
IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 3, SEPTEMBER 2021 1041

Function Load Balancing Over Networks
Derya Malak , Member, IEEE, and Muriel Médard , Fellow, IEEE

Abstract—Using networks as a means of computing can reduce
the communication flow over networks. We propose to distribute
the computation load in stationary networks and formulate a
flow-based delay minimization problem that jointly captures the
costs of communications and computation. We exploit the dis-
tributed compression scheme of Slepian-Wolf that is applicable
under any protocol information. We introduce the notion of
entropic surjectivity as a measure of function’s sparsity and to
understand the limits of functional compression for computa-
tion. We leverage Little’s law for stationary systems to provide a
connection between surjectivity and the computation processing
factor that reflects the proportion of flow that requires com-
munications. This connection gives us an understanding of how
much a node (in isolation) should compute to communicate the
desired function within the network. Our results suggest that
to effectively compute different function classes with different
surjectivities, the networks can be restructured with the tran-
sition probabilities being tailored for functions, i.e., task-based
link reservations, which can enable mixing versus separately pro-
cessing of a diverse function class. We numerically evaluate our
technique for search, MapReduce, and classification functions,
and infer how sensitive the processing factor to the surjectivity
of each computation task is.

Index Terms—Entropic surjectivity, Little’s law, computation
processing factor, communications, sparse representation.

I. INTRODUCTION

CHALLENGES in cloud computing include effectively
distributing computation to handle the large volume of

data with growing computational demand, and the limited air
interface resources. Furthermore, various tasks such as com-
putation, storage, communications are inseparable. In network
computation is required for reasons of dimensioning, scal-
ing and security, where data is geographically dispersed.
We need to exploit the sparsity of data within and across
sources, as well as the sparsity inherent to labeling, to provide
approximately minimal representations.

An equivalent notion to that sparsity is that of data redun-
dancy. Data is redundant in the sense that there exists,
a possibly latent and ill understood, sparse representation
of it which is parsimonious and minimal, and that allows
for data reconstruction, possibly in an approximate manner.

Manuscript received March 1, 2021; revised June 28, 2021; accepted
July 29, 2021. Date of publication August 2, 2021; date of current version
September 20, 2021. This work was supported in part by the National Science
Foundation under Grant CNS 2008639 and Grant CNS 2008624. A prelim-
inary version appeared in Proc., IEEE Infocom 2020 [1]. (Corresponding
author: Derya Malak.)

Derya Malak is with the Communication Systems Department, EURECOM,
06904 Sophia Antipolis, France (e-mail: deryamalak@gmail.com).

Muriel Médard is with the EECS Department, MIT, Cambridge,
MA 02139 USA (e-mail: medard@mit.edu).

Digital Object Identifier 10.1109/JSAIT.2021.3101762

Redundancy can occur in a single source of data or across
multiple sources.

A. Motivation and Related Work

As computation becomes increasingly reliant on numerous,
possibly geo-dispersed, sources of data, making use of redun-
dancy across multiple sources without the need for onerous
coordination across sources becomes increasingly important.
The fact that a minimal representation of data can occur across
sources without coordination is the topic of distributed com-
pression. The core result is that of Slepian and Wolf [2],
who showed that distributed compression without coordina-
tion is as efficient as compression with cooperation, in terms
of asymptotic minimality of representation.

The use of the redundancy in both functions and data to
provide sparse representations of functions is the topic of the
rather nascent field of functional compression. A centralized
scheme requires all data to be transmitted to some central
unit to perform certain computations. However, in many cases
such computations can be performed in a distributed man-
ner at different nodes in the network avoiding transmission
of unnecessary information, hence, significantly reducing the
resource usage. This can help improve the trade-off between
communications and computation.

Compressed sensing and information theoretic limits of rep-
resentation provide a solid basis for function computation in
distributed environments. We next review them briefly.

Distributed compression: Compressed sensing [3]–[5] is
an alternate approach to coding for making use of sparsity
to provide parsimonious representation and reconstruction of
data within an allowed distortion level in a low-complexity
and robust manner. It can replace joint source-channel-
network coding for wireless networks [6], [7], and distributed
sources [8]. Distributed compression has also been considered
from an information theoretic perspective, e.g., for source cod-
ing, using syndromes in [9], and source-splitting techniques
in [10]. There also exist some information theoretic limits,
such as side information problem [11], [12], Slepian-Wolf
coding for multi-depth trees [2], and general networks via
multicast and linear network coding [13].

Functional compression: To capture underlying redun-
dancy both in data and functions, and recover a sparse
representation, or labeling, at the destination, the rate-region
for functional compression via graph entropy has been derived
in [14] and [15], and for the side information scenario
in [16] and [17]. In [18] graph coloring approaches to dis-
tributed encoding in tree networks with zero distortion, and
in [19] polynomial time sparse graph compression techniques
have been devised. The encoding rate has been analyzed for

2641-8770 c⃝ 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:06:26 UTC from IEEE Xplore. Restrictions apply.

1042 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 3, SEPTEMBER 2021

broadcast networks in [20], and random geometric graphs
in [21]. Function computing has also been studied using multi-
commodity flow techniques in [22], [23]. However, there do
not exist a family of coding approaches for functional com-
pression that are simple and robust and that approximate the
information theoretic limits unlike the case for compression,
where coding and compressed sensing techniques exist.

Computing capacity in networks: Computing capacity of
a network code is the maximum number of times the target
function can be computed per use of the network [24]. The
maximum rate at which functions of sensor measurements can
be computed and communicated to the sink node has been
examined in [25]. A line of work considered function comput-
ing in networks for a specific set of functions, e.g., in [26] for
symmetric Boolean functions in tree networks. The capacity
for special cases such as trees, identity function [27], linear
network codes to achieve the multicast capacity have been
studied [28]. For scalar linear functions, the computing capac-
ity has been fully characterized by min cut in [29]. For vector
linear functions over a finite field, necessary and sufficient con-
ditions have been obtained in [30] to compute the function.
The rate (and distortion) region has been explored for commu-
nicating functions of correlated sources and Slepian-Wolf for
partially invertible functions in [31], source-network codes for
function computation in [32], and lossy linear function com-
putation in [33]. For general functions and network topologies,
upper cut-set bounds on the computing capacity based on cut
sets have been studied in [26], [34]. In [24], authors have gen-
eralized the equivalence relation for the computing capacity.
However, in these works, characterization based on the equiva-
lence relation associated with the target function is only valid
for special topologies, e.g., the multi-edge tree. For general
networks, this equivalence relation is not sufficient to explore
general computation problems.

Cost-performance tradeoffs and coded computing:
Minimizing the communication load is essential in various
frameworks, such as sensor networks [25], content repli-
cation and delivery [35], or a MapReduce algorithm [36].
Coded computing aims to tradeoff communications bot-
tlenecks by injecting computations. This tradeoff in dis-
tributed computing has been examined in the framework of
MapReduce [37], [38]. Distributed coded computing of lin-
ear reduce functions in multi-stage networks by exploiting
multicast opportunities has made the communication load
inversely proportional to the computation load in [37]. Nodes
with heterogeneous processing capabilities have been studied
in [39]. While fully distributed algorithms cause a high com-
munication load, fully centralized systems suffer from high
computation load. Ideally, we aim to find a middle ground to
optimize the total cost of distributed computing in networks.

Queueing theoretic techniques: There exist approaches,
such as [40], where authors have devised throughput-optimal
algorithms for computing the class of fully-multiplexible
functions, and [41], [42], where authors have designed decen-
tralized routing techniques for a class of functions represented
by a binary tree. Other works also incorporated queueing
aspects for fusing sensor readings [43], or computing the
maximum of them [44]. Existing adaptive techniques, such

as the coding approaches developed in [45] for in-network
computing, and [46] for data gathering in broadcast networks,
may not be tailored to computing general nonlinear functions
or more general topologies.

B. Contributions

In this paper, we provide a fresh look at the distributed func-
tion computation problem in a networked context. To the best
of our knowledge, there are no constructive approaches to this
problem except for special cases as outlined in Section I-A.
As a first step to ease this problem, we will provide a utility-
based approach for general cost functions. As special cases,
we continue with simple examples of point search with run-
ning time O(log N) where N is the input size in bits, then
MapReduce with O(N), then the binary classification model
with O(exp(N)). Our main contribution is to provide the link
between the computation problem and Little’s law.

We devise a delay optimization framework for stationary
Jackson network topologies for distributed function comput-
ing using a flow-based technique and by jointly capturing the
costs of communications and computation of a general class
of functions. Function outcomes can be viewed as colors on
the characteristic graph of the function on the data, which is
central to functional compression [18]. We characterize the
complexity of functions via the joint entropy of the charac-
teristic graphs and then leverage the joint graph entropy to
define our key metric, namely the entropic surjectivity – a
notion of sparsity inherent to functions. This model serves
as a simple means of exploiting the function’s entropic sur-
jectivity by employing the concepts of graph entropy and
Little’s law to provide approximately minimal representations
for computing. Our primary insight is that the core characteris-
tics required for operating the distributed computation scheme
are those associated with the entropic surjectivity of the
functions.

The novelty of our approach comes from two aspects. First,
we do not limit ourselves to a class of topology provided
that the network is product-form. Jackson networks allow for
the treatment of each node in isolation, independent of the
topology. Hence, we do not constrain ourselves to cascade
operations as in [6] due to the restriction of topology to linear
operations. Second, we do not restrict the model to a specific
class of functions. We use the notion of entropic surjectiv-
ity to generalize Little’s law to computation. The enabler of
our approach is the connection between Little’s law and the
proportion of flow that requires communications determined
by entropic surjectivity. While the Jackson network is ana-
lyzed by applying Little’s law and Markov routing policy,
and the communication time is devised readily, to the best
of our knowledge, the computing perspective has never been
integrated into this problem before.

Our proposed approach does not put any assumptions on
the topology and characterizes the functions only via their
entropic surjectivity. The probabilistic reservation of the band-
width (i.e., the Markov routing policy) is on the tasks that
have different graph entropies. The distributed data compres-
sion scheme of Slepian-Wolf focuses on source compression

Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:06:26 UTC from IEEE Xplore. Restrictions apply.

MALAK AND MÉDARD: FUNCTION LOAD BALANCING OVER NETWORKS 1043

and is applicable under any protocol information [47]. Our
model provides insights into distributing computation and allo-
cating resources, where the flows of different functions can be
processed separately or mixed.

We next detail the sketch of the steps and the organization
for the rest of the paper.

C. Steps Towards Building the Computation Framework and
Organization of the Paper

In Section II, we describe the networked multi-class sta-
tionary computation system, where each class represents a
different function category. Each node has a computation
queue to perform different computation tasks and a commu-
nication queue to serve different function classes. The main
objective is to minimize the average aggregate delay cost of
these function classes via balancing the computing and com-
munication load of the network. To that end, in Section II-A,
we start by reviewing the key elements of queueing theory,
and in Section II-B, we present the layout of the multi-class
network model. In Section II-C, we generalize Little’s law in
queueing theory, which relates the long-term average number
of customers in a stationary system to the long-term aver-
age effective arrival rate and the average time that a customer
spends in the system [48], to the computation framework. In
our framework, the waiting time for a class of functions is
equal to the average time a packet spends in computation
and communication, which we evaluate using flow conser-
vation principles. In Section II-D, we use the fundamental
compression limits for functions given by the measure of graph
entropy, which is an information-theoretic term for identifying
the compression rate achievable in which pairs of source val-
ues potentially may be confused [14]. By linking the notion
of graph entropy for computing functions to the generalized
Little’s law for computation, we derive lower bounds on the
rate of generated flows, namely processing factors γf . We coin
the term entropic surjectivity and denote it by "c for function
class c, to capture how well we can compress the function
versus its domain, where the higher "c is, the higher the cost
of functional compression is. In Section II-E, using queuing
and information-theoretic concepts, we provide the delay cost
models for task completion.

In Section III, we detail the routing model for computation
and distribution of multiple function classes while ensuring
stability. More specifically, in Section III-A, we establish con-
nections between processing factors γf , effective arrival rates,
and routing matrix. In Section III-B, we elaborate on how the
entropy rate for the Markov routing policy and mixing differ-
ent function classes affect the average computation time. We
infer that in a stationary network with transition probabilities
being tailored for tasks, i.e., via task-based link reservations
that ensure mixing different function classes instead of fixed
routings, it is possible to compute functions more effectively.

In Section IV, we analyze the flow, derive load thresholds
for computing, and devise cost optimization problems. More
specifically, in Section IV-A, we formulate two optimization
problems to determine the average aggregate delay cost of
the network without intermediate computing versus that with

intermediate computing via taking into account the stability,
processing, and compression constraints. In Section IV-B, we
explore the fundamental limits of the traffic loads associated
with different computation tasks. We compute load thresholds
for each node to determine whether a node should conduct
computation or not. In Section IV-C, we consider a single
class flow and investigate two examples with low and high
task computation complexities, respectively, and how to effec-
tively distribute these tasks leveraging the communication and
computing resources and the computation complexity of the
tasks. We show that low-complexity tasks, such as Search
and MapReduce, may favor distributed processing. However,
high-complexity tasks, such as Classification, may require cen-
tralized processing provided that the compute resources are
sufficient. In Section IV-D, we explore how to allocate the
compute tasks corresponding to multiple function classes by
exploiting their processing factors.

In Section V, we present numerical results and evaluations
to demonstrate the utility of the proposed function load dis-
tribution framework, and understand the load threshold for
different function classes. Our main observations are that we
should reserve most of the processing power for running
simple tasks, such as MapReduce and Search, and less for
high complexity tasks, such as Classification, to ensure cost-
effective distributed computing. Furthermore, mixing flows
can provide a more effective allocation of the processing
resources and increase the cost savings over separating flows.
In addition, as the processing capability increases, higher
"c is allowed, and the regime for which computation is
allowed expands. When the communication delay is negligi-
ble, intermediate computing can further improve the overall
cost.

In Section VI, we conclude the manuscript by discussing
possible future directions.

II. A NETWORKED COMPUTATION MODEL

In this section, we detail our network model that incorpo-
rates communications and computation. We consider a general
stationary network topology. Sources can be correlated, and
computations are allowed at intermediate nodes, and we are
interested in computing a set of deterministic functions. While
doing so our goal is to effectively distribute computation.
To that end, intermediate nodes need to decide whether to
compute or relay.

A. Main Elements From Queueing Theory

A collection of nodes V serves multiple classes of computa-
tion flows denoted by C. Multiple nodes can serve each class.
External arrivals into classes occur according to independent
Poisson processes with a rate βc

v for c ∈ C and v ∈ V . The
total effective arrival rate at node v is λv. Node v first performs
a compute service and a computation service for the function
class c at rates χc

v and µc
v, respectively. After completing ser-

vice at node v, a class c job will instantaneously become a
class c′ job and routed to node w with probability prou

v,w(c, c′).
In Section III, we will determine the effective arrival rates
at each node using the routing probabilities of the queueing

Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:06:26 UTC from IEEE Xplore. Restrictions apply.

1044 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 3, SEPTEMBER 2021

network, where the routing is Markovian. In Section III, we
will also detail the flow conservation principles to guide us
the principles in Section IV for determining the load thresh-
olds for computing to optimize the average task completion
time. In the sequel, we provide comprehensive descriptions of
the building blocks of the multi-class networked computation
framework.

B. A Product-Form Multi-Class Network Model

We assume a multiple-class open Jackson network of |V|
nodes with computing capabilities, in which packets can enter
the system from an external/virtual source s, get processed and
leave the system, i.e., are sent to a virtual destination 0. Let
G = (V, E) be a graph modeling the communication network
where V = {v0, v1, . . . , v|V|−2, v|V|−1} represents the collec-
tion of all |V| nodes where v0 = s and v|V|−1 = 0, and there
is a directed link from v ∈ V to w ∈ V if (v, w) ∈ E. We
also let V ′ = V\{s, 0}. Multi-class networks of queues, quasi-
reversible networks, networks in product-form, or networks
with symmetric queues have been well explored in the liter-
ature, see for example [49, Ch. 3] and [50]. These classes
of networks of queues can capture a broad array of queue
service disciplines, including FIFO, LIFO, and processor shar-
ing. A Jackson network exhibits a product-form equilibrium
distribution and we can consider each node in isolation and
investigate the steady-state properties of the network. A ben-
efit of this is each node needs to know how much it needs to
manage, which is less complicated than when nodes need the
topological information to determine how to manage individ-
ual computational flows. Similar behavior is observed when a
network of queues, such that each individual queue in isola-
tion is quasi-reversible, always has a product-form stationary
distribution [49].

Set of computation flows: For a set of functions f ∈ F , we
denote the set of computational flows by C = {c = (f , X)}
which represents the class of functions and X ∈ X defined on
the probability space (X ,P) where X is the set of symbols
and P is the data (or source) distribution. Multiple classes
represent different types of functions, computation for each
class is done in parallel, and the network can do computations
and conversions between different classes (which we detail in
Section II-E). Let C = |C| be the cardinality of all classes, and
any function of the same class c ∈ C has the same complexity.
Hence, we denote a function f by fc if it belongs to class c.
The number of classes of functions that the network can handle
will be a proxy for the resolution of network’s computation
capability, and |C| being sufficiently large means that a wide
class of functions can be computed/approximated.

Source data in bits: The incoming traffic intensity asso-
ciated with class c ∈ C packet at node v is λc

v follows a
Poisson process with arrival rate λc

v in bits/sec. The discrete-
time stochastic process modeling the source at node v is
X = (X(1), . . . , X(T)), where X(t) is a random variable rep-
resenting a value observed at time t. The total arrival rate of
the source X at v is λv = ∑

c∈C
λc

v = H(X) under the assumption

that arrivals from different classes occur independently, where
H(X) = lim

T→∞
H(X)

T is the entropy rate or source information

rate when the limit exists. Hence, the source at each v is char-
acterized by the aggregate arrival process to the node, and
is a mixture model with multiple classes. Because the func-
tion class c has an effective rate λc

v, its contribution to H(X)

depends on its proportion, i.e., λc
v∑

c∈C
λc

v
. However, we do not

require that an observed value of the source X should identify
the class to which it belongs.

An arrival to v associated with class c requires a com-
pute service proceeded by a communication service at rate
µc

v > λc
v, where ρc

v = λc
v

µc
v
. Each processed packet departing

from v has a Poisson distribution. We call the rate of flow
generated by v by computing fc, c ∈ C the surjection factor
of v and denote it by γf (λ

c
v). The surjection factor γf (λ

c
v) is

monotone increasing in λc
v and γf (λ

c
v) ≤ λc

v. We denote the
long-term average of the aggregate number of packets in the
compute and communication service at v due to processing
of fc by Lc

v.
We consider a network of quasi-reversible communica-

tion and computation queues. In this setting each node v ∈
V maintains a computation queue and a communications
queue.

To model the states of the computation queues, let M
be the set of v ∈ V quasi-reversible computation queues,
mc

v and mv = ∑
c∈C

mc
v be the number of packets of class

c ∈ C and the total number of packets in the compute
queue of v, respectively. To model the computation queue
state of v, let mv = (c1, . . . , cmv) where ci is the class of
packet i = 1, . . . , mv. We let the computation traffic inten-
sity associated with class c ∈ C at node v ∈ V be σ c

v . In
the special case when an arriving packet requires a compute
service which is drawn from an exponential distribution1 with
mean 1

χc
v

independently, its traffic intensity is σ c
v = λc

v−γf (λ
c
v)

χc
v

.
Hence, the total intensity at node v equals σv = ∑

c∈C
σ c

v .

Utilization satisfies σ c
v < 1 to ensure stability of computa-

tion. The global state of M is m = (m0, m2, . . . , m|V|−1). To
ensure quasi-reversibility, we assume a M/M/1 network with
χc

v = χv for all c. Then the steady-state distribution of the
compute queue of v has a product-form [51, Ch. 9] given by
φv(mv) = (1−σv)

∏
c∈C

(σ c
v)mc

v . Hence, the stationary distribution

of M is φ(m) = ∏
v∈V

φv(mv). Once a packet’s compute service

at v is complete, it is then forwarded by the communication
queue of v to the nodes v ∈ V\s.

Let N be the set of v ∈ V quasi-reversible communica-
tion queues, nc

v and nv = ∑
c∈C

nc
v be the number of packets

of class c ∈ C and the total number of packets in the
communication queue of v, respectively. The state of this
queue is nv = (c1, . . . , cnv), where ci is the class of packet
i = 1, . . . , nv. A class c packet has a departure from the com-
munication queue of v that follows a Poisson process with rate
γf (λ

c
v) and requires an exponential distributed communication

1Later in Section II-E we consider different computation models where
utilization σ c

v for computation can have different forms.

Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:06:26 UTC from IEEE Xplore. Restrictions apply.

MALAK AND MÉDARD: FUNCTION LOAD BALANCING OVER NETWORKS 1045

Fig. 1. Little’s law in a computation scenario where Lc
v = γf (λ

c
v) · Wc

v .

service with mean 1
µc

v
independently. Hence, the outgoing traf-

fic intensity is ρc
v(out) = γf (λ

c
v)

µc
v

. Hence, the total intensity at v
equals ρv(out) = ∑

c∈C
ρc

v(out). Utilization satisfies ρc
v(out) < 1,

which suffices for stability. The stationary distribution of com-
munication queue v is analyzed in isolation similarly as in
compute queue and is πv(nv) = (1 − ρv(out))

∏
c∈C

(ρc
v(out))nc

v .

The steady-state distribution of the global state of N is
π(n) = ∏

v∈V
πv(nv), where n = (n0, n2, . . . , n|V|−1).

Global state of the network is [n; m] = [nv; mv]v∈V ∈ Rn+m

where n = ∑
v∈V

nv, and m = ∑
v∈V

mv. We further let ρ =
[ρc

v]c∈C, v∈V , λ = [λc
v]c∈C, v∈V , λc = [λc

v]v∈V\{s} ∈ R(|V|−1)×1,
µ = [µc

v]c∈C, v∈V , µc = [µc
v]v∈V\{s} ∈ R(|V|−1)×1, ρ(out) =

[ρc
v(out)]c∈C, v∈V , and σ = [σ c

v]c∈C, v∈V .
We next introduce a novel relation for computation by build-

ing a connection between the limits of functional compression
rates and Little’s law in queueing theory.

C. Computing With Little’s Law

Little’s law states that the long-term average number L of
packets in a stationary system is equal to the long-term aver-
age effective arrival rate λ multiplied by the average time W
that a packet spends in the system. More formally, it can be
expressed as L = λW. The result applies to any system that
is stable and non-preemptive, and the relationship does not
depend on the distribution of the arrival process, the service
distribution, and the service order [48].

In our framework, each node is equipped with a com-
pute queue and communications queue where the processing
is sequential. Specifically, the incoming flow of rate λc

v first
goes into the compute queue for processing to provide a com-
pressed representation (for each class of function) which is
then forwarded to the network at a rate γf (λ

c
v). Because com-

putation on a flow yields a reduction in the amount of flow
to be transmitted, λc

v > γf (λ
c
v). This is different from a stan-

dard communication where the incoming data is forwarded to
the network without any computation on it and λc

v = γf (λ
c
v).

Since we employ a flow-based approach, from flow conser-
vation, the difference λc

v − γf (λ
c
v) models the virtual flow

rate that is lost as a result of computation exerted by node
v. This loss can be modeled as a function of a node’s total
self-loop flows [22], [23]. Let mc

v and nc
v be the long-term

average number of packets of class c at v waiting for com-
pute and communication service, respectively. Let Wc

v,comp(m
c
v)

and Wc
v,comm(nc

v) be the average time needed for the compute
and communication operations at node v for c, respectively,
that are positive and non-decreasing in their respective flows.
Let Wc

v be the delay cost function that models the average
time a data packet of class c spends at node v, which is

given by2

Wc
v = Wc

v,comp(m
c
v) + Wc

v,comm(nc
v). (1)

The long-term average number of packets in node v for class
c functions equals Lc

v = mc
v + nc

v. Given rates λc
v − γf (λ

c
v) and

γf (λ
c
v), respectively for computation and communications, we

can determine the relations among Lc
v, mc

v, and nc
v as function

of γf (λ
c
v):

mc
v = Lc

v ·
(

1 − γf (λ
c
v)

λc
v

)
, nc

v = Lc
v · γf (λ

c
v)

λc
v

. (2)

We aim to infer the outgoing rate γf (λ
c
v) generated from an

incoming flow rate λc
v. By Little’s law, the long-term average

number Lc
v of packets at node v for class c functions satisfies

Lc
v = γf (λ

c
v) · Wc

v . (3)

In Section II-D we introduce a novel flow-based notion for
computing that gives a lower bound on the surjection factor.
We detail the delay cost function Wc

v in Section II-E.

D. Characterizing the Flow of Computation

The fundamental limits of compressing a function fc
in distributed networks are given by the graph entropy
of fc [14], [15], [16], [18]. Graph entropy generalizes the
Shannon’s entropy H(X) by employing the notion of a char-
acteristic graph. Each vertex of the characteristic graph rep-
resents a sample value of the same random variable, and
two vertices are connected if they should be distinguished
because the function fc can get different values in these two
points. Total incoming flow rate needed is approximated as
H(X). More precisely, let fc(X(t)) be a function of a col-
lection of source variables represented by the random vector
through time X(t) = {X(t)

1 , . . . , X(t)
M }, where X(t) can be a set

of possibly correlated source samples of a multivariate ran-
dom process, and sample m ∈ {1, 2, . . . , M} can take values
from the alphabet Xm. Dropping the superscript (t) in the
source vector, to construct the characteristic graph of fc on
X1, i.e., GX1 , we draw an edge between vertices u1 ∈ X1
and u2 ∈ X1, if fc(u1, x2, . . . , xM) ̸= fc(u2, x2, . . . , xM) for
any realization x2, . . . , xM whose joint instance has non-zero
measure. Surjectivity of fc determines the connectivity and
hence coloring of the graph. The graph entropy H(fc(X)) is
the entropy rate of the coloring of GX1 for the function fc
on X which characterizes the minimal representation needed
to reconstruct with fidelity the desired function fc(X) [14]. In
general, functional compression reduces the amount of rate
needed to recover fc on data X, and the savings increase
along H(X) → H(fc(X)). We note that source 1 can achieve
an encoding rate close to the graph entropy of X1 such that
H(fc(X)) = HGX1

(X1) = lim
n→∞

1
n min

cGn
X1

H(cGn
X1

) ≤ H(cGX1
) [14],

where cGn
X1

is a valid coloring of Gn
X1

which is the nth power
of a graph GX1 . For further details on graph entropies we

2It is possible to generalize the sequential processing to pipelining where
computation and communications progress together, and the parallelism
ensures Wc

v = max [Wc
v,comp(mc

v), Wc
v,comm(nc

v)]. We left the non-sequential
model as a future direction.

Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:06:26 UTC from IEEE Xplore. Restrictions apply.

1046 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 3, SEPTEMBER 2021

refer the reader to [2], [14]–[16], [18]. The degenerate case
of the identity function corresponds to having a complete
characteristic graph. The fundamental limits of asymptotic
compression in this case are given by the Slepian-Wolf the-
orem such that the sum rate of the sources should exceed
H(X), and X1 can be asymptotically compressed up to the rate
H(X1|X\X1) when X\X1 = {X2, . . . , XM} is available at the
receiver [2]. In the sequel, instead of restricting to X1, we con-
sider the set of sources X and denote the joint graph entropy
of [GXm]m∈{1,2,...,M} by H(fc(X)). To compute fc(X) sources
collectively need to transmit at a minimum of H(fc(X)).

In general, finding minimum entropy colorings cGn
X1

of char-
acteristic graphs GX1 is NP-hard, and the optimal rate region
of functional compression remains an open problem [52].
However, in some instances, it is possible to efficiently
compute these colorings [18]. In [18], the sources com-
pute colorings of high probability subgraphs of their GXm ,
m ∈ {1, 2, . . . , M} and perform Slepian-Wolf compression on
the colorings and send them. Similarly, intermediate nodes
compute the colorings for their parents’, and use a look-up
table to compute the corresponding functions.

The minimum functional compression rate attainable over
a network can be obtained via extending the notion of graph
entropy H(fc(X)) and its rate H(fc(X)) = lim

T→∞
H(fc(X))

T to cap-
ture the topology as well as function’s surjectivity. We next
introduce a novel notion to measure the fundamental limits of
compression in a network for a function the destination wants
to compute.

Definition 1 (Entropic Surjectivity, "c): Entropic surjectivity
of fc : X → Y , c ∈ C is how well it can be compressed
with respect to the compression rate of source symbols X. We
denote the entropic surjectivity of function fc with respect to
X by

"c = H(fc(X))

H(X)
. (4)

Note that "c is maximized if the function fc with domain
X and codomain Y is surjective, i.e., for every y ∈ Y there
exists at least one x ∈ X with fc(x) = y. It is lower bounded
by zero when the function maps all elements of X to the same
element of Y . Hence, "c can be used as a measure of how
surjective the function fc is. A surjective function fc has high
entropy via compression through a network, and yields a high
"c, i.e., is harder to compress.

The proportion of flow that requires communications – the
proportion of generated flow as a result of computing – needs
to satisfy the following condition

"c ≤ γf (λ
c
v)

λc
v

. (5)

From flow conservation, the maximum amount of flow that
vanishes due to computation is when (5) holds with equality,
i.e., γf (λ

c
v) = λc

v"c. In the regime of low compression, the
network is communication intensive, i.e., γf (λ

c
v) is high versus

the computation intensive regime with high compression, i.e.,
low γf (λ

c
v). In any regime, γf (λ

c
v) has to be sufficiently large

to ensure that the compute task is performed. More formally,

employing the limits of functional compression

"cλ
c
v ≤ γf (λ

c
v) ≤ λc

v < µc
v. (6)

To the best of our knowledge, there do not exist algorithms
that exploit the theoretical limits provided by coloring char-
acteristic graphs of functions to optimize the surjection factor
γf (λ

c
v). To that end, we aim to approximate γf (λ

c
v) using the

connection between Little’s law that relates the number of
packets Lc

v to function’s entropic surjectivity "c. To that end,
we next characterize the average computing time of different
function classes for the proposed network setting.

E. Cost Models for Task Completion Time

For the setup of a multi-class open Jackson network with
node set V , all packets enter the system from a virtual source s.
These packets are processed in the network and then leave the
network via virtual destination 0. We next explore the break-
down for the compute and communications time of a packet
and the average time it spends in the system.

Functional compression cost: We assume an average-case
complexity model for computation where the algorithm does
the computation in a sorted array (e.g., binary search). Let
dfc(m

c
v) denote the time complexity for computing functions

of class c ∈ C packet at v ∈ V in the units of packets. While
dfc(m

c
v) increases in the function’s complexity, its behavior is

determined by the function class c, and as function of the
input size mc

v, i.e., the number of packets needed to represent
the input. Hence, mc

v denotes the number of packets of class
c at v waiting for computation service. The compute cost at v
of processing a flow of class c is the time complexity which
describes the average running time for performing computation
on a packet, in sec

Wc
v,comp(m

c
v) =

{
1
λc

v
· dfc(m

c
v), v ∈ V\s, c ∈ C,

0, v = s, c ∈ C.
(7)

This implies that the virtual source s does not perform
computation services.

A taxonomy of functions: We consider three function cate-
gories and with different time complexities. For Search which
tries to locate an element in a sorted array, an algorithm runs in
logarithmic time, hence has low complexity. For MapReduce,
the reduce functions of interest are linear, and the algorithm
runs in linear time, which is of medium complexity. For
Classification, we consider the set of all decision problems
that have exponential runtime. The time complexity, i.e., the
order of the count of operations, of these functions satisfies:

dfc(m
c
v) =

⎧
⎨

⎩

O(log(mc
v)), Search,

O(mc
v), MapReduce,

O(exp(mc
v)), Classification.

(8)

Using the order of the count of operations in (8) and
Wc

v,comp(m
c
v) in (7), we can model the delay cost functions

for computations of different classes of functions for v ∈ V ′.
In Section V, we will numerically investigate the behavior of
computing cost.

Communication cost: Each intermediate computation pro-
vides a compressed representation. The cost of communica-
tions equals the average waiting time, i.e., the sum of the

Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:06:26 UTC from IEEE Xplore. Restrictions apply.

MALAK AND MÉDARD: FUNCTION LOAD BALANCING OVER NETWORKS 1047

average queueing and service times of a packet in sec. It is
given as a function of the departing flow:

Wc
v,comm(nc

v) =

⎧
⎪⎨

⎪⎩

1
µc

v−γf (λc
v)

, v ∈ V ′, c ∈ C,
1

µc
v−βc , v = s, c ∈ C,

0, v = 0, c ∈ C,

(9)

which is convex in γf (λ
c
v), hence increasing in nc

v = γf (λ
c
v)

µc
v−γf (λc

v)

and upper bounded by 1
µc

v(1−ρc
v) because ρc

v(out) ≤ ρc
v . When

γf (λ
c
v) = λc

v since no packets experience compute service
we have mc

v = 0, and nc
v = ρc

v
1−ρc

v
. The computation time

of the identity function is null Wc
v,comp(0) = 0. As a result

ρc
v(out) = ρc

v and Wc
v,comm(nc

v) = 1
µc

v−λc
v
. It follows from (9)

that Wc
v,comm = 0 when v = 0, c ∈ C. From (2) mc

v increases
in λc

v because increases always at a smaller rate than the
incoming flow rate does. This in turn increases dfc(m

c
v) and

Wc
v,comp(m

c
v). Furthermore, the long-term average Lc

v in (3)
increases in λc

v, keeping µc
v fixed. Hence, (3) determines the

behavior of Wc
v,comm(nc

v). As a result nc
v increases if the scaling

of γf (λ
c
v) in λc

v is linear, versus nc
v is less sensitive when the

scaling is sublinear. We also note that the communication cost
could instead be chosen to model the queue size, utilization,
or the queueing probability. Our model does not account for
the physical data transmission time, excluding the link layer
aspects.

In the case when the computation cost is similar as the
communication cost model, a compute service for each packet
c ∈ C arriving to v has an exponential distribution with mean
1
χc

v
independently. Hence, the utilization of class c packets at

node v is σ c
v = λc

v−γf (λ
c
v)

χc
v

and mc
v = σ c

v
1−σ c

v
. In this special case,

the compute cost for v ∈ V ′ is given by the following convex
model:

Wc
v,comp(m

c
v) = 1

χc
v (1 − σ c

v)
= mc

v

χc
v σ c

v
= mc

v

λc
v − γf (λc

v)
sec,

(10)

which generalizes the cost of MapReduce in (8) due to the
dependence of σ c

v on mc
v. This model is yet to account for the

routing information. In Section III we will focus on balancing
different function classes, their conversions, and routings, to
generalize (10) to a departure-based model.

III. TASK LOAD BALANCING

In this section, we detail the routing model for different
function classes and their conversions. At each node, com-
putation is followed by communication, as modeled in (1),
while satisfying the stability conditions. In general pack-
ets can change their classes when routed from one node to
another [50]. Hence, at each node, conversion between classes
is allowed. Let Cin

v ⊆ C and Cout
v be the set of incom-

ing and outgoing classes at node v ∈ V . We assume that
Cout

v ⊆ Cin
v ⊆ C as computations on Cin

v can only reduce the
number of function classes in the outgoing link. Each com-
putation transforms a class c ∈ C of flow into another class
c′ ∈ C of flow where the rates of transitions among the classes
are known [50, Ch. 10.3.8]. Because Cout

v ⊆ Cin
v , a computa-

tion transforms a flow class ci into a flow class cj if j ≥ i.

However, vice versa, conversion from cj to ci, violates the pur-
pose of computation because ci has a higher complexity and
processing of cj data may not increase its entropy. In other
words it holds that

H(fcj(X)) ≤ H(fci(X)), j ≥ i. (11)

We characterize the class transformations via a Markov
routing policy which we detail next.

A. Routing and Flow Conservation

Let the original arrival rate of class c packets to the network
be Poisson with rate βc. Let parr

v (c) = prou
s,v (c) be the probabil-

ity that an arriving class c packet is routed to queue v, where s
represents a virtual (shared) source node that denotes the ori-
gin of a task. Assuming that all arriving packets are assigned
to a queue, we have that

∑
v∈V

prou
s,v (c) = 1.

We allow packets to depart from the network after service
completion. There is a virtual (shared) destination node 0 ∈ V
that indicates the completion of a task. Let pdep

v (c) = prou
v,0(c)

denote the probability that a function class c packet departs
upon completing its service at v. The total departure rate of
class c packets from v in the forward process is γf (λ

c
v)·prou

v,0(c).
With these definitions, the routing probabilities between nodes
have the following structure:

prou
s (c) =

[
prou

s,v (c)
]

v∈V\{s}

=
([

prou
s,v1

(c)prou
s,v2

(c) . . . prou
s,v|V|−2

(c)prou
s,0 (c)

])ᵀ

∈ [0, 1](|V|−1)×1.

For v ∈ V ′ we have the following upper-triangular matrix
which is a valid stochastic matrix:

prou
v (c) = [prou

v,w(c, c′)]w∈V\{s}, c′∈C ∈ [0, 1](|V|−1)×|C|,
(12)

where (11) justifies the upper-triangular structure except for
the sink node.

The network accommodates different types of state tran-
sitions, i.e., arrival, departure, routing, and internal state
transitions [50, Ch. 10.6.3]. As a result of function compu-
tation, a packet can change its class when routed from one
node to another where the routing probabilities depend on
a packet’s class. We assume a Markov routing policy [50,
Ch. 10.6.2] which is described as follows. A class c ∈ C
packet that finishes service at v ∈ V ′ is routed to the compute
queue of node w ∈ V ′ as a class c′ ∈ C packet with probabil-
ity prou

v,w(c, c′) if its service is not completed. The probability
that a class c packet departs from the network after service
completion at v is

prou
v,0(c) = 1 −

∑

w∈V ′

∑

c′∈C

prou
v,w(c, c′), (13)

where the second term in the right hand side denotes the total
probability that the packets stay in the network. Since it is an
open network model, for every class c there is at least one
value of v so that prou

v,0(c) > 0. Thus all packets eventually
leave the system.

Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:06:26 UTC from IEEE Xplore. Restrictions apply.

1048 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 3, SEPTEMBER 2021

A node v ∈ V can forward the flows it receives through its
incoming edges, or generate a flow of class c ∈ C modeled via
a self-loop by terminating equal amounts of incoming flows
of class c′ ∈ C where conversion among classes is possible.
In the stationary regime the total arrival rate λc

v of class c
packets to node v is the lumped sum of the flows of class c
packets through its incoming edges. The terminated flow due
to computation is the difference λc

v−γf (λ
c
v) between λc

v and the
generated flow rate. Flow conservation for each class implies
the following relation

λc
v =

⎧
⎪⎪⎨

⎪⎪⎩

βc, v = s,
βc

v + ∑

w∈V ′

∑

c′∈C
γf (λ

c′
w)prou

w,v(c
′, c), v ∈ V ′,

∑

v∈V ′
γf (λ

c
v)p

rou
v,0(c), v = 0,

(14)

where βc
v = βc · prou

s,v (c) denotes the original arrival rate of
class c packets assigned to the compute queue of node v and
is known a priori, and the second term in the right hand side
denotes the aggregate arrival rate of packets that are routed
to queue v as a class c packet after finishing service at other
queues w ∈ V as a class c′ ∈ C. The term γf (λ

c′
w) denotes the

total departure rate of class c′ packets from node w rate of
class c′ packets to queue w (as a result of computation).

The processing factor γf (λ
c
v) satisfies the lower bound in (5),

ensuring that the flows routed from other nodes through the
incoming edge of v is at least λc

v"c. Using (12) we let
Prou(c) = [prou

v (c)]v∈V ′ ∈ [0, 1](|V|−2)×(|V|−1)×|C| be a three
dimensional routing array. We further let

prou(c) =
∑

w∈V ′
prou

w (c)1|C|

=
[

∑

w∈V ′

∑

c′∈C

prou
w,v(c, c′)

]

v∈V\{s}
∈ R(|V|−1)×1,

where 1n is a unit column vector of size n. Letting βc =
[βc

v]v∈V\{s} ∈ R(|V|−1)×1 and γ f (λ
c) = [γf (λ

c
v)]v∈V\{s} ∈

R(|V−1|)×1 and using (14), we can rewrite (5) in vector form:

γ f (λ
c) ≥ λc"c =

[
βc + prou(c) ⊙ γ f (λ

c)
]
"c

=
(
I|V|−1 − Dc"c

)−1
βc"c, ∀c ∈ C, (15)

where ⊙ is the Hadamard (or element-wise) product, I|V|−1 =
diag(1, 1, . . . , 1) is an (|V| − 1) × (|V| − 1) identity matrix,
and Dc = diag(prou(c)) ∈ R(|V|−1)×(|V|−1) is a matrix obtained
by diagonalizing vector prou(c). The range of λc can be
computed as function of "c as determined by the function’s
surjectivity and its compute cost. Combining (15) which gives
λc ≥ βc + Dcλ

c"c and (14) which gives λc ≤ βc + Dcλ
c

yields the following lower and upper bounds, respectively:
(I|V|−1 − Dc"c)

−1βc ≤ λc ≤ (I|V|−1 − Dc)
−1βc.

In Fig. 2, we consider a node in isolation to illustrate the
computational and communication flows at a typical node v ∈
V ′ of the Jackson network. The min-cut that denotes the total
arrival rate of computational flow c is λc

v. This via (14) captures
the rate of original arrivals which is βc

v , and the arrivals routed
from any other node w ∈ V ′ in the network. If there is no w
such that prou

w,v(c
′, c) > 0, then λc

v = βc
v . The cut γf (λ

c
v) denotes

the total generated rate (or processing factor) of computational

Fig. 2. Computational flow breakdown at v ∈ V ′ where min cut λc
v is the

total arrival rate of flow c at v that incorporates the original arrivals βc
v and

the arrivals routed from w ∈ V ′. Min cut γf (λ
c
v) is the total generated rate of

c, at v, and the departures are routed to u ∈ V ′.

flow c at node v. The processed flow can be routed to any
u ∈ V ′ in the network if prou

v,u(c, c′) > 0. If there is no such
node, then γf (λ

c
v) departs the system.

For the networked setting we can refine the compute cost
in (10) as

Wc
v,comp(m

c
v) =

prou
v,0(c)mc

v

λc
v − γf (λc

v)
+

∑

c′∈C

∑

w∈V

prou
v,w(c, c′)mc

v

λc
v − γf (λc

v)
, (16)

where the first term in the right hand side captures the wasted
computation rate due to departing packets of class c from v
of the network, and the second term represents the cost of
additional processing due to the routing of the packets to other
queues after finishing service from v.

B. Higher Order Properties

The communication network N under the Markov routing
policy can be modeled using a discrete-time Markov chain
(DTMC) Y1, Y2, Y3, . . . The entropy rate for (Yk) on a count-
able number of states is H(Y) = −∑

ij
πiPij log Pij where πi is

the limiting distribution and (Pij) is the state transition matrix.
The rate H(Y) can capture the routing information and charac-
terize the distributions, i.e., the higher order properties, of the
costs Wc

v,comm and Wc
v,comp incurred being in each state of the

network. It can also explain the relation between routings and
connectivity and how long it will take to compute. To that end,
we next associate the states of the DTMC to a slotted model
to determine the computing cost on a time-slot basis.

At each time slot t, the Markov chain is in state i with
probability πi. We infer the following quantities at t, each
indicated by the superscript (t) as function of the state i:

1) nc
v
(t) and γf (λ

c
v
(t)), and Wc (t)

v,comm(nc
v
(t)) using (9),

2) mc
v
(t) = nc

v
(t)(

λc
v
(t)

γf (λc
v
(t))

−1) using (2), where Lc
v = mc

v +nc
v,

3) Wc (t)
v,comp(mc

v
(t)) using (7), and

4) Wc
v
(t) = Wc (t)

v,comp + Wc (t)
v,comm using (1), and the relations

of Wc
v
(t), Lc

v, and γf (λ
c
v
(t)) via (3).

A class of function is easy to compute if the generated
rate per unit time of computation is high. More precisely, in
a DTMC with fixed slot duration T , the generated flow rate

across tmax slots is T
tmax∑
t=1

γ
(t)
f (λc

v
(t)) in bits/sec. If this rate is

large, fc is easier to compute for given routings. Hence, this
approach helps infer what classes of functions can be com-
puted easily. If on the other hand, to account for the cost
of computing more precisely, we assume a continuous-time
chain, we can use a DTMC Yk to describe the kth jump of

Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:06:26 UTC from IEEE Xplore. Restrictions apply.

MALAK AND MÉDARD: FUNCTION LOAD BALANCING OVER NETWORKS 1049

the process where the variables S1, S2, S3, . . . describe holding
times in each state. In state i, the slot duration Wc

v
(t) (hold-

ing time) can be approximated by the average time needed
to perform computation on the distribution of classes, nc

v
(t),

c ∈ C in the current state, i.e., E[Wi]. Hence, Wc
v
(t) is the

realization of the holding time sampled from an exponential
distribution with rate 1

E[Wi]
. Then the total number of bits gen-

erated over tmax slots is
tmax∑
t=1

Wc
v
(t) · γ

(t)
f (λc

v
(t)) and the total

cost is
tmax∑
t=1

Wc
v
(t).

Given routings Pij, the limiting distribution πi determines
the network state [n; m], which provides insights into com-
puting different classes of functions. To that end we seek the
relation between H(Y) and H(fc(X)) = "cH(X). The entropy
rate of {γf (λ

c
v)}v∈V,c∈C is the same as H(Y) because the DTMC

(Yk) fully describes γf (λ
c
v). Thus, H(Y) determines how bal-

anced the flows for the different classes are, and can be a
proxy for communication cost. If the process (Yk) is i.i.d.,
H(Y) = H(Yk), k = 1, . . . , N, the class distribution across
different states is not distinguished, i.e., γf (λ

c
v) is unchanged

in c ∈ C. On the other hand, mixing tasks fc of differ-
ent complexities lower H(Y) (due to concavity of entropy,
i.e., H(Y) ≤ −∑

j
(
∑

i
πiPij) log(

∑
i

πiPij).) Hence, the DTMC

states are not visited with the same frequency, i.e., πi is not
uniform, as some tasks require high nc

v and γf (λ
c
v). This may

help reduce the use of communication resources. Mixing func-
tion classes can provide resource savings and help lower H(Y)

in networked environments. Hence, in a Jackson network with
nodes having similar routing probabilities and each state being
visited as often, it might not be possible to effectively com-
pute different function classes versus in a more structured
network with transition probabilities being tailored for tasks,
i.e., task-based or weighted link reservations, to enable mixing
of classes.

Next in Section IV we characterize the thresholds on γf (λ
c
v)

for successfully computing functions.

IV. COMPUTATION FLOW ANALYSIS

In the previous section, we explored how given routings
or connectivity informs us of the class of functions we can
compute. In this section we are interested in the reverse ques-
tion of how to optimize the routings and how the connectivity
looks like to compute a given class of functions. To that
end we investigate where to compute and how to compute
a function class fc of known time complexity to optimize the
average computation time in the Jackson network. Our goal is
to understand whether a divide-and-conquer-based approach
is more favorable than a centralized computation allocation
approach. In divide-and-conquer a subset of nodes work on
the sub-problems of a given task, which are to be combined
to compute the target value either at any node, including the
destination. In a centralized approach tasks are not split into
sub-problems. Instead they are run at once. We next introduce
our optimization framework.

A. Optimizing Average Task Completion Time

In this part we focus on optimal distribution of multiple
classes of functions where we allow class conversions, via
exploiting the information-theoretic limits of function com-
putation and flow conservation principles. We contrast two
centralized formulations to optimize the cost function aggre-
gated over c ∈ C, v ∈ V to understand the savings of
computation in a network setting.

Average cost of no computing: We first formulate an
optimization problem where there is no intermediate comput-
ing on the source data, and the per node cost Wc

v,comm(nc
v)

is given in (9). This boils down to minimizing the aggregate
communications cost, and is formulated as

CommsCost: min
ρ(out)<1

∑

v∈V

∑

c∈C

Wc
v,comm(nc

v), (17)

where the routing array Prou(c) is fixed. The solution to (17)
is given by

CommsCost =
∑

c∈C

1
1ᵀ|V|−1(µ

c − (I|V|−1 − Dc)−1βc)
.

Average cost of function computation: We next formulate
an optimization problem accounting for the time complexities
of computation tasks in (8) and the communication costs:

MinCost: min
ρ(out), σ

∑

v∈V

∑

c∈C

Wc
v

s.t. ρc
v(out) < 1, σ c

v < 1, ∀c ∈ V, v ∈ V,

µc > λc ≥ γ f (λ
c), ∀c ∈ C,

γ f (λ
c) ≥ λc"c ≥ 0|V|−1, ∀c ∈ C, (18)

where the objective function Wc
v , as defined in (1), captures

the total delay to be minimized over the C × |V|-variable
matrices ρ(out) and σ . This framework captures in addi-
tion to the first constraint on stability, the second constraint
captures the capacity constraint µc > λc, the processing
constraint λc ≥ γ f (λ

c), the constraint on surjection fac-
tor γ f (λ

c) ≥ λc"c, and the non-negativity λc"c ≥ 0|V|−1
constraint, where the relations among flow generation, con-
servation, and termination given in (14) precisely give the
connection between λc

v and γf (λv).
The values of "c, λc

v, and γf (λ
c
v) are coupled. It is intu-

itive that Wc
v,comp(m

c
v) increases with dfc(m

c
v) for any function

class, and λc
v determines the rate of increase. As "c increases,

from (5) the nodes generate a higher γf (λ
c
v) because compres-

sion is harder as the entropy H(fc(X)) grows, and Wc
v,comm(nc

v)

gets higher. However, the exact behavior of MinCost is deter-
mined by the complex relationships between the flows. Hence,
the connection between γf (λ

c
v) and dfc(m

c
v) is not immediate.

For example, while addition function has a low complexity
dfc(m

c
v) and a high entropy H(fc(X)), multiplication function

has a high dfc(m
c
v) and a low H(fc(X)).

Given the parametrizations Wc
v,comm(nc

v), Wc
v,comp(m

c
v), and

dfc(m
c
v) of different classes, we can solve MinCost for the

optimal values of ρ(out), σ that minimize MinCost in (18)
by determining the optimal values of γf (λ

c
v) and λc

v. Then,
using (5), and mapping "c to the function class fc, we can

Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:06:26 UTC from IEEE Xplore. Restrictions apply.

1050 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 3, SEPTEMBER 2021

infer the type of flows (i.e., functions) that we can compute
effectively.

MinCost may be non-convex and a global optimal solution
may not exist or it might be NP-hard in some instances. To
find the local minima of MinCost for general computation
cost functions, we can use the Karush-Kuhn-Tucker (KKT)
approach in nonlinear programming [53], provided that some
regularity conditions are satisfied [54]. Allowing inequality
constraints, KKT conditions determine the local optimal solu-
tion. However, due to the lack of strong duality results for
non-convex problems, MinCost can indeed be NP-hard in
some instances.

CommsCost in (17) gives an upper bound to MinCost (18),
which is jointly determined by the communication and com-
pute costs as well as "c. As the computation becomes more
costly, the sources may only be partially compressed in order
to optimize MinCost. We also infer that there is no computing
beyond some "c because allocating resources to computation
no longer incurs less cost than CommsCost. A node can per-
form computation and forward (route) the processed data if the
range of "c that allows compression is flexible. This is possible
when computation is cheap. However, if a node’s compression
range is small, i.e., when computation is very expensive, then
the node only relays most of the time. While computing at the
source and communicating the computation outcome might be
feasible for some function classes, it might be very costly for
some sets of functions due to the lack of cooperation among
multiple sources. By making use of redundancy of data across
geographically dispersed sources and the function to be com-
puted, it is possible to decide how to distribute the computation
in the network.

To demonstrate the achievable gains in MinCost via com-
putation over a communications only scheme we will run
some experiments in Section V both by (i) separating and
(ii) mixing different classes of flows (Search, MapReduce, and
Classification) without precisely optimizing (18).

B. Load Thresholds for Computing

In this part we explore the fundamental limits of the traffic
intensities or loads associated with different computation tasks.
By contrasting the optimization formulations in (17) and (18)
which model the optimized average costs of no computing∑
v∈V

∑
c∈C

Wc
v,comm(

ρc
v

1−ρc
v
) versus with computing

∑
v∈V

∑
c∈C

(Wc
v)

∗,

respectively, we decide whether a node conducts computation
or not.

We note that MinCost may not have a globally optimal
solution, and therefore propose a local solution where each
node decides whether to perform computation or not by com-
paring the local costs Wc

v,comm(
ρc

v
1−ρc

v
) and (Wc

v)
∗. A sufficient

condition for v ∈ V to perform computation on c ∈ C is
(Wc

v)
∗ < Wc

v,comm(
ρc

v
1−ρc

v
). If (Wc

v)
∗ > Wc

v,comm(
ρc

v
1−ρc

v
) then the

intermediate computations no longer provide savings and they
instead overwhelm the cost. In that case node v does not per-
form computation on the class c flow with rate λc

v and instead
forwards it, hence γf (λ

c
v) is set to be λc

v because the flow
rate of computation equals λc

v − γf (λ
c
v) = 0. To that end

we define a threshold on traffic intensity ρth such that for

the range ρc
v(out) = γf (λ

c
v)

µc
v

≤ ρth computation is allowed as

(Wc
v)

∗ ≤ Wc
v,comm(

ρc
v

1−ρc
v
), and no computation is allowed for

ρc
v(out) > ρth.
Proposition 1 (A Load Threshold for Distributed

Computing): A node v ∈ V can perform computation
of a class c ∈ C function if the following condition is
satisfied:

ρth = min
ρc

v≥0

[
ρc

v

∣∣∣
(ρc

v)
2

1 − ρc
v

> dfc(m
c
v)

1 − ρc
v"c

1 − "c

]
, (19)

where ρth → 1 as mc
v → ∞ since dfc(m

c
v) monotonically

increases in mc
v.

Note that in (19) dfc(m
c
v) is a function of mc

v, whereas mc
v

is a function of γf (λ
c
v), and thus a function of ρc

v . In other
words, the dependence between ρc

v and dfc(m
c
v) in Prop. IV-B

is hidden.
Proof: The threshold ρth is obtained by comparing the

delays with and without computation, on a per node basis.
If the delay caused only by communication Wc

v,comm(
ρc

v
1−ρc

v
) is

higher than the total delay of computation followed by com-
munication (Wc

v)
∗, i.e., the condition 1

µc
v(1−ρc

v) > 1
λc

v
dfc(m

c
v) +

1
µc

v(1−ρc
v"c)

holds at v ∈ V ′, where γf (λ
c
v) = λc

v"c, then v
decides to compute.

We next provide a sufficient condition for the stability of
the networked computation model.

Proposition 2: The computation network is stable if the
computation delay is at least as much as the communications
delay, i.e., if the following condition is satisfied:

dfc(m
c
v) ≥ λc

v

µc
v − γf (λc

v)
≥ nc

v, c ∈ C, v ∈ V.

Proof: For stability, the long-term average number of pack-
ets in the communications queue of v, i.e., nc

v, should be upper
bounded by the long-term average number of packets in the
compute queue of v, i.e., mc

v. Assume that 1
λc

v
dfc(m

c
v) ≥ 1

µc
v
. If

this were incorrect, we would have dfc(m
c
v) <

λc
v

µc
v

<
λc

v
µc

v−γf (λc
v)

,

and if dfc(m
c
v) <

λc
v

µc
v−γf (λc

v)
, then the following relation would

hold:

Wc
v,comp(m

c
v) = dfc(m

c
v)

λc
v

< Wc
v,comm(nc

v) = 1
µc

v − γf (λc
v)

.

In this case, nc
v = γf (λ

c
v)

µc
v−γf (λc

v)
will accumulate over time,

which violates stability. Hence, delay of computation should
be higher, i.e., Wc

v,comp(m
c
v) = dfc (mc

v)

λc
v

≥ Wc
v,comm(nc

v) =
1

µc
v−γf (λc

v)
.

We next bound the long-term average number of packets in
the networked computation model.

Proposition 3 (An Extension of Little’s Law to Computing):
The long-term average number Lc

v of packets in node v for
class c flow with time complexity dfc(m

c
v) is bounded as

Lc
v ≥ bc

v
− ·

[
dfc(m

c
v)

λc
v

+ 1
µc

v − bc
v
−

]
,

Lc
v ≤ bc

v
+ ·

[
dfc(m

c
v)

λc
v

+ 1
µc

v − bc
v
+

]
,

Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:06:26 UTC from IEEE Xplore. Restrictions apply.

MALAK AND MÉDARD: FUNCTION LOAD BALANCING OVER NETWORKS 1051

where (bc
v)

± satisfies 2(bc
v)

± = λc
v(1 + 1

dfc (mc
v)

) + µc
v ±

√
(λc

v(1 + 1
dfc (mc

v)
) + µc

v)
2 − 4λc

vµ
c
v.

Proof: Using Little’s law in (3) we can upper bound the
time complexity of computation as

dfc(m
c
v) ≤ Lc

v = γf (λ
c
v)

[
dfc(m

c
v)

λc
v

+ 1
µc

v − γf (λc
v)

]
.

Rearranging the above term for 2ac
v = λc

v(1 + 1/dfc(m
c
v))+µc

v
we obtain the following relation: γf (λ

c
v)

2−2ac
vγf (λ

c
v)+λc

vµ
c
v ≤

0 that gives the following range for γf (λ
c
v):[

ac
v −

√
(ac

v)
2 − λc

vµ
c
v, ac

v +
√

(ac
v)

2 − λc
vµ

c
v

]
, (20)

from which we observe that γf (λ
c
v) is sublinear, i.e., γf (λ

c
v) =

o(λc
v) which is true if (ac

v)
2 > λc

vµ
c
v, and is linear, i.e., γf (λ

c
v) =

O(λc
v) which is true if (ac

v)
2 ≈ λc

vµ
c
v. This is also intuitive from

the surjection factors. From (3), (7), and (9), we get the desired
result. Furthermore, if γf (λ

c
v) ≈ ac

v, the range provided in (20)

is tight and Lc
v ≈

√
µc

v
λc

v
dfc(m

c
v)+ 1√

µc
v/λ

c
v−1

≥
√

λc
v

µc
v
+ 1√

µc
v/λ

c
v−1

.

Hence, the best achievable scaling is Lc
v = O(

√
dfc(mc

v)).
Remark 1: From Prop. IV-B, we observe that as the time

complexity dfc(m
c
v) increases, ac

v decreases and the process-
ing factor γf (λ

c
v) concentrates. Ignoring this principle, if

γf (λ
c
v) were increased with dfc(m

c
v), then the costs Wc

v,comp(m
c
v)

and Wc
v,comm(nc

v) would both increase. However, γf (λ
c
v) can

decrease with dfc(m
c
v), and the output rate may not be com-

pressed below H(fc(X)). Hence, H(fc(X)) ≤ γf (λ
c
v) ≤ H(X) is

necessary, where the upper limit is due to the identity function.
We denote by Mc

v the long-term average number of class
c ∈ C packets in v ∈ V ′ waiting for communications service
in case of no computation, i.e., Mc

v = λc
v

µc
v−λc

v
. Intermediate

computations reduce the long term average number of packets
Lc

v in the system which we characterize next.
Proposition 1: The long-term average number of packets

Lc
v satisfies

H(fc(X))

µc
v − H(fc(X))

≤ Lc
v ≤ Mc

v, v ∈ V, c ∈ C. (21)

Proof: In the case of no computation, mc
v = 0 and nc

v = Lc
v,

and the long-term average number of packets in v satisfies
Lc

v = Mc
v . This gives an upper bound to Lc

v.
When node v computes it is true that mc

v > 0, and from (2)
and employing λc

v
γf (λc

v)
we have Lc

v = λc
v

γf (λc
v)

nc
v ≥ nc

v = γf (λ
c
v)

µc
v−γf (λc

v)
.

We next provide an upper bound to the above equality where
using "c ≈ γf (λ

c
v)

λc
v

as a proxy for (5) the bound can be
approximated as function of "c as follows:

Lc
v ≤ λc

v

γf (λc
v)

· γf (λ
c
v)

λc
v − γf (λc

v)
≈ 1

1 − "c
= 1

1 − H(fc(X))
H(X)

,

where nc
v → 0 as "c → 0, i.e., for deterministic functions

where the gain of computing is the highest. On the other hand,
as "c → 1, we obtain the no computation limit, i.e., nc

v → Mc
v .

Using Prop. IV-B and that dfc(m
c
v) is monotonically increas-

ing in mc
v, the lower bound follows from Little’s law in (3) and

the minimal rate required for recovering fc(X) which gives (a):

Lc
v ≥ γf (λ

c
v)

2
µc

v − γf (λc
v)

(a)
≥ H(fc(X))

µc
v − H(fc(X))

,

Manipulating the lower bound, we get γf (λ
c
v) ≥ µc

v H(fc(X))
2µc

v−H(fc(X))
and the desired bound.

Prop. 1 yields a better inner bound than that of Slepian
and Wolf [2] as the lower bound in (21) is no more than
H(fc(X)) which we expect due to intermediate compression
for computing.

C. Processing of a Single Class Flow

We study the cost of a single class flow in isolation and
we drop the superscript c. More specifically, we consider two
examples that account for task complexity and its distribution.

Example 1 (Bisection – Tree Branching Over the Network):
The network computes f (X) = min X using the bisection
method. The search function has time complexity log(N) for
an input size N. The arrivals X = (X1, . . . , XN) are uniformly
split among nodes, i.e., βv = β, ∀v ∈ V ′. Node v works on
the set Xv = (X(v−1) N

|V′ | +1, . . . , Xv N
|V′|

) and computes f (Xv)

locally, i.e., prou
s,v = |V ′|

N .
(i) No intermediate routing is allowed, i.e., prou

v,0 = 1. The
computation outcome is directly routed to 0 ∈ V that decides
the final outcome min

v∈V ′
f (Xv) = f (X). The computation time

complexity of the initial stage per node v ∈ V ′ is O(log(N
|V ′|))

and the routing stage is log(|V ′|). Hence, the total computation
complexity is |V ′|O(log(N

|V ′|)) + log(|V ′|). The communica-
tions cost is due to the routings (s, v), (v, 0) for v ∈ V ′, which
in total yields |V ′| exp(N

|V ′|) + |V ′| exp(1).
(ii) Intermediate routings are allowed. We pick a subset

of nodes W ⊂ V ′, |W| = O(log(|V ′|)) to run the bisec-
tion algorithm, i.e., prou

v,w ≈ 1
log(|V ′|) , w ∈ W and prou

v,w =
0, w ∈ V ′\W. Hence, the complexity of the initial stage
per v ∈ V ′\W is O(log(N

|V ′|)). Node w ∈ W then computes
f (Xw) = min

v:prou
v,w>0

f (Xv), and routes intermediate computation

to 0 ∈ V which in turn computes min
w∈W

f (Xw) = f (X) which

has complexity O(log(|W|)). The total compute complexity is

(|V ′| − |W|)O
(

log
(

N
|V ′|

))
+ |W| log

(|V ′| − |W|
|W|

)

+ log(|W|).

The communications cost is due to the routings (s, v), (v, w),
and (w, 0) for v ∈ V ′, w ∈ W, which in aggregation gives
|V ′| exp(N

|V ′|)+ (|V ′|− |W|) exp(1)+|W| exp(1) = |V ′| exp(1).
From (i)-(ii) the total cost is determined by the computation

complexity, which can be reduced via intermediate routings.
The highest gains are possible when the depth of the network
grows like O(log(N)) that favors divide-and-conquer. A similar
approach will follow for MapReduce.

Example 2 (Classification): Classification is the problem
of identifying to which of a set of categories an observation
X = (X1, . . . , XN) belongs. The classification function has
time complexity exp(N) for an input size N. In linear classifi-
cation, the predicted category is the one with the highest score,
where the score function has the following dot product-form

fl(X) = score(X, l) =
N∑

k=1
βkl · Xk where β l = (β1l, . . . , βNl) is

the vector of weights corresponding to category l, and fl(X)

Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:06:26 UTC from IEEE Xplore. Restrictions apply.

1052 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 3, SEPTEMBER 2021

represents the utility or score associated with assigning X to
category l.

(i) If data is not split, the compute cost is the cost of N
multiplications, i.e., O(N log(N)).

(ii) If data is split between a subset W ⊆ V ′ such that
Xw = (X(w−1) N

|W| +1, . . . , Xw N
|W|

), then X and β l should be sent

for accurately computing the score. This costs O(N
|W| log N)

where log N bits quantify the locations of X for each w. The
compute cost is O(N

|W| log N log(N
|W| log N)). Coordinating the

intermediate computations requires |W| additions, yielding a
total cost of

O
(

N
|W| log N log

(
N

|W| log N
))

+ O(|W|).

To ensure that the computation cost in (ii) is smaller than
that of (i), |W| ≥ O(log N). Otherwise, it will be higher
than O(N log N). The communication cost of forwarding the
intermediate results of w ∈ W is determined by the flow limit
H(fl(Xw)) at w ∈ W. If |W| is small, score estimates are easy
to obtain due to the weak law of large numbers (a large ratio

N
|W| gives a good estimate of scores fl(Xw) as the sample aver-
age converges in probability to the expected value, yielding a
low entropy), but if |W| is large, this might not be possible,
causing a high H(fl(Xw)) (e.g., if the classifier is sensitive to
β l or β l need to be trained, incurring a high cost for task distri-
bution) and hence a high communication cost per w ∈ W. As
the communication costs accumulate, distributing such flows
might not be favorable. However, if β l are not sensitive to the
coordinates of X, i.e., the observations are easy to classify,
then the communications overhead can be lowered. Hence,
if splitting does not cause jumps in H(fl(Xw)), it might be
favorable.

From Examples 1 and 2, the task distribution depends on the
task complexity and the associated communication resources
to leverage the distributed computation. Tasks with high com-
plexity, as long as the compute resources are sufficient, require
centralized processing. If one node is not that powerful, then
the load needs to be distributed to prevent very high γf (λ

c
v).

It is intuitive that low complexity tasks, such as Search and
MapReduce, as in Example 1, can be distributed over the
network by splitting dataset. However, tasks with high com-
plexity, such as Classification, might not be distributed because
one needs the whole dataset, as we detailed in Example 2.

Both in the communication or computation intensive
regimes, condition (6) ensures effective computing. To find
out the role of γf (λ

c
v) in computing, we next focus on multiple

flows.

D. Processing of Multiple Flows and Class Conversions

We explore how to effectively allocate compute tasks with-
out requiring the protocol information. To that end exploiting
γf (λv) we next study the complexity of 3 function classes.

Sublinear surjection factor: Let γf (λv) = o(λc
v) which is

sublinear. From (2) it is true that

mc
v = Lc

v ·
(

1 − γf (λ
c
v)

λc
v

)
= O(Lc

v),

nc
v = Lc

v · γf (λ
c
v)

λc
v

= o(Lc
v) = o(mc

v).

From (9) Wc
v,comm(nc

v) = 1
µc

v−γf (λc
v)

= O(exp(γf (λ
c
v))) = O(λc

v)

and nc
v = γf (λ

c
v)

µc
v−γf (λc

v)
= O(λc

v). Furthermore, from (7) and (8)
Wc

v,comp(m
c
v) corresponding to different function classes are

Wc
v,comp(m

c
v) ∈

{
1
λc

v
O(nc

v),
1
λc

v
O(exp(nc

v)),

1
λc

v
O(exp(exp(nc

v)))

}
,

which is an ordered set for Search, MapReduce and
Classification.

Linear surjection factor: Let γf (λv) = O(λc
v). From (2) it

is true that

Lv = O(mc
v) = O(nc

v), 0 < γf (λv) < λv.

If γf (λ
c
v) = λc

v > 0, then Lc
v = nc

v > mc
v = 0, and if γf (λ

c
v) = 0,

then Lc
v = mc

v > nc
v = 0. From (9) nc

v = O(exp(λc
v)). From (7)

and (8) the compute cost respectively for Search, MapReduce
and Classification satisfies the corresponding entries below:

Wc
v,comp(m

c
v) ∈

{
1
λc

v
O(log

(
nc

v
)
),

1
λc

v
O(nc

v),

1
λc

v
O(exp(nc

v))

}
.

For sublinear γf (λ
c
v), the computation cost is either

very high because (λc
v)

∗ is high (due to Wc
v,comp(m

c
v) ≥

Wc
v,comm(nc

v)) or relatively higher than the communication cost.
In these regimes, low complexity tasks, such as Search and
MapReduce should be done distributedly (because the dynamic
range of λc

v is smaller), and high complexity tasks can be run
centralized provided that compute resources suffice. On the
other hand, for linear γf (λ

c
v), the communication cost domi-

nates the computation cost as (λc
v)

∗ is low, leading to a more
distributed setting.

We contrast the costs for sublinear versus linear γf (λ
c
v). Task

distribution suits for noncomplex tasks Search and MapReduce
with low γf (λ

c
v) since the maximum λc

v that v supports, (λc
v)

∗,
grows with the complexity, allowing centralized processing
of complex tasks, e.g., Classification, as shown in Fig. 3.
If Wc

v,comm dominates the cost (high γf (λ
c
v)), a divide-and-

conquer-based approach is favorable as (λc
v)

∗ is low. However,
when Wc

v,comm is rather negligible, the dynamic range of λc
v

grows and centralized processing may be feasible. Hence, for
low (high) complexity tasks the network may operate in a
connected (isolated) fashion. If the task complexity is hetero-
geneous, task-based link reservations become favorable, and
the network may be sparsely connected as Wc

v,comm starts to
dominate. If the routings are symmetric, then the tasks are
distributed, in which case realizing communication intensive
tasks may incur high Wc

v,comm.
We provide insights into flow deviation among tasks in

Fig. 3, where the application of successive flow deviations
leads to local minima as in the gradient method [55]. For
example, for given processing capability µv at v ∈ V flows of
high complexity tasks requiring centralized processing (with

Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:06:26 UTC from IEEE Xplore. Restrictions apply.

MALAK AND MÉDARD: FUNCTION LOAD BALANCING OVER NETWORKS 1053

Fig. 3. Cost versus λc
v where different line types represent distinct functions and the solid convex curve corresponds to Wc

v,comm, as shown in the legend.
(Left) Sublinear surjection where λc

v ∈ [0, (λc
v)

∗] has a high dynamic range. (Right) Linear surjection where Wc
v,comm is steep, leading to distributed computing

due to smaller range of λc
v.

Fig. 4. The critical threshold ρth for computation versus Lc
v that satisfies Little’s law for computation in (3).

high (λc
v)

∗) versus low complexity tasks running in a dis-
tributed manner (with small (λc

v)
∗) can be traded-off. Sublinear

γf (λ
c
v) is tailored for a hybrid regime, i.e., a regime which

allows a mixture of distributed and centralized operation of
tasks to be conducted via flow deviation among tasks, and
linear γf (λ

c
v) enforces distributed computing of the tasks.

Next in Section V, we will numerically evaluate the load
threshold ρth in (19) for function classes with time complex-
ities given in (8), and the local solution of MinCost given
in (18).

V. NUMERICAL EVALUATION OF PERFORMANCE

Our objective in this section is to explore how to distribute
computation in the light of the fundamental cost limits for the
networked computation model detailed in Sections II-IV.

Leveraging Little’s law in (3) for computing, we numeri-
cally evaluate the threshold on traffic intensity ρth in (19) of
Prop. IV-B for the set of functions with time complexities
dfc(m

c
v) in (8) and compute cost models Wc

v,comp(m
c
v) in (9).

In Fig. 4 we contrast ρth as increasing functions of Lc
v for

given processing power µv which is selected from the set
{10−4, 10−3, 101, 102} and the same for all c and all v. Our
experiment shows that ρth is high for Classification, implying
that a node can only compute if the flow is sufficient, and
ρth grows slower for low complexity Search and MapReduce
functions, i.e., nodes compute even for small flow rates. This

is because if ρc
v(out) < ρth, for high complexity functions

dfc(m
c
v) grows much faster than Wc

v,comm(mc
v) , rendering Lc

v
sufficiently small to ensure a valid ρth for computing. The ben-
efit of computing is eminent for MapReduce and even higher
for Search. This implies that most of the processing power
should be reserved for running simpler tasks to enable cost
effective distributed computing.

We next consider a simple network topology with |V ′| = 3
nodes, excluding the virtual source s and the virtual destination
0, with nodes having identical processing capabilities. We dis-
tribute the different function classes, i.e., Search, MapReduce,
and Classification, with different dfc(m

c
v) over V where we

allow mixing of multiple flows. We assume that Prou(c)
has entries chosen uniformly at random. We assume that
the input rate is H(X) = λc

v, and from (6) which states
that H(fc(X))

H(X) λc
v ≤ γf (λ

c
v) ≤ λc

v < µc
v, the entropy rates

for the Search, MapReduce, and Classification functions are
H(fc(X)) ≈ kc

v log(λc
v), H(fc(X)) ≈ kc

vλ
c
v, and H(fc(X)) ≈

kc
v exp(λc

v), respectively, where kc
v > 0 is a constant proxy

for modeling the cost. We numerically evaluate this setting
to investigate the behaviors of the surjection factor γf (λ

c
v),

dfc(m
c
v), and MinCost versus "c, and determine sufficient con-

ditions on γf (λ
c
v) and µc

v to support a higher Lc
v via mixing

flows.
(i) Separating flows. Each node works on a distinct func-

tion class independently. Hence, the compute cost is separable

Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:06:26 UTC from IEEE Xplore. Restrictions apply.

1054 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 3, SEPTEMBER 2021

Fig. 5. (Left) Sublinear surjection factor MinCost vs Lc
v. (Right) Linear surjection factor MinCost vs Lc

v.

Fig. 6. (Top) A lower bound on the sublinear surjection factor γf (λ
c
v) for (a) µc

v = 0.0001, (b) µc
v = 0.001, (c) µc

v = 0.01. The boundaries of computation
for each function class is indicated by vertical lines where computing of a function class is only allowed for "c below the line corresponding to the function.
(Bottom) A lower bound on the linear surjection factor γf (λ

c
v) for (a) µc

v = 1, (b) µc
v = 10, (c) µc

v = 100.

and independent from the routings. The communications cost
is only between links (v, 0), v ∈ V ′ and can be computed
using (9) where γf (λ

c
v) = H(fc(X)). Using (2), mc

v and nc
v can

be determined as function of Lc
v and Wc

v is nonzero at each
node only for the function class it works on and it satisfies (1).
Hence, total cost is easily determined.

(ii) Mixing flows. Each class is routed based on prou
s (c) =

[1
3 , 1

3 , 1
3], computation is evenly split among V ′, where

prou
v,0(c) = H(fc(X))

H(X) and prou
v,w(c) = 1−prou

v,0 (c)
3 for w, v ∈ V ′.

We compare MinCost of (i) separating and (ii) mixing
flows for sublinear and linear γf (λ

c
v), in Fig. 5, with vary-

ing µc
v. From Fig. 5 (Left), as µc

v increases MinCost decays

for sublinear γf (λ
c
v). The performances of (i)-(ii) are similar

when µc
v is very low and mixing flows performs worse. When

γf (λ
c
v) sublinearly scales, as the processing power µc

v increases
λc

v also increases, and the function Wc
v,comm(nc

v) (which is con-
vex and increasing in γf (λ

c
v) and decreasing in µc

v) decreases.
Furthermore, as µc

v increases, we expect Lc
v to decay, and

dfc(m
c
v) and Wc

v,comp(m
c
v) to decay (logarithmic in µc

v) as well.
Hence, Wc

v decays. It is also intuitive due to Little’s law
which states Lc

v = γf (λ
c
v) · Wc

v that when Lc
v decays, Wc

v
also decays, when v is considered in isolation. From Fig. 5
(Right) as µc

v increases MinCost increases for linear γf (λ
c
v).

Because γf (λ
c
v) linearly scales, Wc

v,comm is fixed. We note that

Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:06:26 UTC from IEEE Xplore. Restrictions apply.

MALAK AND MÉDARD: FUNCTION LOAD BALANCING OVER NETWORKS 1055

nc
v and mc

v increase in µc
v and Wc

v,comp(m
c
v) ≥ Wc

v,comm(nc
v),

and hence Wc
v,comp(m

c
v) increases in µc

v. Therefore, if the flows
are mixed among V nodes, while the processed flow intensity
supported per node is higher in the heterogeneous computing
scenario via mixing rather than separating flows, the process-
ing resources will be used more effectively instead of being
partially utilized for separately assigned tasks. The sublinear
γf (λ

c
v) will help reduce Wc

v,comm(nc
v). This will ensure at high

µc
v that node v can serve a higher Lc

v without having to sacrifice
MinCost. The savings of (ii) in MinCost are more apparent at
high Lc

v.
Fig. 6 (Top) and (Bottom) show the behavior of a lower

bound on γf (λ
c
v) in (15), for sublinear and linear γf (λ

c
v),

respectively, as function of surjectivity "c, and indicate that
the boundary is shifted towards right as the node’s processing
capability µc

v increases, allowing higher "c. If the communica-
tion delay is negligible, intermediate computing can improve
MinCost.

VI. CONCLUSION

We provided a novel perspective to function computation
in networks. We introduced the notion of entropic surjectivity
to assess the functional complexity. Extending Little’s law to
computing, we derived regimes for which intermediate com-
putations can provide significant savings. Our approach can be
considered as an initial step towards understanding how to dis-
tribute computation and balance functional load in networks.
Future directions include devising coding techniques for in
network functional compression, by using compressed sensing
and the compression theorem of Slepian and Wolf, employing
the concepts of graph entropy, and exploiting function surjec-
tivity. They also include more general network models beyond
stationary and product-form.

REFERENCES

[1] D. Malak, A. Cohen, and M. Médard, “How to distribute computation in
networks,” in Proc. IEEE Infocom, Los Angeles, CA, USA, Jul. 2020,
pp. 327–336.

[2] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information
sources,” IEEE Trans. Inf. Theory, vol. IT-19, no. 4, pp. 471–480,
Jul. 1973.

[3] E. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incom-
plete and inaccurate measurements,” Commun. Pure Appl. Math. J.
Courant Inst. Math. Sci., vol. 59, no. 8, pp. 1207–1223, Aug. 2006.

[4] E. Candes and J. Romberg, “Sparsity and incoherence in compressive
sampling,” Inverse Probl., vol. 23, no. 3, p. 969, Apr. 2007.

[5] D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[6] S. Feizi, M. Médard, and M. Effros, “Compressive sensing over
networks,” in Proc. IEEE Allerton, Monticello, IL, USA, Sep. 2010,
pp. 1558–1562.

[7] S. Feizi and M. Médard, “A power efficient sensing/communication
scheme: Joint source-channel-network coding by using compressive
sensing,” in Proc. IEEE Allerton Conf., Monticello, IL, USA, Sep. 2011,
pp. 1048–1054.

[8] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded distributed
computing: Straggling servers and multistage dataflows,” in Proc. IEEE
Allerton Conf., Monticello, IL, USA, Sep. 2016, pp. 164–171.

[9] S. S. Pradhan and K. Ramchandran, “Distributed source coding using
syndromes (DISCUS): Design and construction,” IEEE Trans. Inf.
Theory, vol. 49, no. 3, pp. 626–643, Mar. 2003.

[10] T. P. Coleman, A. H. Lee, M. Médard, and M. Effros, “Low-complexity
approaches to Slepian–Wolf near-lossless distributed data compression,”
IEEE Trans. Inf. Theory, vol. 52, no. 8, pp. 3546–3561, Aug. 2006.

[11] A. Wyner and J. Ziv, “The rate-distortion function for source coding with
side information at the decoder,” IEEE Trans. Inf. Theory, vol. IT-22,
no. 1, pp. 1–10, Jan. 1976.

[12] H. Yamamoto, “Wyner–Ziv theory for a general function of the corre-
lated sources,” IEEE Trans. Inf. Theory, vol. IT-28, no. 5, pp. 803–807,
Sep. 1982.

[13] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

[14] J. Körner, “Coding of an information source having ambiguous alphabet
and the entropy of graphs,” in Proc. Prague Conf. Inf. Theory, Prague,
Czech Republic, Sep. 1973, pp. 411–425.

[15] N. Alon and A. Orlitsky, “Source coding and graph entropies,” IEEE
Trans. Inf. Theory, vol. 42, no. 5, pp. 1329–1339, Sep. 1996.

[16] A. Orlitsky and J. R. Roche, “Coding for computing,” IEEE Trans. Inf.
Theory, vol. 47, no. 3, pp. 903–917, Mar. 2001.

[17] H. Feng, M. Effros, and S. Savari, “Functional source coding for
networks with receiver side information,” in Proc. IEEE Allerton Conf.,
Monticello, IL, USA, Sep. 2004, pp. 1419–1427.

[18] S. Feizi and M. Médard, “On network functional compression,” IEEE
Trans. Inf. Theory, vol. 60, no. 9, pp. 5387–5401, Sep. 2014.

[19] P. Delgosha and V. Anantharam, “Distributed compression of graphical
data,” in Proc. IEEE Int. Symp. Inf. Theory, Vail, CO, USA, Jun. 2018,
pp. 2216–2220.

[20] R. Gallager, “Finding parity in a simple broadcast network,” IEEE Trans.
Inf. Theory, vol. 34, no. 2, pp. 176–180, Mar. 1988.

[21] S. Kamath and D. Manjunath, “On distributed function computation in
structure-free random networks,” in Proc. IEEE Int. Symp. Inf. Theory,
Toronto, ON, Canada, Jul. 2008, pp. 647–651.

[22] V. Shah, B. Dey, and D. Manjunath, “Network flows for function com-
putation,” IEEE J. Sel. Areas Commun., vol. 31, no. 4, pp. 714–730,
Apr. 2013.

[23] S. Feizi, A. Zhang, and M. Médard, “A network flow approach in cloud
computing,” in Proc. IEEE Conf. Inf. Sci. Syst., Baltimore, MD, USA,
Mar. 2013, pp. 1873–1877.

[24] C. Huang, Z. Tan, S. Yang, and X. Guang, “Comments on cut-set bounds
on network function computation,” IEEE Trans. Inf. Theory, vol. 64,
no. 9, pp. 6454–6459, Sep. 2018.

[25] A. Giridhar and P. Kumar, “Computing and communicating functions
over sensor networks,” IEEE J. Sel. Areas Commun., vol. 23, no. 4,
pp. 755–764, Apr. 2005.

[26] H. Kowshik and P. R. Kumar, “Optimal computation of symmetric
Boolean functions in Tree networks,” in Proc. IEEE Int. Symp. Inf.
Theory, Austin, TX, USA, Jun. 2010, pp. 1873–1877.

[27] R. Ahlswede, N. Cai, S. Y. Li, and R. W. Yeung, “Network information
flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.

[28] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.

[29] R. Koetter, M. Effros, T. Ho, and M. Médard, “Network codes as codes
on graphs,” in Proc. IEEE Conf. Inf. Sci. Syst., Princeton, NJ, USA,
Mar. 2004, pp. 1–19.

[30] R. Appuswamy and M. Franceschetti, “Computing linear functions by
linear coding over networks,” IEEE Trans. Inf. Theory, vol. 60, no. 1,
pp. 422–431, Jan. 2014.

[31] M. Sefidgaran and A. Tchamkerten, “Computing a function of correlated
sources: A rate region,” in Proc. Int. Symp. Inf. Theory, St. Petersburg,
Russia, Jul./Aug. 2011, pp. 1856–1860.

[32] A. Tripathy and A. Ramamoorthy, “Zero-error function computation on a
directed acyclic network,” in Proc. IEEE Inf. Theory Wkshp, Guangzhou,
China, Nov. 2018, pp. 1–5.

[33] Y. Yang, P. Grover, and S. Kar, “Rate distortion for lossy in-network
linear function computation and consensus: Distortion accumulation and
sequential reverse water-filling,” IEEE Trans. Inf. Theory, vol. 63, no. 8,
pp. 5179–5206, Aug. 2017.

[34] R. Appuswamy, M. Franceschetti, N. Karamchandani, and K. Zeger,
“Network coding for computing: Cut-set bounds,” IEEE Trans. Inf.
Theory, vol. 57, no. 2, pp. 1015–1030, Feb. 2011.

[35] S. Gitzenis, G. S. Paschos, and L. Tassiulas, “Asymptotic laws for joint
content replication and delivery in wireless networks,” IEEE Trans. Inf.
Theory, vol. 59, no. 5, pp. 2760–2776, May 2013.

Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:06:26 UTC from IEEE Xplore. Restrictions apply.

1056 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 3, SEPTEMBER 2021

[36] J. D. Ullman, “Designing good MapReduce algorithms,” Crossroads
ACM Mag. Students, vol. 19, no. 1, pp. 30–34, Sep. 2012.

[37] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A funda-
mental tradeoff between computation and communication in distributed
computing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128,
Jan. 2018.

[38] Y. H. Ezzeldin, M. Karmoose, and C. Fragouli, “Communication vs
distributed computation: An alternative trade-off curve,” in Proc. IEEE
Inf. Theory Wkshp, Kaohsiung, Taiwan, Nov. 2017, pp. 279–283.

[39] M. Kiamari, C. Wang, and A. S. Avestimehr, “On heterogeneous
coded distributed computing,” in Proc. IEEE Globecom, Dec. 2017,
pp. 1–7.

[40] S. Banerjee, P. Gupta, and S. Shakkottai, “Towards a queueing-
based framework for in-network function computation,” Queueing Syst.,
vol. 72, no. 3, pp. 219–250, Dec. 2012.

[41] I. A. Gillani, P. Vyavahare, and A. Bagchi, “Random walk based
in-network computation of arbitrary functions,” Feb. 2017. [Online].
Available: arXiv:1702.03741.

[42] I. A. Gillani, P. Vyavahare, and A. Bagchi, “Lower bounds for in-
network computation of arbitrary functions,” Distrib. Comput., vol. 34,
pp. 1–13, Apr. 2021.

[43] W. Wei et al., “Impact of in-network aggregation on target tracking
quality under network delays,” IEEE J. Sel. Areas Commun., vol. 31,
no. 4, pp. 808–818, Apr. 2013.

[44] A. Anand and N. B. Mehta, “Quick, decentralized, energy-efficient
one-shot max function computation using timer-based selection,” IEEE
Trans. Commun., vol. 63, no. 3, pp. 927–937, Mar. 2015.

[45] Y. Yang, “Coded computing systems decoded: Dealing with unre-
liability and elasticity in modern computing,” Ph.D. dissertation,
Dept. Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA,
2019.

[46] Y. Yang, S. Kar, and P. Grover, “Graph codes for distributed instant
message collection in an arbitrary noisy broadcast network,” IEEE Trans.
Inf. Theory, vol. 63, no. 9, pp. 6059–6084, Sep. 2017.

[47] T. Cover, “A proof of the data compression theorem of Slepian and
Wolf for ergodic sources (corresp.),” IEEE Trans. Inf. Theory, vol. IT-21,
no. 2, pp. 226–228, Mar. 1975.

[48] L. Kleinrock, Queuing Systems Vol. I: Theory. New York, NY, USA:
Wiley, 1975.

[49] F. P. Kelly, Reversibility and Stochastic Networks. Cambridge, U.K.:
Cambridge Univ. Press, 2011.

[50] R. Nelson, Probability, Stochastic Processes, and Queueing Theory: The
Mathematics of Computer Performance Modeling. New York, NY, USA:
Springer, 2013.

[51] R. Srikant and L. Ying, Communication Networks. Cambridge, U.K.:
Cambridge Univ. Press, 2014.

[52] A. E. Gamal and Y. H. Kim, Network Information Theory. Cambridge,
U.K.: Cambridge Univ. Press, Dec. 2011.

[53] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2009.

[54] D. P. Bertsekas, Nonlinear Programming. Belmont, MA, USA: Athena
Sci., 1999.

[55] L. Fratta, M. Gerla, and L. Kleinrock, “The flow deviation method:
An approach to store-and-forward communication network design,”
Networks, vol. 3, no. 2, pp. 97–133, Jan. 1973.

Derya Malak (Member, IEEE) received the B.S.
degree in electrical and electronics engineering
(EEE) with minor in physics from Middle East
Technical University, Ankara, Turkey, in 2010, the
M.S. degree in EEE from Koc University, Istanbul,
Turkey, in 2013, and the Ph.D. degree in electri-
cal and computer engineering from the University
of Texas at Austin in 2017, where she was affiliated
with the Wireless Networking and Communications
Group. She is an Assistant Professor with the
Communication Systems Department, Eurecom. She

was an Assistant Professor with the Department of Electrical, Computer, and
Systems Engineering, Rensselaer Polytechnic Institute from 2019 to 2021,
and a Postdoctoral Associate with MIT from 2017 to 2019. He has held
visiting positions with INRIA and LINCS, Paris, France, and Northeastern
University, Boston, MA, USA. She has held summer internships with Huawei
Technologies, Plano, TX, USA, and Bell Laboratories, Murray Hill, NJ, USA.
She was awarded the Graduate School Fellowship by UT Austin from 2013 to
2017. She was selected to participate in the Rising Stars Workshop for women
with EECS, MIT, Cambridge, MA, USA, in 2018, and the 7th Heidelberg
Laureate Forum, Heidelberg, Germany, in 2019.

Muriel Médard (Fellow, IEEE) is the Cecil H.
Green Professor with the Electrical Engineering
and Computer Science (EECS) Department, MIT,
where he leads the Network Coding and Reliable
Communications Group, Research Laboratory for
Electronics. She received the 2019 Best Paper Award
for IEEE TRANSACTIONS ON NETWORK SCIENCE
AND ENGINEERING, 2009 IEEE Communication
Society and Information Theory Society Joint Paper
Award, the 2009 William R. Bennett Prize in the
Field of Communications Networking, the 2002

IEEE Leon K. Kirchmayer Prize Paper Award, the 2018 ACM SIGCOMM
Test of Time Paper Award and several conference paper awards. She was a
co-winner of the MIT 2004 Harold E. Egerton Faculty Achievement Award,
received the 2013 EECS Graduate Student Association Mentor Award, and
served as undergraduate Faculty in Residence for seven years. In 2007, she
was named a Gilbreth Lecturer by the U.S. National Academy of Engineering.
She received the 2016 IEEE Vehicular Technology James Evans Avant Garde
Award, the 2017 Aaron Wyner Distinguished Service Award from the IEEE
Information Theory Society and the 2017 IEEE Communications Society
Edwin Howard Armstrong Achievement Award. She has co-founded CodeOn,
Steinwurf, and Chocolate Cloud for technology transfer of network coding.
She has served as an editor for many publications of the Institute of Electrical
and Electronics Engineers (IEEE), of which she was an elected fellow, and
she has served as the Editor-in-Chief of the IEEE JOURNAL ON SELECTED
AREAS IN COMMUNICATIONS. She was President of the IEEE Information
Theory Society in 2012, and served on its board of governors for eleven years.
She has served as technical program committee co-chair of many of the major
conferences in information theory, communications and networking. She was
an elected Member of the National Academy of Engineering for her contribu-
tions to the theory and practice of network coding in 2020. She is a member
of the National Academy of Inventors.

Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:06:26 UTC from IEEE Xplore. Restrictions apply.

