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Contextualized CNN for Scene-Aware Depth
Estimation From Single RGB Image

Wenfeng Song *“, Shuai Li

Abstract—Directly benefited from deep learning techniques,
depth estimation from single image has gained great momentum
in recent years. However, most of the existing approaches treat
depth prediction as an isolated problem without taking into
consideration high-level semantic context information, which
results in inefficient utilization of training dataset and unavoidably
requires a large number of captured depth data during the
training phase. To ameliorate, this paper develops a novel scene-
aware contextualized convolution neural network (CCNN), which
characterizes the semantic context relationship at the class-level
and refines depth at the pixel-level. Our newly-proposed CCNN is
built upon the intrinsic exploitation of context-dependent depth
association, including inner-object continuous depth and inter-
object depth change priors nearby. Specifically, rather than
conducting regression on depth in single CNN, we make the first
attempt to integrate both class-level and pixel-level conditional
random fields (CRFs) based probabilistic graphical model into
the powerful CNN framework to simultaneously learn different-
level features within the same CNN layer. With our CCNN, the
former model will guide the latter one to learn the contextualized
RGB-Depth mapping. Hence, CCNN has desirable properties in
both class-level integrity and pixel-level discrimination, which
makes it ideal to share such two-level convolutional features in
parallel during the end-to-end training with the commonly-used
back-propagation algorithm. We conduct extensive experiments
and comprehensive evaluations on public benchmarks involving
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various indoor and outdoor scenes, and all the experiments confirm
that, our method outperforms the state-of-the-art depth estimation
methods, especially for the cases where only small-scale training
data are readily available.

Index Terms—Depth Estimation, CNN, Single RGB Image,
Contextualization, Scene-Aware Algorithm.

I. INTRODUCTION

EPTH estimation from single image/multiple images is
D a necessary process for image-based 3D reconstruction
[1]. Previous works have been focusing on exploiting geometric
priors or additional information sources based on sufficient ob-
servations. So far, there still exist two main challenges in depth
estimation. First, in the case of multiple images, the observations
are usually required to be captured from multiple views under
various lighting conditions. Second, in the case of monocular
single image, depth estimation is hard because its depth distri-
bution closely relates to the scene content.

To grapple with the challenges, many works [2], [3] attempt
to estimate depth from single image via carefully designing
hand-crafted features, including texton, GIST, SIFT, HOG, ob-
ject bank, etc. Although these methods have achieved great suc-
cess in certain scene types, their ability of generalization on arbi-
trary scene is still limited. Meanwhile, during the last few years,
convolution neural networks (CNNs) have achieved great suc-
cess in both semantic-level recognition and pixel-level process-
ing tasks, such as classification [4], [5], and semantic segmenta-
tion [6]-[8]. Some works take depth estimation as a pixel-level
processing task [1], [9], [10], wherein the monocular depth esti-
mation is usually obtained via regressing the RGB-Depth map-
ping based on deep learning methods. With sufficient training
datasets and multiple-scale networks [9], such regression can
learn more information than that from hand-crafted features.
However, these methods inevitably tend to ignore the fine-gained
details, such as the corners and the edges. Some recent works at-
tempt to further deal with the challenges in two aspects: preserv-
ing the local features and extracting the contextualized features.

For local feature preservation, some works [11], [12] cast
depth estimation to pixel-wise classifier learning, so as to re-
spect the geometry details of the object but ignoring the con-
sistence in the same object. In addition, some other works have
demonstrated that, combining the context information can im-
prove the performance. This can be achieved in different ways,
for example, leveraging the continuous characteristics of the
scene depth to learn a depth-fitting model by combining CRF
with CNN [12], and combining the semantic segmentation with
the depth estimation tasks [13]. However, such efforts on jointly
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Fig. 1.

The architecture of our CCNN. The solid arrow means the forward propagation and the dotted line means the back propagation. The input image is first

encoded into a feature map, and then it is fed into two paths: ‘semantic decoder’ is used to up-sample the semantic class labels, and ‘depth decoder’ predicts the
depth map. Then, the two paths are incorporated into the same CRF layer for class-level and pixel-level refinements. The CRF layer outputs a probability map for

the joint-loss layer.

tackling the semantics and depth estimation are still prelimi-
nary, wherein they only coarsely encode the region-level and
pixel-level RGBD information, and thus cannot preserve geom-
etry details well. Taking into account the flexibility and repre-
sentation power of pixel-level classification and the smoothness
property of class-level regression, we cast it as a regression and
classification task to preserve details of the shallow features,
while estimating the depth with float precision.

As contextualized class-level feature extraction, most exist-
ing works ignore the semantic relations among different ob-
jects. However, in fact, human vision system can successfully
handle the depth estimation based on the context of objects.
Accordingly, we observe that, the range and change of certain
object depth are associated with the semantic instances. Hence,
the instances of the certain classes should be encoded into the
CRF layer to integrate the semantic context information at the
class-level.

Motivated by the aforementioned observations, this paper
will focus on instinct contextualized relations of instances for
scene-aware depth estimation by integrating the deep neural net-
work architecture with our designed contextualized CRF. As
shown in Fig. 1, our method can incorporate semantic segmen-
tation, class-level depth estimation, and pixel-level smoothing
tasks into depth estimation. Specifically, the salient contributions
of this paper can be summarized as follows.

e We pioneer a generic contextualized convolution neural
network (CCNN) for scene-aware depth estimation by inte-
grating class-level and pixel-level CRF layer into the pow-
erful CNN framework, which can well exploit the contex-
tualized features of the scenes and further transfer the depth
distributions among the similar scenes.

® We design a novel class-level refinement layer to han-
dle depth and depth changing variance, which can better
accommodate both the continuous depth changes within
single object and the abrupt depth changes across neigh-
boring objects.

® We propose an efficient joint-loss handling framework
to simultaneously learn the class-level and pixel-level

features within the same layer, which can jointly integrate
regression and classification tasks yet involving no addi-
tional data augmentation and parameters.

II. RELATED WORKS

Depth information is a common intermediate component in
understanding 3D scene structure [14]-[17]. Some of the previ-
ous works use multi-view images to extract the low-level features
and conduct shape reconstruction (e.g., structure-from-motion
(SFM) [18]), which usually requires capturing overlapping im-
ages from different viewpoints [19] or from temporal image
sequences [20]. Some recent works start to focus on the recon-
struction from single image, and many works [21] have achieved
great improvement based on 3D CNNs. Specifically, inspired by
the analogy of human depth perception from monocular cues,
some works concentrate on monocular depth estimation [10].

So far, the methods for depth estimation from single RGB
image can be roughly classified into two categories, which are
briefly reviewed as follows.

The first category tends to improve the hand-crafted fea-
tures [3], [22], including texton, GIST, SIFT, HOG, object
bank, geometry properties and the distributions of the neighbor
super-pixels. The disadvantage is that, the involved features are
usually dependent on specific scene. Thus, most recent works
tend to formulate depth estimation as a Markov random field
(MRF) [23] or conditional random field (CRF) [22] based learn-
ing problem. These methods manage to learn the parameters
of MRF/CRF from a training set of monocular images and the
corresponding ground-truth depth images. Then the depth esti-
mation problem is formulated as a maximum a posteriori (MAP)
inference problem based on the CRF model. Ladicky et al. [24]
showed how to integrate semantic labels with monocular depth
features to improve performance, however, their method heavily
relied on handcrafted features and super-pixels based segmen-
tation. Karsch et al. [3] attempted to produce more consistent
image-level predictions. They learned depths from the most suit-
able candidates of the training images at the whole image level.
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Nevertheless, the drawback of this approach is that, it relies on
the quality of available training dataset and requires to look up
the entire dataset at testing time.

The second category relates to data-driven methods, most of
which are based on complex CNN architecture and large scale
well-labelled ground truth of depth images. For example, Eigen
et al. [9], [25] shows that it is possible to estimate dense pixel
depth using a two-scale deep network trained on RGB-Depth
images. Meanwhile, they also show the limitations of single
scale CNN based depth regression. Liu ef al. [22] proposed a
discrete-continuous CRF model to take into account the relations
between adjacent super-pixels. They need to use approximation
methods for inference. Besides, their method relies on image re-
trieval to obtain a reasonable initialization at first. Several works
further improved such methods by replacing regression based
loss with classification based on [11], introducing more robust
loss functions [10], [26], [27], incorporating strong scene priors
[28]-[33], and using local geometric structure [34]-[36]. How-
ever, these approaches still require high-quality pixel-aligned
ground truth of depth at training phase.

On the other hand, the works combining CRF and CNN
within efficient structure show promising results. Liu ef al. [22]
integrated CRF with CNN based on the super-pixel features,
wherein the close-form solution of log-likelihood optimization
can be directly solved using back propagation. Li et al. [14] de-
signed a DCNN model to learn the mapping from multi-scale
patches to depth/surface normal values at super-pixel level, and
the estimated super-pixel depth/surface normal can be further
refined to the pixel level by exploiting various potentials on the
depth/surface normal map, including a data term, a smoothness
term among super-pixels and an auto-regression term charac-
terizing the local structure of the estimation map. Wang et al.
[13] proposed an unified approach to jointly estimate the depth
and semantic labels from single image with a hierarchical CRF,
which embedded the potentials derived from a global CNN and
a local regional CNN. Laina et al. [10] also employed CNN for
depth estimation. Different from previous works, they improved
the typical fully-connected layers by using a fully convolutional
model to efficiently incorporate residual up-sampling blocks to
solve the high-dimensional regression problems. Recently some
works [37]-[46] combined CNN with PGM by taking advan-
tage of the relationship between depth and objects. Despite the
limited success of CNN/PGM based depth estimation methods,
it is still under-developed in aspects of how to combine them
to intrinsically model the continuous depth and semantic la-
bels. Specially, to train such a large network, an extremely large
scale (i.e. hundreds of thousands of images) training dataset with
well-labelled RGB-Depth image pairs are required. In contrast,
this paper will exploit the sharing features from the semantic
labels, contextual relations and depth information based on a
contextualized Bayesian segmentation network, and leverage
them to conduct depth estimation.

III. OVERVIEW OF CCNN FRAMEWORK

For pixel-level depth estimation, conventional works [25]
commonly rely on up-sampling operation, wherein they usually
up-sample the feature maps via bilinear interpolations. How-
ever, this operation may lead to losing local details. Since the
depth values within the same object are in fact continuous, we
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only need to know the discrete depth and its changing variance.
Meanwhile, based on the fact that depth feature map only con-
tains sparse information, we propose a two-step up-sampling
scheme, which first coarsely predicts the semantic labels and
depth then finely refines the depth result by a two-level CRF
with the contextualized semantic relationships.

Architecture of CCNN: The pipeline of our CCNN is shown
in Fig. 1, of which, we use boxes with different colors to distin-
guish the CNN layers from our newly-designed layers, including
the CRF layer and the joint-loss layers.

A FCN-based backbone network is first trained to encode the
RGB image. The input data is RGB image with semantic class
labels and depth labels, and the RGB images are encoded into
high-level semantic feature maps with a backbone convolution
network. In this network, we decode the feature map (whose size
is smaller compared with the original RGB image) to make it
have the same size as the original-resolution depth feature map.
Afterwards, the feature map will be fed into two paths: ‘se-
mantic decoder’ is used to up-sample the semantic class labels;
‘depth decoder’ predicts the depth map. Then, the two paths are
incorporated into the CRF layer for class-level and pixel-level
refinement. The CRF layer establishes the contextualized rela-
tionship based on semantic objects, which encodes the depth
distribution within single object and across different objects.
Finally, a joint-loss layer is employed to model the depth esti-
mation process by simultaneously integrating the classification
and regression tasks.

Class-Level and Pixel-Level CRF: In order to decode the
feature map with more detailed local instance features and global
context clues, we further employ the aforementioned two-level
CREF to refine the depth estimation. In this way, the depth within
single object region can well preserve the local details, and in
global scope the depth can be estimated with the contextual
relations. Furthermore, to keep the depth of certain point being
consistent with its neighboring points, it still needs to refine
the depth changing among the point and its neighboring points.
Therefore, we constrain the variance of the depth changing to
be close to the variance of the ground truth depth changing as
much as possible.

Depth-Changing Refinement: Motivated by the Taylor’s for-
mula approximation method, in order to make the error being
stable and smaller, we employ the depth-changing variance (gra-
dient) to serve as the depth change principle. It is defined as the
output of g, which is the gradient operator on the feature maps
output by the class-level and pixel-level CRF. We encourage it
to be close to the ground truth in the gradient domain to preserve
the local depth changes, which should make the depth estimation
result more accurate at each point.

IV. NOTATIONS AND DEFINITIONS

In a rigid math manner, we formulate the depth estimation as
a CRF model. We model the both of the input images and the
labels domain as two random fields to explicitly encode the unary
and pairwise relations between the pixels. Consider a random
field x defined over a set of variables 1, . ..,z , the domain of
each variable is a set of labels. Given a random field I defined
over variables /1, ..., I n,in our settings, I ranges over possible
input images with size n, and x ranges over pixel-level labels
of image 1. In our CRF based CNN model, C is the set of all
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unary and pairwise cliques. Let d be a vector of continuous depth
values corresponding to all of the n pixels in image /. Similar
to the conventional CRF, we model the conditional probability
distribution of the data with the following density function:

Q(du):%exp S B@n ). o

ceCly

Here E is the energy function, Z(-) is the partition function
defined as: Z(I) = 3. exp(—E(d.|I)). Since d is continuous,
the integral in Eq. (1) can be analytically calculated under cer-
tain circumstances, which will be shown in Section V-D. This
is different from the discrete case, wherein certain approxima-
tion method needs to be applied. To predict the depth of a new
image, we only need to solve the maximum a posteriori (MAP)
inference problem by mean field approximation, let d* denote
predicted depth:

d* = argmax Q(d|I). 2)
d

Thus, based on Eq. (1), we can encode the class-level and
the pixel-level context relationship as the condition probabil-
ity of the CRF. Furthermore, we propose a joint-task loss han-
dling method to efficiently approximate Eq. (2), which can or-
ganically combine regression, classification, and context-aware
depth learning.

We first define the ‘class-level CRF’ and the ‘pixel-level CRF’
in arigorous way. In order to make the definition and explanation
technically continuous, we define the ‘class-level CRF’ in two
stages. At first, we define ‘class-level label’, and then define
‘class-level CRF’.

Class-level label: the label corresponds to the semantic cate-
gory of certain object in RGB image, of which, it does not require
the fine-grained labels for the objects in the same category. Here
we use the semantic labels in NYUDV?2 dataset and Make3D
datasets. It is obvious that, few objects of the same class are
occluded in each image, thus, the semantic labels are enough to
distinguish different objects.

Class-level CRF: CRF could be defined on the mean field
of the class-level labels, which facilitates to smooth the depth
values within the same-class instances, while maintaining the
depth changes among different instances. To better estimate the
depth of different instances, the depth maps are simultaneously
refined by the spatial distances and depth-changing variances,
which is detailed in Section V-A. In fact, the class-level CRF
controls the overall depth distributions. We further define and
analyze the class labels in Section V-A.

Pixel-level CRF: it is used to represent the details of the ob-
ject’s appearance information, so that we can embed the details
into our CCNN.

Based on pixel-level and class-level CRF based on the two-
level CREF, the local depth in the single object is accurate in av-
erage. However, it is hard to guarantee depth information accu-
rate among the object-object boundaries without the cross-object
context clues. And the depth in the single object tends to have
little variance and be overly smoothed due to lacking detailed
depth gradient information. Therefore, with the refinement in
CRF layer, it is not enough to keep the depth gradient accurate
at the single point due to lacking the depth difference refinement
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Fig. 2. TIllustrations on the depth changing variance. Each image has two re-
gions to be analyzed. Region A has a single instance, while region B has at least
two neighboring objects. Region A has gradually changing depth, region B has
a large gradient between different instances.

among neighboring points. To this end, we leverage the depth
changing variance to conduct further refinement.

Depth-changing variance: it is defined as the statistic distri-
bution of depth gradient (changing) at class-level. For objects of
the same class in different scenes, the depth changing principles
are similar, as shown in Fig. 2. Motivated by Talyer’s approx-
imation method, in order to keep the estimation error within a
smaller scale, we introduce depth-changing variance to serve
as the depth changing principle. ‘Depth-changing variance’ is
detailed described in Section V-B.

V. CONTEXTUALIZED SCENE-AWARE CNN MODEL

In this section, to simultaneously learn the global instance
relations and the local geometry features in the correspond-
ing scene, we derive a two-level new CRF function, one is for
class-level context information aggression, and the other is for
pixel-level depth changing variance refinement. On that basis,
we further introduce a novel CNN implementation for mean field
iterations in the two-level CRF. All the critical symbols are listed
in Table I.

A. Class-Level and Pixel-Level CRF

For each pixel ¢ € I, we instantiate x; € x in Section IV as
x; = (d;,1;) to denote the inference depth and semantic class at
pixel i. Given features extracted by CNN, CRF layer can produce
a distribution over the depth label assignment z;. The CRF layer
has two energy functions: unary and pairwise potentials. The
unary potential enables to incorporate both low-level features
(such as RGB pixel values, shapes, and edges) and high-level
features (including semantic features and the distribution rela-
tionship). The pairwise potentials are used to describe the depth
relationship among different objects and positions. And the po-
tentials are provided by feature maps extracted by CNN, wherein
the CNN learns the depth changing principles in local-global
way via a probabilistic graph defined by semantic distance. Con-
sidering the semantic objects, class-level depth refinement and
the depth-changing variance, we then define energy function to
make the depth map being consistent with the CNN predictions.
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TABLE I
KEY NOTATIONS LIST

Symbol [[ Representation

TN A set of labels for Image I, /N is the number of the classes

d,d, I The predicted depth, the ground truth depth, and its corresponding RGB image
di, I; The predicted depth and its corresponding RGB image at pixel ¢
E,E.,Ey(I;0) || Overall, pixel-level, and class-level energy functions

g Element-wise gradient operator

[% Parameters of the CCNN model, including the CNN layers and CRF layer

T Semantic regions with the same class labels

Q,C CNN function (without CRF) and CCNN function (with CRF)

U, P Unary/Pairwise potential function of CRF

Let E(I;0) denote the energy function of the two-level CRF,

E(I;0) = Ep(1;0) + Ec(1;0). 3)
Here, E,(I;0) denotes the pixel-level feature map from the in-
termediate CNN layer (which mainly extracts the object appear-
ance features in the RGB image). Meanwhile, E.(I;6) denotes
the class-level energy function, which refines the depth distance
based on the semantic instance regions. It is designed to force
the predicted depth to follow the laws of the depth changes in
the image. 6 is the parameter of the CNN and CRF model. The
first term of Eq. (3) is calculated via softmax loss. The second
term of Eq. (3) is calculated via the joint-loss and will be further
described in Section V-B.

The depth feature map is refined finely smooth in the same
object, while refined the distance based on the semantic labels
in pixel-level. Thus, the depth variance should be small for the
instances that are close in semantic and spatial relations, while
it should be large across the instances that are irrelevant in se-
mantic and spatial relations.

B. Depth-Changing Constraint for CRF

To implement the two-level CRF with the two potential func-
tions’ constraint, we further formulate the F. as two concrete
variables: the distance between objects in depth and the gradient
constraint for depth.

E(1;0) = Eq(1;0) + Ey(1;0). 4

Here, FE;(I; 0) encodes the depth distance based on the semantic
instance regions and E([; 6) is designed to force the predicted
depth to follow the depth changes in the image.

We then convert the image into a graph based on the pix-
els’ spatial distances and their semantic relations by merging
the similar pixels inside the same region. The region r serves
as a node, the edge of the graph encodes the region-to-region
relationship. In the predicted feature map obtained from CNN,
the potential energy measures the depth distance and the depth
similarity of the neighboring pixels based on the semantic in-
stances. It predicts the depth range within certain object and the
distances of objects, for example, the bed in the indoor scene
will have a relative large depth range (about 2.1 meters). And
the lamp of the bed will have a high probability at the end of the
bed, with 0.1 meter as depth range. The depth is inferred from
the relation graph involving semantic labels, spatial location,
and the depth. This term tends to make pixels to be assigned

with different labels if they belong to different objects.
R
Eq(I;0) = > || Rad(I,) — Rad(Ca(I,)) |
r=1

+hae y_ |1 D(d;,dy) = D(Ca(l;),Ca(T)) | . (5)
r#t

Here, Rad(I,) represents the depth range of the region r. I,.
denotes the ground truth value of the pixel in region r. Es-
pecially, r,t denote the object region set obtained from the
CNN-predicted semantic labels, C;(-) means the convolution
function defined by CCNN model (CRF layer included), and
D(-) represents the Euclidean distance. The first term in Eq. (5)
makes the depth of the same object relatively stable and fixed,
the second one enforces constraints on the distance between ob-
jects r and ¢, and the parameter )4, is used to balance the two
terms. || - || is L2 norm. At the start of iterations, the first term is
more important than the second one, then the second one starts to
dominate when the class-level depth is of high importance. The
balance process is adaptive without any manual intervention.

The feature map is refined by semantic instance regions. In-
tuitively speaking, when the starting depth and the ending depth
are determined, the law of depth change can be refined as

Ey(1;0) = Z I 9(Ca(Ii50)) — g(d;) |

+hge ) 11 9(Calli, 1:0)) — g(dizdj) || (6)
i#j

Here, g denotes the gradient operation on the input data.
g(d;) denotes the gradient operation on the ground truth data.
9(Cq(I;,1;;0) describes the depth gradient in different in-
stances, wherein Cy(, ) denotes the predicted depth map from the
last convolution layer. The ‘—’ is implemented by the element-
wise minus operator in both two terms. The first term refines
the depth-changing variance within object. The second one re-
fines the depth change across different instances’ pixels I; and
I;. This term encourages the depth of object regions to change
smoothly in the pixel level.

C. Optimization of Class-Level and Pixel-Level CRF

The perception for depth feature map built by CNN has
fixed-size neighboring nodes, which contains limited context
information. Intuitively speaking, the fixed-size window also
includes irrelevant information from different objects that are
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neighbors in spatial space. Thus, the context information ex-
tracted by CNN is not enough for depth estimation. In fact, the
depth image usually involves more regular depth changes for
certain-class objects w.r.t RGB image. The class-level refine-
ment is inspired by the observation that, the depth in the ob-
jects of the same classes may change more similarly than that
among irrelevant objects. We integrate depth distance and gra-
dient changes both at class-level and pixel-level.

To take full advantage of the contextualized information in
certain scenes, we should estimate the semantic objects and the
relations between depth and objects. Therefore, we first run an
encoder-decoder network on RGB images to obtain the CNN
prediction map. Then the class-level predictions are fed into the
depth decoder. With the depth map from CNN, we compute the
probability map for each pixel by finding the maximal state from
candidate depth labels, given the semantic labels. Thus, the first
energy term in Eq. (3) can be further described as:

By(x:0) = Y tu(@is0) + > dul;;0),

i€Cy jeCy

(7

where v, (z;) describes the unary potential of semantics and
depth in class level, ¢, (x;6) represents the Gibbs energy of
the label assignment x € L based on the gradient and original
feature maps activated by the depth estimation task. Moreover, if
CNN produces different predictions for neighboring pixels, we
encourage them to be consistent with the spatial and semantic
relations.

Based on Eq. (5) and Eq. (6), we can further formulate class-
level relations via the pair-wise potential function as

P(x;0) =Y ullis1;)k(Cy, C)k(9i, 95),
i#]j

®)

where k(-) denotes the filter kernel defined to smooth the pair-
wise nodes, C; denotes the CNN output at pixel 4, g; is the
gradient related to the CNN feature at pixel ¢, u is a label com-
patibility function. Given an image I, the aforementioned se-
mantic class-level prediction function can provide a class-level
depth feature map.

As for the prediction of the joint depth-semantic label, we
leverage two kernel potentials defined in terms of color vectors
I;, I, spatial positions p;, p;, and labels I;, [;.

e lpi —pil L — 1
k(z,j)—w()exp (— 25 — 29%
Li— 4> |pi =yl
+w(2)exp (—l JU_ L))
262 202

where the kernel of position (4, j) is used to measure the pixel-
level feature, which will change the predicted value, w() denotes
the weight of the two kernels, 0, 03, and 0., represent the vari-
ances of the distances, including RGB, position, and the labels
of semantics and depth. Eq. (9) smoothes the value in neighbor-
ing regions, and sharpens the depth values with long semantic
distance.

In order to model the contextualized instance clique, instead of
calculating the marginalization with regard to p(x; ), we propose
to construct the convolutional neural networks and directly learn
the messages. As shown in Fig. 1, we design a CRF layer, which
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is combined with RGB, semantic and depth channels both in

the estimated probability map and in the context feature map, to

capture the context pattern and geometry details at two levels.
The unary of the Gibbs energy of Eq. (7) can be defined as:

U(IL;0) = U[Q(:), 9(Q(L:)), x4, g(i); 0)], (10)

where the unary function U(-) is implemented with a CNN
model, which is trained to learn the depth biasing towards the
ground truth and to refine the changing laws of class-level depth
to be the same as that of ground truth, Q(I;) and g(Q(1;)) are
the output of the backbone CNN layer: depth feature map and its
corresponding gradient in depth feature map, g(z;) represents
the class-level object’s depth gradient operation.

D. Joint-Task Loss Handling

In this section, we describe how to train CNN to predict the
depth with semantic labels in a coarse-to-fine manner. Specif-
ically, we convert the depth estimations task as a classification
task and refinement of the depth estimation as a regression task.

As shown in Fig. 1, we find that, the depth within certain
objects changes continuously, and the potential depth range in an
object is relatively stable. Thus, Eq. (1) is formulated as follows
in order to maximize the loss of Eq. (5), and Eq. (6).

Eery =|| Wd —d" [ + | RWd || + || Gd - Gd' 3,

(11
where d is the output of the CNN network with batch size B,
W is the weight of CNN that corresponds to semantic objects
from the entire set, R expresses the neighboring relationship
in the context instance level, while G is the weight of gradient
regression model. When combined with the Softmax loss from
backbone CNN, the joint-task loss is defined as,

A
0 = argminZZlogQ(di\I; 0)+ Ecrf(1;0) + §||9||§
0 o
(12)

Here log Q(x;, d.|I; 0) is the Softmax loss to maximize the pos-
terior probability of the depth, given the features extracted by
CNN. d; is the predicted label. It measures the depth estimation
error. The second term of Eq. (12) forces the predicted depth
feature maps to follow the changing laws between neighboring
pixels and class objects, which is modeled as L2 norm based
regression to minimize the energies. The third term is the regu-
lation term to avoid over-fitting problem. In our experiment, we
empirically set A = 0.5, which can make good balance and has
been proven effective in Section VI-B2. The softmax and L2
norm are embedded in CRF layer in Eq. (5) and Eq. (6).

To optimize the energy function . (Eq. (3)), we employ the
mean-field approximation [6] to solve this problem. In order to
be consistent with the CNN, we implement the CRF message
passing based on Gaussian convolution (defined in Eq. (9)) in
the feature space:

—¢u(wi) — Z u(li, lj)

7]

1
Qz(xz) = Z exp

2
> WM N TR (0, §)Qj (i, ) p . (13)

i#]

m=1
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TABLE II

NETWORK STRUCTURE DESCRIPTION. U: UP-SAMPLING, C: CONVOLUTIONAL LAYER, P: POOLING

Net Structure | Layer 1 2 3 4 5 6 | 7
Bayesian Network Feature Map Size (180,240) | (90,120) (45,60) (23,30) (12,15) (23,30) | (23,30)
Type CCP CCP CCCP CCCP CCCP ucCcC ucCcC
Encoder Channel 64 128 256 512 512 512 512
Kernel, Stride, Padding Conv(3,1,1) Pooling(2,2,0) Conv(1,1,0)
Net Structure Layer 8 9 10 11 12 13,14,15
Bayesian Network Feature Map Size (45,60) (90,120) | (180,240) | (360,480) | (360,480) CRF Layer
Type CC ucCccC uccc uccC CC Softmax
Decoder Channel 512 512 256 128 64 L2 Norm
Kernel, Stride, Padding Conv(3,1,1) Pooling(2,2,0) (360,480)

Algorithm 1: The ¢th Iteration of CCNN’s Training Process

Require: The set of training images for current batch, I,,;
Ensure: Train CCNN on the current batch, 7,,;
1:  Extract feature map U(I,,; ¢) from the last ‘conv’ layer
of the SegNet;
2:  Refine the U(I,;0) via the two-level CRF E.(I;6),
output a fine model Cy(-);
3: Refine the Cy(+) via depth changing variance D(-) at
two levels of CRF;
4:  Optimize joint-task loss via #* in an alternative way;
5: return Final predicted d*;

Here @, represents the distribution of ;. m is the order of the
filters. We subtract Q; (x;) from the convolved function, because
the operation of convolution in fact sums over all variables while
message passing only sums over the neighbors. Our contribu-
tion is based on the observation that, for dense CREF, filter-based
approximate mean-field inference relies on Gaussian/bilateral
filters, as well as the approximated semantic distances in
each iteration. Unlike previous CRF based CNNs, we propose
Algorithm 1 to preserve detailed geometry features.

Each iteration of step 2 and 3 in Algorithm 1 performs a series
of tasks, including message passing, compatibility transform and
local updating. Both the compatibility transform and the local
update run in linear time, which is very efficient. The compu-
tational bottleneck is message passing. For each variable, this
step requires evaluating a sum over all other variables. When
passing messages from two spaces, we use two Gaussian filters,
which is similar to bilateral filter. As for the three spaces, we use
the message passing in a trilateral way with spatial, RGB, and
semantic labels. Thus, given the optimized depth feature map,
we can further optimize the depth values.

To back propagate the depth error differentials (w.r.t. its input)
and the network parameters in each layer, it is straightforward to
perform back-propagation algorithm through the local update,
the compatibility transform and the joint-loss layer. The novelty
is the message passing, for this operation, the gradient w.r.t. its
input is defined as:

0F, o OE.
= ™I i) 14
Futey ~ 2" Dgg @) (14)
Here it can also be calculated by performing bilateral filter over
the error differential map %%‘ ().

VI. EXPERIMENT RESULTS AND EVALUATIONS

In CCNN model, we compute one of the three terms of the
energy function Eq. (3) by fixing the other two. To predict the
depths, our implementation is built upon the publicly-available
implementation of Bayesian SegNet and CRF-as RNN, whose
performance is close to the state-of-the-art ones in semantic seg-
mentation.

We first up-sample the feature maps by simply reversing the
forward and backward propagated messages of the convolution
as [47]. Then we employ the dropout strategy [48] to avoid
over-fitting on the single depth map. Our network structure is
demonstrated in Table II. Specially, our network can well com-
bine the pixel-level continuous depth regression and classifica-
tion tasks in a coarse-to-fine manner.

Specifically, we first conduct training over the RGB images
with ground-truth semantic labels using the encoder and decoder
operations in Bayesian SegNet [7]. With the pre-trained semantic
network labels, we build depth estimation model by considering
the depth distribution of inner object and that across different
objects. We further fine-tune the semantic models to train the
mapping between RGB and depth, with the proposed CRF layer,
which integrates the class-level refinement with the pixel-level
refinement to learn context relationship of objects.

It should be noted that, we compute the last layer of the fea-
ture map with a tensor of 256 x 360 x 480, and each voxel has
a probability of the depth value. We use the mean field approx-
imation to inference the depth, and normalize all the depth to
a range of [0.0,255.0]. In addition, to evaluate our models, we
train several kinds of networks, including the network respec-
tively with Ey (L2 norm), s (softmax and L2 norm), E; (F),),
E.(Eq+ Ey),and CCNN (&), + E.). The last two terms cannot
be divided into two independent ones, due to the distance and
the gradient of the single objects are embedded into one CRF
layer. The basic network settings are shown in Table II.

In our experiments, we firstly train semantic labels with NYU
depth v2 (NYUD) dataset [49], which exploits the distribution
of the entire NYUDV?2 dataset. Based on Bayesian SegNet, we
proposed a deeper Bayesian network, and Fig. II shows our net-
work architecture with CRF layer and loss function, wherein the
input images are resized to 360 x 480. Then, with the proposed
network, we train our model based on two other classic datasets:
NYUD and Make3D. We transfer the parameters learned from
NYUDV2 dataset. Here we train from scratch for the NYUDV2
dataset, and we further fine-tune the make3D dataset with a rel-
ative small dataset, without any change about the network.
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THOSE ORIGINALLY REPORTED BY THE AUTHORS IN THEIR PAPERS

TABLE III
COMPARISON OF OUR METHOD WITH THE STATE-OF-THE-ART METHODS ON NYUDV2 DATASET. THE COMPARED VALUES ARE
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NYUDV2 | ABS rel | RMSE(lin) | RMSE(log) | logl0 | § <1.25 | § < 1.25° | § < 1.25°
Karsch et al.[3] 0.374 1.12 - 0.134 | - - -
Ladicky et al.[24] - - - - 0.542 0.829 0.941
Liu et al.[22] 0.335 1.06 - 0.127 | - - -
Li et al.[14] 0.232 0.821 - 0.094 | 0.621 0.886 0.968
Liu et al.[12] 0.230 0.824 - 0.095 | 0.614 0.883 0.971
Wang et al.[13] 0.220 0.745 0.262 0.094 | 0.605 0.890 0.970
Eigen et al.[25] 0.215 0.907 0.285 - 0.611 0.887 0.971
Roy et al. [50] 0.187 0.744 - 0.078 | - - -
Eigen and Fergus [9] | 0.158 0.641 0.214 - 0.769 0.950 0.988
Laina et al.[10] 0.127 0.573 0.195 0.055 | 0.811 0.953 0.988
Xu et al.[31] 0.125 0.593 - 0.057 | 0.806 0.952 0.986
Zheng et al.[36] 0.257 0.915 0.305 - 0.540 0.832 0.948
Eo(Ours) 0.224 0.768 0.327 0.112 | 0.426 0.786 0.912
E,(Ours) 0.176 0.524 0.292 0.085 | 0.734 0.984 0.995
E;(Ours) 0.177 0.528 0.284 0.086 | 0.728 0.983 0.994
E>(Ours) 0.175 0.522 0.263 0.085 | 0.733 0.984 0.995
CCNN (Ours) 0.159 0.487 0.242 0.076 | 0.835 0.991 0.997
We compare CCNN with several state-of-the-art works [3], TABLE IV
[9], [10], [14], [22], [24], [25], [50] based on their published COMPARISON OF TRAINING IMAGE SIZE
configurations/results. Meanwhile, we also compare our result v - v E—
with the mean depth image computed from the training set. Ei:enoef 5] llzi)ek N ljéf’lg‘;“’“
We test Make3D [23] (detailed in section. VI-C) over the of- Eigen et al.[9] 120k N 147,109
ficial sp.lit. daFaset with 400 images, because it requires the Iﬂf“:ta;_t[ﬂ][w] Zggk ¥ ggi: igg
least training images compared with other methods [10]. Ob- Xu et al[31] 12K Y 320, 240
ject depths are filled by using the colorization routine of the Ours 0.795k | N 360, 480

NYUD development kit. We evaluate each method using sev-
eral error indicators according to prior works, including Thresh-

old: % of d; s.t. max(%, %&) = 0 < thr; Abs Relative differ-

ence: ‘Tl‘adeﬂd — d'|/d; RMSE(linear): \/%adeﬂ |d; — d}]|%;

RMSE(log): \/‘—;‘adeTH logd; —logd}||? and |T| is the
number of valid pixels. log10(d,d') = 77 Yger 10810 d —
logyo d'.

A. Evaluations on NYU Depth Dataset

The NYUDV?2 dataset consists of 1449 RGBD images of in-
door scenes, among which 795 are used for training and 654 for
testing (we use the standard training/test split provided by the
dataset). In the training process, though depth estimation needs
relatively high resolutions, our method only requires a small
number of training images. To the best of our knowledge, we
are the first to use the smallest number of images to achieve
high-resolution accuracy. It should be noted that, the higher the
resolution, the harder the estimation. The original values of the
depth elements are measured in meters, which are normalized
for training [51]. To make comparison, we list the numbers of
training images in Table IV. (The *CROP”’ is to crop a subimage
in the whole image to get more samples in the limited training
images, but will increase the complexity for training. The “Y/N”
means whether or not to use the crop. The resolution represents
the output of estimation image size.)

The learning rate is initialized to 0.001, and then it will be
reduced to 0.1 times every 1000 iterations, the momentum is

set to be 0.9. The As in Eq. (3) are all set to 1.0. In Eq. (9),
0., is imperially set to 3.0 to measures the window of RGB
relations of the image, 6, and 6, are set to 25, 65 based on the
best result comparison. And the detailed quantitative results are
shown in Table III. The results show that our method achieves the
state-of-the-art in most of the metrics. Our method is even better
than methods with 1000 times larger of training size [10]. Our
single network architecture is more efficient than the multiple
scales network [25] in all the metrics. The detailed comparison
results are shown in Fig. 3.

In contrast to the prior works that only consider the mapping of
RGB image and depth, we add the two-level CRF layer to refine
the instance’s geometry details, and thus our CCNN model can
greatly improve the depth estimation results. Besides, our CCNN
takes the context information and instance relationship into con-
sideration, which can better estimate the detailed features of the
single instance and the depth-changing relations between neigh-
boring instances. For example, previous works can only estimate
the rough outline of small objects, such as lamp, things on the
desk, and curtain, in sharp contrast, the geometry details of such
small objects can be well preserved in our CCNN framework.
Furthermore, benefiting from our class-level constraint formula-
tion, the depth values within these instances are more continuous
than those estimated by the earlier work [10]. The objects are
close in semantic if they have the prior knowledge to affect each
other. The ID of labels are the same as those over NYUDV2
dataset [49]. It is still a challenge to reconstruct from single im-
age, for the low accuracy of points. In order to test if our CCNN
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Fig. 3. Comparisons on NYUDV2 dataset. The 2-5 rows show our results,
wherein our predicted depth results can well preserve the details of the lamp,
the objects on the desk and the curtain.

is good enough, after we get the estimated depth, we further re-
construct the corresponding 3D objects. We segment the object
with the semantic labels, and employ the alpha shape with pa-
rameter 0.5 to perform re-meshing. The reconstruction results
are shown in Fig. 4. Compared with the previous work [25], the
reconstructed mesh is more continuous. The results from other
networks output have many distortions on geometry details, and
the mesh is blurred and distorted across boundaries, yielding
non-satisfactory quality. Our results can greatly alleviate such
problems, giving rise to much more satisfied results.

Furthermore, we design two experiments over NYUDV?2
dataset to prove our CCNN structure can benefit the complex
scene and the single object with complex feature details. For
complex scenes, the experiment is to reconstruct the scene with
more than three objects, the scenes with people activities, and
the scenes with high-contrast RGB features. The results in Fig. 3
(more results are shown in our supplementary materials) illumi-
nate our three aspects of contributions: 1) the scene with mul-
tiple objects shows that, the depth changes continuously within
the single object while abruptly across neighboring objects; 2)
the scene with people activities shows our CCNN is robust to
dynamic scenes; 3) the results for high-contrast RGB images
show that, the gradient term has positive effects on the depth
estimation across RGB channels.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 5, MAY 2020

o4

SIwBg NNDD U SI'WSIH  NNDD :sputod

Fig. 4. 3D object reconstruction results based on the estimated depth. The 1st
row shows RGB images, the 2nd and 3rd rows are point clouds, while the 4th
and 5th rows show the meshes reconstructed from CCNN and Eigen et al. [25],
respectively.

As for the single object with complex feature details, some
typical examples are used to demonstrate the geometric feature-
preserving ability. Our class-level and pixel-level architecture
can well encourage the preservation of the geometry structures.
For example, in Fig. 4 the results for single bed, sofa, book-
shelf and chair prove our CCNN can benefit the 3D reconstruc-
tion from single images (More demonstrations are respectively
shown in Fig. 2 of the supplement material). The beds are well
structured, including the edges and corners, whose depth ranges
are accurate. The sofa meshes are smooth in geometry, whose
components are complete. The chairs have more components
than other objects, which is hard for single image based recon-
struction. However, our CCNN can still reconstruct the chairs
reasonably well.

Our results are refined in class level and pixel level from local
to global, which could avoid potential over-fitting in global range
and preserve the detailed local geometry features. However, this
process will increase the error in log10 metric, due to the trend to
preserve the detailed local geometry features. Hence, our CCNN
will perform slightly worse than others in log10 metric, when
being tested on the NYUDV2 [49] dataset with the common
settings (training on the datasets from the same sources). On
the other hand, when being tested on the target dataset without
training, our CCNN will perform better than other methods. We
conduct experiments on VKitti [52] dataset with the model that
is only trained on NYUDV?2 dataset. The results in Tab. VI show
the superiority of our CCNN in unknown (un-trained) scenarios.
This process verifies the generalization ability of our CCNN,
when being tested in unknown datasets without pre-training.
(Detailed in Section VI-C)

B. Ablation Studies

To further evaluate the effects of CRF refinement and the joint-
task loss, we conduct experiments by changing the controlling
conditions of the main parameters in the CRF energy and the loss
functions. The experiments include the following three aspects.

1) Evaluations on CRF Refinement: The novelty of our
method is to take the semantic labels into consideration. So we
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Fig. 5. The experimental results of different parameters of 65 and 6., 03
ranges from 5 to 25, while 0, ranges from 5 to 65. The result becomes more
and more accurate while the two parameters becomes larger and larger.
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Fig. 6.  Comparisons of our method with and without the semantic labels in
the first 40 classes of NYUDV?2 dataset. The values represent 7 metrics corre-
sponding to the 7 column names of Table III, d1, d2, d3 respectively represent
the short for the last three names.

design two experiments to demonstrate the contribution of the
semantic labels. One experiment is used to evaluate different
values of fg and 0 in Eq. (9). The values of 03 range from
5 to 65, while the values of 6, range from 5 to 25. For each
pair of parameters, we evaluate the seven metrics for each test
value. In order to detect the best combinations, we use the 7*4
models. The result is shown in Fig. 5. The matrices show that,
both the error metrics and the precise metrics have significant
improvement as the range of the CRF message passing becomes
larger. The other experiment is designed to control the propor-
tion of semantic labels. We use 10%,. . ., 90% semantic labels
to test the contribution of our CRF model, the result is shown
in Fig. 7. To evaluate the improvement of each class, we design
a comparative experiment to observe 40 classes’ improvement
benefiting from the semantic labels. The result is shown in the
lower right of Fig. 6. The base line model is trained with FEy,
while CCNN model is trained with all the CRF energy terms
serving as the refinement of the CRF layer. The result shows
that, with the newly-added CRF layer, the error of the first 40
classes is reduced from 20.7% to 49.3% , while the accuracy is
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Fig. 7. Left: The experimental results produced with different proportions of

semantic labels: 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90 (%). Right: Eval-
uations of our method for loss-joint tasks on NYUDV2 dataset. The regression
task ranges from O to 1 with step 0.1, while the classification task ranges from
1 to 0 with step 0.1. The values represent the 7 metrics corresponding to the 7
column names of Table III.

improved 3.2% to 30.6%. It proves that, our method is capable
of robustly improving the single classes’ performance. Further-
more, it is also obvious that, the proposed model gives rise to
more accurate and stable depth estimation than those without
considering the CRF refinement, since the objects are varied.

2) Evaluations on Joint-Task Loss: We then use two kinds
of loss in a coarse-to-fine manner, on the one hand, we use the
softmax loss to discretely refine the depth at 255 levels. On the
other hand, we use the L2-norm to precisely train the depth at
each level with float precision. To find the best combination of
the two losses, we use different weights for the two kinds of loss.
The curves show that weight of (0.5 classifier, 0.5 regression)
works better than others. The results are shown in the lower right
of Fig. 7. This indicates that the detailed features of the depth
image and the coarse features have the equal contribution to the
tasks.

3) Pixel Level and Class-Level CRF Evaluation: We use
two experiments to give more evaluations on the two-level
CRFs’ contributions to the final result. Besides, in general, the
class-level refines single object, while the pixel-level refines the
depth distance among different objects. The contributions of the
pixel-level and class-level are different for different scenes. For
indoor scene, the class-level CRF is more important; as for the
outdoor scene, such as Make3D and VKitti dataset, pixel-level
CRF contributes more than class-level CRF. Besides, when the
scene contains heavy fog, the class-level CRF will contribute
more. We perform the pixel-level CRF and the class-level CRF
separately on the three datasets to evaluate their contributions
on indoor and outdoor scenes.

a) Separately using pixel-level CRF on the three datasets:
The global depth distribution is improved on both indoor and
outdoor dataset. Specially, for the outdoor dataset, we consider
the appearance information when predicting the depth between
different instances, which is an auxiliary clue to guide the depth
estimation. Such refinement makes the depth gradient more rea-
sonable between different objects. For example, for the objects
far from camera and near camera, the range of their depth dis-
tance is more close to the ground truth than that produced by
class-level CRF (more demonstrations are shown in Fig. 1 of
the supplement material). The baseline network (SegNet) fails
to accurately refine the depth range due to the lack of original
RGB information. In addition, for the inner region of single in-
stance, the depth predicted by the pixel-level CRF has more clear
boundary and more depth changing details than the baseline net-
work. The improvement is especially significant for the outdoor
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The performance statistics when using pixel-level, class-level, and both levels of CRFs in CCNN on three datasets, including VKitti, Make3D dataset,

and NYUDV?2 datasets. Red boxes are performs best. Green boxes performs second best. It is obvious that, CCNN with two-level CRF achieves the best results.
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q

Fig. 9. Results and comparisons when using pixel-level CRF, instance-level
CREF, and two levels of CRFs in CCNN on the Make3D dataset.

scenes with a relatively-larger depth range, such as scene with
trees and far-away houses. In addition, pixel-level CRF cannot
perform well on heavy fog dataset, the comparison is shown in
Fig. 8, due to the distraction of color distributions.

b) Separately using class-level CRF on the three datasets:
The class-level refinement gives rise to accurate depth estimation
in single instance, as shown in Fig. 9, more local features are pre-
served. Therefore, for the inner instance region, the depth is esti-
mated continuously, which has stable gradient. Meanwhile, the
depth difference at the boundary of two neighboring instances
is more clear, for example, the depth between the desk and the
cupboard has a clear boundary. Furthermore, the difference of
the depth between the wall and the desks is larger and consistent
with that of the ground truth. Class-level CRF constrains the
depth continuity and integrity, which ensures the depth estima-
tion at the across-instance boundary having a relative accurate
range. Thus, class-level CRF performs better than pixel-level
CRF on heavy fog dataset, as shown in Fig. 8.

¢) Quantitative evaluations on the contributions of the
two-level CRFs: For the NYUDV?2 dataset, the results produced
by class-level CRF embedded CCNN achieve a lower error and
higher accuracy than those of the pixel-level CRF. The decreased
error ranges from 0.004 to 0.027, while the accuracy improve-
ment ranges from 0.009 to 0.114. For the Make3D dataset, the
results produced by pixel-level CRF embedded CCNN achieves
a lower error and higher accuracy than those of the class-level
CRF. The decreased error ranges from 0.019 to 0.147, while
the accuracy improvement ranges from 0.001 to 0.029. For the
VKitti Fog dataset, the results produced by pixel-level embed-
ded CCNN achieves a lower error and higher accuracy than
those of the class-level CRF. The decreased error ranges from
0.059t00.231, and the accuracy improvement ranges from 0.001

TABLE V
QUANTITATIVE COMPARISON ON MAKE3D DATASET

Method \ ABS rel \ RMSE(lin) \ RMSE(log)
Karsch et al.[3] 0.417 8.172 0.144
Liu et al.[14] 0.462 9.972 0.161
Laina et al. [10] 0.198 5.461 0.082
Godard et al. [1] 1.000 19.11 2.527
Ly 0.53 16.17 0.241
CCNN (No Augmentation) | 0.49 15.58 0.24
CCNNK 0.44 14.76 0.228
CCNN CCNN(VGGL6) 0.41 13.93 0.128
CCNN(ResNet50) 0.22 7.23 0.086
CCNN(ResNet101) 0.14 4.89 0.078

to 0.029. For the VKitti Camera view dataset, the results pro-
duced by pixel-level embedded CCNN achieves a lower error
and higher accuracy than those of the class-level CRF. The de-
creased error ranges from 0.042 to 0.571, and the accuracy im-
provement ranges from 0.007 to 0.107.

In summary, for indoor dataset, the class-level CRF is more
important, as for the outdoor scene such as Make3D and VKitti
dataset, the pixel-level CRF contributes more.

4) Efficiency Evaluations: Our model further improves the
speed of depth estimation benefiting from the GPU implemen-
tation of the CRF layer. Our models are tested on 4 Tesla K80
GPUs, which have 8 GPU cores. The speed of the prediction is
compared with different methods and different terms. The re-
sult is shown in Table VII. It is obvious that our model does
not increase much time cost compared to the other works done,
benefiting from the fixed size of the message passing windows
and the GPU acceleration power.

C. Evaluations on Model Generalization

In order to evaluate the generalization ability over scenes
without being trained, we also evaluate our model generality
on Make3D dataset [23], which includes outdoor scenes. It con-
sists of 400 training images and 134 testing images. We resize
all images to 360 x 480, which is a relatively higher resolution
than existing networks to feed our network. The dataset is small
to be trained on raw dataset. However, in order to test the gen-
eralization ability of our method, we train the images without
using any data-augmented technology. To evaluate the general-
ization ability of our CCNN model, we fine-tune on NYUDV2
dataset. Despite the dissimilarities in content and camera param-
eters, we still achieve reasonable results. We also fine-tune on
Kitti dataset [53], which is also an outdoor dataset. The result
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TABLE VI
PERFORMANCE COMPARISON ON THE INCLINED-VIEW IMAGES THAT NEVER SIMILARLY APPEAR IN THE TRAINING DATASET. OUR CCNN ACHIEVES BETTER
PERFORMANCE IN BOTH LOCAL AND GLOBAL DEPTH ESTIMATION

Scenarios Models | ABS rel | RMSE(lin) | RMSE(log) | logl0 | § <1.25 | § < 1.25° | § < 1.25%
Inclined-View | Laina. et al.[10] | 0.584 0.335 16199 0.467 0.188 0.39 0.587
Inclined-View | CCNN 0.583 0.33 16198.4 0.45 0.18 0.395 0.593
Inclined-View | CCNNK 0.582 0.32 16202 0.45 0.1846 0.389 0.593
Heavy Fog Laina. et al.[10] | 0.691 0.328 18228 0.432 0.21 0.42 0.512
Heavy Fog CCNN 0.532 0.301 18219 0.485 0.23 0.45 0.558
Heavy Fog CCNNK 0.489 0.26 18528 0.445 0.24 0.46 0.592

is better than that over the indoor dataset, as shown in Table V. TABLE VII

The predicted depth is reasonable based on the 400 training EFFICIENCY COMPARISONS

images. With the CRF layer, the result is even better than the - -

Model | CCNN | Eigen et al.[9] | Laina et al.[10] | Zheng et al.[36]

whole network, and it achieves the best result when transferring
from the Kitti dataset instead of the NYUDV2 dataset. Here CC-
NNK represents the CCNN model that is finely tuned on Kitti
dataset. Since Kitti dataset mainly relates to outdoor scenes, it
has closer relations with make3d dataset. The two datasets share
more common classes with respect to NYUDV?2 dataset, includ-
ing cars, grass, trees, roads, etc. The result shows that, our CCNN
model has better transfer ability for an unknown dataset that is
small scaled, especially when the pre-trained dataset is corre-
lated with the testing dataset. Compared with the method [1],
CCNN improves in all the metrics, especially the RMSE(log)
error is only the 0.09% of model [1]. Compared with the com-
pletely trained model, CCNN is very close to the state-of-the-art
[10] with around 15k samples, which is 400 times larger than
ours. While result gets better when fine tuned on Kiiti dataset,
which have more objects as outdoor dataset.

In order to demonstrate the performance, we also compare our
CCNN with Laina’s method by using augmented (15k images)
Make3D dataset to respectively train the models. we similarly
pre-process Make3D to obtain an augmented dataset (its scale
is also as large as 15k). Given the augmented Make3D dataset,
the results are shown in Table V, and it shows that, the perfor-
mance of our CCNN has a significant improvement (the error is
decreased from 0.49 to 0.41).

Besides, the backbone (VGG16) of our CCNN contains 16
layers, and its layer depth is much smaller than that of Laina’s
network (ResNet50), which contains 50 layers. To demonstrate
that our CCNN could also reach high performance, we further
use the ResNet50 and ResNet101 as our backbones. As a result,
our performance is largely improved, which is better than Laina’s
method, shown in Fig. 12.

Moreover, our CCNN can easily accommodate hard cases
with view and weather changes. To prove this, we have designed
an experiment on VKitti dataset [52]. Given the same scenes,
for the images captured under different weather or at different
time, our CCNN can well handle such complex cases. Based on
the CCNN trained on the Make3D dataset, it can also be used to
estimate the scene depth on the outdoor VKitti dataset, including
two representative kinds of scenes: (1) inclined-view images; (2)
scene images with heavy fog (there are no similar images in the
testing dataset). The results show our method is better than most
of the existing methods. The detailed quantitative comparisons
are documented in Table VI, Fig. 10 and Fig. 11.

Speed(ms) ‘ 624.24 ‘ 57679.92 ‘ 11623.11 ‘ 4116.23

Fig. 10. Depth estimation results over the inclined-view images from VKitti
dataset. Our CCNN gives rise to proper depth range estimation within single
object, and the depth distribution is reasonable on the across-object boundary.

Laina et al.. 2016

Fig. 11.  Depth estimation results over the images of fog scene from VKitti
dataset. Laina’s method tends to predict all the depth values within a small range.
In contrast, our CCNN gives rise to more proper depth range estimation within
single object and more reasonable depth changes between different objects than
Laina’s method.

In summary, our CCNN can transfer the learned knowledge
to the unknown dataset, specially, when the scenes are similar,
it can achieve better performances.

D. Limitations

Our approach mainly focuses on the depth estimation from
single RGB image, thus, when the quality of the input image is
low, the predicted depth result might be poor. Meanwhile, since
our method emphasizes to leverage the semantic relations of
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Kendall et al.,
2015

CCNN
(VGG16)

CCNN
(ResNet101)

-

Laina et al.,
2016

Ground Truth

Fig. 12.  Comparison between Laina’s method and our CCNN over the
Make3D dataset, wherein VGG16 and ResNet101 are employed as the back-
bones. Our CCNN with ResNet101 outperforms the state-of-the-art methods.

the scene context, when little context information could be ob-
tained, the performance of our CCNN framework may degener-
ate to those of the commonly-used CNN based depth estimation
methods. Besides, currently we don’t consider the relations of
multiple-view images, even though it might supplement more
information for depth estimation.

VII. CONCLUSION AND FUTURE WORK

In this paper we have detailed a novel approach to tackle
the problem of depth estimation from single image. Unlike typi-
cal CNN-based approaches which commonly require large-scale
training images, our newly-proposed CCNN offers a new proba-
bilistic graphical model through the integration of class-level and
pixel-level CRF, which not only affords training much deeper
network configurations but also greatly reduces the number of
required training samples. Meanwhile, comprehensive evalu-
ations on numerous architectural components have been car-
ried out. It manifests that, CCNN is simpler than the existing
methods, can be trained with far less data, and can achieve
higher-quality results at the same time. Benefited from all of
the above, our method obtains the state-of-the-art results in
fully-trained NYUDV?2 dataset, and can transfer the pre-trained
model to an untrained dataset.

As for our on-going research efforts, we would like to validate
our method on more datasets, migrate our model to the mobile
platform, and further improve the computational efficiency of
our method. Besides, we plan to exploit more specific transfer
learning ideas into our CCNN framework, so that we could more
effectively leverage the existing training datasets to exploit the
intrinsic information underlying the similar scenes for depth
estimation.
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