
How to Distribute Computation in Networks
Derya Malak

Electrical, Computer, and Systems Engineering, RPI
malakd@rpi.edu

Alejandro Cohen and Muriel Médard
Research Laboratory of Electronics, MIT

{cohenale, medard}@mit.edu

Abstract—In network function computation is as a means to
reduce the required communication flow in terms of number of
bits transmitted per source symbol. However, the rate region for
the function computation problem in general topologies is an open
problem, and has only been considered under certain restrictive
assumptions (e.g. tree networks, linear functions, etc.). In this
paper, we propose a new perspective for distributing computation,
and formulate a flow-based delay cost minimization problem that
jointly captures the costs of communications and computation.
We introduce the notion of entropic surjectivity as a measure
to determine how sparse the function is and to understand
the limits of computation. Exploiting Little’s law for stationary
systems, we provide a connection between this new notion and
the computation processing factor that reflects the proportion
of flow that requires communications. This connection gives us
an understanding of how much a node (in isolation) should
compute to communicate the desired function within the network
without putting any assumptions on the topology. Our analysis
characterizes the functions only via their entropic surjectivity,
and provides insight into how to distribute computation. We
numerically test our technique for search, MapReduce, and
classification tasks, and infer for each task how sensitive the
processing factor to the entropic surjectivity is.

I. INTRODUCTION

Challenges in cloud computing include effectively distribut-
ing computation to handle the large volume of data with
growing computational demand, and the limited resources in
the air interface. Furthermore, various tasks such as compu-
tation, storage, communications are inseparable. In network
computation is required for reasons of dimensioning, scaling
and security, where data is geographically dispersed. We need
to exploit the sparsity of data within and across sources, as
well as the additional sparsity inherent to labeling (function),
to provide approximately minimal representations for labeling.

An equivalent notion to that sparsity is that of data re-
dundancy. Data is redundant in the sense that there exists,
a possibly latent and ill understood, sparse representation of it
that is parsimonious and minimal, and that allows for data re-
construction, possibly in an approximate manner. Redundancy
can occur in a single source of data or across multiple sources.

Providing such sparse representation for the reconstruction
of data is the topic of compression, or source coding. The
Shannon entropy rate of data provides, for a single source,
a measure of the minimal representation, in terms of bits
per second, required to represent data. This representation
is truly minimal, in the sense that it is achievable with
arbitrarily small error or distortion, but arbitrarily good fidelity
of reconstruction is provably impossible at lower rates.

A. Motivation
As computation becomes increasingly reliant on numerous,

possibly geo-dispersed, sources of data, making use of redun-

dancy across multiple sources without the need for onerous
coordination across sources becomes increasingly important.
The fact that a minimal representation of data can occur across
sources without the need for coordination is the topic of
distributed compression. The core result is that of Slepian and
Wolf [1], who showed that distributed compression without
coordination across source can be as efficient, in terms of
asymptotic minimality of representation.

Techniques for achieving compression have traditionally
relied on coding techniques. Coding, however, suffers from a
considerable cost, as it imputes, beyond sampling and quanti-
zation, computation and processing at the source before trans-
mission, then computation and processing at the destination
after reception of the transmission. A secondary consideration
is that coding techniques, to be efficiently reconstructed at the
destination, generally require detailed information about the
probabilistic structure of the data being represented. For dis-
tributed compression, the difficulty of reconstruction rendered
the results in [1] impractical until the 2000s, when channel
coding techniques were adapted.

In the case of learning on data, however, it is not the data
itself but rather a labeling of it that we seek. That labeling
can be viewed as being a function of the original data. The
reconstruction of data is in effect a degenerate case where the
function is identity. Labeling is generally a highly surjective
function and thus induces sparsity, or redundancy, in its output
values beyond the sparsity that may be present in the data.

The use of the redundancy in both functions and data
to provide sparse representations of functions outputs is the
topic of the rather nascent field of functional compression.
A centralized communication scheme requires all data to be
transmitted to some central unit in order to perform certain
computations. However, in many cases such computations can
be performed in a distributed manner at different nodes in
the network avoiding transmission of unnecessary information
in the network. Hence, intermediate computations can signif-
icantly reduce the resource usage, and this can help improve
the trade-off between communications and computation.

B. Technical Background

In this section, we introduce some concepts from informa-
tion theory which characterize the minimum communication
(in terms of rate) necessary to reliably evaluate a function.
In particular, this problem which is referred to as distributed
functional compression, has been studied under various forms
since the pioneering work of Slepian and Wolf [1].

An object of interest in the study of these fundamental
limits is the characteristic graph, and in particular its coloring.

327
Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:07:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: (Left) Example rate region for the zero distortion distributed functional compression problem [2]. S denotes the shaded region
between the joint entropy H(X

1

, X
2

) curve (inner bound I) and the joint graph entropy curve of HGX1
,GX2

(X
1

, X
2

) (outer bound O).
Note that any point above I is the Slepian-Wolf achievable rate region, and O is characterized by how surjective the graph entropy is.
(Right) Example scenarios with achievable rates: rate region for (i) source compression, (ii) functional compression, (iii) distributed source
compression with two transmitters and a receiver, and (iv) distributed functional compression with two transmitters and a receiver. Note that
in (iv) the main benefit of joint graph entropy HGX1

,GX2
(X

1

, X
2

) is that it is less than the sum of the marginal graph entropy of source
X

1

, i.e. HGX1
(X

1

), and the conditional graph entropy of source X
2

given X
1

, i.e. HGX2
(X

2

|X
1

). Joint graph entropy provides a better
rate region than the joint entropy since it does not satisfy the chain rule. Hence, we expect to have �

max

> �
min

in the left figure.

In the characteristic graph, each vertex represent a possible
different sample value, and two vertices are connected if they
should be distinguished. More precisely, for a collection of
random variables X

1

, . . . , X
n

assumed to take values in the
same alphabet X , and a function g : X ! Y , we draw an
edge between vertices u and v 2 X , if g(u, x

2

, . . . , x
n

) 6=
g(v, x

2

, . . . , x
n

) for any x
2

, . . . , x
n

whose joint instance has
non-zero measure. We illustrate the characteristic graph and
its relevance in compression through the following example.

a) Slepian-Wolf Coding (or Compression): We start
by reviewing the natural scenario where the function
f(X

1

, . . . , X
n

) is the identity function, i.e., the case of dis-
tributed lossless compression. For sake of presentation, we
focus on the case of two random variables X

1

and X
2

, which
are jointly distributed according to P

X1,X2 . Source random
variable X

1

can be asymptotically compressed up to the rate
H(X

1

|X
2

) when X
2

is available at the receiver [1]. Given
two statistically dependent i.i.d. finite alphabet sequences X

1

and X
2

, the Slepian-Wolf theorem gives a theoretical bound
for the lossless coding rate for distributed coding of the two
sources as shown below [1]:

R
X1 � H(X

1

|X
2

), R
X2 � H(X

2

|X
1

)

R
X1 +R

X2 � H(X
1

, X
2

). (1)
We denote the rate region in (1) by R(X

1

, X
2

). The Slepian-
Wolf theorem states that in order to recover a joint source
(X

1

, X
2

) at a receiver, it is both necessary and sufficient to
encode separately sources X

1

and X
2

at rates (R
X1 , RX2)

where (1) is satisfied [2]. Note that the encoding is done in a
truly distributed way, i.e. no communication or coordination

is necessary between the encoders. Distributed coding can
achieve arbitrarily small error probability for long sequences.

One of the challenge in function computation is the function
f on the data X itself. Whether or not having correlations
among the source random variables (or data) X , due to the
mapping from the sources to the destinations the codebook
design becomes very challenging. Since the rate region of
the distributed function computation problem depends on the
function, designing achievable schemes for the optimal rate
region for function computation (or compression) (for general
functions, with/without correlations) remains an open problem.
We aim to develop a tractable approach for computing general
functions using the tools discussed next.

b) Graph Entropy for Characterizing the Rate Bounds:
Given a graph G

X1 = (V
X1 , EX1) and a distribution on its

vertices V
X1 , the graph entropy is expressed as
H

GX1
(X

1

) = min

X12W12�(GX1)

I(X
1

;W
1

), (2)

where �(G
X1) is the set of all maximal independent sets

of G
X1 . The notation X

1

2 W
1

2 �(G
X1) means that

we are minimizing over all distributions p(w
1

, x
1

) such that
p(w

1

, x
1

) > 0 implies x
1

2 w
1

, where w
1

is a maximal
independent set of the graph G

x1 .
In [3, Theorem 41], authors have determined the rate region

for a distributed functional compression problem with two
transmitters and a receiver. This rate region is given by

R
11

� H
GX1

(X
1

|X
2

), R
12

� H
GX2

(X
2

|X
1

)

R
11

+R
12

� H
GX1 ,GX2

(X
1

, X
2

), (3)
where G

X

is the characteristic graph of f on the data X , and

328
Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:07:37 UTC from IEEE Xplore. Restrictions apply.

H
GX1 ,GX2

(X
1

, X
2

) is the joint graph entropy of the sources.
To summarize, the role of in network function computation

is to reduce the amount of rate needed to be able to recover a
function on data, and the amount of reduction is observed as

H(X) ! H
G

(·) ! H
GX (X). (4)

An achievable scheme for the above functional compression
problem has been provided in [3]. In the scheme, the sources
compute colorings of high probability subgraphs of their G

X

and perform source coding on these colorings and send them.
Intermediate nodes compute the colorings for their parents’,
and by using a look-up table (to compute their functions), they
find corresponding source values of received colorings.

In Figure 1, we illustrate the Slepian-Wolf compression
rate region I in (1) versus the outer bound O (convex)
determined by the joint graph entropy of variables X

1

and
X

2

, as given in (3). In the graph, the region between two
bounds, denoted by S , determines the limits of the functional
compression. We denote the depth of this region by � that
satisfies � 2 [�

min

,�
max

]. This region indicates that there
could be potentially a lot of benefit in exploiting the compress-
ibility of the function to reduce communication. The convexity
of O of S can be used to exploit the tradeoff between
communications and computation, which is mainly determined
by the network, data and correlations, and functions. A notion
of compressibility is the deficiency metric introduced in [4].

Definition 1. Deficiency [5]. Let G
1

and G
2

be finite Abelian
groups of the same cardinality n and f : G

1

! G
2

. Let G⇤
1

=

G
1

\{0} and G⇤
2

= G
2

\{0}. For any a 2 G⇤
1

and b 2 G⇤
2

, we
denote �

f,a

(x) = f(x+ a)� f(x) and �
a,b

(f) = #�

�1

f,a

(b).
Let ↵

i

(f) = #{(a, b) 2 G⇤
1

⇥G
2

|�
a,b

(f) = i} for 0  i  n.
We call ↵

0

(f) the deficiency of f . Hence ↵
0

(f) measures the
number of pairs (a, b) such that �

f,a

(x) = b has no solutions.
This is a measure of the surjectivity of �

f,a

; the lower the
deficiency the closer the �

f,a

are to surjective.

Although Figure 1 gives insights on the limits of compres-
sion, it is not clear which point in the outer bound O provides
the best solution from a joint optimization of communication
and computation. In particular, as highlighted in Sect. I-B,
constructing optimal compression codes imposes a significant
computational burden on the encoders and decoders, since the
achievable schemes are based on NP-hard concepts. If the
cost of computation were insignificant, it would be optimal
to operate at max �. However, when the computation cost
is not negligible, there will be a strain between the costs of
communication and computation. To capture this balance, we
propose to follow a different approach, as detailed in Sect. III.

C. Contributions
The function computation task in networks is very challeng-

ing, and to the best of our knowledge, is unknown except for
special cases as outlined in Sect. II. In this paper, we provide
a fresh look at this problem from a networking perspective.

Our contributions are as follows. We provide a cost model
for a general network topology for performance characteriza-
tion of distributed function computation by jointly considering

the computation and communications aspects. We introduce
entropic surjectivity as a measure to determine how sparse a
function is. We devise a flow-based delay cost minimization
technique that incorporates the costs of communications and
computation. While we assume that the communications cost
is convex in flow, we use general cost functions for computa-
tion. The enabler of our approach is the connection between
Little’s law for stationary systems and proportion of flow that
requires communications (i.e. computation processing factor)
that is determined by the entropic surjectivity of functions.

Our goal is to employ/devise distributed (function) com-
pression techniques in general network topologies (stationary
and Jackson type networks where the approach allows for the
treatment of individual nodes in isolation, independent of the
network topology. Therefore, we do not have to restrict our-
selves to cascading operations as in [6] due to the restriction of
topology to linear operations.) as a simple means of exploiting
function’s entropic surjectivity (a notion of sparsity inherent to
labeling), by employing the concepts of graph entropy, in order
to provide approximately minimal representations for labeling.
Labels can be viewed as colors on characteristic graph of
the function on the data, where in our case the labeling is
the function, is central to functional compression1. Our main
insight is that, the main characteristics required for operating
the distributed computation scheme are those associated with
the entropic surjectivity of the functions.

The advantages of the proposed approach is as follows.
It does not put any assumptions on the network topology
and characterizes the functions only via their entropic sur-
jectivity, and provides insight into how to distribute computa-
tion/compression depending on the entropic surjectivity of the
computation task, how to distribute computation, and how to
use the available resources among different computation tasks,
and how it compares with the centralized solution. Our results
imply that most of the available resources will go to the com-
putation of low complexity functions and fewer resources will
be allocated to the processing of high complexity functions.

The organization for the rest of the paper is as follows. In
Sect. II, we review the related work. In Sect. III, we detail how
to model computation, and derive some lower bounds on the
rate of generated flows (i.e. processing factors) of the nodes by
linking the computation problem to Little’s law. In Sect. IV,
we present numerical results and discuss possible directions.

II. RELATED WORK

Compressed sensing and information theoretic limits of rep-
resentation provide a solid basis for function computation in
distributed environments. Problem of distributed compression
has been considered from different perspectives. For source
compression, distributed source coding using syndromes (DIS-
CUS) have been proposed [8], and source-splitting techniques
have been discussed [9]. For data compression, there exist

1The entropy rate of the coloring of the function’s power conflict graph upon
vectors of data characterizes the minimal representation needed to reconstruct
with fidelity the desired function of the data [7]. The degenerate case of the
identity function corresponds to having a complete characteristic graph.

329
Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:07:37 UTC from IEEE Xplore. Restrictions apply.

some information theoretic limits, such as side information
problem [10], Slepian-Wolf coding or compression for depth-
one trees [1], which can be generalized to trees, and general
networks via multicast and random linear network coding [11].

In functional compression, a function of sources is sought
at destination. Korner introduced graph entropy [7], which
was used in characterizing rate bounds in various functional
compression setups [12]. For a general function and a con-
figuration where one source is local and another collocated
with the destination, Orlitsky and Roche provided a single-
letter characterization of the rate-region in [13]. In [2] and
[3] authors investigated graph coloring approaches for tree
networks. In [14] authors computed a rate-distortion region
for functional compression with side information. Another
class of work considered the in network computation problem
for some specific functions. In [15] authors investigated the
cut-set bounds for the computation of symmetric Boolean
functions in tree networks. The asymptotic analysis of the
rate in broadcast networks has been conducted in [16], and
in random geometric graphs in [17]. Function computation
has been studied using multi-commodity flow techniques in
[18]. There do not exist, however, tractable approaches to
perform functional compression in ways that approximate
the information theoretic limits. Thus, unlike the case for
compression, where coding techniques exist and compressed
sensing acts in effect as an alternative for coding, for purposes
of simplicity and robustness, there are currently no family of
coding techniques for functional compression.

Computing capacity of a network code is the maximum
number of times the target function can be computed for
one use of the network [19]. This capacity for special cases
such as trees, identity function [20], linear network codes to
achieve the multicast capacity have been studied [20], [21].
For scalar linear functions, the computing capacity can be fully
characterized by min cut [22]. For vector linear functions over
a finite field, necessary and sufficient conditions have been
obtained so that linear network codes are sufficient to calculate
the function [23]. For general functions and network topolo-
gies, upper bounds on the computing capacity based on cut
sets have been studied [15], [24]. In [19], authors generalize
the equivalence relation for the computing capacity. However,
in these papers, characterizations based on the equivalence
relation associated with the target function is only valid for
special network topologies, e.g., the multi-edge tree. For more
general networks, this equivalence relation is not sufficient to
explore the general function computation problems.

Coding for computation have been widely studied in the
context of multi-stage computations [25] which generally
focus on linear reduce functions (since many reduce functions
of interest are linear); heterogeneous networks and asymmetric
computations [26], and compressed coded computing [25],
which focused on computations of single-stage functions in
networks. Coded computing aims to tradeoff the communi-
cation (bottlenecks) by injecting computations. While fully
distributed algorithms might cause a high communication load,
fully centralized systems can suffer from high computation

load. With distributed computing at intermediate nodes by
exploiting multicast coding opportunities, the communication
load can be significantly reduced, can be made inversely pro-
portional to the computation load [25], [27]. The rate-memory
tradeoff for function computation has been studied in [28].
Different coding schemes to improve the recovery threshold
include Lagrange coded computing [29], and polynomial codes
for distributed matrix multiplication [30].

In functional compression, functions themselves can also be
exploited. There exist functions with special structures, such as
sparsity promoting functions [31], symmetric functions, type
sensitive and threshold functions [32]. One can also exploit
a function’s surjectivity. There are different notions on how
to measure surjectivity, such as deficiency [4], ambiguity [5],
and equivalence relationships among function families [33].

III. MODELING COMPUTATION IN NETWORKS

In this section, we want to answer the following questions:
How to handle large, distributed data? What is the rate region
of the distributed functional compression problem for a general
function? Where to place computation and memory? When to
do computations? How to model computation in networks?

As a first step to ease this problem, we will provide a utility-
based approach for general cost functions. As special cases,
we continue with simple example of point search (O(logN)),
then MapReduce (O(N)), then the binary classification model
(O(exp(N))). Our main contribution is to provide the link
between the function computation problem and Little’s law.

We consider a general stationary network topology. While
sources can be correlated, and computations are allowed at
intermediate nodes, we compute some deterministic functions.
Our goal is to effectively distribute computation. Intermediate
nodes need to decide whether to compute or relay. At each
node, computation is followed by computation (causality)
while satisfying stability conditions. We consider a decentral-
ized solution. This yields a threshold of flow (i.e. processing
factor) to be able to perform computation. We also consider
a centralized solution which can be obtained by solving an
optimization problem by using appropriate cost functions.

We use the following notation. The set of source random
variables is denoted by X = XN

1

= X
1

, . . . X
N

. Arrival rate
of type c flow at node v is �c

v

. Service rate of type c flow at
node v is given by µc

v

. Average number of packets at node
v due to the processing of type c function is M c

v

. Function
of type c is denoted by f

c

(XN

1

). In this section and in the
remaining of the paper, we drop the subscript in graph entropy
H

GX (X), and instead use the boldface notation H(f(X)) to
show the dependency of the graph entropy on the function f on
the data X . Hence, the (graph) entropy of function f

c

(XN

1

) is
H(f

c

(XN

1

)). Time complexity of generating/processing a flow
of type c at node v is d

f

(M c

v

). The generation rate of the flow,
i.e. the processing factor, of type c at node v is �

f

(�c

v

).

A. Computing with Little’s Law
In this section, we connect the computation problem to

Little’s law. Little’s law states that the long-term average

330
Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:07:37 UTC from IEEE Xplore. Restrictions apply.

number L of packets in a stationary system is equal to the
long-term average effective arrival rate � multiplied by the
average time W that a packet spends in the system. More
formally, it can be expressed as L = �W . The result applies
to any system that is stable and non-preemptive, and the
relationship does not depend on the distribution of the arrival
process, the service distribution, and the service order [34].

In our setting, the average time a packet spends in the
system is given by the addition of the total time required by
computation followed by the total time required by commu-
nications. We formulate a utility-based optimization problem
by decoupling the costs of communications and computation:

MinCost : min

⇢

C =

X

v2V

X

c2C
W c

v

s.t. ⇢c
v

< 1, 8c 2 C, v 2 V,

(5)

where W c

v

= Cc

v,comp

+Cc

v,comm

captures the total delay, and
Cc

v,comp

and Cc

v,comm

are positive delay cost functions that
are non-decreasing in flow. The delays of computation and
communications for processing functions of type c 2 C are

Cc

v,comp

=

1

�c

v

d
f

(M c

v

), Cc

v,comm

=

1

µc

v

� �
f

(�c

v

)

, (6)

where d
f

models the time complexity of computation, i.e.
the total time needed to process all the incoming packets
and generate the desired function outcomes. The term �

f

(�c

v

)

characterizes the amount of computation flow rate generated
by node v for function of type c. Hence, the second term on
the right hand side captures the waiting time, i.e. the queueing
and service time of a packet. Hence, by Little’s law, we expect
that the long-term average number Lc

v

of packets in node v
for function of type c 2 C satisfies the following relation

Lc

v

= �
f

(�c

v

)W c

v

, (7)
where we aim to infer the value of �

f

(�c

v

) using Little’s law.
The connection between Lc

v

and M c

v

can be given as
M c

v

= Lc

v

(1� �
f

(�c

v

)/�c

v

) . (8)
For simplicity of notation, let ⇢c

v

= �c

v

/µc

v

2 [0, 1), and
⇢ = [⇢c

v

]

c2C, v2V

, � = [�c

v

]

c2C, v2V

, and µ = [µc

v

]

c2C, v2V

.
The following gives a characterization of Lc

v

by simple
lower and upper bounding techniques.

Proposition 1. Flow bounds. The long-term average number
of packets in v for type c flow satisfies

H(f
c

(XN

1

))

2

+1�
r⇣H(f

c

(XN

1

))

2

⌘
2

+ 1  Lc

v

 M c

v

. (9)

Prop. 1 yields a better inner bound than that of Slepian and
Wolf [1] because the LHS of (9) is always less than or equal
to H(f

c

(XN

1

)). Its proof is provided in Appendix.
We next provide a result required for stability.

Proposition 2. For stability, we require that d
f

(M c

v

) > M c

v

.

Proof. Assume that Cc

v,comp

< Cc

v,comm

. We then have

Cc

v,comp

=

1

�c

v

d
f

(M c

v

)<Cc

v,comm

=

1

µc

v

� �
f

(�c

v

)

<
1

µc

v

� �c

v

,

where the rightmost term is the total cost in the case of
no computation. Hence, if d

f

(M c

v

) < M c

v

, then we have

Cc

v,comp

< Cc

v,comm

. In other words, the number of packets
waiting for communications is higher than the number of
packets waiting for computation. In this case, packets will ac-
cumulate while waiting for communication service, which will
violate the stability condition. Hence, delay of computation
should be higher, i.e. d

f

(M c

v

) > M c

v

is required.

Proposition 3. Rate of generated flow. The processing factor
of node v for type c flow is given by

�
f

(�c

v

) � ac
v

±
p
(ac

v

)

2 � �c

v

µc

v

(10)
where 2ac

v

= �c

v

+ µc

v

+ �c

v

/d
f

(M c

v

). Hence,
Lc

v

� (ac
v

�
p
(ac

v

)

2 � �c

v

µc

v

)

·
h
1

�c

v

d
f

(M c

v

) +

1

µc

v

� (ac
v

�p
(ac

v

)

2 � �c

v

µc

v

)

i
.

Proof. Via computation, we aim to achieve Lc

v

=

O(

p
d
f

(M c

v

)), M c

v

=

�

c
v

µ

c
v(1�⇢

c
v)

. From Little’s law (7) we have

d
f

(M c

v

)  Lc

v

= �
f

(�c

v

)

hd
f

(M c

v

)

�c

v

+

1

µc

v

� �
f

(�c

v

)

i
. (11)

Simplifying the above relation, we get:
�
f

(�c

v

)

2 � (�c

v

+ µc

v

+ �c

v

/d
f

(M c

v

))�
f

(�c

v

) + �c

v

µc

v

� 0.

Simplifying above we get the desired result.

Remark 1. From Prop. 3, observe that as the time complexity
d
f

(M c

v

) of computation increases, ac
v

decreases and the gen-
erated flow amount decreases. Ignoring this principle, if the
processed flow rate were increased with the time complexity of
the function, then the cost for both computation and communi-
cations would increase together. However, the processing fac-
tor can decrease with the time complexity, and the output rate
may not be compressed below H(f

c

(X)). Hence, the value of
the processed flow should satisfy H(XN

1

) � Lc

v

� H(f
c

(X)).

B. Entropic Surjectivity

In our context, entropic surjectivity is a measure of how well
a network can compress a function that the destination wants
to compute. Since non-surjective functions have low entropy, a
function with high entropy yields a high entropic surjectivity.
Hence, for surjective functions H(f

c

(X))/H(X) ⇡ 1 and it
is not possible to do much further compression.

Definition 2. Entropic surjectivity, �
c

(f). Entropic surjec-
tivity of a function is how well the function f

c

: X ! Y
can be compressed with respect to the compression rate of its
domain X . We denote the entropic surjectivity of function f

c

with respect to source symbols X by
�

c

(f) = �

c

= H(f
c

(X))

�
H(X), (12)

where we emphasize that �
c

is a function of the function f
c

.

Note that �
c

is maximized when the function f with domain
X and codomain Y is surjective, i.e. for every y 2 Y there
exists at least one x 2 X with f(x) = y. Note also that �

c

is
lower bounded by zero which is when the function maps all
elements of X to the same element of Y . Therefore, �

c

can
be used a measure of how surjective the function f

c

is.

331
Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:07:37 UTC from IEEE Xplore. Restrictions apply.

Consider a function associated with class c, i.e. f
c

: X !
f
c

(X). Total incoming flow rate needed (bits/source symbol
required) can be approximated as H(X). However, to be able
to compute f

c

(X), we need to transmit at least H(f
c

(X))

bits/source symbols. In this case, the proportion of flow that
requires communications (which is the same as the proportion
of flow that is generated as a result of computation task):

�

c

⇡ �
f

(�c

v

)

�
�c

v

. (13)
Our objective is to bound �

f

(�c

v

) using the connection between
Little’s law that connects the number of packets Lc

v

with the
entropic surjectivity of the function �

c

. Given the surjectivity,
maximum amount of reduction in communications flow that
can be handled is H(X)�H(f

c

(X)) = H(X)(1� �

c

).

Definition 3. Set of computational flows. We denote the set
of computational flows by C = {c = (f,X)} where f 2 F
which represents the class of functions and X 2 X defined on
the probability space (X ,P) where X is the set of symbols
and P is the data (or source) distribution.

Definition 4. Processing (surjection) factor. Processing fac-
tor of a node v is the computational flow rate generated by v as
a result of computing f

c

. It is given by �
f

= �
f

(�c

v

) � �c

v

�

c

.

In Figure 2, we illustrate different components of computa-
tional aspects at a typical node v 2 V of the network. Since
the network is of Jackson type, we can consider a node in
isolation. Note that the min-cut that denotes the total arrival
rate of computational flow c is given by �c

v

. This via (18)
captures the rate of original arrivals which is �c

v

, and the
arrivals routed from any other node v0 2 V in the network.
If there is no v0 2 V such that prou

v

0
,v

(c) > 0, then �c

v

= �c

v

.
The cut �

f

(�c

v

) denotes the total generated rate (or processing
factor) of computational flow c at node v. The processed flow
can be routed to any v00 2 V in the network if prou

v,v

00(c) > 0.
If there is no such node, then �

f

(�c

v

) departs the system.

Proposition 4. Load threshold for distributed function
computation. A node v 2 V can do computation of a class
c 2 C function if the following condition is satisfied:
(⇢c

v

)

2

1� ⇢c
v

>fd

comp

(M c

v

)

1� ⇢c
v

H(f
c

(XN

1

))/H(XN

1

)

1�H(f
c

(XN

1

))/H(XN

1

)

>d
f

(M c

v

).

A more relaxed threshold on computation is given by

⇢c
v

> ⇢
th

=

r⇣d
f

(M c

v

)

2

⌘
2

+ d
f

(M c

v

)� d
f

(M c

v

)

2

. (14)

Proof. The threshold ⇢
th

is obtained by comparing the total
delay in (6) with and without computation, on a per node basis.
If the delay caused only by communication is higher than the
total delay caused by computation followed by communication
W c

v

in (6), i.e. the following condition is satisfied at node v,
the node decides that computation is required:

1

µc

v

(1� ⇢c
v

)

>
1

�c

v

d
f

(M c

v

) +

1

µc

v

(1� ⇢c
v

�

c

)

, (15)

where we used �
f

(�c

v

) = �c

v

�

c

on RHS. From (15), we have
(⇢c

v

)

2

1� ⇢c
v

> d
f

(M c

v

)

1� ⇢c
v

�

c

1� �

c

> d
f

(M c

v

). (16)

Fig. 2: Illustration of computational flow at node v 2 V where min
cut �c

v denotes the total arrival rate of computational flow c at node v
that incorporates the original arrivals �c

v and the arrivals routed from
v0 2 V . Min cut �f (�c

v) denotes the total generated rate of c at v.
Nodes v0, v00 2 V represent the nodes where arrivals routed from/to.

Using (⇢

c
v)

2

1�⇢

c
v
> d

f

(M c

v

), we get the relaxed condition for com-
putation in (14). From (16) observe ⇢

th

! 1 as M c

v

! 1.

We consider three different function categories and the time
complexity of these. For search function that tries to locate an
element in a sorted array, an algorithm runs in logarithmic
time, which has low complexity. For MapReduce (or linear
reduce) function, since the reduce functions of interest are
linear, the algorithm runs in linear time, which is of medium
complexity. For classification function, we can consider the set
of all decision problems that have exponential runtime, which
is of high complexity. The time complexity, i.e. the order of
the count of operations, of these functions satisfies:

d
f

(M c

v

) =

8
><

>:

O(log(M c

v

)), Search,
O(M c

v

), MapReduce,
O(exp(M c

v

)), Classification.
(17)

In Sect. IV, we evaluate and contrast ⇢
th

for above functions.

C. Routing for Computing
We assume an open network and that the arrival rate of class

c packets to the system is Poisson with rate �c. Let parr
v

(c)
be the probability that an arriving class c packet is routed to
queue v. Assuming that all arriving packets are assigned to a
queue, we have that

P
v2V

parr
v

(c) = 1.
For tractability, we consider the behavior of each node in

isolation. This is allowed given that the network is quasi-
reversible or product form [35]. For example, a Jackson
network exhibits this behavior. With this, we assume a Markov
routing policy [36, Ch. 10.6.2] which can be described as
follows. As a result of function computation, packets might
have different classes, and routing probabilities depend on a
packet’s class. However, we assume that packets do not change
their class when routed from one node to another. Let prou

v,v

0(c)
be the probability that a class c packet that finishes service
at node v is routed to node v0. The probability that a class
c packet departs from the network after service completion
at node v is given by pdep

v

(c) = 1 � P
v

02V

prou
v,v

0(c), where
the second term on the RHS denotes the total probability that
the packets stay in the network. Since it is an open network

332
Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:07:37 UTC from IEEE Xplore. Restrictions apply.

model, for every class c there is at least one value of v so that
pdep
v

(c) > 0. Thus all packets eventually leave the system.
For simplicity, assume that conversion among classes is not

possible2. Then the total arrival rate of class c packets to v is

�c

v

= �c

v

+

X
v

02V

�
f

(�c

v

0)prou
v

0
,v

(c), (18)

where �c

v

= �cparr
v

(c), and the first term on the RHS denotes
the original arrival rate of class c packets that are assigned to
node v, and the second term on the RHS denotes the arrival
rate of class c packets that are routed to node v after finishing
service at other nodes v0 2 V . Note that the term �

f

(�c

v

0)

denotes the total departure rate of class c packets from node
v0 (as a result of computation). Furthermore, the total departure
rate of class c packets from v in the forward process is given
by �c

v

pdep
v

(c). Let prou
v

= [prou
v,v

0(c)]
v

02V, c2C 2 RV⇥C .
Advantages of having a Jackson type network as in (18)

are such that nodes can be considered in isolation. Each node
needs to know how much it needs to manage, which is less
complicated than when nodes need the topological information
to determine how to manage individual computational flows.

D. Solution to MinCost Problem
Using (18), we rewrite the MinCost formulation in (5) as

MinCost : min

�f<�<µ

C=

X

v2V

X

c2C

d
f

(M c

v

)

�c

v

+

1

µc

v

� �
f

(�c

v

)

s.t. �c

v

< µc

v

, 8c 2 C, v 2 V,

(19)

where we assume that prou
v

(c), �c

v

= �cparr
v

(c) are known
apriori, and from (13), �

f

(�c

v

) satisfies 8c 2 C, v 2 V that

�
f

(�c

v

) �
h
�c

v

+

X

v

02V

�
f

(�c

v

0)prou
v

0
,v

(c)
i
�

c

, (20)

which follows from (18). We rewrite (20) in vector form:
�
f

(�c

) � �
f, LB

(�c

) = [�c

+ P rou

(c)�
f

(�c

)] �

c

, (21)
where P rou

(c) = [prou
v

0
,v

(c)]
v

02V,v2V

, �c

= [�c

v

]

v2V

2 RV⇥1,
and �c

= [�c

v

]

v2V

2 RV⇥1. Using the vector notation
�
f

(�c

) = [�
f

(�c

v

)]

v2V

2 RV⇥1, and from (21) we obtain

�
f, LB

(�c

) = (I � P rou

(c)�
c

)

�1 �c

�

c

, 8c 2 C, (22)
where I is an V ⇥ V identity matrix. To guarantee that
�
f

(�c

) < �c, we can use the above condition in (22). Hence,
a necessary condition for the external arrival rate �c for the
computation operation to be effective is given by

�c < (I � P rou

(c)�
c

)�c/�
c

.

The range of �c can be computed as function of �
c

as
(I � P rou

(c)�
c

)

�1�c  �c < (I � P rou

(c))�1�c. (23)
Note that �

c

is determined by the function’s surjectivity hence
is is affected by the computation cost of the function. Given
�

c

, (22) gives a lower bound on �
f

(�c

). Furthermore, using
the relation �c

= �c

+ P rou

(c)�
f

(�c

) < �c

+ P rou

(c)�c in
(18), we equivalently require that �c < (I � P rou

(c))�1�c,
yielding the upper bound in (23). Furthermore, we have �c

=

�c

+ P rou

(c)�
f

(�c

) � �c

+ P rou

(c)�c

�

c

, and hence, �c �
(I � P rou

(c)�
c

)

�1�c, yielding the lower bound in (23).

2In general packets can change their class when routed from one node to
another [36]. The study of the multi-class generalization is left as future work.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
Search
MapReduce
Classification

Fig. 3: The critical threshold ⇢th for computation versus Mc
v .

In (19), the time complexity of classes, i.e. d
f

(M c

v

),
is known. Observe that Cc

v,comp

decreases in �
f

(�c

v

), and
Cc

v,comm

increases in �
f

(�c

v

). Note also that due to (20) the
values of �c

v

should be jointly optimized to minimize C.
In (5), given the cost functions Cc

v,comm

and Cc

v,comp

, we
can solve for the optimal values of �

f

(�c

v

), v 2 V , c 2 C
that minimize the MinCost problem. Then, using the entropic
surjectivity relation in (13), and by mapping the surjectivity
to the class of functions, we can infer the type of flows (i.e.
functions) that we can compute effectively. Using the order of
the count of operations given in (17), we model the delay cost
functions for computations of different classes of functions:

1) Search (concave):Cc

v,comp

=

1

µ

c
v

⇣
1+k log

�
1+

�

c
v��f (�

c
v)

µ

c
v

�⌘
,

2) MapReduce (linear): Cc

v,comp

=

1

µ

c
v

⇣
1 + k �

c
v��f (�

c
v)

µ

c
v

⌘
,

3) Classification (convex): Cc

v,comp

=

1

µ

c
v�k(�

c
v��f (�

c
v))

,

where k is some constant as a proxy for the cost. In Sect.
IV, we numerically investigate the behavior of MinCost with
respect to k. Note that above models satisfy Cc

v,comp

=

1

µ

c
v

when �
f

(�c

v

) = �c

v

. Furthermore, if k ! 0, the computation
cost is Cc

v,comp

=

1

µ

c
v

, which is not affected by �
f

(�c

v

). Note
also that Cc

v,comp

decreases in �
f

(�c

v

), then due to (19), there
is a value of �

f

(�c

v

) that optimizes MinCost 8c 2 C, v 2 V .

Example 1. Modeling classification via convex flow. We plug
the Cc

v,comp

expression into the MinCost formulation in (19),
and then use (21) to compute �

f

(�c

v

) for given set of �c

v

’s.
Since the objective function is convex, i.e. @

2
C

@(�f (�
c
v))

2 > 0,
the optimal solution can be found by solving @C

@�f (�
c
v)

= 0 as
�
f

(�c

v

) = �c

v

/2, 8v, 8c. Hence, we can decide �
f

(�c

v

) values
using the solution of (19) and from the set of V ⇥C equalities
with V ⇥ C unknown �c

v

values due to (21) as given below:
�c

v

2

=

h
�c

v

+

X

v

02V

�c

v

0

2

prou
v

0
,v

(c)
i
�

c

, 8c 2 C, v 2 V, (24)

using which we get �c

= 2(I � P rou

(c)�
c

)

�1�c

�

c

, 8c 2 C.

Since linear flow is a special case of convex flow, the
optimal solution is found by solving @C

@�f (�
c
v)

= 0 as �
f

(�c

v

) =

µc

v

(1� 1/
p
k). More accurately @�

c
v

@�f (�
c
v)

= � (µ

c
v)

2

k(µ

c
v��f (�

c
v))

2 +

1 > 0. This means that µc

v

(1�1/
p
k) > �

f

(�c

v

). Due to space
limitations we skip the discussion of the concave flow.

To find the local minima of MinCost for general compu-
tation cost functions, we use the Karush-Kuhn-Tucker (KKT)
approach in nonlinear programming [37]. Allowing inequality

333
Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:07:37 UTC from IEEE Xplore. Restrictions apply.

0 1 2 3 4 5

k

0

0.2

0.4

0.6

0.8

1

1.2

1.4
C

o
n
ca

ve
:
P

ro
ce

ss
in

g
 f
a
ct

o
r,

c
=0.1, =2

=1.5
=1
=0.5
=0.2

0 1 2 3 4 5

k

0

0.2

0.4

0.6

0.8

1

1.2

C
o
n
ca

ve
:
P

ro
ce

ss
in

g
 f
a
ct

o
r,

c
=0.8, =2

=1.5
=1
=0.5
=0.2

0 1 2 3 4 5

k

10

12

14

16

18

20

22

24

C
o
n
c
a
v
e
:
M

in
C

o
s
t

c
=0.1, =2 =1.5

=1

=0.5

=0.2

0 1 2 3 4 5

k

10

12

14

16

18

20

22

C
o
n
c
a
v
e
:
M

in
C

o
s
t

c
=0.8, =2 =1.5

=1

=0.5

=0.2

Fig. 4: Concave computation cost. (L) Processing factor �f (�c
v) versus computation cost scaling factor k. (R) MinCost versus k.

0 1 2 3 4 5

k

0

0.2

0.4

0.6

0.8

1

1.2

L
in

e
a
r:

 P
ro

ce
ss

in
g
 f
a
ct

o
r,

c
=0.1, =2

=1.5
=1
=0.5
=0.2

0 1 2 3 4 5

k

0

0.2

0.4

0.6

0.8

1

1.2

1.4

L
in

e
a
r:

 P
ro

ce
ss

in
g
 f
a
ct

o
r,

c
=0.8, =2

=1.5
=1
=0.5
=0.2

0 1 2 3 4 5

k

10

12

14

16

18

20

22

L
in

e
a
r:

 M
in

C
o
s
t

c
=0.1, =2

=1.5

=1

=0.5

=0.2

0 1 2 3 4 5

k

10

12

14

16

18

20

22

L
in

e
a
r:

 M
in

C
o
s
t

c
=0.8, =2

=1.5

=1

=0.5

=0.2

Fig. 5: Linear computation cost. (L) Processing factor �f (�c
v) versus computation cost scaling factor k. (R) MinCost versus k.

constraints, KKT conditions determine the optimal solution:

L =

X

v2V

X

c2C
W c

v

+ ⇠c
v

(�
f

� �c

v

) + ⇣c
v

(�
f, LB

� �
f

),

where ⇠ = [⇠c
v

]

v,2V, c2C , ⇣ = [⇣c
v

]

v,2V, c2C � 0 are the
dual variables, and for optimality (i.e. the solution at � =

[�c

v

]

v2V, c2C = �c ⇤
v

) the partial derivatives of L satisfy
@L

@�
f

=

1

�c ⇤
v

@d
f

(M c

v

)

@�
f

(�c ⇤
v

)

+

1

(µc

v

� �
f

(�c ⇤
v

))

2

+ ⇠c
v

� ⇣c
v

= 0,

@L

@⇠c
v

= �⇤
f

� �c ⇤
v

 0,
@L

@⇣c
v

= �⇤
f, LB

� �
f

 0.

From complementary slackness, we require that
⇠c
v

(�
f

(�c ⇤
v

)� �c ⇤
v

) = 0, ⇣c
v

(�
f, LB

(�c ⇤
v

)� �
f

(�c ⇤
v

)) = 0.

The local solution of the MinCost problem is numerically
derived in Sect. IV by evaluating the above partial derivatives.

IV. PERFORMANCE EVALUATION

Our goal in this section is to answer the following question:
What do the analytical expressions say in terms of how to
distribute computation given the assumptions in Sects.I-B, III?

We first numerically compute the critical load thresholds
⇢
th

in Prop. 4 using (14), for special functions using the
time complexity d

f

(M c

v

) given in (17) for different tasks,
and illustrate them in Figure 3. The threshold ⇢

th

increases
with M , and gives a range ⇢ < ⇢

th

where computation is
allowed, i.e. �

f

(�c

v

) < �c

v

. The threshold is higher for high
complexity functions such as “classification”, and lower for
low complexity functions such as “search”. This is because
given ⇢ < ⇢

th

, d
f

(M) for high complexity functions grows
much faster than the communication cost of the generated
flow. Low ⇢

th

implies that node is computing even for small
flow rates (or M) whereas high ⇢

th

means that node can only
compute if the flow is sufficient. Our numerical experiments
show that the threshold ⇢

th

is higher and converges faster for

functions with high d
f

(M). However, if d
f

(M) is high, then a
node can only compute when M is sufficiently small such that
a valid threshold exists. Benefit of computation increases from
classification (fast convergence of ⇢

th

to 1), to MapReduce
(modest convergence), to search (slow convergence). This
implies that the limited computation resources should be
carefully allocated to the computation of different tasks, with
most of the resources being allocated to simple tasks. This
result is valid when each node is considered in isolation, and
enables handling of computation in a distributed manner. We
next consider the network setting with mixing of flows.

We numerically solve the MinCost problem in (19) for some
special functions. We assume randomized routing such that
P rou

(c) is a valid stochastic matrix, and that �c and µc are
known. Furthermore, the values of �

c

and �c are also known
apriori. In Figures 4, 5, and 6, we investigate the behavior of
MinCost versus computation cost scaling factor k, for search
(or concave), MapReduce (or linear) [25], and classification
(or convex) functions, respectively (figures on R). We also
investigate the trend of �

f

(�c

v

) as function of k (figures on
L). For all cases, it is intuitive that the processing factor �

f

and MinCost should increase with k, and the rate of increase
is determined by � and the time complexity of computation
d
f

(M). We can also observe that as the entropic surjectivity
�

c

of the function increases from 0.1 to 0.8, the function is
less predictable, and the MinCost becomes higher as the nodes
need to generate a higher processing factor �

f

.

We next investigate the behavior of �
f

(�c

v

) versus �

c

(Figure 7 L), and MinCost versus �
c

(Figure 7 R) as a measure
of surjectivity, where the values of �

c

and �c are coupled
and have to be jointly determined. We observe that �

f

(�c

v

) is
sensitive to surjectivity but not really to the time complexity
(i.e. concave, convex, linear, etc) of the computation cost
function. However, it is sensitive to the scaling k as can be

334
Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:07:37 UTC from IEEE Xplore. Restrictions apply.

0 2 4 6 8 10

k

0

0.2

0.4

0.6

0.8

1
C

o
n
ve

x:
 P

ro
ce

ss
in

g
 f
a
ct

o
r,

c
=0.1, =2

=1.5
=1
=0.5
=0.2

0 0.5 1 1.5 2

k

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
o
n
ve

x:
 P

ro
ce

ss
in

g
 f
a
ct

o
r,

c
=0.8, =2

=1.5
=1
=0.5
=0.2

0 2 4 6 8 10

k

10

11

12

13

14

15

16

17

18

C
o
n
v
e
x
:
M

in
C

o
s
t

c
=0.1, =2

=1.5

=1

=0.5

=0.2

0 0.5 1 1.5 2

k

10

12

14

16

18

20

C
o
n
v
e
x
:
M

in
C

o
s
t

c
=0.8, =2

=1.5

=1

=0.5

=0.2

Fig. 6: Convex computation cost. (L) Processing factor �f (�c
v) versus computation cost scaling factor k. (R) MinCost versus k.

0 0.2 0.4 0.6 0.8 1

Entropic surjectivity,
c

0

0.2

0.4

0.6

0.8

1

P
ro

ce
ss

in
g
 f
a
ct

o
r,

k=2, =2, =1

Computation
allowed

Not
comp-
uting

0 0.2 0.4 0.6 0.8 1

Entropic surjectivity,
c

0

0.02

0.04

0.06

0.08

0.1
P

ro
ce

ss
in

g
 f
a
ct

o
r,

k=10, =2, =1

Computation
allowed

Lower bound on

0 0.2 0.4 0.6 0.8 1

Entropic surjectivity,
c

0.97

0.975

0.98

0.985

0.99

0.995

1

N
o
rm

a
liz

e
d
 M

in
C

o
st

k=2, =2, =0.4

Concave
Linear
Convex

0 0.2 0.4 0.6 0.8 1

Entropic surjectivity,
c

0.9

0.92

0.94

0.96

0.98

1

N
o
rm

a
liz

e
d
 M

in
C

o
st

k=10, =2, =0.001

Concave
Linear
Convex

Fig. 7: (L) Processing factor �f (�c
v) versus entropic surjectivity �c. (R) Normalized MinCost versus �c for different computation costs k.

seen from Figure 7 L. For k = 2, �
f

= �
f, LB

as computation
is cheap, and for k = 10, �

f

> �
f, LB

as computation is
expensive and the nodes need a higher processing factor. We
expect that �

f

(�c

v

) increases in �

c

because it becomes harder
to compress as the entropy of the function is higher and
Cc

v,comp

should be higher. From Figure 7 R, the behavior of
MinCost is modified by the type and scaling of the computa-
tion cost function as well as �

c

. Note that communication of
the sources themselves gives an upper bound to the MinCost
problem. Therefore, we normalize the MinCost with respect
to the cost of communications only. When the computation is
cheap, (e.g. concave, or linear with k = 2 as in LHS of R),
the nodes can compress the sources as long as �

c

is not high
enough such that normalized MinCost is 1. However, as the
computation becomes costly (e.g. when k = 10 as in RHS of
R), compression of the sources does not minimize the overall
cost. We also observe in RHS of this figure, for k = 10,
concave and linear cost functions are the same because the
load of a node is smaller. The sources cannot be compressed
beyond this because optimizing the total (communication and
computation) cost is crucial. As entropic surjectivity goes up
(�

c

! 1), implying that the function is surjective, we can infer
that computing will not be allowed beyond a range where
the value of �

c

is larger than a threshold. This is because
allocating resources to computation does not incur less cost
than communicating the entire source data.

A node can perform computation and forward the processed
data if the range of �

c

allowing compression is flexible. This
is possible when computation is cheap. However, if a node’s
compression range is small, then the node simply relays most
of the time. This indeed is the case when computation is very
expensive. While computing at the source and communicating
the end computation result might be feasible for some classes
of functions, it might be very costly for some sets of functions

due to the lack of cooperation among multiple sources. By
making use of redundancy of data across geographically dis-
persed sources and the function to be computed, it is possible
to decide how to distribute the computation in the network.

Our approach can be considered as a preliminary step for
a better understanding of how to distribute computation in
networks. Directions include devising coding techniques for in
network functional compression, by blending techniques from
compressed sensing to the Slepian and Wolf compression, and
employing the concepts of graph entropy, and exploiting func-
tion surjectivity. They also include the extension to multi-class
models with product-form distributions, allowing conversion
among classes of packets when routed from/to a node.

APPENDIX

The upper bound in (9) follows from the case of no compu-
tation. In this case, the long-term average number of packets
in v satisfies that Lc

v

= M c

v

=

�

c
v

µ

c
v(1�⇢

c
v)

. However, when we
allow function computation we expect to have Lc

v

6= M c

v

.
Assume that 1

�

c
v
d
f

(M c

v

) � 1

µ

c
v

. If this assumption did not

hold, we would have d
f

(M c

v

) < �

c
v

µ

c
v��f (�

c
v)

. For stability,
the long-term average number of packets in v waiting for
communications service, i.e. M c

v

, should be upper bounded by
the long-term average number of packets in v waiting for com-
putation service, i.e. Lc

v

� M c

v

. Otherwise, M c

v

will increase
over time, which will violate the stationarity assumption.

The lower bound follows from the definition of Little’s law:

Lc

v

= �
f

(�c

v

)

h
1

�c

v

d
f

(M c

v

) +

1

µc

v

� �
f

(�c

v

)

i
(a)

� H(f
c

(XN

1

)),

where (a) is for recovering the function at the destination.
Manipulating the lower bound relation above, we obtain

�
f

(�c

v

) � µc

v

hH(f
c

(XN

1

))

2

+ 1�
r

H(f
c

(XN

1

))

2

4

+ 1

i
,

using which we get the desired lower bound.

335
Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:07:37 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information
sources,” IEEE Trans. Inf. Theory, vol. 19, no. 4, pp. 471–480, Jul. 1973.

[2] V. Doshi, D. Shah, M. Médard, and M. Effros, “Functional compression
through graph coloring,” IEEE Trans. Inf. Theory, vol. 56, Aug. 2010.

[3] S. Feizi and M. Médard, “On network functional compression,” IEEE
Trans. Inf. Theory, vol. 60, no. 9, pp. 5387–401, Sep. 2014.

[4] S. Fu, X. Feng, Q. Wang, and C. Carlet, “On the derivative imbalance
and ambiguity of functions,” IEEE Trans. Inf. Theory, 2019.

[5] D. Panario, A. Sakzad, B. Stevens, and Q. Wang, “Two new measures
for permutations: ambiguity and deficiency,” IEEE Trans. Inf. Theory,
vol. 57, no. 11, pp. 7648–57, Nov. 2011.

[6] S. Feizi, M. Médard, and M. Effros, “Compressive sensing over net-
works,” in Proc., IEEE Allerton, Sep. 2010.

[7] J. Körner, “Coding of an information source having ambiguous alphabet
and the entropy of graphs,” in Proc., Prague Conf. Inf. Theory, 1973.

[8] S. S. Pradhan and K. Ramchandran, “Distributed source coding using
syndromes (discus): design and construction,” IEEE Trans. Inf. Theory,
vol. 49, no. 3, pp. 626–643, Mar. 2003.

[9] T. P. Coleman, A. H. Lee, M. Médard, and M. Effros, “Low-complexity
approaches to Slepian-Wolf near-lossless distributed data compression,”
IEEE Trans. Inf. Theory, vol. 52, no. 8, pp. 3546–3561, Aug. 2006.

[10] A. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,” IEEE Trans. Inf. Theory, vol. 22,
no. 1, pp. 1–10, Jan. 1976.

[11] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Trans. Inf. Theory, vol. 52, pp. 4413–30, Oct. 2006.

[12] N. Alon and A. Orlitsky, “Source coding and graph entropies,” IEEE
Trans. Inf. Theory, vol. 42, no. 5, pp. 1329–39, Sep. 1996.

[13] A. Orlitsky and J. R. Roche, “Coding for computing,” IEEE Trans. Inf.
Theory, vol. 47, no. 3, pp. 903–17, Mar. 2001.

[14] H. Feng, M. Effros, and S. Savari, “Functional source coding for
networks with receiver side information,” in Proc., IEEE Allerton Conf.,
Sep. 2004, pp. 1419–27.

[15] H. Kowshik and P. R. Kumar, “Optimal computation of symmetric
boolean functions in tree networks,” in Proc., IEEE ISIT, 2010.

[16] R. Gallager, “Finding parity in a simple broadcast network,” IEEE Trans.
Inf. Theory, vol. 34, no. 2, pp. 176–180, 1988.

[17] S. Kamath and D. Manjunath, “On distributed function computation in
structure-free random networks,” in Proc. IEEE ISIT, 2008, pp. 647–651.

[18] V. Shah, B. Dey, and D. Manjunath, “Network flows for function
computation,” IEEE J. Sel. Areas Commun., pp. 714–30, Apr. 2013.

[19] C. Huang, Z. Tan, S. Yang, and X. Guang, “Comments on cut-set bounds
on network function computation,” IEEE Trans. Inf. Theory, Apr. 2018.

[20] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[21] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.

[22] R. Koetter, M. Effros, T. Ho, and M. Médard, “Network codes as codes
on graphs,” in Proc., CISS, 2004.

[23] R. Appuswamy and M. Franceschetti, “Computing linear functions by
linear coding over networks,” IEEE Trans. Inf. Theory, vol. 60, no. 1,
pp. 422–431, Jan. 2014.

[24] H. Kowshik and P. Kumar, “Optimal function computation in directed
and undirected graphs,” IEEE Trans. Inf. Theory, vol. 58, no. 6, pp.
3407–3418, Jun. 2012.

[25] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed com-
puting,” IEEE Trans. Inf. Theory, vol. 64, pp. 109–128, Jan. 2018.

[26] M. Kiamari, C. Wang, and A. S. Avestimehr, “On heterogeneous coded
distributed computing,” in Proc., IEEE Globecom, 2017.

[27] K. Kamran, E. Yeh, and Q. Ma, “DECO: Joint computation, caching
and forwarding in data-centric computing networks,” in Proc. ACM
MobiHoc, 2019, pp. 111–120.

[28] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-
memory tradeoff for caching with uncoded prefetching,” IEEE Trans.
Inf. Theory, vol. 64, no. 2, pp. 1281–96, Feb. 2018.

[29] Q. Yu, N. Raviv, J. So, and A. S. Avestimehr, “Lagrange coded
computing: Optimal design for resiliency, security and privacy,” arXiv
preprint arXiv:1806.00939, Jun. 2018.

[30] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an
optimal design for high-dimensional coded matrix multiplication,” in
Proc., Adv. Neural Inf. Process. Syst., 2017, pp. 4403–4413.

[31] L. Shen, B. W. Suter, and E. E. Tripp, “Structured sparsity promoting
functions,” arXiv preprint arXiv:1809.06777, Sep. 2018.

[32] A. Giridhar and P. Kumar, “Computing and communicating functions
over sensor networks,” IEEE J. Sel. Areas Commun., vol. 23, 2005.

[33] A. Gorodilova, “On the differential equivalence of APN functions,”
Cryptography and Communications, vol. 11, no. 4, pp. 793–813, 2019.

[34] L. Kleinrock, Queuing Systems Vol. I: Theory. New York: Wiley, 1975.
[35] J. Walrand, “A probabilistic look at networks of quasi-reversible queues,”

IEEE Trans. Inf. Theory, vol. 29, no. 6, pp. 825–831, 1983.
[36] R. Nelson, Probability, stochastic processes, and queueing theory: the

mathematics of computer performance modeling. Springer Science &
Business Media, 2013.

[37] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2009.

336
Authorized licensed use limited to: EURECOM. Downloaded on October 01,2021 at 16:07:37 UTC from IEEE Xplore. Restrictions apply.

