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Adversarial Risk via Optimal Transport
and Optimal Couplings

Muni Sreenivas Pydi and Varun Jog

Abstract— Modern machine learning algorithms perform
poorly on adversarially manipulated data. Adversarial risk quan-
tifies the error of classifiers in adversarial settings; adversarial
classifiers minimize adversarial risk. In this paper, we analyze
adversarial risk and adversarial classifiers from an optimal
transport perspective. We show that the optimal adversarial
risk for binary classification with 0-1 loss is determined by an
optimal transport cost between the probability distributions of
the two classes. We develop optimal transport plans (probabilis-
tic couplings) for univariate distributions such as the normal,
the uniform, and the triangular distribution. We also derive
optimal adversarial classifiers in these settings. Our analysis leads
to algorithm-independent fundamental limits on adversarial risk,
which we calculate for several real-world datasets. We extend our
results to general loss functions under convexity and smoothness
assumptions.

Index Terms— Machine learning, statistical learning, robust-
ness, couplings, information theory.

I. INTRODUCTION

DEEP learning has had tremendous success in recent
times, producing state-of-the-art results in image classi-

fication [1], [2], game playing [3]–[5], speech [6], [7] and nat-
ural language processing [8], [9]. However, Szegedy et al. [10]
discovered that these algorithms are surprisingly vulnera-
ble to minute adversarial perturbations. Many adversarial
attacks [11]–[13] and defenses [14]–[16] have been proposed
since. Often, the defenses are subsequently broken or are
computationally intractable in practice.

The reason for existence of adversarial examples in
deep learning is unknown, but many explanations have
been suggested. One line of work hypothesizes that adver-
sarial examples are inevitable in certain high-dimensional
settings [17], [18]. Goodfellow et al. [13] propose that the
reason for adversarial examples may be the linear nature of
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deep neural networks. Ilyas et al. [19] propose that adversarial
examples correspond to non-robust features in the data that are
highly predictive, but brittle. Moreover, it was recently pro-
posed that adversarial risk may be fundamentally at odds with
standard risk—a claim that finds support both in theory [20]
and in practice [21].

In this paper, we deviate from algorithm-dependent inves-
tigations of adversarial examples and ask two fundamental
questions:

Question 1: How much can the optimal adversarial risk
differ from optimal standard risk? In the binary classification
setting, we may equivalently ask: How much will the classi-
fication error increase due to an adversary—an increase that
cannot be mitigated by any algorithm?

Question 2: How does the optimal adversarial classifier
differ from the standard optimal classifier?

Recent works have addressed Question 1 by deriving upper
and lower bounds on the optimal adversarial risk with respect
to a fixed set of classifiers, by extending the PAC learning
theory to encompass adversaries [22], [23]. A related question
asks how much adversarial perturbation is sufficient to make
the optimal adversarial risk significantly greater than the
optimal standard risk. Relevant works in this direction develop
robustness metrics that depend on the classifier [24]–[26].
For Question 2, recall that the optimal classifier without an
adversary is simply the Bayes optimal classifier. In adversarial
settings, the optimal classifier may differ considerably from
the Bayes optimal classifier. A recent line of work shows
that optimal adversarial classifier can be calculated using
non-parametric methods if data are well-separated [27], [28].
The work of Moosavi-Dezfooli et al. [29], Cohen et al. [30]
and Yang et al. [31] suggests that the optimal adversarial clas-
sifier has smoother boundaries than the optimal standard
classifier. Even so, the question of how the optimal adversarial
classifier differs from the standard one remains open.

The closest work to ours is Bhagoji et al. [32], which
develops algorithm-independent lower bounds for learning in
the presence of an adversary. Specifically, [32] contains a
similar result to our Theorem 2 which gives the optimal
adversarial risk for binary classification with 0-1 loss in
terms of an optimal transport cost between the probability
distributions of the two classes. We provide a new, simpler
proof of this characterization by applying the Kantorovich
duality of optimal transport for 0-1 cost functions. We shall
discuss the results from Bhagoji et al. [32] and compare these
with our results at appropriate points in the paper.
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Our Contributions:
In this paper, we consider data perturbing adversaries

that manipulate sampled data points, and distribution per-
turbing adversaries that manipulate the data generating dis-
tribution itself. We show that these two adversaries are
closely related and establish the precise relationship between
them. We primarily focus on the binary classification setting
under 0-1 loss function. We answer Question 1 by providing
algorithm-independent bounds for adversarial risk that are
agnostic to the classifier. We answer Question 2 by deriving the
optimal adversarial classifier in some special settings, and by
providing bounds on the deviation of the optimal adversarial
classifier from the standard optimal classifier in more general
settings. Our contributions are listed below.
(1) We resolve Question 1 in the binary classification with

0-1 loss setting by deriving a formula for the optimal
adversarial risk in terms of an optimal transport cost
between the two data distribution. Our proof is novel
and simple and connects adversarial machine learning to
well-known results in optimal transport theory.

(2) We construct optimal couplings for the optimal trans-
port cost from (1) when the two data distributions are
univariate normal, uniform over intervals, and triangular.
We resolve Question 2 in these cases by determining
the optimal adversarial classifiers using the optimal cou-
plings. Our results indicate that the decision boundary
can be sensitive to the adversary’s budget.

(3) We calculate the optimal adversarial risk for the
CIFAR10, MNIST, Fashion-MNIST, and SVHN datasets.
We perform a similar calculation for data-augmented
versions of these datasets. The non-zero values resulting
from these calculations highlight the impossibility of
being completely accurate—even on the training set—in
adversarial settings.

(4) We partially address Question 1 for continuous loss
functions by deriving upper and lower bounds on the
optimal adversarial risk which depend on convexity and
smoothness assumptions of the loss with respect to data.
We also partially address Question 2 by upper bounding
how much the optimal hypothesis with an adversary can
deviate from the optimal hypothesis without an adversary.
These bounds are in terms of the curvature of the loss
function with respect to the parameters of the hypotheses.

Structure: The rest of the paper is structured as fol-
lows: In Section II, we introduce the data-perturbing and
distribution-perturbing models of adversaries and show that the
data-perturbing adversary may be considered to be a special
case of the distribution-perturbing adversary. We also discuss
related work, especially, other related notions of adversaries
studied in the literature. In Section III, we discuss the optimal
adversarial risk for binary classification with 0-1 loss. We set-
tle Question 1 in this setting by introducing the Dε optimal
transport cost that completely characterizes the optimal risk.
In Section IV we present a coupling strategy that achieves
the optimal transport cost in special cases of interest in the
univariate case. Using this coupling, we obtain the optimal
adversarial classifier, thus settling Question 2 for these special
cases. In Section V-A, we discuss the optimal risk for general

loss functions and present our bounds on the optimal adver-
sarial risk. In Section V-B, we discuss optimal classifiers for
general loss functions and present our deviation bounds on the
optimal adversarial classifier. Finally, in Section VI, we present
adversarial risk lower bounds for real world datasets and
evaluate our bounds for 0-1 loss function.

Notation: The complement of a set A is denoted by Ac.
The indicator function that maps all the inputs satisfying
condition C to 1 and the rest to 0 is denoted by 1{C}. The set
of probability measures over the measure space (X , σ(X )),
where X is a Polish space and σ(X ) is the Borel sigma
algebra over X , is denoted by P(X ). For any two probability
measures μ, ν ∈ P(X ), the set of all joint probability measures
(or couplings) over X ×X with marginals μ and ν is denoted
by Π(μ, ν). The total variation distance and p-Wasserstein
distance between μ and ν is denoted by DTV (μ, ν) and
Wp(μ, ν), respectively. A norm and its dual are denoted
by ‖·‖ and ‖·‖∗, respectively. The cumulative distribution
function (cdf) of the standard normal distribution is denoted
by Φ and its tail distribution is denoted by Q(x) := 1−Φ(x).

II. MODELS IN ADVERSARIAL MACHINE LEARNING

We describe models of adversaries that are commonly
invoked in machine learning and highlight connections
between them. We use the following convention: Let (X , d)
denote a separable Hilbert space with metric d for the data
points and Y denote the finite set of discrete labels assigned to
the data-points. Let ρ be the data distribution which we express
as ρy(y)ρx|y(x), where ρy(y) is the marginal probability
of label y ∈ Y and ρx|y(·) is the conditional distribution
of X given Y = y. Let the hypothesis class be W . Let
� : (X × Y) × W → R

+ denote a loss function such that
�((·, ·), w) is ρ-measurable for all w ∈ W . Let Z := X × Y
and z := (x, y) ∈ Z .

A. Types of Adversaries: Informal Description

To quantify the impact of an adversary, several notions of
adversarial risk have been proposed in the literature. We high-
light two most popular notions: (i) adversary perturbs data
points, and (ii) adversary perturbs data distributions.

1) Data Perturbing Adversary: A data-perturbing adversary
of budget ε can perturb x ∈ X to any x′ ∈ X such
that d(x, x′) ≤ ε. The adversary wishes to maximize loss,
and so would choose x′ accordingly. A natural definition
for adversarial loss (or robust loss) incurred by a hypothesis
w ∈ W for an adversary with budget ε is [14], [33]:

Rε(�, w) = E(x,y)∼ρyρx|y

[
sup

d(x,x′)≤ε

�((x′, y), w)

]
. (1)

2) Distribution Perturbing Adversary: The adversarial loss
incurred by a hypothesis w ∈ W in the presence of a
distribution perturbing adversary with a budget ε is defined
as follows:

R̂ε(�, w) = sup
ρ′∈Bε(ρ)

Ez∼ρ′�(z, w), (2)

where Bε(ρ) may be thought of as a ball of radius ε around ρ,
the true data generating distribution. The Wasserstein distance
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has been one of the more popular metrics used to define Bε(·)
in the space of distributions [34]–[39].

B. Types of Adversaries: Formal Description

1) Data Perturbing Adversary: Formulation (1) is adequate
for most practical purposes, but runs into measure-theoretic
difficulties due to the arbitrary choice involved in the adver-
sary’s perturbations. Even if the adversarial map x → x′

is ρ-measurable, the function supd(x,x′)≤ε �((x′, y), w) may
not be ρ-measurable. Moreover, the adversary may not use
a deterministic mapping to perturb the data points, and rather
do so randomly. In light of these considerations, we redefine a
data perturbing adversary to be a collection of Markov kernels
indexed by y ∈ Y denoted by κy : X × σ(X ) → [0, 1].
Equivalently, for each y ∈ Y the kernel κy satisfies:

1) For all x ∈ X , the map A → κy(x, A) is a probability
measure denoted by κy,x ∈ P(X ),

2) For all A ∈ σ(X ), the map x → κy,x(A) is measurable.

Let the collection of kernels indexed by y be κ := {κy | y ∈
Y}. It is useful to think of κy,x as the adversary’s perturbation
strategy after observing the sample x and its label y – the
adversary perturbs x to x′ where the latter is the result of
passing x through the Markov kernel κy,x. The collection of
kernels κ completely describes the adversary’s strategy. We use
ρκ(x, y, x′) to denote the joint distribution of (x, y, x′) induced
by κ. Let the joint distribution of (x, x′) conditioned on y
be denoted by ρκ

(x,x′)|y ∈ P(X × X ), and the conditional
distribution of x′ given y be denoted by ρκ

x′|y ∈ P(X ). We say
that the adversary κ has a budget of ε ≥ 0, denoted by κ ∈ Kε,
if the following holds ρy-almost surely:

ess sup
(x,x′)∼ρκ

(x,x′)|y

d(x, x′) ≤ ε. (3)

Then, we have the following definition for the adversarial
risk incurred by a hypothesis w ∈ W in the presence of a data
perturbing adversary of budget ε:

Rε(�, w) = sup
κ∈Kε

E(x,y,x′)∼ρκ(x,y,x′) [�((x′, y), w)] . (4)

We will use the definition in (4) rather than the one in (1)
to denote the adversarial loss unless specified otherwise.

The optimal adversarial loss attainable over the hypotheses
w ∈ W is defined as the optimal adversarial risk or optimal
robust risk,

R∗
ε = inf

w∈W
Rε(�, w). (5)

The hypothesis attaining the optimal adversarial risk (if it
exists) is called the optimal adversarial hypothesis and is
denoted by w∗

ε . Note that for ε = 0, we have x = x′

almost surely, and so the adversarial risk equals Bayes risk,
R∗

0 = infw Ez∼ρ [�((x, y), w)].
2) Distribution Perturbing Adversary: Since distribution

perturbing adversaries considered in this paper rely on optimal
transport distances, we introduce optimal transport briefly.
Let μ, ν ∈ P(X ) and let c : X × X → R

+ denote the cost

c(x, x′) of transporting unit mass from x ∈ X to x′ ∈ X . The
optimal transport cost between μ and ν is given by,

Tc(μ, ν) = inf
π∈Π(μ,ν)

E(x,x′)∼πc(x, x′), (6)

where Π(μ, ν) is the set of all couplings between μ and ν.
When c(x, x′) = d(x, x′), where d is a metric over X ,
the optimal transport cost is the 1-Wasserstein distance;
i.e., W1(μ, ν) = Td(μ, ν). For p ≥ 1, the p-Wasserstein
distance is given by W1(μ, ν) = (Tdp(μ, ν))p. The
∞-Wasserstein distance is defined to be the limit of
the p-Wasserstein distances as follows: W∞(μ, ν) =
limp→∞ Wp(μ, ν). Alternatively, the ∞-Wasserstein distance
is also characterized as follows [40].

W∞(μ, ν) (7)

= inf{δ > 0 : μ(A) ≤ ν(Aδ) ∀ A ∈ σ(X )} (8)

= inf
π∈Π(μ,ν)

ess sup
(x,x′)∼π

d(x, x′). (9)

For 1 ≤ p ≤ q, we have Wp(μ, ν) ≤ Wq(μ, ν) ≤
W∞(μ, ν). Hence, the W∞-metric is stronger than any
Wp-metric.

An adversary γ is a collection of distributions over X
indexed by y; i.e., γ = {ργ

x′|y ∈ P(X ) | y ∈ Y}. An adversary
γ is said to have budget ε in the p-Wasserstein space if,
the following holds ρy-almost surely:

Wp(ρ
γ
x|y, ρx|y) ≤ ε.

This is denoted by γ ∈ Γp
ε . Note that Γq

ε ⊆ Γp
ε for 1 ≤ p ≤

q ≤ ∞. It is useful to think of ργ
x′|y as the adversary’s strategy

after observing the sample (x, y). The adversary perturbs x
to x′ such that x′ ∼ ργ

x′|y and x and x′ are conditionally
independent given the label y. The collection of distributions
{ργ

x′|y | y ∈ Y} completely describes the adversary’s strategy.
The data distribution after the adversary’s action is (x′, y) ∼
ρy(y)ργ

x′|y . Let ργ(x′, y) ∈ P(X ×Y) denote this distribution.
For a loss function � and hypothesis w, the adversarial risk is
defined as

R̂p
ε (�, w) = sup

γ∈Γp
ε

E(x′,y)∼ργ(x′,y)�((x′, y), w). (10)

The optimal adversarial loss attainable over the hypotheses
w ∈ W is defined as the optimal adversarial risk or optimal
robust risk,

R̂p,∗
ε = inf

w∈W
R̂p

ε (�, w).

The hypothesis attaining the optimal adversarial risk (if it
exists) is called the optimal adversarial hypothesis and is
denoted by ŵ∗

ε . Note as before that for ε = 0, adversarial
risk equals Bayes risk.

3) Relation Between the Two Types of Adversaries: Our
goal is to show that the data perturbing adversary is a special
case of the distribution perturbing adversary in the following
sense: The adversarial loss incurred under Kε is identical
to the adversarial loss incurred under a Γ∞

ε . (Note that the
adversaries themselves are different due to the conditional
independence of x and x′ given y for the distribution per-
turbing adversary.) This is shown in the following theorem.
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Theorem 1: Let X be a separable Hilbert space, let Y be
a discrete set of labels, let W be a hypothesis class, and let
� : Z ×W → R+ be a ρ-measurable loss function. Let

Rε(�, w) = sup
κ∈Kε

E(x,y,x′)∼ρκ(x,y,x′) [�((x′, y), w)]

and

R̂∞
ε (�, w) = sup

γ∈Γ∞
ε

E(x′,y)∼ργ(x′,y) [�((x, y), w)] .

Then Rε(�, w) = R̂∞
ε (�, w).

Proof: Let κ ∈ Kε. Observe that the adversarial loss
depends only on the marginal distribution of (x′, y) in the
joint distribution of (x, y, x′) induced by κ. Recall that we
denote the joint distribution of (x, x′) conditioned on y by
ρκ
(x,x′)|y ∈ P(X × X ), and the conditional distribution of x′

given y by ρκ
x′|y ∈ P(X ).

Define a distribution perturbing adversary γ as follows: γ =
{ργ

x′|y := ρκ
x′|y | y ∈ Y}. The key point to note here is that the

marginal distribution ργ(x′, y) is identical to ρκ(x′, y), and so
the adversarial risk for both adversaries is identical. For y ∈ Y ,

W∞(ρx|y, ργ
x′|y) = W∞(ρx|y, ρκ

x′|y)

≤ ess sup
(x,x′)∼ρκ

(x,x′)|y

d(x, x′)

≤ ε.

Here the first inequality follows since W∞ is the infimum
of the essential supremum over all couplings and ρκ is just
one such coupling, and the final inequality follows since
κ ∈ Kε. This shows that for every κ ∈ Kε, there is a γ ∈ Γ∞

ε

that achieves the same adversarial risk, and so we conclude
Rε(�, w) ≤ R̂∞

ε (�, w).
We will now prove the above inequality in the reverse. Let

γ = {ργ
x′|y | y ∈ Y} ∈ Γ∞

ε . Then, W∞(ρx|y, ργ
x′|y) ≤ ε for all

y ∈ Y . Fix a y ∈ Y . By the definition of W∞, we have that for
any positive integer n, there exists a joint probability measure
πn ∈ Π(ρx|y, ργ

x′|y) such that ess sup(x,x′)∼πn
d(x, x′) <

ε + 1/n. We now show that the sequence of measures πn

is tight. Given a δ > 0, let E ⊆ X be a compact set such that
min{ρx|y(E), ργ

x′|y(E)} > 1 − δ/2. Then,

πn((E × E)c) ≤ ρx|y(Ec) + ργ
x′|y(Ec) < δ.

Hence, by Prokhorov’s theorem (for reference, see Theo-
rem 5.1 in [41]), there is a subsequence of (πn) that converges
weakly to a probability measure π∗ ∈ Π(ρx|y, ργ

x′|y) that
satisfies,

ess sup
(x,x′)∼π∗

d(x, x′) ≤ ε.

Since X is a complete and separable space, there exists a
Markov kernel λy : X × σ(X ) → [0, 1] such that for any
A, B ∈ σ(X ), we have

π∗(A × B) =
∫

x∈A

λy,x(B)dρx|y.

The existence of such a probability kernel is guaranteed
by the product-restricted conditional probability property of
Radon spaces (see Theorem 3.1 in [42]). Repeating the above

argument, we construct a kernel λy for each y ∈ Y satisfying
ess sup(x,x′)∼ρx|yλy,x

d(x, x′) ≤ ε. Then, λ := {λy | y ∈
Y} ∈ Kε. Moreover, the joint distribution of (x′, y)
under ργ

(x′,y) is identical to ρλ
(x′,y), and so the corresponding

adversarial risks are identical. Hence, for every γ ∈ Γ∞
ε there

exists a λ ∈ Kε that achieves an identical adversarial risk.
This leads to the conclusion R̂∞

ε (�, w) ≤ Rε(�, w), which
completes the proof.

For any p ≥ 1, a distribution perturbing adversary of
budget ε in p-Wasserstein space is more powerful than a data
perturbing adversary of the same budget, as shown by the
following corollary:

Corollary 1: For p ≥ 1, consider a Wp-data-perturbing
adversary of budget ε. The following inequality holds:

Rε(�, w) ≤ R̂p
ε (�, w), (11)

for all w ∈ W . Moreover, R∗
ε ≤ R̂p,∗

ε .
Proof: We have the following sequence of inequalities:

Rε(�, w) = sup
γ∈Γ∞

ε

E(x′,y)∼ργ(x′,y) [�((x′, y), w)] (12)

≤ sup
γ∈Γp

ε

E(x′,y)∼ργ(x′,y) [�((x′, y), w)] (13)

= R̂p
ε (�, w),

where the equality in (12) follows from Theorem 1 and the
inequality in (13) follows from the fact that Γ∞

ε ⊆ Γp
ε . Taking

infimum over w ∈ W on both sides of the inequality, we get
R∗

ε ≤ R̂p,∗
ε .

To see that the inequality in Corollary 1 can be strict,
consider the following example of binary classification with
0-1 loss. Let P (X |Y = 0) (denoted by p0) be a uniform
distribution over [0, 1] and P (X |Y = 1) (denoted by p1) be a
constant distribution at X = 0. Let both the classes be equally

likely. In this case, Wp(p0, p1) =
(∫ 1

0
xpdx

) 1
p

= 1/(p+1)
1
p .

Hence, W1(p0, p1) = 1/2, while W∞(p0, p1) = 1. Taking the
adversarial budget to be ε = 3/4, it is easy to see that R̂1,∗

ε =
1/2 because both the distributions are within the perturbation
budget of the W1-distribution perturbing adversary. But R∗

ε =
ε/2 = 3/8 < R̂1,∗

ε , which is achieved by the optimal classifier
which declares label 0 on the set [ε, 1] and 0 otherwise.

4) A Remark on the Risk Bounds for Adversaries: All risk
bounds proved in this paper are valid for both adversaries.
Since the distribution perturbing adversary is stronger than
the data perturbing adversary, any lower bound that holds for
the latter holds for the former. Analogously, any upper bound
for the distribution perturbing adversary holds for the data
perturbing adversary.

C. Related Work

1) Related Notions of Adversarial Risk: In this paper,
we assume that the true data distribution ρ(x, y) is expressed
as ρy(y)ρx|y(x). This model allows for randomness in the
label y for a fixed x. A special case of this model is when the
existence of a true labelling function is assumed; i.e., there
exists a function c : X → Y such that c(x) is the true label of
x for any x ∈ X . That is, ρ(x, y) = 1{y = c(x)}ρx(x). Under
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this model, Gourdeau et al. [43] define constant-in-the-ball
risk as

R(h) = Px∼ρx [∃x′ : d(x, x′) ≤ ε, h(x′) �= c(x)]. (14)

Rewriting in terms of expectation, we get the following.

R(h) = Ex∼ρx1{∃x′ : d(x, x′) ≤ ε, h(x′) �= c(x)}

= Ex∼ρx

[
sup

d(x,x′)≤ε

1{h(x′) �= c(x)}
]

.

Hence, the constant-in-the-ball risk defined above is iden-
tical to adversarial risk defined in (1) for 0-1 loss function
under hypothesis h. The same notion of risk is also called the
corrupted instance risk in Diochnos et al. [44].

A related notion of adversarial risk is the following:

R′(h) = Ex∼ρx

[
sup

d(x,x′)≤ε

1{h(x′) �= c(x′)}
]

. (15)

Here, the loss on the perturbed data point is evaluated
with respect to the true label at the perturbed data point;
i.e., c(x′) rather than the true label of the original data
point c(x). This notion of adversarial risk is termed exact-in-
the-ball risk in Gourdeau et al. [43] and error-region risk in
Diochnos et al. [44]. A key difference between R(h) in (14)
and R′(h) in (15) is that R′(h) is exactly equal to 0 for
h = c for any ε ≥ 0 whereas R(h) may be strictly positive
even for h = c. Thus, the definition of R′(h) allows for the
existence of an optimal classifier whose adversarial risk is 0,
while the optimal classifier that minimizes R(h) may still have
a non-zero adversarial risk. As noted in Gourdeau et al. [43],
R(h) measures the sensitivity of the output label to corruptions
in the input, while R′(h) measures how well a hypothesis fits
the ground-truth even with corrupted inputs.

Tu et al. [45] and Staib and Jegelka [46] use the adversarial
risk of (1) to establish a version of Theorem 1. However, they
implicitly assume that there exists a measurable function that
maps x → x′ such that the supremum in (1) is attained for all
x ∈ X . As explained previously, this is not true in general.
Pinot et al. [47] define a notion of adversarial risk using a
class of adversaries that use measurable maps to perturb data
points as

R′
ε(�, w) = sup

f∈Fε

E(x,y)∼ρ[�((f(x), y), w)],

where Fε is the set of all ρ-measurable functions satisfying the
budget constraint ess supx∼χ d(x, f(x)) ≤ ε. This definition is
a special case of the definition in (4), where Kε is restricted to
the set of probability kernels with kx = δf(x) (i.e. a probability
measure with a single atom at f(x)) for f ∈ Fε.

2) Surrogates for the Adversarial Risk: Before adver-
sarial deep learning, minimax risk was studied in the
context of robust classification with linear classifiers and
SVMs [48]–[52]. Here, one proposes surrogate robust loss
functions that can be tractably minimized. A similar strat-
egy for minimizing adversarial loss may be found in [22].
For a discussion of surrogate losses, we refer the reader to
Bao et al. [53].

In practice, the inner maximization term in the adver-
sarial risk is approximated using gradient methods like the
Fast Gradient Sign Method (FGSM) [12], [13]. This gives
rise to several related notions of risk that can be inter-
preted as a Taylor approximations for adversarial risk in
definition (1). [14], [33].

Surrogate loss functions for ensuring Wasserstein distri-
butional robustness have been proposed in [36], [38], and
robustness with respect to other optimal transport-based per-
turbations is studied in [54]. A key idea in these works
is the dual formulation of optimal transport distances.
As shown in Theorem 1, adversarial robustness is equivalent to
W∞-distributional robustness. However, the recent work on
optimal transport-based robustness cannot be readily extended
to the W∞-case because the W∞-metric does not admit
a transport-cost minimizing formulation (for instance, com-
pare (6) with (9)) and so the classic Kantorovich-Rubinstein
duality cannot be applied.

3) Related Notions of Distributionally Robust Risk: The
adversarial risk formulation under a distribution perturbing
adversary has been widely studied in the distributionally robust
optimization (DRO) literature [55], [56], with special focus
on Wasserstein DRO [36], [38], [54]. The advantage of using
Wasserstein metrics is the ability to measure distances between
probability distributions with non-overlapping supports, which
is not possible for divergence-based measures.

The distributional uncertainty set is typically centered at the
empirical distribution of the data points, unlike definition (2)
where it is centered around the true data generating distri-
bution. Bertsimas et al. [57] note that when the support of
the true distribution is unbounded, the W∞-uncertainty set
around the empirical distribution does not contain the true
distribution for any ε. Hence, W∞-distributional robustness is
not considered in the distributional robustness setting, except
for the works of Tu et al. [45] and Staib and Jegelka [46] that
make a similar observation as our Theorem 1. Distributionally
robust risk has also been studied in a minimax statistical
learning framework in [58], [59] for deriving generalization
error bounds.

4) Connection to Robust Statistics: Finding optimal clas-
sifiers under 0-1 loss is equivalent to hypothesis testing,
and there are natural connections of adversarial machine
learning to robust hypothesis testing. Classical literature
on robust hypothesis studies robust versions of the likeli-
hood ratio test under various (non-adversarial) contamination
models such as Huber’s ε-contamination model, the total
variation contamination model, or the Levy-Prokhorov met-
ric contamination model [60], [61]. Contamination models
based on f -divergences have also been analyzed for the
Kullback-Liebler divergence [62] and the squared Hellinger
distance [63], [64].

For general loss functions, finding the parameters w∗ ∈ W
is akin to minimax robust estimation. Classical literature on
minimax robust estimation studies problems such as density
estimation and regression under a parametrized uncertainty set
of probability measures [65]. When the uncertainty sets are
constructed with the Hellinger distance, methods are known
for obtaining nearly optimal estimators [66]–[68].
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5) Connection to Concentration of Measure: The concen-
tration of measure phenomenon in high dimensional set-
tings causes the measure of ε-expansion of sets like μ(Aε)
to blow up even for small ε > 0 [69]. Several
authors suggest that adversarial examples are inevitable by
appealing to concentration of measure phenomena in high
dimensional [18], [70], [71]. Specifically, it has been shown
that any classifier that works on data sampled from con-
centrated metric probability spaces is susceptible to a high
adversarial risk. For instance, when the input distribution is
uniform over a high dimensional sphere [70] or Boolean
hypercube [44], or when the latent space of the data is a
high dimensional Gaussian [72], the adversarial risk can be
significantly higher than standard risk, even for small ε.

III. OPTIMAL ADVERSARIAL RISK

VIA OPTIMAL TRANSPORT

In this section, we present our results on adversarial
risk under 0-1 loss in the binary classification setting. We
first define the optimal transport cost Dε(μ, ν) between two
probability measures μ and ν over a metric space (X , d),
as follows.

Definition 1 (Dε Transport Cost): For ε ≥ 0, define the cost
function cε : X ×X → R as cε(x, y) = 1{d(x, y) > 2ε}. The
optimal transport cost Dε is defined as

Dε(μ, ν) = inf
π∈Π(μ,ν)

E(x,x′)∼πcε(x, x′). (16)

Remark 1: For ε = 0, the optimal cost is equivalent to
the total variation distance, i.e., D0(μ, ν) = DTV (μ, ν). For
ε > 0, this cost does not define a metric over the space
of distributions. This is because Dε(μ, ν) = 0 does not
imply μ and ν are identical. Moreover, it also does not define
a pseudometric since the triangle inequality is not satisfied.
To see this, observe that if μ1, μ2, and μ3 are unit point masses
at 0, 2ε, and 4ε, then Dε(μ1, μ3) = 1 > 0 = Dε(μ1, μ2) +
Dε(μ2, μ3).

Next, we present the main theorem of this section that gives
the optimal risk under the binary classification setup for a data
perturbing adversary.

Theorem 2: Consider the binary classification setup with
Y = {0, 1}, where the input x ∈ X is drawn with equal
probability from two distributions p0 (for label 0) and p1 (for
label 0). We consider a set of binary classifiers of the form
1{x ∈ A}, where A ⊆ X is a topologically closed set. That
is, the classifier corresponding to A assigns the label 1 for
all x ∈ A and the label 0 for all x /∈ A. Consider the 0-1
loss function �((x, y), A) = 1{x ∈ A, y = 0} + 1{x /∈ A,
y = 1}. The adversarial risk with the data perturbing adversary
is given by

R∗
ε =

1
2

[1 − Dε(p0, p1)] . (17)

Instantiating Theorem 2 for ε = 0, we get R∗
0 =

1
2 [1 − D0(p0, p1)] = 1

2 [1 − DTV (p0, p1)], which is the Bayes
risk. It is also possible to derive weaker bounds in terms of
the p-Wasserstein distance between the distributions of the two
data classes, as shown in the following corollary:

Corollary 2: Under the setup considered in Theorem 2,
we have the following bound for p ≥ 1:

R∗
ε ≥ 1

2

[
1 −

(
Wp(p0, p1)

2ε

)p]
. (18)

Our next result identifies a necessary and sufficient condi-
tion for Dε(μ, ν) = 0 for probability measures on a bounded
support. When this holds, adversarial risk is 1/2; i.e., no
classifier can do better than random choice.

Theorem 3: Let μ, ν ∈ P(X ). Then Dε(μ, ν) = 0 if and
only if W∞(μ, ν) ≤ 2ε.

A. Proofs of Theorems 2 and 3

Proof of Theorem 2: Let A ⊆ X be a closed set such
that the classifier declares 1 on A and 0 on Ac. Suppose the
true hypothesis is 0 and the observed sample is x. If the
set B(x, ε) := {y ∈ X | d(x, y) ≤ ε} has a non-empty
intersection with A, then the adversary can push x to x′ ∈
B(x, ε)∩A such that the �((x′, 0), A) = 1. The set of all such
x’s is given by:

A⊕ε := ∪x∈AB(x, r). (19)

An equivalent way to express this is using Minkowski sums:

A⊕ε = {a + b | a ∈ A, b ∈ B(0, ε)}.

It is easy to see that (A⊕ε1)⊕ε2 = A⊕(ε1+ε2) for ε1, ε2 ≥ 0.
Similarly, if the true hypothesis is 1, then the adversary can

ensure a loss of 1 as long as B(x, ε)∩Ac �= φ. The set of all
such x’s is given by

(Ac)⊕ε := ∪x∈AcB(x, r). (20)

We define A
ε as

A
ε := ((Ac)⊕ε)c. (21)

The robust risk over the hypothesis class of closed sets is
given by

R∗
ε = inf

A closed

1
2
(
p0(A⊕ε) + p1

(
(Ac)⊕ε

))
=

1
2

(
1 − sup

A closed

{
p1

(
A
ε

)
− p0(A⊕ε)

})
.

The following Lemma provides basic topological properties
of the sets A⊕ε and A
ε.

Lemma 1 (Proof in Appendix A-B): Let ε > 0. If A is a
closed set, then A⊕ε and A
ε are also closed sets.

We now consider a slightly different notion of ε-expansions
of sets similar to our definition of A⊕ε. For ε > 0, define

Aε = {x ∈ X | d(x, A) ≤ ε}, (22)

where

d(x, A) = inf
a∈A

d(x, a). (23)

Our next Lemma shows the equivalence of A⊕ε and Aε for
closed sets A.

Lemma 2 (Proof in Appendix A-C): For a closed set A,
we have Aε = A⊕ε.
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Note that A⊕ε and Aε need not be equivalent when A is
not closed. For example consider (X , d) = (R, | · |) with A =
(0, 1). Then, A⊕ε = (−ε, 1 + ε) whereas Aε = [−ε, 1 + ε].

The main idea of our proof is to leverage Strassen’s theorem
(Appendix A-A), which states that

Dε(p0, p1) = sup
A closed

{
p1(A) − p0(A2ε)

}
.

To prove the equality R∗
ε = 1

2 [1 − Dε(p0, p1)], notice that
it is enough to prove that

sup
A closed

p1(A
ε) − p0(A⊕ε) = sup
A closed

p1(A) − p0(A2ε).

(24)

We need the following lemma:
Lemma 3 (Proof in Appendix A-D): Let A be a closed set.

Then (A
ε)⊕ε ⊆ A and A ⊆ (A⊕ε)
ε.
Figure 1 illustrates the above lemma when A is a square in

R
2 with the Euclidean distance metric.
We have the sequence of inequalities

sup
A closed

p1(A) − p0(A2ε)

(a)

≥ sup
A closed

p1(A
ε) − p0((A
ε)2ε)

(b)

≥ sup
A closed

p1(A
ε) − p0(A⊕ε).

Here, (a) follows because A
ε is contained in the set
of all closed sets by Lemma 1. Inequality (b) follows by
the equivalence (A
ε)2ε = (A
ε)⊕2ε from Lemma 2, and
Lemma 3 since

(A
ε)2ε = [(A
ε)⊕ε]⊕ε ⊆ A⊕ε,

and so p0((A
ε)2ε) ≤ p0(A⊕ε).
For the other direction, notice that

sup
A closed

p1(A
ε) − p0(A⊕ε)

(a)

≥ sup
A closed

p1((A⊕ε)
ε) − p0((A⊕ε)ε)

(b)

≥ sup
A closed

p1(A) − p0(A2ε).

Here, (a) follows because A⊕ε is a closed set according to
Lemma 1. To see (b), first note that using Lemma 2,

(A⊕ε)ε = (A⊕ε)⊕ε = A⊕2ε = A2ε.

Thus, p0((A⊕ε)ε) = p0(A2ε). Moreover, Lemma 3 states
that A ⊆ (Aε)
ε, and so p1(A) ≤ p1((A⊕ε)
ε). This
completes the proof.

Comparison With Bhagoji et al. [32]: We point out that a
similar result was obtained recently in [32]. A key difference is
that the proof in [32] was established for a larger hypothesis
class of measurable sets A; i.e., the following equality was
established:

sup
A∈σ(X )

μ(A
ε) − ν(A⊕ε) = sup
A∈σ(X )

μ(A) − ν(A2ε).

Fig. 1. Illustration of A, A⊕ε, A�ε, (A⊕ε)�ε, and (A�ε)⊕ε for a closed
square in (R2, ‖ · ‖2). Observe that (A�ε)⊕ε ⊆ A and A ⊆ (A⊕ε)�ε.

It is not hard to check that Aε is closed for any measurable
set A, and so

sup
A∈σ(X )

μ(A) − ν(A2ε) = sup
A closed

μ(A) − ν(A2ε)

We may restrict to the smaller hypothesis class of closed
sets A and use the result in [32] to obtain an inequality

sup
A closed

μ(A
ε) − ν(A⊕ε) ≤ sup
A closed

μ(A) − ν(A2ε).

Our result shows that this is, in fact, an equality.
Proof of Corollary 2: From Theorem 2, we have

R∗
ε =

1
2

[
1 − inf

π∈Π(μ,ν)
E(x,x′)∼π[1{d(x, x′) > 2ε}]

]
.

For p ≥ 1 and any π ∈ Π(μ, ν), we have the following:

E(x,x′)∼π[1{d(x, x′) > 2ε}]
= E(x,x′)∼π[1{d(x, x′)p > (2ε)p}]

≤ E(x,x′)∼π

[(
d(x, x′)

2ε

)p]
,

where the last inequality follows from Markov’s inequality.
Therefore,

R∗
ε =

1
2

[
1 − inf

π∈Π(μ,ν)
E(x,x′)∼π

[(
d(x, x′)

2ε

)p]]
≥ 1

2

[
1 −

(
Wp(p0, p1)

2ε

)p]
.

Proof of Theorem 3: Since W∞(μ, ν) = inf{δ > 0 |
μ(A) ≤ ν(Aδ) for all measurable A}, if W∞(μ, ν) ≤ 2ε,
then μ(A) ≤ ν(A2ε) for all closed sets A. Hence,

Dε(μ, ν) = sup
A closed

μ(A) − ν(A2ε) ≤ 0.

Since Dε(μ, ν) ≥ 0, we conclude that Dε(μ, ν) = 0.
For the reverse direction, suppose that Dε(μ, ν) = 0. This

means there exists a sequence of couplings {π}i≥1 such that
Eπicε(x, x′) → 0 where πi ∈ Π(μ, ν). Using a strategy as
in Theorem 1, we conclude that the sequence {πi} is tight,
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and thus there exists a subsequence that converges weakly to
π∗ ∈ Π(μ, ν). Since c is a lower semicontinuous cost function,
the coupling π∗ satisfies Eπ∗cε(x, x′) = 0, or equivalently,
ess sup(x,x′)∼π∗ d(x, x′) ≤ 2ε. Using the definition of W∞
from (9), we conclude W∞(μ, ν) ≤ 2ε.

IV. OPTIMAL ADVERSARIAL CLASSIFIERS

VIA OPTIMAL COUPLINGS

In this section, we explicitly compute the optimal risk and
optimal classifier for a data perturbing adversary in some spe-
cial cases. Instead of using Dε, we have shown in Corollary 2
that the optimal adversarial risk can be lower-bounded using
other well-understood metrics such as the Wp distances. How-
ever, these bounds are often too loose to use in practice, and
this motivates us to study the optimal cost Dε directly. In this
section, we show that in certain special cases, the optimal
coupling corresponding to calculating Dε may be explicitly
evaluated. Furthermore, in these cases, we can exactly charac-
terize the optimal classifier and the optimal risk in the presence
of an adversary. Given measures μ and ν corresponding to
the two (equally likely) data classes, the general strategy we
employ consists of the following steps:
(1) Propose a coupling π between μ and ν.
(2) Using this coupling, obtain the upper bound

Dε(μ, ν) ≤ E(x,x′)∼πcε(x, x′).

(3) Identify a closed set A and compute a lower bound using

Dε(μ, ν) ≥ μ(A
ε) − ν(A⊕ε).

(4) Show that the lower and upper bounds match. This shows
that the proposed coupling is optimal, and the sets A and
Ac define the two regions of the optimal robust classifier.

In the examples we consider, guessing the set A correspond-
ing to the optimal robust classifier is easy. The challenging
part is proposing a coupling and establishing its optimality.
Although we shall focus on real-valued random variables,
some of our results also naturally extend to higher dimensional
distributions.

In the following subsection, we review some results pertain-
ing to optimal transport on the real line. We then present results
that help in evaluating Dε cost for real-valued random vari-
ables. In the subsequent subsections, we use these results to
propose optimal couplings for several univariate distributions.

A. Optimal Transport on the Real Line

For a probability measure μ on R, the cumulative distribu-
tion function (cdf) of μ is defined as F (x) = μ((−∞, x]), and
for t ∈ [0, 1], the inverse cdf (or quantile function) is defined
as F−1(t) = inf{x ∈ R : F (x) ≥ t}.

Lemma 4 (Theorem 2.5 in [73]): Let μ and ν be prob-
ability measures on the real line, where μ is absolutely
continuous with respect to the Lebesgue measure. Then there
exists a unique non-decreasing function T : R → R such
that μ(T−1(A)) = ν(A) for any measurable set A ⊆ R.
Moreover, if F and G denote the cumulative distribution
functions of μ and ν respectively, then T is given by
T (x) = G−1(F (x)).

The function T in Lemma 4 that transforms (or “pushes
forward”) the measure μ into ν is called a monotone transport
map. Given a monotone transport map, we can define a
coupling induced by the monotone map as follows. (X, X ′) ∼
Π(μ, ν) where X ∼ μ and X ′ = T (X) ∼ ν. This coupling is
also known by the name quantile coupling.

The following lemma shows that the coupling induced by
the monotone transport map is optimal for certain cases of the
cost function.

Lemma 5 (Theorem 2.9 in [73]): Let h : R → R
+ be a

strictly convex function. Let μ and ν be probability measures
on the real line, where μ has a density. Consider the cost
function c(x, x′) = h(x′ − x). Suppose Tc(μ, ν) is finite.
Then, Tc(μ, ν) = Ex∼μ[c(x, T (x))], where T is the monotone
transport map from μ to ν.

For the case of h(x) = |x|p where p ≥ 1, Lemma IV-A
shows that the optimal coupling for p-Wasserstein distance
is induced by the optimal transport map. However this may
not be the case for ∞-Wasserstein distance. In the following
theorem, we use the monotone map from Lemma 4 to present
a more concrete condition than Theorem 3 for checking when
Dε(μ, ν) = 0 for measures over R.

Theorem 4: Let μ and ν be probability measures on R

that are absolutely continuous with respect to the Lebesgue
measure with Radon-Nikodyn derivatives f(·) and g(·),
respectively. Let F and G denote the cumulative distribution
functions of μ and ν respectively. Then Dε(μ, ν) = 0 if and
only if ‖F−1 − G−1‖∞ ≤ 2ε.

Proof: Consider the monotone transport map from μ to ν
given by T (x) = G−1(F (x)) as in Lemma 4. We shall show
that this map satisfies |T (x) − x| ≤ 2ε for all x ∈ R, and so
the optimal transport cost Dε must be 0. To see this, note that

T (x)−x = G−1(F (x)) − x

≤ F−1(F (x)) + 2ε − x

= 2ε,

where the last equality is in the μ-almost sure sense. A similar
argument shows x − T (x) ≤ 2ε, and thus |T (x) − x| ≤ 2ε.

For the converse, suppose that there exists a t0 ∈ (0, 1)
such that G−1(t0) − F−1(t0) > 2ε. Equivalently, G−1(t0) >
F−1(t0) + 2ε. Applying the G function on both sides,

t0 > G(F−1(t0) + 2ε).

Consider the set Ã = (−∞, F−1(t0)]. For this set, notice
that

ν(Ã2ε) = ν((−∞, F−1(t0) + 2ε]) = G(F−1(t0) + 2ε).

Thus, we have

Dε(μ, ν) = sup
A

μ(A) − ν(A2ε)

≥ μ(Ã) − ν(Ã2ε)

= t0 − G(F−1(t0) + 2ε)
> 0.

A similar argument may also be made for the case when
F−1(t0) − G−1(t0) > 2ε.
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Fig. 2. Figure illustrating the conditions in Lemma 6.

The above argument shows that monotone transport maps
are optimal when Dε = 0. But monotone maps are not always
optimal for the cost function cε(·, ·). Consider for example
the two measures N (0, 1) and N (1, 1), and ε = 0.1. The
monotone map in this case is T (x) = x + 1, which gives
unit cost of transportation. However, Theorem 5 shows that
the optimal transport cost in this example is strictly smaller
than 1.

Checking the condition ‖F−1 − G−1‖ ≤ 2ε is not always
easy. We identify a simple but useful characterization in the
following corollary:

Corollary 3: Let μ and ν be as in Theorem 4. Suppose
that for every x ∈ R, we have F (x) ≥ G(x) and F (x) ≤
G(x + 2ε). Then Dε(μ, ν) = 0.

Proof: Applying the G−1 function to both sides of both
inequalities, we arrive at

T (x) ≥ x, and T (x) ≤ x + 2ε.

This gives |T (x) − x| ≤ 2ε for all x, which concludes the
proof.

Theorem 4 may also be applied to finite positive mea-
sures μ, ν with μ(R) = ν(R) = U < ∞ with simple scaling.
In what follows, we define a notion of optimal transport for
finite positive measures that may have unequal masses.

Definition 2: [Optimal Transport Cost for General Mea-
sures] Let μ and ν be as in Theorem 4. Suppose that μ(R) = U
and ν(R) = V and U ≤ V . Let ν′ be a measure on R with
Radon-Nikodyn derivative g′ such that ν′(R) = U . We say
ν′ ⊆ ν, or ν′ is contained in ν, if g(x) ≥ g′(x) ν-almost
surely. Then the optimal transport cost Dε(μ, ν) is defined as

Dε(μ, ν) = inf
ν′⊆ν

Dε(μ, ν′).

Note that the amount of mass being moved is
min(U, V ) = U .

In the following two lemmas, we identify conditions under
which Dε(μ, ν) = 0 for finite positive measures with unequal
mass.

Lemma 6: Let μ and ν be as in Theorem 4. Assume
that μ(R) = U and ν(R) = V . Suppose the following
conditions hold:

1) The support of g is a subset of [a, +∞) and the support
of f is a subset of [a + 2ε, +∞) =: [a′, +∞).

2) For all x ∈ R, we have g(x) ≤ f(x + 2ε).
Then Dε(μ, ν) = 0. A similar result holds if the supports
of g and f are subsets of (−∞,−a] and (−∞,−a − 2ε]
respectively, and f(−x − 2ε) ≥ g(−x).

Proof: Consider the transport map T (x) = x + 2ε
applied to ν. This map has the effect of “translating” the
measure ν by 2ε to the right. Call this translated measure η.

Fig. 3. Figure illustrating the conditions in Lemma 7. Note that in general
t̃ need not be equal to b − 2ε as shown in the figure.

Since f(x) ≥ g(x − 2ε), it is immediate that η ⊆ μ.
Moreover, the transport cost is Dε(ν, η) = 0. This shows that
Dε(μ, ν) = 0.

Lemma 7: Let μ and ν be as in Theorem 4. Assume
that μ(R) = ν(R) = U . Suppose the following conditions
hold (see Figure 3 for an illustration):

1) Let a, b ∈ R be such that the support of f is a subset
of [a, b] and the support of g is a subset of [a′, b] :=
[a + 2ε, b].

2) There exists t ∈ [a, b] such that f(x) ≥ g(x) for x ∈
[a, t), and f(x) ≤ g(x) for x ∈ (t, b].

3) Let g̃(x) = g(x + 2ε). Note that the support g̃ is within
[a, b− 2ε]. There exists t̃ ∈ [a, b− 2ε] such that f(x) ≤
g̃(x) for x ∈ [a, t̃), and f(x) ≥ g̃(x) for x ∈ (t̃, b− 2ε].

Then Dε(μ, ν) = 0. A mirror image of this result also holds:
Dε(μ, ν) = 0 when the support of f is a subset of [b, c + 2ε],
that of g is a subset of [b, c], and f(x) ≤ g(x) for x ∈ [b, t)
and f(x) ≥ g(x) for x ∈ [t, c+2ε]; and for g̃(x) = g(x+2ε)
we have f(x) ≥ g̃(x) for x ∈ [b + 2ε, t̃) and f(x) ≤ g(x) for
x ∈ [t̃, c + 2ε].

Proof: We first prove F (x) ≥ G(x). To see this, consider
H(x) = F (x) − G(x). Since the derivative of H is f − g,
it must be that H is increasing from [a, t) and decreasing
from [t, b]. Also, we have H(a) = H(b) = 0, and so
the function H must be non-negative in [a, b]. Equivalently,
we must have F (x) ≥ G(x) for x ∈ R. We now prove F (x) ≤
G(x+2ε). Consider H̃(x) = F (x)− G̃(x). By condition (3),
the derivative of this function is negative from [a, t̃] and
positive from [t̃, b]. Thus, the function H̃ decreases on the
interval [a, t̃) and increases on the interval [t̃, b]. Note that
since H̃(a) = H̃(b) = 0, the function H̃ must be non-positive
in the interval [a, b]. Thus, we have F (x) ≤ G(x + 2ε).
Applying Corollary 3 concludes the proof.

B. Gaussian Distributions With Identical Variances

Theorem 5: Let p0 = N (μ0, σ
2) and p1 = N (μ1, σ

2) in
the metric space (R, | · |). Assume μ0 < μ1 without loss of
generality. Then the following hold:

1) If ε ≥ |μ0−μ1|
2 , the optimal robust risk is 1/2. A constant

classifier achieves this risk.
2) If ε < |μ0−μ1|

2 , the optimal classifier satisfies A =[
μ1+μ0

2 , +∞
]
, where A is the region where the classifier
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Fig. 4. Optimal coupling for two Gaussians with identical variances. The
shaded region within p0 is translated by 2ε to p1, whereas the remaining is
mass in p0 is moved at a cost of 1 per unit mass.

declares label 1. The optimal risk in this case is∫∞
μ1+μ0

2 −ε p0(x)dx = Q

(
μ1−μ0

2 −ε

σ

)
.

The lower bound of 1/2 on the adversarial risk is trivially
achieved by the constant classifier. Part (1) of the theorem
states that for large enough ε, this is the best one can do. For
smaller values of ε, the above theorem shows that the most
robust classifier is the same as the MLE classifier. For larger
values of ε, the MLE classifier has a risk larger than 1/2;
i.e., it is worse than the constant classifier.

Proof: We shall prove (1) first. Note that if ε ≥ μ1−μ0
2 ,

the transport map T defined by T (x) = x+(μ1−μ0) transports
p0 to p1. Moreover, this coupling satisfies |T (x) − x| = μ1 −
μ0 ≤ 2ε. Thus, the optimal transport cost for this coupling is 0,
and therefore so is Dε(p0, p1). This gives the lower bound

R∗
ε ≥ 1

2
.

However, since the constant classifier achieves the lower
bound, we conclude R∗

ε = 1/2.
For part (2), we consider the following strategy for trans-

porting the mass from p0 to p1. As shown in Figure 4,
consider the distribution p̃1 obtained by shifting p1 to the left
by 2ε. That is, p̃1(x) = p1(x + 2ε). Define q : R → R as
q(x) = min(p0(x), p̃1(x)). It is evident that the overlapping
area between p̃1 and p0 (i.e., the area under the curve q(x))
maybe be translated by 2ε to the right so that it lies entirely
under the curve p1(x). More precisely, q(x− 2ε) ≤ p1(x) for
all x ∈ R. Hence, the area under q(x) may be transported to
p1(x) at 0 cost by using the transport map T (x) = x+2ε. It is

easily verified that the area under q(x) equals 2Q

(
μ1−μ0

2 −ε

σ

)
,

and so the total cost of transporting p0 to p1 is at most

1−2Q

(
μ1−μ0

2 −ε

σ

)
. Plugging this into the lower bound, we see

that

R∗
ε ≥ Q

(
μ1−μ0

2 − ε

σ

)
.

Since this risk is achieved by the MLE classifier, we con-
clude that this is the optimal robust risk and the MLE classifier
is the optimal robust classifier.

Theorem 5 can be easily extended to d-dimensional Gaus-
sians with the same identity covariances. Our results may be
summarized in the following theorem:

Theorem 6: Let p0 = N (μ0, σ
2 Id) and p1 = N (μ1, σ

2 Id)
in the metric space (R, || · ||2). Then the following hold:

1) If ε ≥ ||μ0−μ1||2
2 , the optimal robust risk is 1/2.

A constant classifier achieves this risk.
2) If ε < ||μ0−μ1||2

2 , the optimal classifier is given by the
following halfspace:

A =
{

x : (μ1 − μ0)
(

x − μ0 + μ1

2

)
≥ 0
}

. (25)

Comparison to Bhagoji et al. [32]: Bhagoji et al. also
explore optimal classifiers for multivariate normal distrib-
utions. In fact, they show a more general version of our
Theorems 5 and 6 by considering data distributions N (μ0, Σ)
and N (μ1, Σ), and an adversary that perturbs within �p-balls.

In the following subsections, we shall generalize Theorem 5
in a different way by considering various interesting examples
of univariate distributions and identifying optimal couplings
for these.

C. Gaussians With Arbitrary Means and Variances

We shall introduce a general coupling strategy and apply it
to the special case of Gaussian random variables. Given two
probability measures μ and ν on R, our strategy consists of
the following steps:
(1) Partition the real line into K ≥ 1 intervals Si, 1 ≤ i ≤ K ,

and let the restriction of μ to Si be μi.
(2) Partition the real line into K ≥ 1 intervals Ti, 1 ≤ i ≤ K ,

and let the restriction of ν to Ti be νi.
(3) Transport mass from μi to νi such that Dε(μi, νi) = 0.

(We shall use the definition of mass transport between
measures with unequal masses from definition 2.) The
transport maps used in these K problems may be
arbitrary; however, we shall often use versions of the
monotone optimal transport map [74].

Our next lemma is specific to Gaussian pdfs:
Lemma 8: Let f and g be Gaussian pdfs corresponding

to N (μ1, σ
2
1) and N (μ2, σ

2
2), respectively. Assume σ2

1 > σ2
2 .

Then the equation f(x)− g(x) = 0 has exactly two solutions
s1 < μ2 < s2.

Proof: By scaling and translating, we may set μ2 = 0 and
σ2

2 = 1. Solving f(x) − g(x) = 0 is equivalent to solving the
quadratic equation

x2

2
− (x − μ1)2

2σ2
1

= log σ1.

Simplifying, we wish to solve

x2(σ2
1 − 1) + 2μ1 x − (μ2

1 + 2σ2
1 log σ1) = 0.

Since σ1 > 1, the above quadratic has two distinct roots:
one negative and one positive. This proves the claim.

We shall call the two points where f and g intersect as the
left and right intersection points.

Theorem 7: Let μ and ν be the Gaussian measures N (0, σ2
1)

and N (0, σ2
2), respectively. Assume σ2

1 > σ2
2 without loss of

generality. Let m > 0 be such that f(m + ε) = g(m− ε). Let
A = (−∞,−m] ∪ [m, +∞). Then the optimal transport cost
between μ and ν is given by

Dε(μ, ν) = μ(A
ε) − ν(A⊕ε)

= 2Q

(
m + ε

σ1

)
− 2Q

(
m − ε

σ2

)
.
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TABLE I

THE REAL LINE IS PARTITIONED INTO FIVE REGIONS
FOR μ AND ν , AS SHOWN IN THE TABLE

The corresponding robust risk is

R∗
ε =

1 − μ(A
ε) + ν(A⊕ε)
2

.

Moreover, if μ corresponds to hypothesis 1, the optimal
robust classifier declares label 1 on the set A.

Proof: We shall propose a map that transports μ to ν.
(See Figure 5 for an illustration.) The existence of a m > 0
such that f(m + ε) = g(m − ε) is guaranteed by Lemma 8.
Consider r ∈ (0, m − ε) whose value will be provided
later. First, we partition R into the five regions for μ and ν,
as shown in Table I. For μ, these partitions are (−∞,−m−ε],
(−m − ε,−r], (−r, +r), [r, m + ε), and [m + ε,∞). Let μ
restricted to these intervals be μ−−, μ−, μ0, μ+, and μ++,
respectively. The measure ν is also partitioned five ways,
but the intervals used in this case are slightly modified to
be (−∞,−m + ε], (−m + ε,−r], (−r, r), [r, m − ε), and
[m− ε, +∞). Call ν restricted to these intervals ν−−, ν−, ν0,
ν+, and ν++, respectively.

The transport plan from μ to ν will consist of five maps
transporting μ−− → ν−−, μ− → ν−, μ0 → ν0, μ+ →
ν+, and μ++ → ν++. In each case, we plan to show that
Dε(μ∗, ν∗) = 0, where ∗ ranges over all possible subscripts
in {−−,−, 0, +, ++}. Note that these measures do not nec-
essarily have identical masses, and thus by Definition 2,
we are transporting a quantity of mass equal to the minimum
mass among the two measures. For this reason, even though
the transport cost is Dε(μ∗, ν∗) = 0, it does not mean
Dε(μ, ν) = 0.

Consider μ++ and ν++. We have f(m + ε) = g(m− ε) by
the choice of m. We argue that for any t ≥ 0, we must have
f(m+ε+t) ≥ g(m−ε+t). This is because any two Gaussian
pdfs can intersect in at most two points. By Lemma 8, the
ε-shifted Gaussian pdfs f(x+ ε) and g(x− ε) have m as their
right intersection point, and there are no additional points of
intersection to the right of m. Since the tail of f is heavier,
it means that f(m + ε + t) ≥ g(m − ε + t) for all t ≥ 0.
By Lemma 6, we can now conclude Dε(μ++, ν++) = 0.
A similar argument also shows Dε(μ−−, ν−−) = 0.

Before we consider μ− and ν−, we first define r as follows:
Pick r > 0 such that μ([−m − ε,−r)) = ν([−m + ε,−r)).
To see that such an r must exist, consider the functions
a(t) := μ([−m− ε, t)) and b(t) := ν([−m+ ε, t)) as t ranges
over (−m+ε, 0). When t = −m+ε, we have a(t) > b(t) = 0.
When t = 0, we have a(t) = 1/2 − μ−−(R) < b(t) =
1/2−ν−−(R). Thus, there must exist a t0 ∈ (−m+ε, 0) such
that a(t0) = b(t0). Pick the smallest (i.e., the leftmost) such
t0, and set −r = t0. Call f(·) restricted to [−m− ε,−r) and
g(·) restricted to [−m+ε,−r) as f− and g−, respectively, and

their corresponding cdfs F− and G−, respectively. We claim
that μ− and ν− satisfy all three conditions from Lemma 7.
Since the supports of f− and g− are [−m − ε,−r) and
[−m+ ε,−r), condition (1) is immediately verified. To check
condition (2), we break up the interval [−m − ε,−r) into
two parts: [−m − ε,−s) and [−s,−r), where s is such that
f(−s) = g(−s). Observe that f− ≥ g− on [−m − ε,−s),
whereas f− ≤ g− on [−s,−r). This shows that condition (2)
is satisfied. We have g−(−m+ε) = f−(−m−ε). Again, using
Lemma 8 the 2ε-shifted Gaussian pdf f(x−2ε) and g(x) have
−m+ε as their left intersection point, and the right intersection
point is to the right of 0. Thus, we have f(x − 2ε) ≤ g(x)
for all x ∈ [−m+ ε, 0] ⊇ [−m+ ε, r). Using this domination,
we conclude that f− ≤ g̃− in the interval [−m − ε,−r − 2ε)
and f− ≥ g− = 0 in the interval (−r − 2ε,−r], and so
condition (3) is satisfied. Applying Lemma 7, we conclude
Dε(μ−, ν−) = 0. An essentially identical argument may be
used to show Dε(μ+, ν+) = 0. The minor difference being
that r is chosen to satisfy μ([r, m + ε)) = ν([r, m − ε)), and
the mirror image of Lemma 7 is applied.

Finally, consider the interval (−r, +r). In this interval,
f(x) ≤ g(x) for every point. Hence, a transport map from μ0

to ν0 is obtained by simply considering the identity function.
Any remaining mass in μ is moved to ν arbitrarily, incurring
a cost of at most 1 per unit mass. The total cost of transport
is then upper-bounded by

Dε(μ, ν)
≤ 1 − [min(μ−−, ν−−) + min(μ−, ν−) + min(μ0, ν0)

+ min(μ+, ν+) + min(μ++, ν++)]
= 1 − [ν−− + μ− + μ0 + μ+ + ν++]
= 1 − μ([−m − ε, m + ε]) − 2ν([m − ε,∞))
= μ(A
ε) − ν(A⊕ε)

= 2Q

(
m + ε

σ1

)
− 2Q

(
m − ε

σ2

)
.

where for brevity we have denoted μ∗(R) as μ∗. However,
we also have

Dε(μ, ν) ≥ μ(A
ε) − ν(A⊕ε).

The lower and upper bounds match and this concludes the
proof. The robust risk R∗

ε is given by Theorem 2. The robust
risk of the classifier that declares label 1 on the set A is easily
seen to be R∗

ε .
We now extend the above proof strategy to demonstrate

the optimal coupling for Gaussians with arbitrary means and
arbitrary variances. Our main result is the following:

Theorem 8: Let μ and ν be Gaussian measures N (μ1, σ
2
1)

and N (μ2, σ
2
2) respectively. Assume σ2

1 > σ2
2 without loss

of generality. Let m1, m2 > 0 be such that f(−m1 −
ε) = g(−m1 + ε) and f(m2 + ε) = g(m2 − ε). Let
A = (−∞,−m1] ∪ [m2,∞). Then the optimal transport cost
between μ and ν is given by

Dε(μ, ν) = μ(A
ε) − ν(A⊕ε).

Consequently, the robust risk is given by

R∗
ε =

1
2
(1 − μ(A
ε) + ν(A⊕ε)).
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Fig. 5. Optimal transport coupling for centered Gaussian distributions μ
and ν. As in the proof of Theorem 7, we divide the real line into five regions.
The transport plan from μ to ν consists of five maps transporting μ−− →
ν−− (blue regions to the left), μ− → ν− (orange regions to the left), μ0 →
ν0 (green regions in the middle), μ+ → ν+ (orange regions to the right),
and μ++ → ν++ (blue regions to the right).

If μ corresponds to hypothesis 1, the optimal robust classi-
fier declares label 1 on the set A.

Proof: We first note that the existence of m1 and m2

in the theorem statement is guaranteed by Lemma 8. As in
the proof of Theorem 7, we shall divide the real line into
five regions as shown in Table II where we define r1 and
r2 shortly. Using an identical strategy as in Theorem 7,
we conclude Dε(μ−−, ν−−) = Dε(μ++, ν++) = 0. Define r1

as the leftmost point where μ([−m1 − ε, r1)) = ν([−m1 +
ε, r1)). Similarly, define r2 to be the rightmost point such
that μ([r2, m2 + ε)) = ν([r2, m2 − ε)). We shall now prove
Dε(μ−, ν−) = 0 by using Lemma 7. Verifying conditions
(1) and (2) is exactly as in that of Theorem 7. The novel
component of this proof is verifying condition (3), since the
domination used in the proof of Theorem 7 does not work in
this case due to the asymmetry. Consider the pdfs f−(x) and
g−(x + 2ε). These two pdfs, being restrictions of Gaussian
pdfs to suitable intervals, may only intersect in at most two
points. One of these points of intersection is −m1 − ε by
the choice of m1, so there can be at most one other point
of intersection in the interval [−m1 − ε,−r1 − 2ε]. Note
that there may be no point of intersection in this interval.
However, the key observation is that in both cases, condition
(3) continues to be satisfied. To see this, suppose that there is
a point of interaction t̃. In this case, f− ≤ g̃− in [−m1− ε, t̃),
and f− ≥ g− in (t̃,−r1]. If there is no point of intersection,
then f− ≤ g̃− in [−m1 − ε,−r1 − 2ε), and f− ≥ g− = 0 in
(−r1 − 2ε,−r1]. This verifies condition (3). Using Lemma 7,
we conclude Dε(μ−, ν−) = 0. An identical approach gives
Dε(μ+, ν+) = 0. Since f(x) ≤ g(x) for all points in the
interval (−r1, r2), the identity map may be used to conclude
Dε(μ0, ν0) = 0.

Any remaining mass in μ is moved to ν arbitrarily, incurring
a cost of at most 1 per unit mass. The total cost of transport
is then upper-bounded by

Dε(μ, ν)
≤ 1 − [min(μ−−, ν−−) + min(μ−, ν−) + min(μ0, ν0)

+ min(μ+, ν+) + min(μ++, ν++)]
= 1 − [ν−− + μ− + μ0 + μ+ + ν++]

TABLE II

THE REAL LINE IS PARTITIONED INTO FIVE REGIONS
FOR μ AND ν AS SHOWN IN THE TABLE

= 1 − μ([−m1 − ε, m2 + ε]) − ν((−∞,−m1 + ε))
− ν([m2 − ε,∞))

= μ(A
ε) − ν(A⊕ε),

where for brevity we have denoted μ∗(R) as μ∗, where ∗
ranges over all possible subscripts in {−−,−, 0, +, ++}. The
rest of the proof is identical to that of Theorem 7.

D. Beyond Gaussian Examples

The coupling strategy for Gaussian random variables can
also be applied to other univariate examples that share some
similarities with the Gaussian case. To illustrate, we describe
the optimal classifier and optimal coupling for uniform distri-
butions and triangular distributions.

Theorem 9 (Uniform Distributions): Let μ and ν be uniform
measures on closed intervals I and J respectively. Without loss
of generality, we assume |I| ≤ |J |. Then the optimal robust
risk is ν(I2ε) and the optimal classifier is given by A = Iε.

Proof: See Appendix B-A
In the following, we present the optimal adversarial risk and

optimal classifier for symmetric triangular distributions. For
δ > 0, we use Δ(m, δ) to denote a triangular distribution with
support [m−δ, m+δ] and mode at m. The pdf of such a distrib-

ution is given by the function f(x) = 1
δ max

{
1 − |x−m|

δ , 0
}

.
The next lemma is similar to Lemma 8, but is specific to

symmetric triangular distributions.
Lemma 9: Let μ and ν correspond to the triangular distribu-

tions Δ(m1, δ1) and Δ(m2, δ2) with pdfs f and g respectively.
Assume δ1 < δ2. Then,

1) If |m1−m2| > δ2+δ1, then the equation f(x)−g(x) = 0
has no solutions on the supports of μ or ν.

2) If δ2 − δ1 < |m1 − m2| ≤ δ2 + δ1, then the equation
f(x) − g(x) = 0 has exactly one solution u on the
support of μ. Further, u ≥ m1 if and only if m1 ≤ m2.

3) If |m1−m2| ≤ δ2−δ1, then the equation f(x)−g(x) = 0
has exactly two solutions l ∈ [m1 − δ1, m1] and r ∈
[m1, m1 + δ1] on the support of μ.

Proof: We may assume that m1 ≤ m2, as case of m1 ≥
m2 follows by symmetry.

Suppose |m1 − m2| > δ2 + δ1. Then m1 + δ1 < m2 − δ2.
Hence, the supports of μ and ν are disjoint and the result
follows trivially.

Suppose δ2 − δ1 < |m1 − m2| ≤ δ2 + δ1. Then, m1 +
δ1 ∈ [m2 − δ2, m2 + δ2] and m1 − δ1 /∈ [m2 − δ2, m2 + δ2].
Hence, the only solution u to f(x) − g(x) = 0 occurs at the
intersection of the graph of g(x) with the line segment joining
the points (m1, 1/δ1) and (m1 + δ1, 0). Clearly, u ≥ m1.
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Suppose |m1 − m2| ≤ δ2 − δ1. Then, m1 − δ1 ≥ m2 − δ2

and m1 + δ1 ≤ m2 − δ2. Hence, [m1 − δ1, m1 + δ1] ⊂ [m2 −
δ2, m2 + δ2]. It follows that f(m1 − δ1) − g(m1 − δ1) < 0,
f(m1) − g(m1) > 0 and f(m1 + δ1) − g(m1 + δ1) < 0.
Since f(x)− g(x) is a continuous function, there must be l ∈
[m1−δ1, m1] and r ∈ [m1, m1 +δ1] such that f(l)−g(l) = 0
and f(r) − g(r) = 0. Moreover, f(x) > g(x) for x ∈ (l, r)
and f(x) < g(x) for x ∈ (m2 − δ2, l) ∪ (r, m2 + δ2). Hence,
l and r are the only solutions to f(x) − g(x) = 0 on the
support of μ.

Theorem 10 (Triangular Distributions): Let μ and ν corre-
spond to the triangular distributions Δ(m1, δ1) and Δ(m2, δ2)
with pdfs f and g respectively. Without loss of generality,
assume δ1 < δ2 and m1 < m2 (the case of m1 > m2

follows from symmetry). Let 2ε ∈ (0, min(2δ1, δ2 − δ1)). Let
l = sup{x ≤ m1 : f(x + ε) = g(x − ε)} and r = inf{x ≥
m1 : f(x−ε) = g(x+ε)}. Let A be the set defined as follows.

1) If m2−m1 ≥ δ2+δ1+2ε, then A = (−∞, m1+δ1+ε].
2) If δ2 − δ1 − 2ε ≤ m2 − m1 < δ2 + δ1 + 2ε, then A =

(−∞, r].
3) If m2 − m1 < δ2 − δ1 − 2ε, then A = [l, r].

Then Dε(μ, ν) = μ(A
ε) − ν(A⊕ε), and the robust risk is

R∗
ε =

1 − μ(A
ε) + ν(A⊕ε)
2

,

and if μ corresponds to hypothesis 1, then the optimal robust
classifier declares label 1 on A.

Proof: See Appendix B-B

V. ADVERSARIAL RISK FOR CONTINUOUS

LOSS FUNCTIONS

It is natural to ask if the results for 0-1 loss may be extended
to continuous losses. In this section, we present adversarial risk
bounds in regression-like settings with continuous losses and
investigate Questions 1 and 2 in light of these bounds.

A. Optimal Adversarial Risk

In this section, we prove lower and upper bounds on the
optimal adversarial risk for distribution perturbing adversaries
with budget ε ≥ 0. To prove lower bounds, we consider the
W∞-distribution perturbing adversary with budget ε, since this
bound is valid for all Wp-distribution perturbing adversaries.
Similarly, we prove upper bounds for the W1-distribution
perturbing adversary with budget ε.

A Trivial Lower Bound: We start by presenting a trivial
lower bound on the optimal adversarial risk. We shall assume
that for all ε ≥ 0, the optimal hypothesis w∗

ε exists to simplify
presentation. The proofs can be easily modified by considering
sequences of hypothesis such that lim infi R∗

ε (wi) = R∗
ε in

case w∗
ε does not exist.

Theorem 11: The optimal adversarial risk is at least as large
as the optimal standard risk, that is, R∗

ε ≥ R∗
0.

Proof: We have the sequence of inequalities:

R∗
ε = Rε(�, w∗

ε ) ≥ R0(�, w∗
ε ) ≥ R0(�, w∗

0) = R∗
0.

The first inequality holds because Rε(�, w) is a
non-decreasing function of ε for any fixed � and w. The second

inequality follows from the fact that the adversarially optimal
classifier w∗

ε is sub-optimal for minimizing the standard
risk.

Note that the bound in Theorem 11 does not depend on the
strength of the adversary ε, and hence it may not be very tight
for large ε. In what follows, we show tighter lower bounds for
R∗

ε that depend on ε.
For the lower bound, we consider loss functions that are

convex with respect to the input x, as defined below.
Definition 3 (Convex Loss Function): We say that the loss

function � : X × Y ×W → R
+ is convex with respect to the

input if it satisfies the following condition.

�((x′, y), w) − �((x, y), w) ≥ 〈∇x�((x, y), w), x′ − x〉. (26)

Theorem 12: The adversarial risk for a loss function satis-
fying (26) is bounded as follows.

R∗
ε ≥ R∗

0

+ inf
w∈W

Ez

[
sup

d(x,x′)≤ε

〈∇x�((x, y), w), x′ − x〉
]

. (27)

Remark 2: The lower bound holds for any p-Wasserstein
distribution perturbing adversary with budget ε.

Note that adversary’s metric d(·, ·) may not be the same
as the norm on the Hilbert space X . In the special case d
corresponds to the norm ‖·‖adv, we can tighten the result of
Theorem 12 as follows.

Corollary 4: In the setting of Theorem 12, if d(x, x′) =
‖x − x′‖adv for x, x′ ∈ X , then the following bound holds:

R∗
ε ≥ R∗

0 + ε inf
w∈W

Ez [‖∇x�((x, y), w)‖adv*], (28)

where ‖·‖adv* is the dual norm of ‖·‖adv.
Proof of Theorem 12: Recall the notation Z = X × Y ,

and z = (x, y). Since w∗
ε is sub-optimal for minimizing

standard risk, we have

Ez[�((x, y), w∗
ε )] ≥ Ez[�((x, y), w∗

0)].

Hence,

R∗
ε − R∗

0

= Ez

[
sup

d(x,x′)≤ε

�((x′, y), w∗
ε )

]
− Ez[�((x, y), w∗

0)]

≥ Ez

[
sup

d(x,x′)≤ε

�((x′, y), w∗
ε )

]
− Ez[�((x, y), w∗

ε )]

= Ez

[
sup

d(x,x′)≤ε

�((x′, y), w∗
ε ) − �((x, y), w∗

ε )

]

≥ Ez

[
sup

d(x,x′)≤ε

〈∇x�((x, y), w∗
ε ), x′ − x〉

]
,

≥ inf
w∈W

Ez

[
sup

d(x,x′)≤ε

〈∇x�((x, y), w∗
ε ), x′ − x〉

]
.
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Proof of Corollary 4: From the proof of Theorem 12,
we have

R∗
ε − R∗

0 ≥ Ez

[
sup

d(x,x′)≤ε

〈∇x�((x′, y), w∗
ε ), x′ − x〉

]
.

Under the condition that d(x, x′) = ‖x − x′‖adv,

sup
d(x,x′)≤ε

〈∇x�((x′, y), w∗
ε ), x′ − x〉

= sup
‖δ‖adv≤ε

〈∇x�((x′, y), w∗
ε ), δ〉

= ε‖∇x�((x′, y), w∗
ε )‖adv*.

Next, we prove an upper bound for the adversarial risk
for a W1-distribution perturbing adversary. As noted earlier,
this upper bound also holds for a Wp-distribution perturbing
adversary of the same budget, where 1 ≤ p ≤ ∞. We make
the following assumption on the loss function:

Definition 4 (Lw-Lipschitz Loss Function): We say that the
loss function � : Z ×W → R

+ is Lw-Lipschitz with respect
to the input if it satisfies the following condition.

|�((x′, y), w) − �((x, y), w)| ≤ Lw‖x′ − x‖. (29)

Theorem 13: The adversarial risk for a W1-distribution
perturbing adversary with budget ε satisfies R̂1,∗

ε ≤ R∗
0+εLw∗

0
.

The proof of this result uses an optimal transport idea
from [75].

Proof of Theorem 13: Suppose that the infimum for R̂1,∗
ε

in equation (5) is attained at ŵ∗
ε and the supremum for

R̂1
ε (�, ŵ

∗
ε ) in equation (10) is attained for γ∗ ∈ Γ1

ε . For
y ∈ Y , recall that ργ∗

x′|y ∈ P(X ) denotes the distribution of

the perturbed data point x′ ∈ X . Let πy ∈ Π(ρx|y, ρ
γ∗

x′|y) be

such that W1(ρx|y, ργ∗

x′|y) = E(x,x′)∼πy
d(x, x′). Then

R̂1,∗
ε − R∗

0

= E
(x′,y)∼ρyργ∗

x′|y
�((x′, y), ŵ∗

ε )

− E(x,y)∼ρyρx|y�((x, y), w∗
0)

(a)

≤ E
(x′,y)∼ρyργ∗

x′|y
�((x′, y), ŵ∗

0)

− E(x,y)∼ρyρx|y�((x, y), w∗
0)

(b)
= EyE(x,x′)∼πy

[�((x′, y), ŵ∗
0) − �((x, y), ŵ∗

0)]
(c)

≤ EyE(x,x′)∼πy
d(x, x′) · Lw∗

0

(d)

≤ εLw∗
0
.

Here, (a) follows from the definition of ŵ∗
ε , (b) follows

from linearity of expectation since πy is a coupling of (x, x′)
that preserves the marginals, (c) follows from the Lipschitz
assumption and (d) follows from the fact that γ∗ ∈ Γ1

ε .

B. Optimal Adversarial Classifier

In Sections III and V-A, we looked at Question 1 and
showed that the adversarial risk can be strictly lower-bounded
as a function of adversarial budget ε. In this section, we tackle

Question 2 and analyze how w∗
ε or ŵ∗

ε may deviate from w∗
0 .

For the case of 0-1 loss, the optimal classifier can change
drastically even with small change in the adversarial budget ε.
For instance, consider the setting of Theorem 5. When ε
changes from being less than |μ0−μ1|

2 to greater than |μ0−μ1|
2 ,

the optimal classifier changes from a halfspace to a constant
classifier. Studying the 0-1 loss is hard because closed sets
are not parametrized easily. Hence we focus on the case of
convex loss functions–where convexity is with respect to w—
to derive bounds in this section. Deriving bounds without
strong convexity assumptions appears challenging. To see this,
observe that there may be multiple global optima w∗

0 when
ε = 0. The optimal hypothesis can jump from one global
optimal to a different one—possibly far away—even without
any adversary.

Since our proof technique uses the upper and lower bounds
for adversarial losses obtained in Section V-A, the bounds for
deviation of w∗

ε and ŵ∗
ε are identical. Now, we prove a theorem

on how much the optimal classifier can change in the presence
of an adversary.

Theorem 14: For a loss function � that satisfies (29), and
is λ-strongly convex with respect to w, the following result
holds:

‖w∗
ε − w∗

0‖ ≤
√

2εLw∗
0

λ
. (30)

Proof of Theorem 14: We have the following series of
inequalities.

εLw∗
0

(a)

≥ R∗
ε − R∗

0

(b)

≥ R0(�, w∗
ε ) − R0(�, w∗

0)
(c)

≥ λ

2
(∇2

wR0(�, w∗
0))‖w∗

ε − w∗
0‖2.

Here, (a) follows from Theorem 13, (b) follows from
the fact that w∗

ε is sub-optimal for minimizing R0(�, w),
and (c) follows from the λ-strong convexity of � with
respect to w.

The above theorem shows that larger values of λ prevent
the adversary from changing the hypothesis drastically. If the
loss function is merely convex but not strongly convex, adding
a quadratic penalty λ

2 ‖w‖2 to the loss function will ensure
strong convexity.

VI. EXPERIMENTS

In this section, we present lower bounds on the optimal
adversarial risk for empirical distributions derived from several
real world datasets.

For the case of empirical distributions, the computation
of the optimal transport cost in (16) can be formulated as
a linear program and solved efficiently. Moreover, when the
number of data points in the two empirical distributions
is the same, the problem of finding the optimal coupling
between the two distributions is reduced to an assignment
problem (see Proposition 2.11 in [76]), wherein the task is
to optimally match each data point from the first distribution
to a distinct data point from the second distribution. Using
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Fig. 6. Lower bounds on adversarial risk computed using Theorem 2 for �2
adversary. The curves with σ = 0 give the exact optimal risk for empirical
distributions, while the other cuvers give lower bounds on the optimal risk
for Gaussian mixtures based on the empirical distributions using the coupling
in Theorem 6.

this methodology, we evaluate the optimal risk for �2 and
�∞ adversaries for classes 3 and 5 in CIFAR10, MNIST,
Fashion-MNIST and SVHN datasets. The results for other
pairs of classes are very similar, and are therefore omitted

Fig. 7. Lower bounds on adversarial risk computed using Theorem 2 for �∞
adversary. The curves with σ = 0 give the exact optimal risk for empirical
distributions, while the other cuvers give lower bounds on the optimal risk
for Gaussian mixtures based on the empirical distributions using the coupling
in Theorem 6.

for brevity. For MNIST, Fashion-MNIST and SVHN datasets,
we evaluate the optimal adversarial risk given in Theorem 2
by randomly sampling 5000 data points from each class. The
results are showing in Figures 6 and 7 with the legend σ = 0,
for �2 and �∞ adversaries respectively.
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Since a major fraction of the data points in the empir-
ical distributions are well-separated in �2 and �∞ metrics,
the optimal risk bound remains 0 even for high ε. For instance,
for CIFAR10 dataset, the optimal risk remains 0 for ε as
high as 40/255 for �∞. Similar results were also obtained in
Bhagoji et al. [32]. However, the optimal risk bounds for the
true distributions may not be 0 for high ε, as it is unreasonable
to expect a perfectly robust optimal classifier under very strong
adversarial perturbations. In addition, a common technique
while training for a classifier is to augment the dataset with
Gaussian perturbed samples for robustness and generaliza-
tion [77], [78]. Motivated by this, we also compute optimal
risk lower bounds on Gaussian mixture distribution with the
data points as the centers with scaled identity covariances.
σ = 0 corresponds to the empirical distribution of the data
points from the two classes. As σ increases, the overlap in
the probability mass between the two classes increases. This
allows for the cost of optimal coupling that achieves Dε to
decrease, thus leading to a higher, possibly non-trivial bound
for R∗

ε .
To compute the optimal risk lower bound for Gaussian

mixture, we use a coupling between the mixture distributions
in two steps. In the first step, we solve for the optimal coupling
that gives the exact optimal risk for the empirical distributions.
This gives a pairwise matching of data points between the two
empirical distributions. In the second step, we use the optimal
coupling for multidimensional Gaussians from Theorem 6 to
transport the mass in the Gaussians within each pair. Overall,
this transport map gives an upper bound on the Dε optimal
transport cost between the two mixture distributions. Using
this, we obtain the lower bounds on adversarial risk shown
in Figures 6 and 7.

For �2 and �∞ adversaries, Figures 6 and 7 show the lower
bounds for various values of the variance σ used for the
Gaussian mixture, where σ∗ is half of the mean distance
between data points from the two distributions. As explained
previously, we see in Figures 6 and 7 that the lower bound
curves for higher values of σ are above those for lower values.
For instance, the optimal risk for CIFAR10 dataset under
�2 perturbation with ε = 3 is 0.25 for σ = σ∗. That is,
the adversarial error rate for CIFAR10 with ε = 3 for any
algorithm cannot be less than 0.25 even when trained with
Gaussian data augmentation (with σ = σ∗). In comparison,
the lower bound obtained in Bhagoji et al. [32] (which is
equivalent to the case of σ = 0) is 0 for ε = 3. Computation of
non-trivial lower bounds for higher values of ε on adversarial
error rate as in Figures 6 and 7 is made possible by our analysis
on the optimal coupling to achieve Dε between multivariate
Gaussians in section IV-B.

VII. DISCUSSION

In this paper, we have analyzed two notions of adversarial
risk: one resulting from a distribution perturbing adversary
(R̂∗

ε ) and the other from a data perturbing adversary (R∗
ε ).

We have introduced the Dε optimal transport distance between
probability distributions. Through an application of duality in
the optimal transport cost formulation (via Strassen’s theorem),

we have shown that Dε completely characterizes the optimal
adversarial risk R∗

ε for the case of binary classification under
0-1 loss function. For general loss functions, we give lower
bounds on R∗

ε and upper bounds on R̂∗
ε in terms of the

Lipschitz and strong convexity parameters of the loss function.
Our analysis raises several interesting questions: How big

is the gap between R̂∗
ε and R∗

ε for different kinds of loss
functions? Is it possible to directly lower bound R̂∗

ε without
appealing to its dependence on R∗

ε ? Does there exist an
optimal transport distance akin to Dε that characterizes R̂∗

ε ?
As evidenced by experiments, our bounds for general loss
functions are not particularly tight. Furthermore, we need
fairly strong assumptions such as convexity and Lipschitz
property for the loss function to state these bounds. It would
be interesting to study if these conditions may be relaxed and
if tighter bounds could be obtained.

In analysing the adversarial risk for 0-1 loss functions,
we give a novel coupling strategy based on monotone map-
pings that solves the Dε optimal transport problem for sym-
metric unimodal distributions like Gaussian, triangular, and
uniform distributions. Employing the duality in the optimal
transport, we also obtain the adversarially optimal classifier
under these settings. Our coupling analysis calls for an inter-
esting open question: Is there a general coupling strategy, akin
to the maximal coupling strategy to achieve the total variation
transport cost, that works for a broader class of distributions?
If yes, this gives us a handle on analyzing the nature of
optimal decision boundaries in the adversarial setting. Optimal
transport between measures with unequal mass has received
attention in recent work [79]. We plan to investigate if the
version of transport from Definition 2 is useful in other
contexts, and whether computational methods as in [76] may
be used to compute it in practice.

Our analysis for 0-1 loss reveals how the optimal risk
smoothly changes from Bayes risk as the data perturbing bud-
get ε is increased. Somewhat more surprisingly, our analysis
shows that in some cases, the optimal classifier can change
abruptly in the presence of an adversary even for small changes
in ε. It remains to be seen if these observations on optimal risk
and optimal classifier also hold for the distribution perturbing
adversary.

Using our characterization of R∗
ε in terms of Dε, we obtain

the optimal risk attainable for classification of real-world
datasets like CIFAR10, MNIST, Fashion-MNIST and SVHN.
Moreover, levaraging our optimal coupling strategy for
Gaussian distributions, we also obtain lower bounds on opti-
mal risk for Gaussian mixtures based on these datasets. These
lower bounds have implications for the limits of data augmen-
tation strategies using Gaussian perturbations. Our bounds on
adversarial risk are classifier agnostic, and only depend on the
data disributions. In addition, our bounds are efficiently com-
putable for empirical/mixture distributions via reformulation
as a linear program. However, our characterization of R∗

ε in
terms of Dε is limited to the binary classification setting. It is
not clear if a similar characterization is possible for multi-class
classification, perhaps using multi-marginal optimal transport
theory [80].

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on October 01,2021 at 16:07:53 UTC from IEEE Xplore.  Restrictions apply. 



PYDI AND JOG: ADVERSARIAL RISK VIA OPTIMAL TRANSPORT AND OPTIMAL COUPLINGS 6047

Finally, we remark that analzing the Dε optimal transport
cost may be interesting in itself. The optimal transport cost
cε(x, x′) = 1{d(x, x′) > 2ε} is discontinuous and does not
satisfy triangle inequality. This makes it hard to analyse Dε

using standard techniques in optimal transport literature. For
instance, it would be interesting tighten the bounds from [81]
concerning rates of converges of Dε between empirical dis-
tributions converges to Dε between the true data-generating
distributions.

APPENDIX A
PROOFS FOR SECTION III

A. Strassen’s Theorem

Strassen’s theorem is a special case for the Kantorovich
duality in the case of a 0-1 loss. The statement provided below
is as in Villani [74, Corollary 1.28]:

Lemma 10: Let the input X be drawn from a Polish
space X . Let Π(p0, p1) be the set of all probability measures
on X × X with marginals p0 and p1. Then for ε ≥ 0 and
A ⊆ X ,

inf
π∈Π(p0,p1)

π[d(x, x′) > ε]

= sup
A closed

{
p0(A) − p1(A⊕ε)

}
.

B. Proof of Lemma 1

Let A be a closed set and let B be the closed ball of
radius ε. Fix δ > 0. Let {zi}i≥1 be a sequence of points in A⊕ε

converging to a limit z. Assume without loss of generality that
d(zi, z) < δ/2. We shall show that z ∈ A⊕ε as well. Note that
every zi admits an expression zi = ai + bi, where ai ∈ A and
bi ∈ B. Since B is a compact set, there exists a subsequence
among the {bi} sequence that converges to b∗ ∈ B. Fix a
δ > 0 and pick a subsequence {b̃i}i≥1 such that b̃i → b∗

and |b̃i − b∗| < δ/2 for all i > 0. Denote the corresponding
subsequence of {ai} by {ãi} and {zi} by {z̃i}. Observe that

z − ãi = (z − z̃i) + (b∗ − b̃i) − b∗,

and so by the triangle inequality

d(z, ãi) < δ/2 + δ/2 + ε = ε + δ.

Thus ãi ∈ B(z, ε + δ) ∩ A, which is a compact set, giving
a convergent subsequence within the {ãi} sequence. Let that
subsequence converge to a∗. We must have a∗ ∈ A and b∗ ∈ B
since A and B are closed. This means z = a∗ + b∗ must lies
in A⊕ε, which shows that A⊕ε is closed.

Recall that A
ε = ((Ac)⊕ε)c. Since Ac is an open set, it is
enough to show that C⊕ε is open if C is open. Let z ∈ C⊕ε,
which means z = c + b for some c ∈ C and b ∈ B. Consider
a small open ball of radius δ around c, called Nδ(c) that lies
entirely in C. This is possible since C is assumed to be open.
Now observe that Nδ(z) ⊆ C⊕ε, since Nδ(z) = Nδ(c) + b.
This shows that every point z ∈ C⊕ε admits a small ball
around it that is contained in C⊕ε, or equivalently, C⊕ε is
open. This completes the proof.

Fig. 8. Optimal coupling for two uniform distributions. The region shaded
in green is kept in place (at no cost). The two regions shaded in orange are
transported monotonically from either side at a cost not exceeding 2ε per unit
mass. The remaining region in blue is moved at the cost of 1 per unit mass.

C. Proof of Lemma 2

Let x ∈ A⊕ε. Then there exists an a ∈ A such that
d(x, a) ≤ ε, which means d(x, A) ≤ ε, and so x ∈ Aε. This
shows that A⊕ε ⊆ Aε.

To prove the reverse direction, suppose x ∈ Aε. This means
we can a sequence of points {ai} such that ai ∈ A and
lim infi d(x, ai) ≤ ε. Fix a δ > 0 and assume without loss
of generality that d(x, ai) ≤ ε + δ for all i > 0. Then
ai ∈ B(x, ε + δ) ∩ A for all i > 0. As A is closed, the set
B(xi, ε + δ) ∩ A is compact, and there exists a subsequence
{ãi} that converges to a∗ ∈ A. By the triangle inequality,
d(x, a∗) ≤ d(x, ãi) + d(ãi, a

∗). Taking lim infi on both sides
yields

d(x, a∗) ≤ lim inf
i

d(x, ãi) ≤ ε.

This implies x ∈ A⊕ε, and we conclude Aε ⊆ A⊕ε.

D. Proof of Lemma 3

We claim that a point x ∈ A
ε if and only if B(x, ε) lies
entirely in A. If this were not the case, then we could find
a y ∈ Ac such that d(x, y) ≤ ε, and so x ∈ (Ac)⊕ε, which
implies x �∈ ((Ac)⊕ε)c = A
ε. Conversely, if B(x, ε) ∈ A
then d(x, y) > ε for all y ∈ Ac, and so x /∈ (Ac)⊕ε, which
means x ∈ ((Ac)⊕ε)c = A
ε. This observation implies that
(A
ε)⊕ε ⊆ A.

Using the above logic for A⊕ε, we see that a point x ∈
(A⊕ε)
ε if and only if B(x, ε) ⊆ A⊕ε. By definition of A⊕ε,
every point x ∈ A satisfies B(x, ε) ⊆ A⊕ε. Thus, if x ∈ A
then x ∈ (A⊕ε)
ε. Equivalently, A ⊆ (A⊕ε)
ε.

APPENDIX B
PROOFS FOR SECTION IV

A. Proof of Theorem 9

Like in the proof for Theorem 7, we prove Theorem 9 by
partitioning the real line into several regions for μ and ν, and
transporting mass between these regions. Figure 8 shows the
optimal coupling for the case when I2ε ⊆ J .

We first prove a lower bound. Choose the set A = I ,
we have that

Dε(μ, ν) ≥ μ(A) − ν(A2ε) = 1 − ν(I2ε). (31)
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To establish the upper bound, we need to find a coupling
that transports μ to ν such that the cost of transportation is
bounded above by 1 − ν(I2ε). Without loss of generality, let
I = [−w1, w1] and J = [c − w2, c + w2] for some c > 0 and
0 < w1 ≤ w2.

Case 1: 2ε < w2 − w1. We split the analysis into the
following five sub-cases.

Case 1(a): c ∈ [w1 +w2 +2ε,∞). In this case, the intervals
I and J are separated by at least 2ε. Hence, ν(I2ε) = 0, and
therefore, Dε(μ, ν) ≥ 1−ν(I2ε) = 1. Combining this with the
fact that Dε(μ, ν) ≤ 1, we get that Dε(μ, ν) = 1 = 1−ν(I2ε).

Case 1(b): c ∈ [−w1 +w2−2ε, w1 +w2 +2ε). In this case,
ν(I2ε) = ν([c−w2, w1+2ε]) = (w1+2ε−c+w2)/(2w2) ≤ 1.
Since μ([−w1, w1]) = 1 ≥ ν([c − w2, w1 + 2ε]), there must
exist a u ∈ [−w1, w1] such that μ([u, w1]) = ν([c−w2, w1 +
2ε]). Solving for u, we get the following.

w1 − u

2w1
= μ([u, w1])

= ν([c − w2, w1 + 2ε])

=
w1 + 2ε − c + w2

2w2

=⇒ u = w1 −
w1

w2
(w1 + 2ε − c + w2).

Since w1/w2 < 1, the above equation for u shows that u >
w1−(w1+2ε−c+w2) = c−w2−2ε. Hence, (c−w2)−u < 2ε.

Let μ0 be the restriction of μ to [u, w1] and ν0 be the
restriction of ν to [c − w2, w1 + 2ε]. Then, by construc-
tion, μ0(R) = ν0(R). By Lemma 4, we have a monotone
transport map T : [u, w1] → [c−w2, w1+2ε] that transports μ0

to ν0 given by T (x) = w1+2ε−c+w2
w1−u (x − u) + (c− w2). Note

that T transports u to c − w2 and w1 to w1 + 2ε. Also,
T (x) > x. Since T has a slope greater than 1, T (x) − x
is an increasing function. Moreover, T (w1) − w1 = 2ε and
T (u) − u = (c − w2) − u < 2ε. Hence, |T (x) − x| ≤ 2ε
for all x ∈ [u, w1]. Hence, Dε(μ0, ν0) = 0. Therefore,
Dε(μ, ν) ≤ 1−min(μ0, ν0) = 1−ν([c, w1+2ε]) = 1−ν(I2ε).
Combining with the lower bound in (31), we conclude that
Dε(μ, ν) = 1 − ν(I2ε).

Case 1(c): c ∈ (−w2+w1+2ε,−w1+w2−2ε). In this case,
ν(I2ε) = ν([−w1 − 2ε, w1 + 2ε]) = (2w1 + 4ε)/(2w2) ≤ 1.
Since μ([0, w1]) = 1/2 > ν(0, w1 + 2ε), there must exists a
v ∈ [0, w1] such that μ([v, w1]) = ν([0, w1 + 2ε]). Let μ+ be
the restriction of μ to [u, w1] and ν+ be the restriction of ν to
[0, w1 + 2ε]. Then, by construction, μ+(R) = ν+(R). Similar
to the map T in case 1b, there exists a monotone transport map
T+ : [u, w1] → [0, w1+2ε] such that |T+(x)−x| ≤ 2ε. Hence,
Dε(μ+, ν+) = 0. Similarly, let μ− be the restriction of μ to
[−w1,−u] and ν+ be the restriction of ν to [−w1 − 2ε, 0].
Then by symmetry, there also exists a monotone transport map
T− : [−w1,−u] → [−w1 − 2ε, 0] such that |T−(x)− x| ≤ 2ε.
Hence, Dε(μ−, ν−) = 0. Therefore,

Dε(μ, ν) ≤ 1 − [min(μ+, ν+) + min(μ−, ν−)]
= 1 − [ν([0, w1 + 2ε]) + ν([−w1 − 2ε, 0])]
= 1 − ν([−w1 − 2ε, w1 + 2ε])

= 1 − ν(I2ε).

Combining with the lower bound in (31), we conclude that
Dε(μ, ν) = 1 − ν(I2ε).

Case 1(d): c ∈ (−w1−w2−2ε, w1−w2+2ε]. The geometry
of this case is a mirror image of that in case 1b. Hence, just
as in case 2, we have Dε(μ, ν) = 1 − ν(I2ε).

Case 1(e): c ∈ (−∞,−w1 − w2 − 2ε]. Like in case 1,
the intervals I and J are separated by at least 2ε. Hence,
similar to case 1, we get that Dε(μ, ν) = 1 = 1 − ν(I2ε).

Case 2: 2ε ≥ w2 −w1. In this case, we have the following
sub-cases.

Case 2(a): c ∈ [w1 + w2 + 2ε,∞). Like in case 1a,
the intervals I and J are separated by at least 2ε. Hence,
Dε(μ, ν) = 1 = 1 − ν(I2ε).

Case 2(b): c ∈ [w1 −w2 + 2ε, w1 + w2 + 2ε). Since [w1 −
w2 + 2ε, w1 + w2 + 2ε) ⊆ [−w1 + w2 − 2ε, w1 + w2 + 2ε),
the coupling obtained in Case 1b can be directly applied in
this case. Hence, we again have Dε(μ, ν) = 1 = 1 − ν(I2ε).

Case 2(c): c ∈ (−w1 +w2−2ε, w1−w2 +2ε). In this case,
the supports of μ and ν are within 2ε of each other. More
specifically, J ⊆ I2ε. Hence, ν(I2ε) = 1. Let T denote the
monotone transport map from μ and ν as defined in Lemma 4.
Then, T (x) = w2

w1
(x − w1) + (c + w2). Note that T maps

[−w1, w1] to [c−w2, c+w2] monotonically. Since the supports
of μ and ν are within 2ε of each other, we have |T (x) −
x| ≤ 2ε. Hence, Dε(μ, ν) = 0 = 1 − ν(I2ε).

Case 2(d): c ∈ (−w1 −w2 − 2ε,−w1 +w2 − 2ε]. This case
is a mirror image of case 2b and hence the result Dε(μ, ν) =
1 − ν(I2ε) remains the same.

Case 2(e): c ∈ (−∞,−w1 − w2 − 2ε]. Like in case 1a,
the intervals I and J are separated by at least 2ε. Hence,
Dε(μ, ν) = 1 = 1 − ν(I2ε).

It is easily checked that the error attained by the proposed
classifier also matches the bound, which completes the proof.

B. Proof of Theorem 10

We have the following cases:
Case 1: m2 − m1 > δ1 + δ2 + 2ε.
In this case μ and ν have disjoint supports separated by at

least 2ε. Moreover, μ(A
ε) = 1 and ν(A⊕ε) = 0. Then,

Dε(μ, ν) = sup
A closed

μ(A
ε) − ν(A⊕ε)

≥ μ(A
ε) − ν(A⊕ε)
= 1.

Combining the above inequality with the fact that
Dε(μ, ν) ≤ 1, we get Dε(μ, ν) = 1.

Case 2: m2 − m1 < δ2 − δ1 − 2ε.
In this case,

|(m2 + ε) − (m1 − ε)| = |(m2 − m1) + 2ε|
= (m2 − m1) + 2ε < δ2 − δ1,

|(m2 − ε) − (m1 + ε)| = |(m2 − m1) − 2ε|
≤ |m2 − m1| + 2ε

< δ2 − δ1.

Hence, by Lemma 9, the equations f(x+ ε) = g(x− ε) and
f(x − ε) = g(x + ε) have exactly two solutions each, on the
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supports of Δ(m1 − ε, δ1) and Δ(m1 + ε, δ1) respectively.
Hence, l must be the minimum of the two solutions to f(x +
ε) = g(x−ε) and r must be the maximum of the two solutions
to f(x−ε) = g(x+ε). As in the proof of Theorem 8, we divide
the real line into five regions as shown in Table III, where l′ is
the leftmost point such that μ([l + ε, l′]) = ν([l− ε, l′]) and r′

is the rightmost point such that μ([r′, r − ε]) = ν([r′, r + ε]).
Observe that by construction, f(x) ≤ g(x + 2ε) for x ∈ [r −
ε, m1+δ1]. Hence by Lemma 6, Dε(μ++, ν++) = 0. Similarly,
we also get Dε(μ−−, ν−−) = 0.

We will now use Lemma 7 to show that Dε(μ−, ν−) = 0.
Let a = l−ε, a′ = l+ε, b = l′ and t̃ = l′−2ε. Let t be the first
coordinate of the intersection point of two line segments, one
joining (a, g(a)) and (b, g(b)), and the other joining (a′, f(a′))
and (b, f(b)). The following three conditions are satisfied
by μ− and ν−. (1) The support of ν− is [a, b] and the support
of μ− is [a′, b] = [a+2ε, b]. (2) g(x) ≥ f(x) for x ∈ [a, t) and
f(x) ≥ g(x) for x ∈ (t, b]. (3) g(x) ≤ f(x+2ε) for x ∈ [a, t̃)
and the interval (t̃, b−2ε] is empty because t̃ = b−2ε. Hence,
Dε(μ−, ν−) = 0. Similarly, Dε(μ+, ν+) = 0.

Finally, Dε(μ0, ν0) = 0. This is because f(x) ≥ g(x) for
x ∈ [l′, r′] where [l′, r′] is the support of both μ0 and ν0 and
so an identity map T (x) = x may be used to transport all the
mass from ν0 to μ0 at zero cost.

Like in the proof of Theorem 5, we can upper bound
Dε(μ, ν) as follows.

Dε(μ, ν)
≤ 1 − [ν([l − ε, r + ε]) + μ([m1 − δ1, l + ε])

+ μ([r − ε, m1 + δ1])
= μ(A
ε) − ν(A⊕ε).

Since Dε(μ, ν) = supB closed μ(B
ε)− ν(B⊕ε), the above
inequality turns to an equality.

Case 3: δ2 − δ1 − 2ε < m2 − m1 < δ2 + δ1 + 2ε.
In this case,

(m2 − ε) − (m1 + ε) = (m2 − m1) − 2ε < δ2 + δ1,

(m1 + ε) − (m2 − ε) = 2ε − (m2 − m1) < δ2 + δ1.

Hence, |(m2 − ε) − (m1 + ε)| < δ2 + δ1. By Lemma 9,
the equation f(x − ε) = g(x + ε) has either one or two
solutions. Therefore, r must be the rightmost solution to
f(x − ε) = g(x + ε).

We will split the analysis into three sub-cases.
Case 3(a): m2 − m1 > δ2 − δ1 + 2ε.
We will decompose μ and ν into two mutually singular

positive measures each. Let μ− and μ+ be the restriction of μ
to the intervals [m1−δ1, r−ε] and [r−ε, m1+δ1] respectively.
Let ν− and ν+ be the restriction of ν to the intervals [m2 −
δ2, r + ε] and [r + ε, m2 + δ2] respectively. The following
inequality shows that the support of ν− is of a smaller length
than that of μ−.

[(r + ε)-(m2 − δ2)] − [(r − ε)-(m1 − δ1)]
= δ2 − δ1 + 2ε − (m2 − m1)
< 0.

It follows that the support of ν+ is of a greater length
than that of μ+. By construction, g(x − 2ε) ≤ f(x) for

x ∈ [m2 − δ2, r + ε]. Hence, by Lemma 6, Dε(μ−, ν−) = 0.
A similar analysis shows that Dε(μ+, ν+) = 0. Hence,

Dε(μ, ν)
≤ 1 − min(μ−(R), ν−(R)) − min(μ+(R), ν+(R))
= 1 − μ([r − ε,∞)) − ν([r + ε,∞))
= μ(A
ε) − ν(A⊕ε).

Since Dε(μ, ν) = supB closed μ(B−ε) − ν(Bε), the above
inequality turns to an equality.

Case 3(b): δ2 − δ1 < m2 − m1 ≤ δ2 − δ1 + 2ε.
Let μ−, μ+, ν− and ν+ be as defined in case 3(a). The

following inequality shows that the support of μ+ is smaller
than that of ν+.

[(m2 + δ2) − (r + ε)] − [(m1 + δ1) − (r − ε)]
= (m2 − m1) + δ2 − δ1 − 2ε > 0.

Moreover, f(x) ≤ g(x+2ε) for x ∈ [r−ε, m1 +δ1]. Hence
by Lemma 6, Dε(μ+, ν+) = 0.

We will now show that Dε(μ−, ν−) = 0 by verifying
the conditions of Lemma 7. Since 2ε < 2δ1, we have the
following.

δ2 − δ1 < m2 − m1

≤ δ2 − δ1 + 2ε

< δ2 − δ1 + 2δ1

= δ2 + δ1.

Hence, by Lemma 9, there is exactly one point of intersec-
tion of f(x) and g(x) on the support of μ. Let t be the first
coordinate of that point. Let a = m2 − δ2 − 2ε, a′ = a + 2ε
and b = r + ε. Then, (1) the support of μ− is [m1 − δ1, r− ε]
which is a subset of [a, b], and the support of ν− is [a′, b]. (2)
f(x) ≥ g(x) for x ∈ (a, t] and f(x) ≤ g(x) for x ∈ (t, b].
Hence, the first two conditions of Lemma 7 are verified.
To verify, the third condition, we note the following.

(m2 − 2ε) − m1 = m2 − m1 − 2ε < δ2 − δ1,

m1 − (m2 − 2ε) = m1 − m2 + 2ε < 2ε < δ2 − δ1.

Hence, by Lemma 9, f(x) − g(x + 2ε) = 0 exactly twice
on the support of μ. The greater of the two will be r − ε.
Let t̃ be the lesser of the two. Then, t̃ < r − ε = b − 2ε.
Further, f(x) ≤ g(x+2ε) for x ∈ [a, t̃) and f(x) ≥ g(x+2ε)
for x ∈ (t̃, b − 2ε]. Hence, Dε(μ−, ν−) = 0 by Lemma 7.
Therefore, the optimal risk and optimal classifier remain the
same as in case 3(a).

Case 3(c): m2 − m1 ≤ δ2 − δ1.
We will partition the real line into four regions as shown

in Table IV, where l′ is the leftmost point such that μ([m1 −
δ1, l

′]) = ν([m2 − δ2, l
′]) and r′ is as defined in case 2.

Since μ+, ν+, μ++ and ν++ are defined in an identical manner
to case 2, we get Dε(μ+, ν+) = Dε(μ++, ν++) = 0.

We will now show Dε(μ−−, ν−−) = 0 using Lemma 7.
Let a = m1 − δ1 − 2ε, a′ = a + 2ε, b = l′ and t̃ = b − 2ε.
Since m2 −m1 ≤ δ2 − δ1, by Lemma 9, f(x)− g(x) = 0 has
exactly two solutions. Let t be the lesser of the two. Then, (1)
the support of ν−− is [m2−δ2, b] which is a subset of [a, b] and
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Fig. 9. Optimal transport coupling for triangular distributions μ and ν.
As in the proof of Theorem 8, we divide the real line into five regions. The
transport plan from μ to ν consists of five maps transporting μ−− → ν−−
(blue regions to the left), μ− → ν− (orange regions to the left), μ0 →
ν0 (green regions in the middle), μ+ → ν+ (orange regions to the right),
and μ++ → ν++ (blue regions to the right).

TABLE III

THE REAL LINE IS PARTITIONED INTO FIVE REGIONS

FOR μ AND ν FOR CASE 2

TABLE IV

THE REAL LINE IS PARTITIONED INTO FOUR REGIONS
FOR μ AND ν FOR CASE 3(c)

the support of μ−− is [a′, b]. (2) g(x) ≥ f(x) for x ∈ [a, t) and
f(x) ≥ g(x) for x ∈ (t, b]. (3) g(x) ≤ f(x+2ε) for x ∈ [a, t̃)
and the interval (t̃, b−2ε] is empty because t̃ = b−2ε. Hence,
Dε(μ−, ν−) = 0.

Finally, Dε(μ−, ν−) = 0 because f(x) ≥ g(x) for x ∈
[l′, r′] and the identity map T (x) = x transports all the mass
from ν− to μ− at zero cost.

Overall, we have the following inequality.

Dε(μ, ν)
≤ 1 − [ν([m2 − δ2, l

′]) + ν([l′, r′]) + ν([r′, r + ε])
+ μ([r − ε, m1 + δ1])]

= μ(A
ε) − ν(A⊕ε).

As in Case 2, we conclude that Dε(μ, ν) = μ(A
ε) −
ν(A⊕ε).
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