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Context-Interactive CNN for
Person Re-Identification

Wenfeng Song

Abstract—Despite growing progresses in recent years,
cross-scenario person re-identification remains challenging,
mainly due to the pedestrians commonly surrounded by highly-
complex environment contexts. In reality, the human percep-
tion mechanism could adaptively find proper contextualized
spatial-temporal clues towards pedestrian recognition. However,
conventional methods fall short in adaptively leveraging the
long-term spatial-temporal information due to ever-increasing
computational cost. Moreover, CNN-based deep learning methods
are hard to conduct optimization due to the non-differentiable
property of the built-in context search operation. To ameliorate,
this paper proposes a novel Context-Interactive CNN (CI-CNN)
to dynamically find both spatial and temporal contexts by
embedding multi-task Reinforcement Learning (MTRL). The CI-
CNN streamlines the multi-task reinforcement learning by using
an actor-critic agent to capture the temporal-spatial context
simultaneously, which comprises a context-policy network and
a context-critic network. The former network learns policies
to determine the optimal spatial context region and temporal
sequence range. Based on the inferred temporal-spatial cues,
the latter one focuses on the identification task and provides feed-
back for the policy network. Thus, CI-CNN can simultaneously
zoom in/out the perception field in spatial and temporal domain
for the context interaction with the environment. By fostering
the collaborative interaction between the person and context, our
method could achieve outstanding performance on various public
benchmarks, which confirms the rationality of our hypothesis,
and verifies the effectiveness of our CI-CNN framework.

multi-task rein-
actor-critic agent,

Index Terms—Person re-identification,
forcement learning, context interaction,
context-critic network.
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I. INTRODUCTION

ERSON re-identification (Re-ID) gains growing momen-

tum recently, which is fundamental for environment
monitoring, search/rescue, smart surveillance, and some wear-
able devices based applications. In particular, cross-scenario
Re-ID aims to automatically match pedestrians captured by
cameras at different locations or time, which requires the
identification model to be resourceful over different target
datasets. Thus, cross-scenario Re-ID still has many challenges
yet to overcome. The pivotal challenge is how to capture
the cross-scenario context information around the designated
pedestrian. Specially, the drastically-changing camera views,
clutter background, low resolution, and other objects occlusion
tend to cause ambiguity for the identification.

Existing Re-ID methods typically focus on suppressing
the background effects in the spatial domain [1], [2]. Such
methods usually resort to separate handling of the background
and foreground in single image. Their key idea is to find
the person related regions that are coherent across different
scenarios. However, in practice, it is hard to obtain satisfactory
performance by suppressing the clutter background, because
the blurry motion, low resolution [3], [4] and heavy occlusion
in the unconstrained real-world scenarios would destroy the
pedestrian’s integrity when extracting discriminative features.
In summary, single image/pedestrian’s region is insufficient for
the cross-scenario Re-ID task, too much or too less context
can influence the feature extraction, only proper context could
facilitate to improve the performance. Besides, the proper use
of background [5] could also improve the final recognition
result. Intuitively, the spatial context indicates the relations
between the surrounding background and the target pedestrian.
For example, the pedestrians walking on the road and the
persons riding on the bikes are discriminately in two main
pose shapes. Secondly, the buildings and trees often partially
occlude the pedestrians. Thirdly, the accessories, like bags
and umbrellas, may provide auxiliary clues to determine the
pedestrian’s features.

On the other hand, the temporal context clues could also
improve the performance. To efficiently leverage the temporal
information, recently, LSTM or RNN based methods [6]-[9]
have been proposed to aggregate the temporal context features
in the videos. However, such kind of methods commonly
treat all the frames with equal weights, which results in
high computational cost and slow convergence for different-
structure networks. Thus, some works [10]-[12] propose to
pay more attention to the key frames. Nevertheless, these
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Fig. 1. Tllustration of the temporal-spatial context. For an identical Re-ID
model, we use different bounding boxes related to objects (shown in yellow)
and context (shown in blue) to provide more coherent cues than naively
removing the non-person pixels. A, B, C denote different frames of same
pedestrian.

methods cannot make a good balance between the background
and person’s foreground region. Recently, the most relevant
works [13], [14] similar to our approach have already achieved
satisfying performance by modeling the temporal and spatial
relevant motions of individuals while suppressing the irrel-
evant motions in human interaction and activity recognition.
These works motivate us to improve the method for the person
Re-ID task. Moreover, we observe that, aggregating pedes-
trian’s region in temporal sequences would perform better than
leveraging single image information, because single image
is ambiguous to delimit irrelevant regions, while temporal
sequences give rise to better suppressing results for irrelevant
backgrounds.

Despite existing works investigate the influence of the
background, they rarely study how to dynamically find the
proper spatial-temporal context for each specific pedestrian
region. Since the human vision and memory systems recog-
nize persons by comprehensively judging consecutive actions
and surrounding environment context in a temporal-spatial
collaborating way, to mimic this mechanism, we design a
novel context-aware model to take advantages of the temporal-
spatial context information. Our key insight is that, given
discriminative pedestrian and relevant context in the vicinity,
Re-ID model should be adaptive to different scenarios. The
appearance features in RGB image will change dramatically
across scenarios. However, the context relations of the pedes-
trians are stable. Meanwhile, to fit for the proper range of
context, the fixed perception field in the convolution layers
are dynamically zoomed-in/out by the context’s wrapping
operator, as shown in Fig. 2. Then the network could dynami-
cally extract the contexts features of the current images based
on the discrimination ability. Moreover, the temporal context
can provide intrinsic clues for the occluded and pose-variant
pedestrians. We embed the temporal clues by decomposing the
frames into background and pedestrian-relevant components
in proper temporal context ranges. As for the discriminative
representation of pedestrian, it has been well solved by CNN
methods [15]. We mainly focus on exploiting the contextual
cues in this paper. We use an adaptive spatial-temporal context
learning process to provide more coherent clues, rather than
naively removing the non-person pixels.

In some sense, the Re-ID task on different persons can
be considered as the interaction between persons and the
spatial-temporal context, wherein the pedestrian’s regions pro-
vide appearance information, and the surrounding regions
and relevant temporal sequences provide the optimal context
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Fig. 2. The perception field changes with the context of pedestrian’s images.
The image with context is enlarged from 60*60 to 100*100. When filtered
with the 3*3 convolution, the perception field is enlarged from 3*3 to 5*5.

priors to distinguish the foreground object from its background
(Fig. 1). Different from most existing methods, which focus
on spatial policy while ignoring temporal clues or vice versa,
we propose a multi-task reinforcement learning framework,
which jointly learns the spatial-temporal clues. Given an single
image, we can determine whether we need a larger region
or longer video sequences. Since the two tasks share the
same states in reinforcement learning, we can combine the
two tasks into an single actor-critic agent. This agent takes
actions (i.e., enlarge, shrink, or stay the same) to determine
the size of the pedestrian’s bounding box and the length of
the consecutive frames to provide proper context ranges for
pedestrian identification. Specially, the salient contributions of
this paper can be summarized as follows.

o We propose to solve the cross-scenario person Re-ID
problem by integrating novel actor-critic agent in rein-
forcement learning embedded CNN, which can dynami-
cally find the contexts and telescoping perception field,
and thus gives rise to intrinsic information for person
identification.

o We reveal the relations between the context and pedes-
trian for cross-scenario Re-ID, and formulate the inter-
action between optimal person regions and their spatial-
temporal context, which gives rise to simple yet effective
learning policies for obtaining optimal context clues.

o We design a novel deep reinforcement learning based
multi-task framework to learn the context-agent by col-
laborating with the context policy network and context-
critic network. Comprehensive experiments have demon-
strated the superiorities of our framework.

II. RELATED WORKS
A. Person Re-ID
Recently, deep learning based methods [16]-[18] have been
dominating the person Re-ID research community, benefiting

from their superior discriminative ability. Image-based meth-
ods usually emphasize to improve the feature representation
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that is insensitive to pose, clutter background, and camera
views. For example, Liu et al. and Liang eta al. proposed
to extracte pose-invariant [16], [19]-[21] features via align-
ment of pedestrians and suppressing the background noise.
Meanwhile, Zheng et al. [22] proposed camera view invariant
model. Feng et al. [23] and Borgia et al. [24] proposed
view-specific deep networks. To further extract the scenarios-
invariant features, the spatial based attention models [1], [2],
[17], [25], [26] are proposed to evaluate the importance of
different regions and its surrounding context for pedestrian’s
feature’s representation. Recently, in the work [5], the authors
investigated the background’s effect on the feature represen-
tation in Re-ID task. Besides, some works [27], [28] tried
to search the query-related pedestrian in spatial context of
the whole image. These works verify that different regions
and their spatial context have different weights in Re-ID
task. The previous works achieve satisfying performance for
some specific scenarios. Nevertheless, image-based methods
ignore the temporal relations, as a result, such methods lack
the generalization ability to be further applied to un-known
datasets.

To solve the cross-scenario problems, some video-based
works [6], [29] try to capture temporal clues by exploiting
the coherency from the videos. Recently, temporal and spatial
combined attention based methods [10], [30] achieve impres-
sive performance. Besides, self paced weighting [11] exploited
different weights of frames to improve the Re-ID in condition
of object occlusion and motions. However, these methods are
limited in the single scenario and remains hard to capture suffi-
cient context clues across scenarios. Recently, Tang et al. [13]
proposed a novel Coherence Constrained Graph LSTM (CCG-
LSTM) method to model the relevant motions of individuals
while suppressing the irrelevant motions, which achieved
state-of-the-art performance in recognizing the group activity.
Likewise, Shu et al. [14] also proposed a novel Hierarchical
Long Short-Term Concurrent Memory (H-LSTCM) method
to model the long-term inter-related dynamics among a group
of persons for recognizing human interactions. In terms with
cross-scenario Re-ID task, the most relevant work with ours
is unsupervised cross-dataset transfer learning for person Re-
ID [31], [32]. Inspired by these works, we propose to capture
both spatial and temporal contexts in an adaptive framework
for each frame.

B. Reinforcement Learning

Reinforcement learning mainly attempts to solve the pol-
icy learning problems in some vision tasks, and achieve
remarkable success in video parsing applications, including
semantic segmentation [33], video caption [34], interaction
cropping [35], and video summarization [36]. Zhong et al. [37]
proposed hierarchical tracking by using reinforcement learning
based searching and coarse-to-fine verifying, and achieved
satisfying performance. Recently, Yang et al. [38] proposed
to embed the multi-task into an single policy network to
efficiently control the multiple actions. Inspired by the pre-
vious works, we try to adaptively find context cues for single
image based person Re-ID task via Asynchronous Advantage
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Actor-Critic (A3C) [39], wherein we use a multi-task neural
network to represent the actor-critic agent. To the best of our
knowledge, we are among the first to employ reinforcement
learning to deal with the person Re-ID problem by simultane-
ously learning the spatial and temporal contexts.

IIT. NEW METHODOLOGY AND NETWORK

In this section, we start with an overview of our CI-CNN,
and then describe the details of the proposed multi-task rein-
forcement learning module and the carefully designed context-
interactive network, after that, we detail the optimization,
followed by the inference process.

A. Overview of Our CI-CNN

The pipeline of our CI-CNN is shown in Fig. 3, which
employs an actor-critic agent to search the Re-ID task-oriented
temporal and spatial context in the current pedestrian image.
It involves two main components: 1) multi-task reinforcement
learning (MTRL) agent consists of context-policy network
7 (s¢; @) and context-critic network V (s;; 0,). Given image [
serving as an element in state s;, 7 (s;; @) takes in single image
I serve as an element in state s, and outputs the actions: @ in
spatial domain, atT in temporal domain. Meanwhile, V (s;; 6,)
provides corresponding temporal estimated error e; to 7 (s; 6),
which indicates the quality of the actions (‘estimated error’
denotes the error differences between two iterations of the
context-critic network); 2) context-interactive network (CIN)
e(ss; 0,) is designed to sufficiently utilize the spatial-temporal
clues inferred from the actor-critic agent. In Fig. 3, we use
boxes with different colors to distinguish the spatial (green)
and temporal (blue) contexts.

B. Multi-Task Reinforcement Learning

We formulate the adaptive context search as an actor-
critic process. In the search process, the actor-critic agent
interacts with the environment, and takes a series of actions
atT and ats to optimize both the spatial context and tem-
poral context search policies via reward R from the envi-
ronment. The two context search tasks are trained in an
end-to-end way in single policy network. The flow chart
of learning process is illustrated in Fig. 4. The agent first
receives observations from the single image [/, and then it
samples action from the action space according to the state of
MTRL which contains observations and historical experience.
Thereafter, it executes the sampled action to determine the
size of spatial context box and the length of the temporal
sequences. After executing each action, it receives a reward
according to the recognition accuracy of the newly gener-
ated images and sequences. By maximizing the accumulated
rewards, the agent aims to find the most satisfied context
sequences relevant with the current frame. In the following,
we introduce the basic components of our actor-critic agent:
environment, action space, state, and reward in a sequential
order.
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Fig. 3. Pipeline of our CI-CNN. MTRL: taking image as input, MTRL will output actions to adjust the size of the bounding box (i.e., zoom-in the pedestrian’s
box) and the length of neighboring frames (i.e., enlarge the consecutive frames). According to the actions, a new pedestrian box and a low-rank component in
the suggested length of sequences will be computed. Person-Context Interaction: the context-interactive network (CIN) takes the image and its corresponding
low-rank component as input, provides the reward to evaluate the actions, and updates the actor-critic agent.
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Fig. 4. Pipeline of MTRL network. The current state s; is fed into context-
policy network 7 (s;; €), it is split into two branches for two tasks: spatial
and temporal search. The pedestrian with the new contexts are fed into the
context-interactive network e(s;; 0¢) to get reward from environment. Then
7 (s; 0) is updated from context-critic network V (s;; 6,) via estimated error,
V (s¢; 6,) is updated by the accumulated reward that is back propagated from
e(st; Oe).

1) Environment: The environment interacts with the
proposed MTRL network via the pre-defined reward
mechanism. Different from traditional reinforcement learn-
ing frameworks [39], [40], which maintain environment with
fixed reward mechanism, our environment contains a context-
interactive and dynamically-updated CNN e(s;; 6,) to provide
the reward, wherein 6, denotes the iteratively-updated para-
meters of CNN. In our training settings, the environment
will be updated with the newly generated context of the
agents.

2) Action Space: The multi-task action space A is supposed
as corresponds to the set of actions which is affected by M

search tasks. Mathematically, A is defined as,

M
AG =[] A

J=l1

(1

Here [] denotes the Cartesian Product. In our experiments
M = 2, we design 3 spatial actions atS € Ay = {zoom
in, zoom out, stay the same}, 3 temporal context-changing
actions a,T € A, ={enlarge, shrink, stay the same}. The total
number of context actions is 3 * 3. The termination action
<stay the same, stay the same> will terminate the current
episode, and then CIN will output the results immediately.
Otherwise, the agent will continue to search more context clues
until meeting the preset maximum time step #,y-

The reward function for the i-th task depends only on the
corresponding actions. Therefore, each task-oriented action is
independently trained in our network. In this way, the training
processes of task-specific actions are decoupled. Essentially,
this kind of parametrization is more efficient in the case of
shared actions. Consequently, the number of parameters can
be significantly reduced by the use of single network.

3) State and Reward: The state s; of MTRL is represented
as a tuple s, = (I;,rs, a;), where a; = (a,S,a,T), the current
RGB image is I, € RV*N>3 (the selected frame in the
t-th step of action), and the reward r, is propagated from
the context-interactive network. This tuple summarizes the
history of observations and actions from the beginning of
the search sequence: the pedestrian related spatial context
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action history H; records each a, the temporal context action
history H! records each a/. These components are essential
and complementary, because r; indicates how accurate the
recognition output is, while a; provides visual cues for the
agent to update the environment. The state s, is formed by the
context-critic network and updated over time by the context-
policy network.

The context-critic network V (s¢; 6, ) gives the reward imme-
diately based on the quality of recognition prediction after
the agent chooses an action. We get the critic value from the
context-critic network V (s¢; 6,). The reward of the CI-CNN
is defined as follows,

o -sign[V(s;; 0y) — V(si41; 6y)] if a; # terminate,
signle — V(ss; 0,]

otherwise.
(2)

Here € is a threshold to discriminate whether the improve-
ment is sufficient or not, sign[-] returns 1 (-1) as positive
(negative) value. The scale factor a and the threshold € are
set to 0.1 and 0.05 empirically. Eq. 2 indicates the agent
receives a positive reward when the chosen action improves
the recognition accuracy, and receives a penalty when it
decreases the performance. If the agent chooses to terminate
the process, the final recognition prediction must be good
enough, otherwise it would receive large penalty.

C. Context Interaction

This section details the interaction process between the
person and the context. Specially, based on the aforementioned
four basic elements, we propose a multi-task actor-critic agent
(as shown in Fig. 4) for context searching. We now depict
the process to find the spatial and temporal context in single
image, which is reduced to two tasks: searching the spatial
context ¢, around current pedestrian’s box and searching the
temporal context ¢; in the neighboring frames. We integrate
the two objectives into single actor-critic agent, which involves
a multi-task context-policy network and a context-critic
network.

1) Context-Policy Network: Given single image 1,
the context-policy network 7 (s;; @) should determine the two
actions a,S and a,T . The previous work [38] demonstrates that
single critic network is sufficient in multi-policy learning.
Therefore, we simplify the multi-task 7 (s;; @) as a sharing
backbone network with two side-by-side softmax layers after
the fully-connected layer, the output actions are evaluated by
the context-critic network. More concretely, the architecture
of the context-policy network 7 is shown in the left part
of Fig. 3. The network # uses a Vanilla densely-connected
network [15] as the backbone (yellow parts), and outputs
the operations for searching context ranges of related spatial
regions and neighboring frames. Besides, the instability of
the multi-task network is addressed by independently training
the two separate cross-entropy losses.

2) Context-Critic Network: As for the context-critic net-
work (as shown in Fig. 4), given the single image / and the
actions predicted from the 7 (s;; @), the context-critic network
V (ss; 0,) outputs the critic value to evaluate the actions.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

We propose to define the critic value via a convolutional
neural network that has one softmax output for the context-
critic e(s;; 8,) and one linear output for the critic value, with
all layers shared. Therefore, the critic value represents the
probability of the predicted person ID to be the true person ID.
If the network increases probability with the context actions
than that without the context, it will feedback positive reward,
otherwise, it will feedback negative reward. Furthermore,
the critic should evaluate both temporal and spatial actions.
Towards this goal, we use the shared parameters in single
critic framework, which could help the network capture the
correlation among the actions much better than the multi-
critic case. Note that, single critic framework can achieve
these performances with fewer parameters than the multi-critic
framework.

3) Optimization of MTRL: We propose to improve a vari-
ant of asynchronous advantage actor-critic (A3C) algorithm
in [35] to train the MTRL. The conventional reinforcement
learning methods generally adopt single task network archi-
tecture, instead, to make it satisfy our multi-task context-
policy, the critic network outputs rewards of the two actions
in parallel. We use r; in Eq. 2 to denote the immediate reward
at step ¢, and then the accumulated reward is Zf;(; yir +
Y5V (s;1x:6,), V(si;0,) is the output value under state s;.
Here 6, denotes the network parameters of critic branch, and
k ranges from O to f,,,, (maximum number of steps before
updating). Therefore, the objective of the agent is to maximize
the Expectation [E of reward:

1 N oo )
R(a;, s;) = E[ﬁ Zz y'ri (se, w(se; )] 3)

i=1t=0

Here y is a discount factor, which controls the effect of the
state in long time, r; is the immediate reward according to the
current state s;, N is the total actions number, and ¢ denotes
the ¢-th epoch.

Furthermore, the optimization objective of the policy output
is to maximize the advantage function R; — V (s;; 6,) and the
entropy of the context-policy output L(z(s;; 6)). The cross
entropy loss in the optimization objective is used to increase
the diversity of actions, which can make the agent learn
flexible policies. We use estimated error to compute the policy
gradient. The gradients of the actor-policy 7z (s;; @) can be
formulated as:

VoR = Vylogm (as|si; ) (R — V (s:: 0,))+ B Vo L(7 (513 0))).
“)

Here the context-critic network V (s;; 0,) approximates the
total expected reward R of state s; with parameters 6,. The
optimization objective of the context-critic output is to mini-
mize (R — V(s;; 6,))%/2. Thus, the gradients of the context-
critic network V (s;; 6,) can be formulated as:

Vo, R = Vg, (R — V(3 0,))%, 5)

where f controls the influence of entropy L(z(s;; #)), and
7 (s¢; @) is the probability of the sampled action a; under the
same state s;.
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Fig. 5. The comparison between Vanilla dense connection and the context-
interactive connection in our network, and € denotes the concatenation
operation.

D. Context-Interactive Network for Person Re-ID

After we get the proper context of person regions, we exploit
the efficient CNN to fully take advantage of the temporal and
spatial contexts. We propose a novel context-interactive net-
work scheme similar to Densenet. Different from it, we embed
a low-rank component as an auxiliary channel to arouse the
person related semantic features. We use the robust PCA [41]
method to decompose the temporal context sequences into
low-rank component /; and sparse component I, which belong
to R™",

I=1+I, (6)
which subjects to,

Iy =argmin ||I — L||F, s.t.rank(l}) =r. 7

Here || ||r represents the Frobenius norm. » denotes the rank
of sequences I, and we set it as 2. In this way, we can get the
foreground component, which is the mean visual feature of
the sequences, and the unrelated background can be removed
from the sequences. We further employ /; as the attention
map for the image with the skipping connections, which are
used to retain the context region information when activating
deeper feature maps. The differences between the context-
interactive connection and Vanilla dense connection are shown
in Fig. 5. In our network, the new connection replaces the
original one in the dense network, which demonstrates a better
performance.

Our CI-CNN aims to find the most informative context
ranges around the current frame. Inference is carried out by
sampling from the policy 7 (s;, 6) iteratively, until the termina-
tion action is taken. At each step, state s, is updated according
to action a;. When the search is complete, the confidence
of the spatial and temporal actions context is output by the
context-policy network. As for inference, given a set of images
together with the action confidence function p(atT |sz, 9),
it should be maximal when identification is accurate. We want
to find the parameters maximizing the Re-ID accuracy based
on the context and confidence p(al|s;,0) in the last step.
At the same time, we aim to minimize the number of the
evaluated temporal frames. Collaborating with the context-
critic network, the context-policy can progressively approach
the optimal pedestrian box and context frames. By repeating
this process, the proposed method can provide context for
the whole video sequence. Some examples from the testing
process are shown in Fig. 6.
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Fig. 6. Temporal context over time indicates the person-related temporal
clues gradually focus on the pedestrian in spite of (possible) occluding regions.
Heatmap follows HSV.

Algorithm 1 Training Procedure of Our CI-CNN
Input : Initialized cropped pedestrian images I and IDs
QOutput: CI-CNN model

1 Initialize S (for each episode) e(1, s, 6);
2 Ip«—1,t+0
3 repeat

4 A ~ (]S, 0);

5 Take action a(s,t) € A, observe S, R;

6

7

8

9

0+ R+ ~0(S,0,) —0(S,6,);

200 e AN 20 + IV D(s,0,);

2%+ y\920 + IVginm(alS, 0);

0, «— 0, + a0,

10 0« 6+al20;

11 I < ~I_q;

12 S« Si_1;

13 until ¢t — t401 == tmaz OF a;_1 Is termination;
14 for i € I do

15 R+ r,—7R;

16 df «+ df + Vglogm(a;|s;; 0)(R — v(s;;0y));
17 +BViheta L(7 (533 0));

18 df, < db,(R—V(s;;0,))%/2;

19 end

20 Update 6 with df and 6,

Convergence of CI-CNN:

The entire learning process is documented in Algorithm 1.

Since the previous actor-critic network is hard to be opti-
mized, we simplify the training process to guarantee the
convergence. The key network training steps are summarized
below:

(1) We simplify the training process to avoid the brittle con-
vergence properties problem inherited from MTRL, we use the
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Accuracy of the context-policy network.

network structure of CIN and copy the pre-trained parameters
from the identification CIN to directly evaluate the context
from the action space, of which, the ‘context-critic’ network is
only upgraded on its last two layers. Therefore, the main para-
meters of the ‘context-critic’ are stable. Consequently, the loss
of the ‘context-critic’ is consistent with the evaluation task
for the actor network. This strategy reduces the complexity of
the whole pipeline, and makes the context directly converge
towards the RelD task.

(2) In terms of ‘context-actor’ network for the temporal and
spatial context exploration tasks, we first alternatively train
one of the two tasks separately with the other fixed, and then
jointly train the two networks. In practice, we observe that,
the temporal context task is much more easily converged than
the spatial context. Therefore, we firstly train the temporal
task, and then two networks are updated by the spatial context.
Finally, the two tasks are jointly trained according to the
evaluation from the ‘context-critic’ network.

(3) The ‘context-actor’ network in ‘MTRL’ model has a
stable performance as shown in Fig. 7 and Fig. 8 during
the training process. It is trained with our pre-trained model
parameters from the CIN network. Moreover, we update the
‘context-critic’ network when needed. If the probability score
given by ‘context-critic’ is slightly changed over different
actions, it does not fit well with the context in the current
environment, and we update the network based on Eq.4. This
training process benefits the convergence robustness.

(4) The training of reinforcement learning network is post-
poned, such that it does not rely on the well-labeled datasets
for context searching. This advantage alleviates the problem
of dynamic context searching. Hence, the actor-critic network
is superior over the directly back propagation optimization
process.

IV. EXPERIMENTS AND EVALUATIONS
A. Datasets and Experimental Settings

Our experiments are conducted on three publicly available
video datasets, including PRW (Person Re-identification in the
Wild) dataset [42], Market (Market1501) dataset [43], PRID
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(PRID2011) dataset [44], Duke (DukeMTMCT) dataset [45],
MARS (MARS) dataset [46], iLIDS-VID dataset [29]. For
person Re-ID, following the widely-used evaluation protocol
from [29], we randomly split the dataset half-half for train-
ing/testing, and average the results of 10 rounds to make the
evaluation stable. The splitting of probe/gallery in other three
datasets all follow the provided settings in the original paper
for fair comparison with others. The similarity is computed
based on cosine metric. All of the six datasets preserve the
original train/test split.

1) PRID: the PRID 2011 dataset [44] is collected in several
outdoor scenes with relatively simple backgrounds. Videos in
this dataset were captured by two static surveillance cameras.
This dataset has an overlap of 200 pedestrians appeared in
both views. Each person sequence has a variable length from
5 to 675 frames, with an average number of 100. To guarantee
the effective length of image sequences, most previous works
[8], [29] selected 178 identities with the sequence number
more than 27 frames. On the contrast, our CI-CNN is adaptive
to the flexible length of the sequences. The PRID dataset is
split by the two different cameras, ‘cam a’ for training, ‘cam
b’ for testing.

2) PRW: the PRW dataset [42] is captured with 6 cam-
eras. It has 11,816 video frames, 932 identities belonging to
34,304 bounding boxes. To be noted that the identities in PRW
do not correspond to those in Market dataset.

3) Market: the Market dataset is collected from six cameras.
It contains 12,936 training images and 19,732 testing images.
The number of identities is 751 and 750 in the training and
testing sets respectively. There is an average of 17.2 images for
each training identity. All the pedestrians are detected by the
deformable part model (DPM) [47]. Both single and multiple
query settings are used.

4) MARS: the MARS dataset [46] is a large-scale video
dataset for person re-ID. It is captured from six near syn-
chronized cameras in the Tsinghua campus. MARS con-
tains 1,261 different identities, forming a total number
of 20,478 tracklets. Among all the tracklets, there exist
3,278 distracted tracklets due to the false detection and asso-
ciation, making the dataset very challenging.

5) Duke: the Duke dataset [45] is collected from eight
cameras. It contains 1,404 identities, of which, 702 identities
for training and the remaining 702 identities for testing. The
total training images are 16,522. In the testing set, for each
identity, one query image per camera is picked up, and the
remaining images are put in the gallery. There are 2,228 query
images and 17,661 gallery images for the 702 testing
identities.

6) iLIDS-VID: the ILIDS-VID dataset [29] is captured at
an airport arrival hall. The dataset consists of 300 distinct
individuals observed in two non-overlapping views, forming
600 pedestrian sequences. Each person has 23 to 192 images,
and the average image number for each person is 73. It is very
challenging because of the large clothing similarities among
pedestrians, lighting and viewpoint variations across views,
cluttered backgrounds and random occlusions.

Some examples of each datasets are shown in Fig. 9.
We show the same identities from two different cameras in
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Fig. 9.

Illustration of images in six benchmark datasets.

two rows. It can be seen that the pose, background and
occlusions make it hard to recognize different pedestrians.

B. Implementation Details

We use the action set A, which contains 9 actions to
determine the spatial and temporal contexts. We initial-
ize the context-policy network with a pre-trained Densenet-
121 model [15], and finely-tune the fully-connected layers
in two branches. One outputs spatial operations, the other
outputs spatial operations. The number of the output units of
the last layer is 3. The context-interactive network e(s;; 6,) and
context-critic network 7 (s;; @) share the same CIN structure,
except that the parameters of e(s;; 6,) updates 20 epoches
earlier than 7z (s;; #). More concretely, our MTRL is imple-
mented using Pytorch library on 4 Tesla P100 GPUs and one
GTX1080 for testing the speed. The discount factor y for the
future rewards is set to 0.2.

All the networks are trained using stochastic gradient
descent (SGD). On PRW, Market, Duke, iLIDS-VID, MARS,
and PRID datasets, we use batch size of 32 for 60 epochs
respectively. Following [15], the initial learning rate is set
to be 0.1, and is divided by 10 at 50% and 75% of the
total training epochs, we use a weight decay of 107* and a
Nesterov momentum of 0.9 without dampening. We adopt the
weight initialization introduced by [48]. For the three datasets
without data augmentation, we add a dropout layer [49] after
each convolutional layer (except the first one), and set the
dropout rate to be 0.5. Specifically, to fairly compare with
other methods, we employed the provided bounding boxes of
the pedestrian in the original datasets to initialize the boxes.

C. Evaluation Settings

We use the generic evaluation metrics as previous works
do [30]: top 1, 5, 10 and mAP (mean Average Precision). For
each query, the average precision (AP) is computed according
to its precision-recall curve. The mAP is calculated as the
mean value of the average precisions of all queries. All the
comparisons are based on single query. In particular, for
iLIDS-VID dataset, we randomly split all the sequence pairs
into two equal-size sets, with one for training and the other
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for testing. Then, we further select sequences from the first
camera in the testing set to form the probe set, and those from
the other camera are used as the gallery set. For the experi-
ments on the MARS, Market, Duke, and PRW dataset, we
use the reported single-query matching results. Two standard
evaluation metrics are used: Cumulative Matching Character-
istics (CMC) curve and Mean Average Precision (mAP). The
CMC curve provides a ranking for each image in the gallery
with respect to the probe. It is used for the 6 datasets.

D. Ablation Studies

We analyze the contribution of the main modules in our CI-
CNN framework via an ablation experiment, including spatial
context (SC), temporal context (TC), low rank analysis ; in
Eq. 6 (LR), and context-interactive network (CIN). We use
the schemes of Densnet121, SC+ Densnet121, LR+GCN and
TC+CIN on all of the three datasets. The Resnet50 and
Densenet121 [15] are generally used as high performance
baselines.

We observe that the aforementioned five modules will have
fluctuant effects on different datasets, which is demonstrated
in Table 1. According to the results, the most contributive
module is TC+CIN which has an improvement ranges from
25.66% (PRW) to 2.58% (Market) (topl accuracy) by a large
margin. The second most contributive module is LR+CIN,
and the least contributive module is SC+Densenetl21. It is
rational due to the temporal context contains more visual clues
than the spatial one. Besides, different datasets are improved
by a slightly different margin. In fact, the PRW dataset has
higher resolution than the Market dataset, which benefits the
low-rank decomposition. Based on the results, we can draw
conclusions: All the spatial context, temporal context, and the
CIN can make a large margin compared with baselines. Of
which, the temporal context contributes most, spatial context
contributes least. Furthermore, the contributions of spatial
context are dependent on the complexity of the scenarios.

There are two main advantages of the MTRL in this process.
(1) MTRL can help search the temporal clues, which is further
processed by low-rank decomposition. (2) MTRL can provide
the initialized boxes highly related to the pedestrians’ regions
for CI-CNN to further extract the pedestrian’s features from
attention maps. More details are described in supplementary
material.

E. Spatial and Temporal Parameter Analysis

To simplify the training process of CI-CNN, we design
spatial and temporal context search actions in 4 with one
scale each time via the grid search experiments to find
the proper settings. We observe that the datasets can be
classified into two classes: Temporal and spatial context
based datasets, including PRID, PRW and Temporal context
based datasets, including iLIDS-VID, Duke, Market and Mars.
Therefore, rather than performing exhaustive experiments on
the 6 datasets, we test on three datasets: PRW, PRID, and
Market. The best setting is: zooming-out the image with
1.2 times and zooming-in the image with 0.8 times. When
the current image requires more frames, 20 consecutive frames
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TABLE I

PERFORMANCE COMPARISONS AMONG BASELINES AND OUR CI-CNN WITH DIFFERENT CONFIGURATIONS OVER THE PRW, MARKET, AND
PRID2011 DATASETS. CIN DENOTES THE CONTEXT-INTERACTIVE NETWORK. THE ITALICS INDICATE THE SECOND-BEST PERFORMANCE

Dataset PRW Market PRID

Method topl top5 topl0 | mAP topl top5 topl0 | mAP topl top5 topl0 | mAP
ResNet50 [48] 38.30 50.51 | 5597 | 16.59 88.30 | 91.92 | 95.25 | 84.26 66.32 | 71.27 75.89 | 49.21
Densenet121 [15] | 39.28 50.81 | 56.21 | 19.23 90.12 | 92.12 | 95.82 | 84.21 7598 | 78.39 82.36 | 62.86
LR+CIN 57.27 65.05 | 76.71 | 35.88 91.95 | 9432 | 96.81 | 82.37 82.96 | 84.08 9297 | 66.12
SC+Densenet121 50.70 51.79 | 66.16 | 22.81 91.24 | 9298 | 97.12 | 86.12 79.61 | 81.95 86.74 | 64.83
TC+CIN 64.94 7046 | 74.64 | 43.96 92.70 | 93.21 | 97.21 | 86.21 84.23 | 88.52 91.23 | 72.45
CI-CNN (ours) 68.74 78.95 | 83.13 | 48.50 94.26 | 95.87 | 98.16 | 89.54 87.49 | 88.48 92.62 | 75.25

o Perfor‘l:xnce of different ratios lm’]l'npl Accfacy Temporal Tep! Accuracy i Spatial
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! Fig. 11. The effects of temporal and spatial clues on top 1 accuracy over

Fig. 10. The effects of ratio changes on top-1 accuracy over two datasets.
It shows the close performance when the ratio is set from 0.1 to 0.5 times by
step 0.1, per episode. The black boxes are zoomed in to see the details.

will be provided, while the shrinking operation will reduce the
neighboring frames by 10 frames. Thus, this setting is set as
default in our method. To be noted that, the Market does not
provide the original frames contains the pedestrians, therefore,
we can only test the temporal context. The temporal curve
in Fig. 11 shows that our CI-CNN is robust for the length of
the temporal sequences, except that too few frames cannot
provide temporal clues for person discrimination. Besides,
the temporal curve also shows stable performance over dif-
ferent datasets. The spatial curve in Fig. 11 shows that the
performance is sensitive to the spatial context which provides
the person related regions across different scenarios. Zooming
out the spatial region in a large margin (larger than 1.2 times)
makes the performance decrease, however, it is also dependent
on the dataset clutter extent of the background. Therefore,
the adaptive spatial context search is necessary because the
background is complex, which can not be pre-defined for
person Re-ID.

Besides, we determine the ratios with the detection net-
work [50] (which is the same as the detection network of PRW
datasets), which tends to initialize the ratio with the semantic
features of the persons.

To further explore the better search strategies of the ratios,
we use progressive settings for the ratios. To be specific, the
ratios are set from 0.1 to 0.5 by stepsize 0.1. The performance
is shown in Fig. 10. The best performance is 0.2 times of the
detected boxes, which sometimes causes decreasing in top-1
accuracy on PRID and PRW datasets.

In summary, the ratio search cannot improve the perfor-
mance significantly, since the pedestrian ratio is close to the
detection results, and the related context clues are in the nearby
regions.

FE. Comparisons With State-of-the-Art Methods

The following state-of-the-art person Re-ID methods are
employed for comparison: video aggregation based methods

three datasets. It shows the best performance when the temporal frame number
is set to 20 and the spatial setting is ‘1.2’ times per episode.

Fig. 12.

Illustration of images in MARS dataset, the context and pedestrian
attention map is extracted from the last convolution layer of CIN. Red dot is
the context region, blue dot is the pedestrian region key point.

(e.g., [26], [30]), background removing methods (e.g., [2],
[17], [51]). Please note that, video based methods use multi-
shots, whose performances are relatively higher than those of
the single-shot methods. We conduct comparisons based on
the reported results or the results generated by the default-
configuration networks on the same datasets. The results are
shown in Table IV.

Performance: PRW Dataset: in this experiment, we com-
pare with 7 state-of-the-art methods on PRW dataset. Spatial
clues based methods do not use the temporal information,
such as ResNet50 [48] with the strong discriminative fea-
ture. OIM [52], TAN [28], NPSM [27] and three temporal
based methods utilize the temporal information, including
DPM-Alex [42], ACF-Alex [42], LDCF+IDE [42]. It can be
concluded that, our CI-CNN outperforms most of the state-of-
the-art methods. The improvement is 6.89% (topl) on PRW
dataset compared with the second-best performance achieved
by IAN [28]. The PRW cannot performs as well as other larger
datasets due to it has a smaller number (483 indentities) of
training datasets.
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TABLE 11
COMPARISONS WITH STATE-OF-THE-ART METHODS OVER PRW DATASET

Method Category PRW topl top5 topl0 | mAP
ResNet50 [48] 38.30 | 50.51 55.97 16.59
. OIM [52] 49.9 — — 21.3
Spatial Methods 7R 6185 | — = 73.00
NPSM [27] 53.1 - — 242
DPM-Alex [42] | 483 | — - 20.5
Temporal Methods ACF-Alex [42] 452 - — 17.8
LDCF+IDE [42] | 455 - — 18.3
Spatial+Temporal CI-CNN (Ours) 68.74 78.95 83.13 48.50
TABLE III

COMPARISONS WITH STATE-OF-THE-ART METHODS OVER PRID
DATASET. (BLUE ONES MEAN THAT IT CANNOT BE COMPARED
DIRECTLY, BECAUSE THEY INVOLVE ADDITIONAL
PRE-TRAINED DATASETS)

PRID topl top5 topl0 | mAP
ResNet50 [48] 66.32 | 71.27 | 75.89 | 49.21
CNN+RNN [53] 70 90 95 -
T-CN [10] 81.1 95.0 97.4 -
SeeForeset [6] 79.4 94.4 - -
SPW [11] 83.5 96.3 — —
QAN [26] 90.3 98.2 99.32 | —
RL [30] 85.2 97.1 98.9 —
end AMOC+EpicFlow [54] | 83.7 98.3 99.4 -
CI-CNN (Ours) 87.49 | 9848 | 99.62 | 75.25

PRID Dataset: in this experiment, we compare our
CI-CNN with ResNet50 [48], T-CN [10], SeeForeset [6],
SPW [11], QAN [26], RL [30]. The performance is docu-
mented in Table III.

The performance gain of our CI-CNN on PRID dataset
ranks last, because the PRID dataset has simple background,
no occlusion, and small pose variance. However, compared
with other datasets, the performance baseline on PRW dataset
is slightly lower, because the number of persons in the training
dataset is only 483, each person has less than 20 frames
on average while involving 6 camera views, and the high
accuracy in the training scenarios may easily cause overfitting.
In summary, our CI-CNN has a dramatic improvement across
different datasets with various scenarios.

Market Dataset: we evaluate on the large dataset mar-
ket, wherein the training set contains 12936 bounding boxes
of 750 identities. The testing set contains 19732 bound-
ing boxes of 751 identities. Compared to the above three
small size datasets iLIDS-VID, PRID and PRW, Market-
1501 has more complex intra-class and inter-class variations.
The market dataset is compared with none-attention meth-
ods: Densenetl121 [15], Basel (D,Tri) [16], PSE4ECN [20],
Part-Aligned [55], BPM [56], and attention methods: Back-
ground [5], DuATM [17], AACN [2], ACS [51]. The largest
improvement on Market dataset is 2.81 % (topl) compared
with the second-best performance achieved by DuATM [17].

On the other hand, to compare with the state-of-the-art
methods, we conduct experiments on the widely-used iLIDS-
VID, MARS and Duke video datasets. Since no spatial context
is provided in the dataset, we extract the temporal contexts
in image sequences ordered by the cameras. The length is
determined by the MTRL. Note that in the cross scenarios
datasets, we exclude 253 IDs in Market dataset which are
overlapped with the PRW datasets.

2869
TABLE IV
COMPARISONS WITH STATE-OF-THE-ART
METHODS OVER MARKET DATASET
Method Category Method topl topS topl0 | mAP
Densenet121 [15] 85.3 93.3 95.8 65.0
Basel (D,Tri) [16] 86.73 - - 67.78
None-Attention PSE+ECN [20] 90.3 - - 84
Part-Aligned [55] 93.4 96.4 97.4 89.9
BPM [56] 93.8 97.5 98.5 81.6
Background [5] 81.2 94.6 97 —
DuATM [17] 9142 | 97.09 | — 76.62
Attention Methods AACN [2] 88.69 - - 82.96
ACS [51] 88.66 - - 83.3
CI-CNN (Ours) 94.23 97.81 99.27 83.93
TABLE V
COMPARISONS WITH STATE-OF-THE-ART
METHODS OVER ILIDS-VID DATASET
Method topl top5 topl0 | mAP
T-CN [10] 60.6 83.8 91.2 -
SeeForeset [6] 55.2 86.5 - -
end AMOC+EpicFlow [54] 68.7 94.3 98.3 -
QAN [26] 68 86.8 95.4 -
RL [30] 60.2 847 91.7 =
[ DensenetI21 [15] [ 5427 ] 62.19 | 68.13 [ 37.89 |
[ CI-CNN (Ours) [ 7123 | 80.25 | 85.81 | 40.15 |
iLIDS-VID  Dataset: the iLIDS-VID dataset is
compared with the state-of-the-art works, including

T-CN [10], AMOC+EpicFlow [54], SeeForeset [6], PAM-
LOMO+KISSME [57], QAN [26], DRSA [58], RL [30]
methods. These compared methods are mostly based on
the temporal sequences, which have taken advantages of
sufficient temporal information to achieve better performance
w.r.t single image based methods.

According to Table VII, it can be concluded that our
CI-CNN achieves the comparable performance with state-of-
the-art methods. The iLIS-VID dataset has stable background
and spatial context, the improvement mainly benefits from
the temporal context clues. wherein, the total improvement
is 7.02% in top 1 accuracy.

MARS Dataset: the MARS dataset is compared with
the state-of-the-art works, including MSCAN [59], Part-
Aligned [55], BPM [56], DuATM [17], ETAP-Net [58]. The
results are shown in Table VI. It shows that, our CI-CNN
outperforms other state-of-the-art method by a large margin.
Specially, the improvement of mAP is 2.7% compared with
the second best method BPM [56]. The MARS dataset have
the largest number of candidate persons compared with the
other 5 datasets. The background context is the most complex
due to the various places, multiple persons, vehicles and
occlusions. We visualize the context attention map from the
last convolution layer of our CI-CNN. It is obvious that, our
CI-CNN dynamically determine the context region for specific
pedestrian image, as shown in Fig. 12. For the easy samples
with clear pedestrian and simple background, the context will
focus on the body part, which is the most discriminative
and largest region for persons. On the contrast, when the
target pedestrian is hard to be recognized, it will focus on
the whole torso of the person with a higher probability, while
the surroundings with a lower probability.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 01,2021 at 14:47:47 UTC from |IEEE Xplore. Restrictions apply.



2870

TABLE VI

COMPARISONS WITH STATE-OF-THE-ART
METHODS OVER MARS DATASET

Method topl top5 topl0 | mAP
MSCAN [59] 83.03 | 93.69 | — 66.43
Part-Aligned [55] | 85.1 94.2 97.4 83.9
BPM [56] 86.3 94.7 98.2 76.1
DuATM [17] 78.74 | 90.86 | - 62.26
ETAP-Net [58] 80.75 | 92.07 | - 67.39
SeeForeset [6] 70.6 90.0 - 50.7

[ Densenetl2] [15] [ 74.51 [ 76.53 | 77.37 | 63.48 |

| CI-CNN (Ours) [ 87.3 [ 937 | 984 | 788 |

TABLE VII

COMPARISONS WITH STATE-OF-THE-ART
METHODS OVER DUKE DATASET
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TABLE VIII
EFFICIENCY COMPARISONS WITH STATE-OF-THE-ART METHODS

FIOPS Params Memor Memor Trainin,
Methods (GMac) | ) | TP (MB)y tio (hoursﬁg

Densnet121 2.88 7.0 10 2132 30 10
Resnet50 5.19 25.05 100 256 421 14
Camera 4.12 28.0 20 603 743 15
Resnet503d [67] | — 47.48 — 12227 75.12 20
resnet50rnn [53] - 24.78 - 7577 47.66 20
SeeForeset [6] - - 20 665 8.2 3

CI-CNN (Ours) 2.92 7.0 5 2264 30 12

TABLE IX

COMPARISONS OF UNSUPERVISED TRANSFER LEARNING ABILITY.
ALL THE MODELS ARE TRAINED ONLY ON SOURCE DATASET

Method Source Target l Performance l
Method Category Method topl top5 topl0 | mAP g [ topI ] top5 [ topl0 [ mAP |
Densenet121 [15] | 73.6 853 88.4 524 PRW Market | 52.70 | 6556 | 70.96 | 3593
Basel +LSRO [60] | 67.68 | — - 47.13 PRID Market | 41.25 | 5231 | 55.83 | 24.54
None-Attention Basel.+OIM [61] 68.1 - - - Market PRW 89.22 | 94.63 | 96.86 | 85.12
ACRN [62] 72.58 | 8479 | 8887 | 51.96 Resnet50 PRID PRW | 2135 | 24.16 | 28.92 | 14.49
SVDNet [63] 76.7 86.4 89.9 56.8 PRW PRID 2415 | 3198 | 34.17 | 1781
Chen et. al. [64] 79.2 - - 60.6 Market PRID 32.18 | 37.51 | 42.22 | 19.38
Kg’g\]‘“ 2['7] %'gi 8479 | - 2‘9‘22 PRW | Market | 8554 | 9133 | 9344 | 79.66
oS 55] ULLEE - S PRID | Market | 4523 | 55.56 | 60.96 | 25.93
Attention Methods EIN A1 - - . Market | PRW | 92.64 | 96.14 | 97.15 | 89.06
Basel (D,Tri) [16] 77.03 - — 55.34 Densenet121
PRID PRW | 2684 | 31.76 | 35.13 | 14.19
PSE+ECN [20] 852 | - = 79.8
PRW PRID | 29.35 | 38901 | 44.57 | 2046
FD-GAN [6] 79.90 | 886 | 908 | 645 Market | PRID | 41.34 | 4631 | 49.05 | 24.85
CI-CNN (Ours) 876 | 91.2 | 945 | 813 : : - :
PRW | Market | 85.94 | 92.18 | 95.65 | 81.03
PRID | Market | 6145 | 67.33 | 7052 | 34.52
CLCNN(ours) | M@kt | PRW 79324 79531 |797.16 | 8439
Duke Dataset: the Duke dataset is compared with the PRID | PRW | 4247 | 5321 | 5631 | 2527
fth ks. Th . ] PRW PRID | 5436 | 62.14 | 6747 | 3242
state-of-the-art works. ere are two main streams: none- Market PRID 4881 | 5263 | 58.14 | 3225
attention based methods including Densenetl2] [15], TLAID] [(32) Duke | Market | 582 | 748 | 8I.1 265
Basel.+LSRO [60], Basel.+OIM [61], ACRN [62], Market | PRID 268 - - -
) : . FD-GAN [65] | Maket | PRW 670 | 826 | 873 | 650
SVDNet [63], and attention based methods including Market | PRID 214 | 342 | 372 | 158
Chen et. al. [64], DuATM [17], AACN [2], ACS [51], : Market | PRW 823 | 895 | 908 | 764
[64] (7] 2] [51] Camera [68] | \puer | PRID | 214 | 342 | 372 | 158

Basel (D,Tri) [16], PSE4ECN [20]. As shown in Table VII,
the improvement compared with the second best method is
2.4%. The improvement comes from the temporal context.

Efficiency: Compared with the previous temporal clues
dependent works, our network costs the least memory and
time in the inference phase. Specially, to involve the sequences
of 100 frames, the memory cost of the LSTM [66] network
will be linearly increased 100 times w.r.t the single image
cases. On the contrast, ours will go through an actor-critic
framework, which contains a single network and a single CIN
network. The memory cost is twice of the Densenet121. The
memory cost of the CI-CNN network is also stable with the
length increase of the image sequences, which is superior
to conventional LSTM based methods (e.g., SeeForest [6]).
The memory and computing complexity are documented
in Table VIII. It can be concluded that our CI-CNN has
the least cost compared with the temporal information based
methods.

G. Cross-Scene Validation

We conduct three kinds of experiments on the 6 datasets
to demonstrate our CI-CNN’s unsupervised transfer learning
ability. 1) Transferring ability across datasets. We test on
PRW, PRID, and Market datasts. All the models of CI-CNN'’s
are trained only over the source dataset, and then are used
to conduct unsupervised feature extraction over the target

dataset, shown in Table IX. In all testing cases, our CI-CNN
outperforms the baseline networks by a large margin. For
example, when PRW serves as target dataset and Market as
source dataset, the performance is improved largest according
to our transfer experiments. It may be attributed to that the
source dataset market has larger dataset than PRW while hav-
ing similar scenarios. Therefore, our CI-CNN can sufficiently
extract common context on Market dataset and PRW dataset,
which contains much more sequences across different scenar-
ios. The results show our method gives rise to performance
improvement by a large margin compared with the baselines
and the existing state-of-the-art methods.

2) Comparisons with state-of-the-art methods. We also
compare our method with the state-of-the-art unsupervised
cross-dataset person Re-ID algorithm [32], FD-GAN [65],
Camera [68]. All the methods addresse the similar problem
with us under the same dataset configuration, and document
the results in Table IX. In all the testing cases, our CI-CNN
outperforms TJ-AIDJ by a large margin. For example, the
TJ-AIDJ is pre-trained on the Duke datasets, which has
more diverse backgrounds and samples than PRID. It is the
reason to achieve high performance in terms of topS and
topl0 indicators. Specially, for the cases with PRID as the
target dataset, our CI-CNN performs extremely well (3.25%
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Fig. 13. Illustration of query and gallery images, the first is the query image, following ranked galleries based on topl0 indicator. The the red boxes denote
the falsely recognized cases (we do not exclude the same-camera dataset w.r.t the query image, we exclude the same-camera captured same persons in the
CMC metric).
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Fig. 14. Tllustration of generalization
higher on topl accuracy). Therefore, our CI-CNN has the
superior ability in adaptively searching spatial and temporal
contexts, and can significantly improve the Re-ID perfor-
mance. Moreover, to study the improved cases of our CI-
CNN, we list some examples on the query and top10 gallery
images in Fig. 13. The results show that, our CI-CNN can
benefit from the context region for the cases with complex
background.

Due to the Duke and Market dataset have non-overlapped
samples, most state-of-the-art domain-adaption methods are
trained on Duke and tested on Market dataset. We com-
pare with the newly published methods including, Wang
et al. [32], Wei et al. [69], Deng et al. [70], Wei et al. [69],
Zhong et al. [71]. The results are shown in Table X. Our
CI-CNN yields best performance on Market dataset. ‘Duke’
means the source dataset is Duke, ‘Duke labels’ means Duke
labels are used for domain adaptation.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded

ability of our CI-CNN on pre-trained datasets, including iLIDS-VID, Duke, and Market.

3) Generalization on multiple scenarios: we further study
the generalization ability of our CI-CNN on different datasets.
We use one of Mars, ILIDS-VID, Duke and Market as the
training dataset and test on the other three datasets. The iLIDS-
VID dataset involves the most different scenes w.r.t the PRW
dataset, while the Market dataset is the closest to the PRW
datast in terms of scene diversity. As shown in Fig. 14,
with the similar context increasing in the training dataset,
the performance will also increase on the testing dataset. The
full cross scenarios comparison results are shown in Fig. 15.

In conclusion, the context information has two advantages in
transferring the common features across scenarios. (1) Search-
ing the spatial-temporal clues, of which, the searching strategy
is stable across scenarios for the target pedestrians; (2) Trans-
ferring the attention maps to indicate the context relations
related to the target persons across scenarios. This is further
guaranteed by the attention maps trained in the network.
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TABLE X

COMPARISONS OF UNSUPERVISED TRANSFER LEARNING ABILITY.
ALL THE MODELS ARE TRAINED ONLY ON DUKE DATASET,
AND ARE THEN USED TO CONDUCT UNSUPERVISED
FEATURE EXTRACTION ON THE MARKET DATASET

Method topl top5 topl0 | mAP | Source Domain

Wang el al. [32] 58.2 74.8 81.1 26.5 Duke

Wei et al. [69] 38.6 - 66.1 - Duke

SPGAN [70] 51.5 | 70.1 | 76.8 22.8 Duke labels

Wei et al. [69] 335 | - 61.9 - Duke

Zhong et al. [71] 622 | 788 | 84 31.4 Duke

Camera [68] 433 | 62.6 | 69.7 18.0 Duke
[ Densenetl2] [15] | 433 [ 62.6 | 697 [ 18.0 [ Duke \
| CI-CNN (Ours) | 732 [ 81.8 | 872 | 473 [ Duke |

This attention map is stable in pedestrians’ images with the
variances of pose, view, and clutter backgrounds. We provide
visualized results in supplementary material.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented CI-CNN as a high-
performance cross-scenario person Re-ID framework. In par-
ticular, our CI-CNN could transfer the context across different
camera views by adaptively finding the spatial-spatial context
and decomposing the context using low-rank analysis. In addi-
tion, a context-interactive network is proposed to enhance the
person-related spatial feature extraction. Experiments show
that our CI-CNN outperforms most of the state-of-the-art
person Re-ID methods on the scene-independent datasets by
a large margin. In the near future, we shall extend our newly-
proposed CI-CNN to handle other real-world tasks in more
complex environments such as raining day and night time.
In addition, we will extend our CI-CNN to action recognition
or pose estimation tasks by taking advantage of the motion
features in critical video analysis applications.
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