.45 0.38+1.17 0.14+0.19 0.64+1.08 1.0+£1.78 0.434+0.54
Dice 3D U-Net [5] 0.444+0.21 0.43£0.08 0.424+0.08 0.53+0.39 0.51£0.16 0.5+0.13 0.74£0.72 0.68+0.39 0.68+0.39
V-Net [6] 0.374+0.07 0.37£0.07 0.37+0.06 0.43+0.1  0.43£0.08 0.43+0.07 0.57£0.23 0.56+0.14 0.5440.13
SegNet [37] 0.12+£0.3  0.12+£0.33 0.08+0.05 0.22+0.53 0.2+0.51  0.15+0.16 0.584+0.98 0.534+0.78 0.4140.46
Dilated CNN [24] 0.76£2.52 0.63+£2.01 0.61+£1.85 1.07+£2.93 0.93+2.34 0.88+2.21 1.844+3.39 1.884+2.72 1.694+2.65
U-Net [4] 0.49+1.44 0.84+2.35 0.38+1.12 0.97+2.01 1.46+3.28 0.76+1.55 2.1+2.84 2.724+4.28 1.63+2.11
3D U-Net [5] 0.574+1.44 0.54£0.51 0.51+0.56 0.68+1.67 0.58+0.69 0.6+0.8 0.97+1.95 0.79£0.91 0.85+1.09
Cross  V-Net [6] 0.49+0.54 0.46+£0.09 0.45+0.1 0.65+£1.45 0.53+0.1 0.544+0.17 1.01+2.48 0.744+0.24 0.8140.69
Entropy SegNet [37] 0.1+0.14  0.1£0.17  0.09+0.11 0.184+0.28 0.22+0.41 0.144+0.17 0.43+£0.57 0.64£0.9  0.361+0.34
Dilated CNN [24] 0.434+2.41 0.16+£0.65 0.23+1.18 0.66+2.77 0.27+0.87 0.38+1.54 1.35+3.17 0.68+1.28 0.944+1.97
P-HNN (Luna) [26] - - 1.06+0.32 - - 1.2740.45 - - 1.67+0.73
P-HNN (Public) [26] - - 0.694+1.75 - - 1.04£2.13 - - 2.05+£2.61
Multi-instance - - 0.25+0.34 - - 0.484+0.75 - - 1.17£1.21
GAN [39]
Our (w/o Flood, 10-20)  0.384+0.07 0.39£0.07 0.38+0.07 0.45+0.1 0.45+0.08 0.44+0.07 0.6£0.26 0.58+0.13 0.5740.12
Our (w Flood, 10-20) 0.240.05  0.21£0.05 0.21+0.05 0.274+0.09 0.27+0.06 0.274+0.05 0.44+0.3 0.41+0.12 0.440.13
Our (w/o Flood, 10-30)  0.384+0.08 0.39£0.07 0.38+0.07 0.45+0.1 0.45+0.08 0.444+0.07 0.6£0.23 0.57+0.13 0.5740.12
Our (w Flood, 10-30) 0.214+0.06 0.21£0.05 0.21+0.05 0.27£0.1  0.27+0.06 0.274+0.06 0.44+0.27 0.4+0.12 0.440.14
Our (w/o Flood, 10-50)  0.42+0.07 0.444+0.07 0.43+0.06 0.494+0.09 0.514+0.08 0.4940.07 0.63+0.22 0.64+0.14 0.62£0.12
Our (w Flood, 10-50) 0.2240.07 0.22£0.05 0.21+0.05 0.294+0.11 0.28+0.06 0.274+0.06 0.46+0.29 0.41+0.12 0.4140.14

(ASD) metric [40] is used which is defined in Equation (6):

Y dices Ming;ee, dist (d;, d;j)

ASD(S, F) = (
2% ZdiGES 1
Z cep mindi e dist (d,dz)
R AN )
* Zd_.jEep 1

where S is ground truth segmentation, F' predicted segmenta-
tion, V' volume size, eg surface of ground-truth segmentation,
e surface of predicted segmentation, d; vertices on the surface
es, d; vertices on the surface er, and dist(d;, dj) euclidean
distance between vertices d; and d;. The results of surface
distance performance is shown in Table III. 2D scan based
method sometimes suffer from holes in their output which results
into higher surface distance for those voxels. Hence, to be fair
while calculating the average distance we considered various
percentile of surface voxel distances. In Table III, ASD is
calculated in three ways, first considering all surface voxels,
second considering lowest 95% surface distance voxels and third
with lowest 90% surface distance voxels. Ground truth mask
is available for left, right, and total lung volume for Luna CT
scans and therefore we plot the agreement between the predicted
lung volume and the ground truth volume using a Bland-altman
plot as shown in Fig. 10. For comparison purpose we also plot
the Bland-Altman plot between output of Stage 1 V-Net and
ground truth volume. The plot shows the lung volume (in Liter)
estimated by proposed algorithm in comparison to ground truth
volume.

C. Time of Execution Results

We also calculate the mean execution time for all the models
on the LUNA test split. The results for time of execution is shown
in Table IV. It can be observed that the proposed model is sig-
nificantly faster in comparison to many state-of-the-art models.

The slowest of them all is P-HNN model which comprises four
VGG-16 networks making it significantly slower. The fastest one
is the V-Net model. Both the volume based segmentation model
have lower execution time because of performing segmentation
on a lower resolution volume. However, like other CNN models
in comparison both of them suffer in pathological cases having
tumors as shown in Fig. 9. Also because of lack of details at the
surface they have higher symmetric average surface distance,
refer Table IIl. The refinement performed on the proposed
model’s output lowers the average surface distance and adds
additional 1.2 seconds on average in total execution time.

D. LOLA11 Results for Other Pathologies

Finally, we also test the performance of the proposed method
in segmenting other pathological cases such as emphysema
etc. For this purpose we evaluate the algorithm on the LObe
and Lung Analysis 2011 (LOLA11) dataset. LOLA11 dataset
comprises 55 lung CT cases with a number of pathologies such
as scoliosis, emphysema, pleural effusion etc. The ground truth
segmentation mask for this dataset is not publicly available
and the evaluation is obtained from the challenge website [32].
The performance of the proposed method and other models in
comparison is shown in Table V. Evaluation in this case is done
for left, right lung individually and entire lung volume using the
Intersection Over Union (IoU) metric [40]. Multi-instance GAN
and P-HNN model provide entire lung segmentation mask and
hence we could not obtain their performance on LOLA11 dataset
where submission requires left and right lung masks separately.
Results in Table V demonstrates that the proposed algorithm
performs satisfactorily in presence of other pathologies such as
scoliosis, emphysema etc. Fig. 11 shows few qualitative results
of the proposed method on pathological cases from LOLAI1
dataset.
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Fig. 10.

Bland Altman plot showing the agreement between the segmentation mask obtained by our method and the ground truth mask for left,

right and total lung volume in LUNA dataset. For comparison, Bland Altman plot of Stage 1 V-Net output and Ground truth mask is also shown.

TABLE IV
MEAN EXECUTION TIME COMPARISON ON LUNA TEST SET. (MEAN + STD)

Model Time (in sec)
U-Net [4] 9.66+5.46
V-Net [6] 1.43+0.56
3D U-Net [5] 1.8740.63
SegNet [37] 19.84+10.51
Dilated CNN [24] 10.3245.57
P-HNN [26] 20.914+11.38
Multi-instance GAN [39]  5.0242.63
Our (Without Flood) 1.474+0.57
Our (With Flood) 2.694+1.21

TABLE V
IoU COMPARISON OF LUNG VOLUME SEGMENTATION ON LOLA11 DATASET.
(MEAN = STD)

Model Left lung Right lung ;ll;(;tgl

U-Net (ce) [4] 0.9644£0.1341 0.96754+0.1345 0.9660
V-Net (ce) [6] 0.965+0.1098  0.96784+0.1305 0.9664
3D U-Net (ce) [5] 0.9616£0.1037 0.964140.1308 0.9629
SegNet (ce) [37] 0.9641£0.1240 0.967040.1319 0.9656
Dilated CNN (ce) [24]  0.9684+0.0957 0.9665+0.1339 0.9674
U-Net (d) [4] 0.9574£0.1327 0.9659+0.1319 0.9616
V-Net (d) [6] 0.9665+0.104  0.9666+0.1331 0.9665
3D U-Net (d) [5] 0.9606£0.1308 0.9654+0.1317  0.9628
SegNet (d) [37] 0.965+0.1328  0.959340.1394 0.9621
Dilated CNN (d) [24] 0.9632£0.0959 0.957940.1355 0.9605
Our (w/o Flood,10-20)  0.963140.1326 0.9685+0.133  0.9658
Our (w Flood,10-20) 0.9636£0.1328 0.96914+0.133  0.9663
Our (w/o Flood,10-30)  0.963140.1323 0.9687+0.1329 0.9659
Our (w Flood,10-30) 0.9635£0.1325 0.96911+0.1329 0.9663
Our (w/o Flood,10-50)  0.964740.1038 0.9679+0.1329 0.9663
Our (w Flood,10-50) 0.9654+0.1026 0.968440.1329 0.9669

V. DISCUSSION

A. Tumor Recall Improvement Due to
Structure Correction

It can be observed from Table I that in cases of large juxta-
pleural nodules/tumors the recall of voxels drops drastically for
all the other models. However, due to the presence of structure
correction done by the 3D CNN, the proposed model is able to
recover such regions and significantly outperforms other models.
P-HNN model performs the second best among the models in
comparison with a mean large tumor recall of 0.756 when the
publicly available weights are used and obtains a mean recall of
0.723 when trained using only LUNA dataset. The best configu-
ration of proposed method (with Flood, trained with 10-50 mm
resized corruption masks) gets a mean recall of 0.869 which is
better than the second best model (P-HNN) by around 15%, see
Table I. A Wilcoxon signed rank test indicated that the tumor re-
call obtained by the proposed method is statistically significantly
higher than the recall obtained by the second best P-HNN model
(public weights) with Z = —3.062945, p = 0.0011(< 0.05).

Without any structure correction the output is same as
that of up-sampled Stage 1 V-Net (with dice loss) where
the mean recall of large juxtapleural tumor voxels is around
0.57. Again, the mean recall obtained from proposed method
is statistically significantly higher with Z = —8.977491, p =
—1.11022¢ — 16(< 0.05). This shows that in absence of patho-
logical training cases, shape correction is necessary to avoid
missing important juxtapleural tumors/nodules. Except for
P-HNN all other 2D slice based models have significantly lower
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(b)
Fig. 11.  Figure illustrating the pathological cases from LOLA11 dataset. In (a) Case 42 is shown having emphysema. The proposed algorithm is

able to capture the focal regions of emphysema. In (b) Case 5 is shown where the input CT has severe abnormality in shape due to scoliosis. The
proposed method does not hallucinate region outside of the lung volume despite the presence of severe abnormality.

recall at around 0.5. This also demonstrates that P-HNN archi-
tecture having progressive multi-path scheme is better suited for
this purpose. Surprisingly, we also observe that U-Net trained
with dice loss has higher tumor voxel recall than a GAN based
network proposed in [39].

We also observe that while training the structure correction
CNN, the nodules should be resized to a range such that it covers
all the tumors under consideration. A model trained only on
smaller nodules is not able to capture larger tumors as can been
seen in Table I. The mean recall of large juxtapleural tumors
for model trained with 10-20 mm tumors is 0.751 while for the
model trained with 10-50 mm tumors is 0.869.

B. Enhancement Due to Flood-Filling

In Table III it can be seen that the parallel flood-fill operation
improves the symmetric average surface distance over only
up-sampled segmentation mask. However, the 2D CNN model
such as SegNet have lower surface distance which is due to
the fact that it operates on full resolution CT slices and is able
to preserve the very fine edge details [27]. Dilated CNN and
U-Net have higher surface distance because they produce patchy
output in many cases resulting into surface voxels far from
the ground truth surface [37]. The proposed model has higher
average surface distance compared to SegNet but is still below
0.5 mm which is typically the x-y resolution in CT scans. In
use-cases where the surface distance is not a critical requirement,
the flood-filling operation can be avoided. However, from the
time-of-execution results it can be seen that the cost of perform-
ing flood-filling is around an additional second. The flood-fill
operation also improves the Tumor voxel recall slightly. Our
approach demonstrates that using a 3D segmentation model
can give lower execution time. However, to use a 3D model
one needs to use lower resolution to be able to train it on a
single GPU. Also, the loss of high resolution details lost due
to down-sampling can be recaptured by performing proposed
flood-fill operation instead of performing costly convolution
operation at full resolution.

C. Limitation

The proposed algorithm has major limitation in segmenting
lung volumes with pleural effusions where the entire or majority
of the lung region is filled with fluid. An example of such case
from LOLA11 dataset is shown in Fig. 12. This is because the

SLE &

Fig. 12.  Figure illustrating case 45 from LOLA11 dataset which has
severe pleural effusion. The left lung is entirely filled with fluid and the
stage 1 V-Net fails to segment it.

output of the V-Net model in such cases is devoid of any lung
region and the structure correction CNN is not able to correct
such cases. It should be noted that this limitation is common in all
the CNN models compared in absence of pathological training
volumes with pleural effusion. For such cases labelled training
data would be needed. Also, nodules are not commonly seen in
the regions filled with pleural effusions so this kind of case will
not affect the performance of nodule detection.

VI. CONCLUSION

We propose a novel approach for lung volume segmenta-
tion from CT scans. The benefits of our design choices is
demonstrated by experiments on a number of use-cases. The
model performs segmentation on a downsampled 3D volume
which alleviates the problem of large GPU memory required for
training 3D CNN and reduces the inference time. The proposed
structure correction method helps in incorporating shape char-
acteristics into the segmentation model. The benefits of such
structure correction is demonstrated by a substantial increase in
the recall of tumor voxels which are missed by current CNN
based segmentation models. Also to compensate for the loss of
fine edge details a parallel flood-fill operation is proposed which
recovers the fine surface details without incurring significant
cost. The proposed method provides a fast and robust alternative
to current lung segmentation methods when the average surface
distance is not a critical requirement. One future extension of
this work could be to obtain a large collection of un-labelled
pathological lung CT volumes and to obtain the segmentation
masks for them using the proposed algorithm. Using these
generated segmentation masks the V-Net in Stage 1 could be
trained. This will eliminate the need for structural correction in
Stage 2 and can further simplify the model.
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CT Tumor
Annotation

Multi-instance Dilated CNN SegNet 3D U-Net P-HNN Our

TVR=0.28 TVR=0.26 TVR=0.17 TVR=0.24 TVR=0.21 TVR=0.27 TVR=0.67 TVR=0.99

TVR=0.47 TVR=0.37 TVR=0.38 TVR=0.4 TVR=0.36 TVR=0.51 TVR=0.82 TVR=0.84

TVR=0.78 TVR=0.72 TVR=0.57 TVR=0.69 TVR=0.7 TVR=0.95 TVR=0.81 TVR=0.96

TVR=0.08 TVR=0.12 TVR=0.09 TVR=0.08 TVR=0.06 TVR=0.1 TVR=0.35 TVR=0.98

TVR=0.71 TVR=0.56 TVR=0.42 TVR=0.41 TVR=0.61 TVR=0.94 TVR=0.74 TVR=1.0

BRI IATY

TVR=0.05 TVR=0.1 TVR=0.05 TVR=0.04 TVR=0.05 TVR=0.06 TVR=0.16 TVR=0.89

TVR=0.69

TVR=0.58 TVR=0.64

TVR=0.58

TVR=0.65

TVR=0.82

TVR=0.62

TVR=0.76

TVR=0.19 TVR=0.22 TVR=0.15 TVR=0.14 TVR=0.09 TVR=0.13 TVR=0.37 TVR=0.73
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Disclaimer: The concepts, information and software pre-
sented in this paper are based on research and are not com-
mercially available. Its future availability cannot be guaranteed.
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