m Check for updates

International Journal of

HIGH PERFORMANCE

Special Issue: CCDSC 2018 COMPUTING APPLICATIONS

The International Journal of High
Performance Computing Applications
2019, Vol. 33(6) 12901306

© The Author(s) 2019

Article reuse guidelines:
sagepub.comfjournals-permissions
DOL 10.1177/1094342019865606
journals.sagepub.com/home/hpc

®SAGE

Managing code transformations
for better performance portability

Thiago SFX Teixeira®, William Gropp and David Padua

Abstract

Code optimization is an intricate task that is getting more complex as computing systems evolve. Managing the program
optimization process, including the implementation and evaluation of code variants, is tedious, inefficient, and errors are
likely to be introduced in the process. Moreover, because each platform typically requires a different sequence of
transformations to fully harness its computing power, the optimization process complexity grows as new platforms are
adopted. To address these issues, systems and frameworks have been proposed to automate the code optimization
process. They, however, have not been widely adopted and are primarily used by experts with deep knowledge about
underlying architecture and compiler intricacies. This article describes the requirements that we believe necessary for
making automatic performance tuning more broadly used, especially in complex, long-lived high-performance computing
applications. Besides discussing limitations of current systems and strategies to overcome these, we describe the design of
a system that is able to semi-automatically generate efficient platform-specific code. In the proposed system, the code
optimization is programmer-guided, separately from application code, on an external file in what we call optimization
programming. The language to program the optimization process is able to represent complex collections of transfor-
mations and, as a result, generate efficient platform-specific code. A database manages different optimized versions of
code regions, providing a pragmatic approach to performance portability, and the framework itself has separate com-
ponents, allowing the optimized code to be used on systems without installing all of the modules required for the code
generation. We present experiments on two different platforms to illustrate the generation of efficient platform-specific
code that performs comparable to hand-optimized, vendor-provided code.

Keywords
Code generation, optimization, compilers, domain-specific language, high-performance computing

stack) to approximate maximum computing power. As a
result, the code becomes unrecognizable over time, hard to
maintain, and challenging to modify. Furthermore, as the
code evolves, it is hard to keep the optimizations up to date.
The need to develop and maintain separate versions of the
application for each of the target platforms is an immense
undertaking, especially for the large and long-lived appli-
cations commonly found in the high-performance comput-
ing (HPC) community.

An application code is portable if it runs on a diverse set
of platforms without needing significant modifications and

|. Introduction

The push for more performance has increased the com-
plexity of hardware platforms over time. It is the reason
behind the addition of new features and the development
of accelerators. New memory technologies, deep cache
hierarchies, branch prediction, out-of-order execution,
and speculative execution complicate the use and perfor-
mance modeling of these highly complex platforms. They
make programming harder and performance less predict-
able. Moreover, each hardware platform commonly
requires a different sequence of optimizations to attain a
high fraction of its nominal peak speed. Software devel-

opers must devote significant time to benefit from the
computing power of modern CPUs and accelerators as the
gap between the performance of hand-tuned and
compiler-generated code has grown substantially.

As platforms evolve and new ones are adopted, pro-
grams must often be altered by the numerous optimizations
needed for each target environment (hardware and software

Department of Computer Science, University of lllinois at Urbana-
Champaign, Urbana, Illinois, USA

Corresponding author:

Thiago SFX Teixeira, Department of Computer Science, University of
lllinois at Urbana-Champaign, Teixeira, 201 North Goodwin Avenue,
Urbana, IL, USA.

Email: tteixei2 @illinois.edu

Teixeira et al.

1291

produces a similar output. Ideally, the application code
would also be performance portable and achieve high per-
formance across a variety of platforms (Pennycook et al.,
2016; Wolfe, 2016).

However, creating performance portable code is diffi-
cult as the optimization space is very large, and there are
many important decisions that affect application efficiency
on the target machines. These include not only the order of
operations within large loops but also the choice and layout
of data structure. The optimal or near-optimal choices often
differ depending on the target platform.

The selection of architectures and algorithms and their
correspondence is crucial to attaining high performance.
This selection is not straightforward; it can span from
using specific algorithms selected for one particular archi-
tecture to selecting very general algorithms developed
without any architecture insight. In the former case, high
performance is achieved at the expense of portability
given that it is so specific that it cannot execute on differ-
ent architectures. In the latter case, the portability comes
at the expense of performance, because without any
insight on the architecture, it is very difficult to efficiently
exploit the resources available.

Selecting the algorithm among many to solve a specific
problem is the first and foremost decision. It also highly
depends on the target machine and often on the problem
size and other characteristics of the input. In some cases,
multiple fine-grained algorithmic selection can be very
advantageous as shown by Ansel et al. (2009). This com-
position complicates even more the algorithm selection
task given the combinatorial explosion of possibilities. For
instance, the optimal sorting method would use different
algorithms based on the number of elements to be sorted.
For very few elements, the insertion sort is faster, whereas
for medium number of elements, the quicksort is faster; for
very large inputs, the radix sort results in better perfor-
mance. It is also possible to have a composition among the
three different algorithms, once quick sort and radix sort
recursively decomposes the problem in subproblems until it
is small enough to apply the insertion sort (Li et al., 2004).

Choosing the data structure appropriately may increase
data locality and reduce cache misses. Data placement in a
multidimensional array can affect performance depending
how the array is linearized in memory. For some applica-
tions, converting the data between different structures on
the fly may improve performance, despite the cost of the
conversion.

The use of appropriate compiler flags typically leads to a
speedup without a significant increase in compilation
time. The flags are applicable to the whole code and the
heuristics used by compilers to apply transformations do
not guarantee improvement in all cases. Notably,
architecture-specific compiler flags have a higher chance
of better results, because the heuristics can assume a nar-
rower scenario. The use of compiler directives or pragmas
is also an interesting approach for isolating the optimiza-
tions to specific code regions where performance is crucial.

Nonetheless, these directives are not standardized across
compilers, leaving the code less portable. The results
achieved by selecting compiler flags and directives rarely
remain the same for new processors, requiring the experi-
ments to be performed all over every time a new one is
released.

We rely on an approach that decouples the performance
expert role from the application expert role (separation of
concerns). The baseline version defined by the developer
should be as readable as possible and avoid any platform-
or compiler-specific optimizations. The application of the
transformations to the baseline is controlled from an exter-
nal file in what we refer as optimization programming. This
approach allows the use of architecture-specific optimiza-
tions while keeping the code maintainable in the long term.
A database of different variants for different architectures
(and possibly different problem sizes and other input para-
meters) is also maintained.

There have been a number of tools to ease the burden of
the optimization process on the programmer. They com-
monly require manual refactoring (Ansel et al., 2009; Fata-
halian et al., 2006; Hartono et al., 2009) and provide little
control over the steps being carried out. They also are not
prepared to coexist with other tools and cannot be incre-
mentally adopted (Basili et al., 2008).

In the following list, we describe what we believe are the
requirements for making autotuning more accepted in
applications. These requirements are based on our experi-
ences with several applications, and in particular with a
large, complex multi-physics application, being developed
as part of the Center for the Exascale Simulation of Plasma-
Coupled Combustion (XPACC, 2018):

1. A straightforward, clean version of the code that is
understandable by the computational scientist and
program developer. This is the baseline code and is
the one that may be modified by the code developers.

2. The code should run in the absence of any tool, so
that the developers are comfortable that their code
will run even if the system fails for some reason.

3. A clean way to provide extra semantic information
is needed; for example, this might be to indicate
that a loop is short or long or that a set of functions
is always called in the same order.

4. Code must run with good performance on multiple
platforms and architectures, at least as long as the
same algorithm is appropriate.

5. Because in practice code tuning and optimization
is difficult to make fully automatic, there needs to
be a way for a performance expert to provide addi-
tional, possibly target-specific, information about
optimizations.

6. Because autotuning can be expensive (as many
versions may need to be examined), the system
must store the results of the autotuning step(s) and
use previously found optimized code whenever
possible.

1292

The International Journal of High Performance Computing Applications 33(6)

7. Changes to the baseline code should ensure that
“stale” optimized versions of the code are not used
and preferably replaced by updated versions.
Hand-tuned optimizations should be allowed.

9. Using (as opposed to creating) the optimized code
must not require installing the code generation and
autotuning frameworks, as these are often difficult
to install and use on many platforms.

10. The system should make it possible to gather perfor-
mance data from a remote system, permitting the
framework to run on a system on which the autotun-
ing and code transformation tools can be installed.

i

From these requirements, we made the following design
decisions:

e Use of annotated code, written in C, C++, or For-
tran, with high-level information that marks regions
of code for optimization (addresses 1 and 2).

e Use annotations that only cover high-level,
platform-independent information (addresses 3).

e Maintain platform and tool-dependent information
(e.g. loop-unroll depth) in a separate optimization
file (addresses 5).

e Maintain a database of optimized code, organized by
target platform and other parameters (addresses 4
and 6).

e Maintain, in the database, a hash of the relevant parts
of the code for each transformed section, and this
hash is confirmed before making use of a previously
stored autotuned version (addresses 7).

e Allow the insertion of hand-tuned versions of the
code into the database so that they can be used by
the system in the same way that code generated by
the autotuning step (addresses 5 and 8).

e Separate the steps of determining optimized code
and populating the database from extracting code
from the database to replace labeled code regions
in the baseline version (addresses 9).

e Provide some support for running variants on a
remote system, meaning that the full system need
not be installed on the target system; this is espe-
cially important when the target is a supercomputer
(addresses 9 and 10).

e Allow the inclusion and use of a preferred, cus-
tom version. For some applications and libraries,
there is already a preferred, hand-optimized ver-
sion (e.g. many of the kernel operations in porta-
ble, extensible toolkit for Scientific computation
[PETSc] have manually unrolled loops; Balay
et al., 2018a, 1997). A small change to our
approach accommodates this by placing the base-
line version into the database; this is the version
used by the autotuning tools (addresses 2). We
have not implemented this option, but it is an
important part of the design and do plan to imple-
ment it in the future.

Not included above is the integrated support for debug-
ging code; that is, methods that relate the autotuned code
directly to the original baseline code in a way that can be
presented by a debugger. While desirable and beneficial,
we do not view this as essential, in part because at high
levels of optimizations, compilers often perform complex
code transformations that are not well reflected in the
source code that a debugger may present. While this does
complicate debugging, it is not a new problem. In fact,
because our system stores both the baseline code and the
transformed code (created through source-to-source trans-
formations), it should be easier to debug code in this
approach than relying on transformations handled entirely
within a compiler.

l.1. Our approach

We implemented these design decisions in Locus (Teixeira
et al., 2019). Locus is a semi-automatic approach to assist
performance experts and code developers in the perfor-
mance optimization process of programs developed in
mainstream programming languages (C, C++, and For-
tran). The system is nonprescriptive, which means that if
none of the optimizations can be applied or improve per-
formance, the baseline (original version) is used instead.

Regions of interest in the baseline version are marked
and given an identifier. The optimization program uses this
identifier to specify where to apply each transformation.
Multiple regions with the same identifier will receive the
same optimization steps (not necessarily the same resulting
code).

Locus combines expert knowledge with empirical
search, automates much of the optimization process, and
gives total control to the developers. The system defines an
interface to use external transformation and search mod-
ules. The idea is to have a collaborative environment where
existing modules can be integrated in a single system. This
enables the comparison among modules and the selection
of the one that generates the most performant code.

Locus does not require the installation of any specific
module. Only the ones used require installation. The full
toolset integrated in Locus, however, requires a long and
cumbersome installation process that is hard to replicate in
all target machines. Therefore, the Locus system uses a
database of platform-specific variants that separates the
code generation from the uses of the generated optimized
code. It also has support for a remote empirical search in
which the driver that traverses the optimization space and
the code generation are executed on a different machine
than the target one where the variants are assessed.

The main contributions of this article are:

e a system able to generate, assess, and manage a
database of platform-specific code variants for dif-
ferent code regions that separates code generation
from their uses;

Teixeira et al.

1293

Table I. Automatic program optimization approaches.

Domain

Optimization domain

Optimization time Search method

High-level abstractions

SPIRAL Signal processing Rewriting rules Offline Dynamic programming,
evolutionary (+others)
Lift General purpose Rewriting rules Offline Bandit
Halide Image processing Scheduling Offline Stochastic
Pochoir Stencils Cache-oblivious algorithm Offline —
Nonprogrammable
FFTW Fast Fourier Combination of solvers for FFTs Offline Dynamic programming
transform
Atlas Dense linear algebra Blocking, scheduling, and unrolling Offline Exhaustive
OsKI Sparse linear algebra Sparse solvers Online Heuristic
PHIPAC Matrix multiplication Adaptive library generator Offline Heuristic
Code transformations
CHiLL General purpose Loop transformations Offline =
Pluto General purpose Loop Transformations Offline —
POET General purpose Parameterized code transformations Offline =
Orio General purpose Loop transformations Offline Nelder-Mead, simulated
annealing
X Language General purpose Loop transformations Offline Exhaustive
Custom languages or languages extensions
Sequoia General purpose Memory hierarchy aware language ~ Offline —
Petabricks General purpose Algorithmic choices Offline Evolutionary
Kokkos General purpose Abstractions for parallel execution Offline —
and data management
RAJA General purpose Abstractions for loops and data Offline —

layouts

Alternative selection
Nitro General purpose
Active Harmony General purpose
OpenTuner General purpose

Variant selection
Parametric traversal
Parametric traversal

Offline, online
Online
Offline

Classification (SVM)
Nelder-Mead
AUC Bandit

e a distributed empirical search to populate the data-
base that separates the variants code generation and
their assessment;

e an evaluation of the approach in two different plat-
forms: Intel x86 and IBM Power; and

e an evaluation of the empirical search using a fixed
initial configuration instead of a random one (the
default). The best variant found on Intel x86 was
used as the initial configuration for the search on the
IBM Power. Locus syntax greatly facilitates the def-
inition of the initial configuration of the search.

The next section provides an overview of the related
work. The design and implementation of our system for
managing code transformations are presented next. After
that we present experimental evaluation. We conclude and
talk about future work in the last section.

2. Related work

Optimizing for performance is very dependent on the tar-
get platform as well as the problem domain, which makes
the creation of one-solution-fits-all code extremely
complicated.

There have been a number of projects to develop new
programming models, languages, and tools aimed at pro-
viding programmers with productive means for achieving
performance portability.

As shown in Table 1, we classify the approaches into
High-level abstractions, Non-Programmable, Code Trans-
formations, Custom Languages or Languages Extensions
and Alternative Selection. The high-level programming
abstractions tools provide a limited set of abstractions for
specific domains to represent algorithms. From these repre-
sentations, the tools are able to generate optimized
platform-specific binaries. Steuwer et al. (2015) propose
an approach in which the programmer writes a high-level
expression composed of algorithmic primitives, and using
rewriting rules, they map this high-level expression into a
low-level expression in OpenCL. Halide (Ragan-Kelley
et al., 2017) is a domain-specific language for complex
image processing pipelines that is able to decouple algo-
rithm representation from the schedule of the operations.
The Pochoir stencil compiler (Tang et al., 2011) allows a
programmer to write simple functional specifications for
stencils that are translated into highly optimized implemen-
tation. SPIRAL (Piischel et al., 2005) includes a high-level
mathematical framework that provides the link between the

1294

The International Journal of High Performance Computing Applications 33(6)

“high” mathematical level of transform algorithms and the
“low” level of their code implementations. It features five
search methods to select among the low-level options:
Exhaustive, Random, Dynamic Programming, Evolution-
ary, and Hill Climbing.

The nonprogrammable approaches differ from the other
approaches in that it does not start with user-written code,
but instead the code is generated directly. These tools carry
out all the tuning process without user intervention. It is
completely automatic and typically uses heuristics to accel-
erate the search of the space of variants. These tools have a
very specific domain, are self-contained, and are used as
libraries by the applications.

For instance, FFTW (Frigo, 1999) is a comprehensive
collection of fast C routines for computing the discrete
Fourier transform (DFT). It does not implement a single
DFT algorithm, but it is structured as a library of routines
that can be composed in many ways, namely a plan. The
plan dictates which routines should be executed and in what
order taking into account the input size and type and which
routines happens to be faster on the underlying hardware.
ATLAS (Whaley and Dongarra, 1998) presents a metho-
dology for the automatic generation of highly efficient
basic linear algebra routines in different architectures. It
isolates the machine-specific features of the operation to
several routines, all of which deal with generating an opti-
mized matrix multiplication that fit in the fastest level
cache. This optimized routine is automatically created by
the generator and uses timings to select the others para-
meters, such as block and loop unrolling factors.

The goal of PHIPAC (Bilmes et al., 1997) is to produce
high-performance linear algebra libraries for a wide range
of systems with minimum effort. The authors developed
parameterized generators that produce code according to
guidelines from a generic model of a set of C compilers
and microprocessors. They also created scripts to automat-
ically tune code for a particular system by varying genera-
tors’ parameters.

OSKI (Vuduc et al., 2005) is a collection of low-level
primitives that are integrated into automatically tuned com-
putational kernels on sparse matrices. Differently from the
previous approaches, where the tuning takes place offline,
OSKI defers the tuning until the runtime to make decisions
of the data structures and code transformations based on the
input matrix and the underlying hardware.

The code transformation tools take as input an initial
version of the code and the transformations to apply to it.
This specification of transformations can take the form of
annotations on the code (Donadio et al., 2006; Hartono
et al., 2009), scripts with commands that represent each
transformation (Chen et al., 2008), or command-line para-
meters. In some tools, the developer can implement their
own program transformations (Yi et al., 2007).

CHILL (Chen et al., 2008) contains loop transformation
and code generation primitives. It takes as input the original
code and a transformation script with bound parameters
and generates a collection of code versions. POET

(Yi et al.,, 2007) is an embedded scripting language for
parameterizing complex code transformations so that they
can be empirically tuned. The POET language is designed
to decouple the empirical tuning aspect of performance
optimization from the specifics of any library or compiler.

Another example in this class is Orio (Hartono et al.,
2009), an annotation-based empirical performance-tuning
system that takes annotated C source code as input, gener-
ates code variants of the annotated code, and empirically
evaluates the performance of the generated codes, ulti-
mately selecting the best-performing version to use for
production runs. The X Language (Donadio et al., 2006)
provides pragmas that can perform loop transformations
and code transformations defined as pattern-replacement
rules. Pluto (Bondhugula et al., 2008) automatically gen-
erates tiled code for efficient parallelism and locality
through an affine transformation framework.

Custom languages and language extensions have been
proposed with the goal of providing abstractions that insu-
late algorithmic choices, loop patterns, and data layout
from the underlying platform. Sequoia’s (Fatahalian
et al., 2006) programming model assists the programmer
in structuring bandwidth efficient parallel programs that
remain easily portable to new machines. The abstraction
of tasks are used as self-contained units of computation
isolated in their own local address space, which helps
express parallelism within a hierarchical organization.

Another programming language along with a compiler
is PetaBricks (Ansel et al., 2009). The language incorpo-
rates fine-grained algorithmic choices in program optimi-
zation and allows the specification of different granularity
and corner cases. The autotuner uses a choice dependency
graph that contains the choices for computing each task and
also encodes the implications of different choices on
dependencies. It also contains a dynamic task scheduler
and a runtime library to manage reading, writing, and man-
aging, inputs, outputs, and configurations.

RAJA (Hornung and Keasler, 2014) provides portable
abstractions for loops that include loop transformations,
reductions, scans, atomic operations, data layouts, and
views. Loop bodies and traversals are decoupled via
lambda expressions (loop bodies) and templates (loop tra-
versal methods) and support execution policies for different
programming model back ends. Kokkos (Edwards et al.,
2014) library unifies abstractions for both fine-grain data
parallelism and memory access patterns for performance
portability manycore architectures.

The alternative selection tools assume that either the
user or some other tool provides as input a collection of
variants. The main concern of the designer of tools in this
class is the selection process. As the search space is very
large, the use of efficient techniques on selecting the best
combination of code variants or parameters can drastically
reduce the search time. Some of these tools make the deci-
sion online, whereas others have it defined offline. The
advantage of making the decision online is that the input
features can be used in the decision process (Muralidharan

Teixeira et al.

1295

et al.,, 2014). The design of languages, compilers, and
runtime systems for the development and selection of
algorithmic variants has shown to be a successful way of
optimizing irregular iterative and recursive problems on
parallel platforms (Ansel et al., 2009; Fatahalian et al.,
2006).

The Nitro (Muralidharan et al., 2014) framework
focuses on how code variants and meta-information for
variant selection are expressed and uses a classification
technique to select the most appropriate variant during
application’s runtime. The codes are represented through
library calls rather than language extensions. Input features
that significantly affect the variant selection can be calcu-
lated by providing functions to the system. A two-phase
approach is used. First, the application is processed to gen-
erate a model over the code variants that are also provided
by the user. Second, during execution, the production ver-
sion uses the model generated in the first phase and adapts
the execution based on input data.

Active Harmony (Chung and Hollingsworth, 2004)
permits application programmers to express application-
level parameters and automates the process of searching
among a set of alternative implementations. It has been
combined with CHIiLL (Tiwari et al., 2011) to search for
the best sequence of loop transformation variants of com-
putationally intensive kernels. The OpenTuner (Ansel
et al., 2014) project presents a new framework for build-
ing domain-specific program autotuners. It features an
extensible configuration and technique representation
able to support complex and user-defined data types and
custom search heuristics.

Some systems attempt to separate the role of the per-
formance tuning expert from the application domain.
This separation can allow the programmer to focus on
application issues and performance tuning at different
points in time. Or, if they are not the same person, make
these two tasks more independent and more productive,
once each expert focus on their own domain. Besides,
multiple tuning specifications can be generated and
tested for different architectures, making the application
performance portable.

Sequoia, for instance, maintains a strict separation
between the algorithm implementation and the machine-
specific optimizations. The autotuning system in Petab-
ricks outputs an application configuration file containing
the choices selected. This file can be either used to run the
application, or it can be used by the compiler to build a
binary with hard-coded choices. CHILL also has an exter-
nal file containing all the transformations to be applied to
the code, which can be different depending on the
machine specifics.

Another interesting feature of some of these systems is
the automated validation of code variants. Petabricks has an
automated consistency checking to make sure that the
different algorithms solving the same problem produce
consistent results. This helps the user to automatically
detect bugs and increase confidence in correctness. Orio

also supports an automated validation by comparing
numerical results of the multiple transformed versions.
This technique is not provably correct but provides a good
testing coverage. It also compliments techniques that are
provably correct, as these proofs do not extend to the imple-
mentation of the compilers, runtime systems, or hardware,
and in real systems, users must confront faults and errors in
these components as well.

3. Design and implementation

The program optimization process for multiple platforms is
a complex undertaking. It requires a detailed understanding
of the target platforms and the application being optimized.
Our system facilitates for experts the application of opti-
mizations and allows nonexperts to apply generic
sequences of optmizations to find faster code. It also makes
it easier for nonexperts to reuse results from others by
sharing optimization sequences or the database of variants.

The requirements for such system are maintain a clean
baseline version that executes on all target platforms;
coexistence with other tools and frameworks; reuse mod-
ules already developed; abstract the use of transformation
and search modules, so that it does not depend on any
specific module; provide total control to the developer;
and enable incremental use by providing localized opti-
mization of the baseline.

The system fulfills these requirements by having a sep-
arate language for optimization programming; clearly iden-
tifying on the optimization program the steps to be carried
out by the system; using source-to-source transformations
to compose complex transformation sequences to harness
the power of existing tools; having an interface able to
integrate multiple transformation and search modules and
abstract their use; and having a database of variants to reuse
search results without installing the whole toolset required
to generate those codes.

In the following sections, we describe our approach and
the Locus implementation that separates the optimizations
from the application code and creates a database of variants.

3.1. Locus system and language

Locus makes use of a powerful language for programming
the optimizations and for representing complex optimiza-
tion spaces. The software developer, through the Locus
program, has complete control over the optimization
sequences to be attempted to improve the performance.

The Locus language is dynamically typed and the sys-
tem includes a translator and optimizer for it. At system’s
run-time, the resulting high-level representation of the opti-
mization program is interpreted to generate variants of the
baseline source code. An example of an optimization pro-
gram is shown in Figure 1.

The programmer defines code regions in the source code
using C pragmas or Fortran comments. There are two types
of annotations: block and loop. The block annotation

1296 The International Journal of High Performance Computing Applications 33(6)
dim=4096; int main()
Search | {
buildemd = "make_clean all"; int 4, 3, k;
runcmd = "./matmual"; double t_start, t_end;

]

CodeReg matmul |
perm = permutation([0,1,2], init=[0,2,1]);
RoseLocus. Interchange {order=perm) ;
tilel = poweroftwo(2..dim, init=512);
tileK = poweroftwo(2..dim, init=128);
tileJ = powercftwo(2..dim, init=2048};
Pips.Tiling{loop="0", factor=[tileI, tileK,
tileI 2 = poweroftwo(Z..tileI, init=256);
tileK 2 = poweroftwo(Z..tileK, init=32);
tileJ 2 = poweroftwo(Z..tiled, init=32);
Pips.Tiling{loop="0.0.0.0",

factor=[tileIl_2,

tiled]);

tileK 2, tiled 21);
{
None;
} OR {
tileI 3 = poweroftwo(Z..tilel_2);
tileK 3 = poweroftwo(Z..tileK_ 2);
tileJ 3 = poweroftwo(Z..tiled 2);
Pips.Tiling{loop="0.0.0.0.0.0.0",
factor=[tileI_3, tileK 3, tileJd 3]);

Figure 1. Locus program for optimizing double-precision
matrix—matrix multiplication (DGEMM). This program applies
loop interchange, and a two- or three-level hierarchical tiling. It
also provides the values to be used as the initial configuration for
the search process.

indicates the begin and end of the code region. The loop
annotation applies to loop nests. The loop annotations are
for loop transformations, and block annotations are for
alternative algorithm selection and optimizations compris-
ing multiple code regions.

The annotations include a label that can be referenced in
the optimization program. A CodeReg NAME statement in
the optimization program precedes the set of statements
that operate on the code regions in the source code labeled
NAME. An OptSeq NAME precedes a set of statements that
can be invoked within CodeRegs. An OptSeq can also be
invoked by other OptSeqs. The operations that transform or
get information from the source code can only be invoked
from CodeReg and OptSeq, because only they are able to
refer to the target code. The operations that extract infor-
mation from the source code, namely Query, are used to
decide which optimizatons to take next based on the current
state of the code.

Operations in Locus are implemented in modules that
are either external (e.g. RoseLocus) or intrinsic (e.g. Buil-
tin). External modules are part of other systems and intrin-
sic modules are those developed specially for Locus.

The Locus language has special constructs that are use-
ful to represent complex optimization spaces. The con-
structs are:

OR blocks,

OR statements,

Optional statements, and

datatypes for ranges of values (e.g. enum, integer,

Sfloat and poweroftwo).

init_array();
t_start = rtclock();

#pragma QLOCUS loop=matmul
for(i=0; i<M; i++)
for (J=0; Jj<N; j++)
for (k=0; k<K; k++)
C[11[3] = beta*C[i][j] + alphawA[i] [k] = B[k][j];

t_end = rtelock();

print_array();

printf ("Time (ms) _=_%7.51f\n", t_end-t_start);
return 0;

Figure 2. On the left-hand side, the steps to add platform-specific
optimized variants to the database after the search process. A
direct Locus optimization program that loads the platform-
specific variants is also automatically created for future use.
During the deployment, shown on the right-hand side, the direct
program accesses the database, retrieves the best variants for
each code region, and replaces the ones in the baseline with the
variants from the database.

The OR is used between sets of statements (blocks of
code) to describe alternative transformations. Any state-
ment with a preceding *is an optional statement that may
or may not execute. The search module will decide during
the search process which of the OR blocks and whether the
optional statements will execute.

There are two kinds of optimization programs: direct
and search. The direct Locus program contains a
sequence of transformations with no optional statements,
OR blocks, or ranges of values. The search Locus pro-
gram contains search constructs to explore an optimiza-
tion space. Many direct Locus programs can derive from a
search Locus program. The Locus interpreter that carries
out the transformation sequences only accepts as input
direct Locus programs.

Figure 2 depicts the database construction process and
its use. The database construction on the upper left-hand
side of the figure represents the search workflow that starts
with the conversion of the optimization space from the
search Locus program to the notation accepted by the
search module. After the conversion, the search process
may suggest variants to be evaluated first or let the search
module select these variants automatically. For each var-
iant, a direct Locus program is created by replacing all of
the search constructs with the specific values selected by
the search module. Once the direct Locus program is cre-
ated, the direct workflow (bottom-left horizontal transfor-
mation) uses it to generate a variant of the code (the
Optimized version in the figure) and finally evaluate it
according to some metric. The most common metric is
the execution time, but the assessment can be customized
to use any metric selected by the user (e.g. energy
consumption).

At the end of this iterative process, the sequence of
transformations used to generate the best variant is saved

Teixeira et al.

1297

as a direct Locus program. The search final output can be
shipped with the source code to be used in future deploy-
ments on the same platform. In this manner, the time spent
on the search process, which can be very long depending on
the size of the optimization space, is amortized among
multiple users. The search process can limit the number
of variants to be assessed or stop the search after a given
elapsed time or when a metric goal is reached.

Along with the direct Locus program, the best variant
code regions are saved in the database for later use. As
depicted on the right-hand side of Figure 2, the search
workflow final output (in direct Locus format) determines
which code regions will be replaced and the shape of its
replacement.

The variants assessed on the search workflow depend on
the heuristics of the search module used. Our experience
shows that the final result of the empirical process highly
depends on the initial variant assessed, which is, if not
provided, randomly selected. In other words, if the initial
configuration performs badly, the search usually takes
more time to get to a good solution.

The Locus syntax allows the specification of an initial
value for each search construct. These values may be used
as the initial configuration of the search process. The rules
used to define the initial configuration are as follows:

e optional statements are assumed to be executed;

e ranges of values have an extra parameter, namely
init), to provide the value;
the first block of each OR block is used; and
the first statement of each OR statement is used.

An example of annotated code is shown in Figure 3. The
loop nest in the code with label matmul represents a
matrix-matrix multiplication. This version is considered
the baseline.

The optimization program in Figure 1 has a definition
of a CodeReg with NAME matmul. This program first
changes the loop order according to the permutation on
the perm variable (e.g. from ijk to ikj) by calling
RoseLocus.Interchange. Then, the loop nest is tiled twice
by calling Pips.Tiling two times. In the end, there is an OR
block that has the possibility of tiling again and generating
a 3-level hierarchical tiling. Each tiling uses a range of
values to cover different shapes, the best shape depends on
the memory hierarchy, which is machine specific.

The code in Figure 1 also illustrates the representation of
initial values that may be given to the search module to be
assessed as the first variant. In this case, the initial values
are given for the perm variable and for the variables
tileI, tileX, tileK, tileI_2, tileK_2, and
tileJ_2. The first variant will include the first block of
the OR (only a None;) resulting in a two-level tiled variant.

In summary, Locus is invoked with the codes presented
in Figures 1 and 3 and applies the optimizations defined
in Figure 1 into the code of Figure 2. The result is
the generation of multiples variants that are assessed in the

int main()

{
int i, j, k;
double t_start,
init_array();
t_start = rtclock();

t_end;

#pragma BLOCUS loop=matmul

for{i_t = 0; i_t <= 7; i_t += 1)
for(k_t = 0; k_t <= 3; k_t += 1)
for{j_t = 0; j_t <=1; j_t +=1)
for{i_t_t = 8 » i_t;

it t <= {((8 x i _t) + T); it _t += 1)
for(k_t_t = 256 « k_t;

k_t_t <= ((256 = k_t) + 255); k_t_t += 1)
for(j_t_t = 32 » j_t;

J_E_t <= ((32 » j_t} + 31); Jj_t t +=1)
for(i = B84 » i_t_t;

io<= ((B4 » it t) + 63); 1 += 1)

for(k = 4 » k_t_t;
k<= ({4 » k_t_t) + 3); k += 1)
for(j = 64 + j_t_t;
Jog= ({64 * j_ Lt t) + 63); J 4=1)
Cli][J] = betaxC[i][j] + alphasA[i] [(k]=B[k][]];

t_end = rtelock();

print_array();

printf("Time(ms), _=_%7.51f\n", t_end-t_start);
return 0;

Figure 3. Matrix—-matrix multiplication (DGEMM) baseline ver-
sion in C language.

dim=256;

Search |
buildemd = "make clean_all";
runcmd = "./heat3d";

}

CodeReg heat3d {
tiled = poweroftwo (2..dim);
RoseUiuc.StripMine (loop=3, factor=tiled};
RoseUiuc.Interchange (crder="0,2,1,3,4");

)

Figure 4. Code variant of the matrix—matrix multiplication gen-
erated by the optimization program in Figure |. This code rep-
resents a two-level hierarchical tiling combined with loop
reordering.

target machine. One of these variants is shown in Figure 4.
The variant code shown is an example of how complicated
the variants generated can get. Locus is able to traverse the
optimization space, generating and evaluating many var-
iants automatically. Carrying out this process by hand is
cumbersome, error-prone, and unproductive. Locus is valu-
able on the optimization process by allowing developers to
concisely experiment with complex optimization spaces.
Besides, different search techniques can be used with no
changes to the optimization program.

3.2. Operation and search modules

The system is able to integrate different operation and
search modules. None of the modules, however, are
required and they are assumed by Locus to be independent
of each other. The availability of multiple and independent

1298

The International Journal of High Performance Computing Applications 33(6)

transformation modules provides a rich environment to
transform applications. The abstraction of the optimization
space provided by Locus allows the comparison of different
search modules to best traverse the potentially large opti-
mization space.

The operation modules include source-to-source trans-
formations, queries to extract information from the code
regions, methods to add pragmas (such as those used for
OpenMP), and a method to replace the original code. Exter-
nal tools can be invoked by implementing the operation
module interface. Operation modules can also be imple-
mented internally by manipulating the Locus representa-
tion of the code. The collections of operation modules
available are as follows:

e Pips: A source-to-source compilation framework for
transforming C and Fortran 77 programs (Keryell
et al., 1996). Locus has four loop transformations
available from Pips (GenericTiling, fusion, unroll-
and-jam, and unrolling).

e RoseLocus: An annotation-based source-to-source
loop transformations developed by us using the
Rose compiler infrastructure (Lidman et al.,
2012).

e Pragmas: Using this module is possible to add prag-
mas, which can be compiler specific or for paralle-
lization through OpenMP (Dagum and Menon,
1998). Examples of compiler-specific pragmas are
ivdep and vector always, which can be used to
enhance vectorization of the code generated by Intel
ICC compiler.

e BuiltIn: includes queries to get information about
loop nests, such as whether the nest is perfectly
nested (IsPerfectLoopNest), and to get the nest
depth (LoopNestDepth). It also includes a module
to replace the original code with code snippets. The
Altdesc is mostly used to incorporate hand-
optimized kernels into an optimization sequence.

The search modules available are as folows:

e OpenTuner: A framework for building domain-
specific program autotuners. It uses ensembles of
search techniques that run at the same time, testing
candidate configurations (Ansel et al., 2014). The
search variables are represented in a flat optimiza-
tion space. In this kind of representation, the search
techniques are not aware of variables that influence
the selection of other variables, which can worse the
traversal results by taking into consideration points
in the space that are not possible. Locus integration
checks whether the selections suggested are valid
before generating code and empirically evaluating
the variant.

e HyperOpt: A framework for optimizing complex
search spaces with real values, discrete, and condi-
tional dimensions (Bergstra et al., 2013).

3.3. Database of variants

A database of platform-specific codes for different code
regions that allows the use of pregenerated autotuned
code is an important requirement for making autotuning
more accessible. Despite the system’s goal to facilitate the
use of multiple transformation modules, in our experience
(and especially the experience of our computational scien-
tist users), the installation of the modules and their depen-
dencies has shown to be complex and often not available
for all systems.

As mentioned before, Locus allows the use of a direct
optimization program to reuse results from previous
empirical evaluations, which also makes the optimization
results accessible to non-experts. The users of a direct opti-
mization program, however, would still need to install all
the modules invoked in the direct program. The database
further facilitates the use of an direct optimization program,
because the best variant found for each code region is saved
along with a version of the direct Locus program resulted
from the search process.

The database organizes information about the optimiza-
tion process of an application. The process is commonly
comprised of multiple independent empirical evaluations.
The result of each evaluation is added to the database using
a unique identifier. We assume that the evaluations on the
same database are from the same baseline version and
assessed on the same platform.

The best variant found for each code region is saved in
the database. The code regions are indexed by the source
code file that they belong, their Locus label, and an index
value from O to the number of code regions in the source
file. The index value is used to set apart code regions in
case there are more than one in the same file with the same
label. Identical code regions that have the same label will
receive the same sequence of optimizations, but each one
may have a different best variant saved on the database.
Different codes can also have the same label and be
applied the same sequence of optimizations; this is possi-
ble by using Queries on the optimization program that
allows to customize the sequence of transformations
according to the code region.

Each variant in the database has attached its attained
metric (e.g. execution time). When a more recent empirical
evaluation is conducted and finds a different variant that
performs better, the current one in the database is replaced.

Figure 2 shows the database construction (left-hand
side) and database use (right-hand side). The empirical
evaluation results are added to the database after the
search process. It also generates (or updates if there is one
already) a direct Locus program that loads the variants
from the database.

Changes in the baseline version may result the variants
in the database incorrect. The database contains a hash of
the baseline code region that each variant was generated
from. The Builtln.Altdesc uses that hash to check whether
the current code, which the variant is being incorporated

Teixeira et al.

1299

void heat3d(double A[2] [N+2] [N+2] [N+2])
{
int i, j, t, ki

#pragma RLOCUS loop=heat3d
fori(t = 0; t < T-1; t++) |
for{(i = 1; i < N+1; i++) {
for(j = 1; 3 < N+1; Jj++) {
for (k = 1; k < N+1; k++) {
AL(E+1)%2T[11[J1[k] = 0.125 « (A[t%2]1[i+11([3]1[k] -
2.0 = A[tS$2][4][3) (k] + A[t%$2] [i-11(3)(k])
+ 0.125 « (A[t%2][1i]113+11[k] -
2.0 « A[L%2] [1][J1[k] + A[t32][i]1[3-111[Kk])
+ 0.125 » (A[t32)[1]1[3][k-1) -
2.0 « AIEE21[11[31 (k] + A[t%2][i]1[J][k+1]1)
+ A[E$2] [11[3]1k);
}
)
}
}
¥

Figure 5. Locus program for optimizing the finite-difference
solution to the 3-D heat equation. This program applies a tiling on
the] loop.

into, is the same as the one the variant was generated from.
The hash function may be language dependent; the current
implementation removes all the whitespace characters
before generating a SHA-1 key.

The empirical evaluation is often dependent on input
parameters (e.g. problem size and matrices shape). The
system allows the inclusion of tags that better represent the
context in which the variants were generated. These tags
can later be used to load the proper variants that will be
deployed for similar contexts. The tags are provided as key,
value pairs. For instance, the optimized code for matrix
multiplication heavily depends on the shape of the
matrices, which is one information that can be added as
tags. During deployment, in case the database does not
have an optimized code that matches exactly the key, value
requested, a heuristic can be used to get the most appropri-
ate from the available ones.

In our prototype implementation of the database, we use
the file system to separate out the variants of different
optimization processes. All the directories are automati-
cally created and managed. As mentioned before, the var-
iants are accessed from the database using a direct Locus
program, which is also automatically updated after each
empirical evaluation. The direct Locus program loads each
code region in place using the BuiltIn.Altdesc module with
the absolute path to where the variant is located as a para-
meter. Inside the database folder, there is one folder for
each source file. Inside each source file’s folder, there is
a file for each code region containing the code representing
the variant for it. The header of the file representing the
variant contains the hash to check whether the variant is
being applied into the same code region that it was gener-
ated from, and the metric attained by the variant. The name
of the variant’s file is the code region label, and its index
followed by tags in alphabetical order. Figure 5 presents an
example of the Locus database structure.

3.4. Distributed empirical search

In the same way that a database of pregenerated optimized
code is important for making autotuning more accessible,
the distributed empirical search allows the optimization of
applications in platforms that do not have available all the
code generation tools required. The transformation mod-
ules integrated into Locus are not available to all platforms.
For instance, RoseLocus is based on Rose, and at the time
ofthis publication, Rose was not available on IBM Power 9
Linux platforms.

One solution to assess platforms that lack the transfor-
mation modules required is to conduct the search process
and code generation from a machine that has the necessary
modules, move the generated code to the target platform,
compile it there, and evaluate and return the metric so the
search driver can decide which variant to evaluate next.

In search Locus programs, it is necessary to specify how
to build, compile, and run the variants generated. We added
to these commands the scp to copy the generated code, and
ssh to invoke the compilation and running steps on the
target platform. This strategy successfully allowed the eva-
luation of the IBM Power 9 Linux platform as presented in
the next section.

4. Evaluation

We evaluated the performance of the code generated by
Locus on two systems: IBM Power and Intel x86. The
details of the systems are presented in Table 2. The IBM
Power OS is a Linux Red Hat kernel version 4.14; the Intel
x86 OS is a Linux Ubuntu kernel 4.4.0. We show optimiza-
tion results on two benchmarks: a double-precision matrix—
matrix multiplication as presented in Figure 3 using the
optimization program shown in Figure 1 and a finite-
difference solution to the 3-D heat equation presented in
Figure 6 using the optimization program in Figure 7. The
search process was conducted by OpenTuner and limited
to the evaluation of 1000 variants or 5 h. The running
time of variants evaluated was capped by the elapsed time
of the best one found up to the moment the variant started
its execution. This significantly reduced the total search
time by limiting the execution of the bad variants that
could last for hours.

The code generated on the IBM Power was compiled
with XLC (version 16.1.1; flags -03 and -qHot) compiler
and GNU GCC (version 8.2.0; flags -03, -mtune=nat ive,
and -ftree-vectorize). For the Intel x86, the code was
compiled with ICC (version 17.0.1; flags -03, —xHost,
-ipo, —ansi-alias, and -fp-modelprecise).

4.1. Matrix—matrix multiplication

The baseline code compiled with XLC performed signifi-
cantly better than when compiled with GCC for the IBM
Power platform. The XLC flag -ghot requests, according
to IBM manual, high-order transformations such as loop

1300

The International Journal of High Performance Computing Applications 33(6)

Table 2. Platforms used on the evaluation.

Platform Processor Clock Cores HT LI L2 L3 RAM
IBM Power P9 8335-GTH 3.8 GHz 20 4 32 KB pr 512 KB sh 100 MB sh 570 GB
Intel x86 Xeon E5-2660 v3 2.60 GHz 10 2 32 KB pr 256 KB pr 25 MB sh 62 GB
Sh: shared; pr: private.
Database Construction Database Use
Best variant of each code region
Search Locus Optimization added to the database
program space Search
D Conversion %
£ Platform-spedific direct
Locus program for
é\ 6‘ 0, dahbase use
Optimized
Platform-specific Baseline version for
Locus program version deployment
Baseline Direct Locus Optimized Execute/ o
version program version Assess
at —=>
L —> —=>

Figure 6. Baseline verion of the finite-difference solution to the 3

e ._-./_.—— Optimization Process XYZ
Jocusdb-xyz

gl N—

Source Files
-—-“/.—._

navierstokes

——= matvec-0-shapeA-1024.var

'———a spmv-1.var

gl Nh—

Code Region
Variants

| stencil-0.var /

Lo matmul-1-shapeA-1024.var

applyoperator

Direct Locus
Program

Locus

Figure 7. Locus database example. The top folder holds the
variants for the optimization process named XYZ. It contains
folders for the two source files that contain code regions that
have been optimized—navierstokes and applyoperator. The opti-
mized variants for these code regions are represented by the files
with extension .var.

interchange, fusion, unrolling, and reduce the use of tem-
porary arrays. Besides, by monitoring the compilation, we
could see that XLC uses interprocedural analysis. As a
consequence, the compilation time for XLC is at least three
times longer than with GCC.

Moreover, the compiler' was able to detect that the base-
line version was a matrix—matrix multiplication and replace
it with a function call to a hand-optimized version. The

-D heat equation in C language.

version containing the invocation to the hand-optimized
code is used as the reference on the performance evalua-
tion. The compiler, however, was unable to detect matrix
multiplication in the transformed code generated by Locus,
which, in turn, was able to find variants that were faster
than the XLC hand-optimized version.

Figure 8 shows results for IBM Power on the top and for
Intel x86 on the bottom. On both platforms, a two- and
three-level hierarchical tiling has been evaluated. The
results include the best variant found by Locus and the
baseline version using the two compilers. For the matrices
of 2048 by 2048 shape, the best variant generated by Locus
varied according to the compiler used. For XLC, the two-
level tiling was the fastest, whereas with GCC, the three-
level tiling attained the best performance. For matrices of
4096 by 4096 shape, both XL.C and GCC found two-level
tiling faster. For XLC, three-level tiling also attained per-
formance close to that of the fastest two-level tiling ver-
sion. Locus, however, could not find a three-level tiling
variant, which when compiled with GCC was faster than
the baseline.

For 8192 by 8192 matrices, due to the long time taken by
most of the variants compiled with GCC, we only present
results using the XLC compiler. In this case, the best per-
formance is obtained with two-level tiling.

Search time is strictly dominated by the time to compile
and run the code variants. Compilation is often fast, except
for the case mentioned in which XLC runs high-order trans-
formations and interprocedural analysis. The variant exe-
cution, however, depends on the matrix size and can take
up to 30 min, since each variant was executed five times.

Teixeira et al.

1301

DGEMM on IBM Power [XLC base
2.50
— E=] Locus+XLC 21t
T 2.00) - =
8 s (o % g = Locus+XLC 31t
g 150 o iy ﬁ =
< - - o B Bl GCC base
g X S=m
= 1.00 = - f iy 29 Locus+GCC 21t
__ —_— ’-:;-. _—-
2 050 e [ﬁ Uy F—Z] Locus+GCC 3it
- 2 i =[x gl 7] A
4096 8192
Matrices shape (n*n)
DGEMM on Intel x86
250.00
s EJIiCC base
$ 200.00 son
ki e Locus+ICC 2it
Q H) 5 »
© 150.00 Fr= e 9 Locus+ICC 3it
5 SRR i
% R %
< 100.00 R 2o [Intel MKL
_a o ? A >
§) BE
o 50.00 o]
R > 2 b3
o s
0.00 — T2
4096
Matrices shape (n*n)

Figure 8. Results for matrix-matrix multiplication on IBM Power 9 and Intel x86. It shows results for the baseline version and the best
variant generated by Locus compiled with XLC and GCC. 2k refers to two-level hierarchical tiling and 3It to three-level hierarchical

tiling.

The search time lasted up to 5 h for each of the experi-
ments. While earlier experiments, which only considered
two-level tiling, only took on average 1.5 h, the search time
has significantly increased after the addition of the third-
level tiling to the optimization space. The addition of an
third-level tiling within an OR block extended the search
process because the optimization space in a flattened rep-
resentation is not aware of the dimensions dependent on
other dimensions. In this case, the dimensions tileTI_3,
tilek_3, and tileJ_3 only matter when the second
block within the OR block is selected; otherwise, their
values are ignored in the code generation and do not affect
the variant performance. However, the search module,
OpenTuner in this case, is not aware of that and may infer
that those values are important. In other words, the search
module processes an optimization space much bigger that
it actually needs to explore and wastes time exploring
configurations that do not improve performance.

In Table 3, we show the tiling shapes for the best variants
for each matrix shape on the two platforms. The tiling shapes
are very different from each other and result in input- and
platform-specific variants to be saved in the database.

4.2. Fixed versus random initial configuration

As mentioned above, a Locus program can set the initial
configuration of the search process. Figure 9 compares
two search strategies for matrix—matrix multiplication
on IBM Power. The first search strategy, which we call
fixed, starts with a configuration provided by the Locus
program. This configuration is the one identified as the
best for matrix—matrix multiplication on an Intel x86. The
second search strategy uses a random configuration
selected by the search module.

For the comparison, each of the two forms of search,
fixed and random, is run 10 times. For each run, we
record the best execution time of matrix—matrix multi-
plication as the search progresses. The plot shows the
best values obtained by each of the 10 runs at different
times of the search. The random search in some cases
produces slightly better execution times, but it can also
produce much slower values even for long searches. We
conclude that although the use of a initial configuration
based on results from another platform did not guarantee
finding the best variant, it confined the search outcome

1302

The International Journal of High Performance Computing Applications 33(6)

Table 3. Tiling shapes of the best variant for the matrix—matrix multiplication generated by Locus.*

Platform Matrices Shape Compiler tile | tile K tile) tile 12 tile K2 tile J2
IBM Power 2048 XLC 256 128 2048 256 16 8
4096 XLC 512 512 512 4 512 256
8192 XLC 8192 4096 8192 8192 64 16
Intel x86 2048 ICC 512 1024 32 512 64 32
4096 ICC 512 128 2048 256 32 32
*Two-level tiling was faster than three-level tiling for all results.
180
160 R—H—X X—%—X X * Random
® Fixed (best of Intel)
_ 140
&
- 120
E
E 100
S
._’% 80 X X X X %X x X X X X X X X X X X X x
§ o0
B x X x x
= 5 A . :
zggifiiiiﬁ KoK K ¥ K K K F ¥ ¥
x x o« & K E R X O I O I B B B
0
] 360 720 1080 1440 1800 2160 2520 2880 3240
Search Time (sec)

Figure 9. Execution time of best variant found as a function of search time for matrix-matrix multiplication on IBM Power. Comparing
random (the default) and fixed initial search configurations. The fixed one is the best found for the Intel x86 on a previous search

process.

to a more certain and narrower range (all results are
below 28 s).

4.3. 3-D heat stencil

The 3-D heat baseline code is shown in Figure 6. The
optimization program in Figure 7 tiles the accesses to the
Y dimension of the XYZ input volume. It first stripmines
the j loop (responsible for traversing the Y dimension) by
calling RoseLocus.StripMine. Then, RoseLocus.Interch-
ange is used to change the order of the loops by moving
the created loop to the outermost position. This tiling
increases the reuse of the elements of the XV plane as it
traverses the Z dimension and improves performance when
the XY plane does not fit on last private level cache. The
tiling appears most effective when the problem is large
enough that 4 XV (three for the input and one for the output)
planes do not fit into cache.

Figures 10 and 11 present weak scaling and strong scal-
ing performance results comparing the baseline version
and the best tiled variant generated using Locus. The
results were evaluated using 1, 10 (1 for each core), and
20 processes (2 for each core; HyperThreading is

available on the processor) on Intel x86; and 1, 20, 40,
and 80 processes on IBM Power. The variants and the
baseline were compiled with ICC on Intel x86 and XLC
on IBM Power. For the concurrent processes evaluation,
GNU parallel command (Tange, 2011) was used to
execute in parallel the same binary.

4.3.1. Weak scaling. The stencil was executed on a 256
mesh of double-precision elements. On the Intel x86 with
only one process on the socket, the tiled code does not show
any improvement in the aggregated number of millions of
stencils performed per second. However, as the access to
the cache and memory becomes more competitive with the
increasing number of processes, the tiled code performs
better. The aggregated performance of the tiled code is
approximately 20% higher compared to the baseline when
running 10 processes (1 per core). The aggregated perfor-
mance of the tiled code when using 20 process is slightly
worse than with 10 process, which demonstrates the satura-
tion of memory subsystem. It is, however, 50% higher than
the baseline performance. Similar conclusions can be
drawn from the experiments on the IBM Power.

Teixeira et al.

1303

3D Heat on Intel x86 (weak scaling, N=256)

700

Aggregated Mstencils/sec
[w P w [+)]
8 8 B8 8 8

8

(=]

lproc/ Llocwslp/ 1lproc/ lowslp/ 2proc/ Loas2p/
socket socket core core core core

3D Heat on IBM Power (weak scaling, N=256)

IIIEIIIII

1proc/ Locws 1p 1 proc/ Lows 1p 2 proc/ Lows 2p 4 proc/ Lows 4p
socket [socket core [/ core core [wore core | wore

Aggregated Mstencils/sec
MoOoWw B oWm oo o
8 8 8 8 8 8 8
{=] (=] (=] {=] o (=1 (=]

g

(=}

Figure 10. Weak scaling results for the 3-D Heat stencil (2563
mesh size) on Intel x86 and IBM Power 9. It shows the execution
of 1, 10, and 20 processes running concurrently for Intel x86; |,
20, 40, and 80 running concurrently on IBM Power 9. Tiling
appears most effective as the number of processes increases.

Despite the processes being independent of each other,
the aggregated performance of the system does not follow
a linear increase as the number of processes increases.
The memory bandwidth is a bottleneck in which optimi-
zations such as tiling can help mitigate its limitations.
This contrasts with the observations in Datta et al.
(2009), for example, though those were for systems
nearly a decade ago, and (with the exception of results
on the Cell processors), only one core was used in their
work (see Table 2.1 of Datta et al., 2009). However,
similar to the findings in that paper and our own more
recent work with the XPACC application program, it
remains important to make the inner loop use stride-one
indexing and be as long as possible, so as to exploit both
vectorization and memory optimizations such as prefetch.

The tile values for the best variants decreased as the
number of processes increased. On Intel x86, for 10 pro-
cesses the best found tiling value was 64, and for 20 pro-
cesses was 16. On IBM Power, for 20 processes the best
found tiling value was 64, for 40 was 32, and for 80 was 16.
As the caches are shared among more processes, the tile
values have to be smaller to accommodate the increasing
amount of data.

The optimal variant differed as the concurrency in the
processor increased; this information can be added to the

3D Heat on Intel x86 (strong scalling, N=1600)
700

wr o
g 8
2]

g 8 8

B

Aggregated Mstencils/sec

8

e et e T T T e T e e

bbb

- « " i £
B 3 > ® +
e 4 i . d €4
£ ¥ * > = s
£ 5% i - 3]

L= L. - AFEL

lproc/ Llowslp/ 2 proc [
socket socket core

o

Lowus 2p /
core

Locus 1p/
core

1 proc /
core
3D Heat on IBM Power (strong scalling, N=1600)
8000
7000
6000
5000
4000
3000
2000

Aggregated Mstencils/sec

1000

1proc/ Locus 1p 1 proc/ Lows 1p 2 proc/ Lows 2p 4 proc/ Lows dp
socket /[socket core { core core [oore core [core

0

Figure | |. Strong scaling results for the 3-D Heat stencil (I6(}03
mesh size) on Intel x86 and IBM Power 9. Only the Z dimension of
the XYZ input volume is split among the processors. It shows the
execution of |, 10, and 20 processes running concurrently for
Intel x86; 1, 20, 40, and 80 running concurrently on IBM Power 9.
Tiling appears most effective as the number of processes
increases.

database as a tag to the variants. And, in the same way as
for the matrix—matrix multiplication, the optimal code is
dependent on the problem size.

4.3.2. Strong scaling. Figure 11 presents the results for a
mesh of 1600° double-precision elements. Through tiling
Locus was able to generate faster stencil code, similar to
the results from the weak scaling experiments.

The best tiling values found on Intel x86 were 1024 for 1
process, 512 for 10 processes, and 256 for 20 processes. On
IBM Power the best tiling values were 32 for 1 process, 16
for 20 processes, 8 for 40 processes, and 4 for 80 processes.
Once again, as the number of processes increased, the tile
size decreased. The best tiling values found on IBM Power
were significantly smaller than the ones found on Intel x86.
The gaps between the baseline and best variant were also
bigger on IBM Power.

5. Conclusions and future work

In this article, we describe the requirements that we
believe are necessary for making automatic performance
tuning widely adopted. We present the design and imple-
mentation of a system that fulfill these requirements. It

1304

The International Journal of High Performance Computing Applications 33(6)

includes a domain-specific language that is able to rep-
resent complex collections of transformations, an inter-
face to integrate external modules, and a database to
manage platform-specific efficient code. The database
allows the system users to access optimized code without
having to install the code generation toolset. After all,
the system presents an approach for performance
portability.

We showed two examples that used the system to gen-
erate optimized code for two different platforms. Locus
was able to generate matrix—matrix multiplication code that
outperformed the IBM XLC internal hand-optimized ver-
sion by 2X on the Power 9 processors. On Intel x86, Locus
was able to generate code with performance comparable to
Intel MKL’s, which is also hand-optimized and platform-
specific. The 3-D heat stencil optimized by Locus was up to
75% more efficient in the aggregated performance com-
pared to the baseline version.

We also showed the benefits of using a fixed configura-
tion based on results from a different platform as the search
starting point, which confined the search outcome to a
narrower range.

The performance attained varied significantly according
to the platform and the input dimensions and shows the
value of having a database that saves efficient platform-
specific code for each code region.

One important goal of the system has been the optimiza-
tion of the large, complex multi-physics application being
developed at the XPACC, 2018. At XPACC, the initial
step, and not less challenging, was to define the baseline
version out of a code that had already evolved into an
optimized version. Subsequently, all the hand-optimized
code regions were included in the Locus system as a pre-
ferred version. These preferred versions are loaded into the
application at build time. We are currently working on
using the code transformations available on the system to
automatically generate and autotune these preferred
versions.

As future work, we plan to evaluate other platforms
and the system on more complex applications. We also
plan to evaluate other search modules to speedup the
search process.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest
with respect to the research, authorship, and/or publication
of this article.

Funding

The author(s) disclosed receipt of the following financial
support for the research, authorship, and/or publication of
this article: This material is based in part upon work sup-
ported by the Department of Energy, National Nuclear
Security Administration, under Award Number
DE-NA0002374 and by the National Science Foundation
under Award Number 1533912. This work utilizes
resources supported by the National Science Foundation’s

Major Research Instrumentation program, grant #1725729,
as well as the University of Illinois at Urbana-Champaign.

ORCID iD

Thiago SFX Teixeira @ https://orcid.org/0000-0002-8031-
0652

Note
1. We used GNU objdump for this analysis.

References

Ansel J, Chan C, Wong YL, et al. (2009) PetaBricks: a language
and compiler for algorithmic choice. In: ACM SIGPLAN Con-
ference on Programming Language Design and Implementa-
tion, Dublin, Ireland, 15-21 June 2009, pp. 38—49. ACM. DOI:
10.1145/1543135.1542481.

Ansel J, Kamil S, Veeramachaneni K, et al. (2014) OpenTuner: an
extensible framework for program autotuning. In: Proceedings
of the 23rd International Conference on Parallel Architectures
and Compilation, PACT '14, Edmonton, Alberta, Canada, 24—
27 August 2014, pp. 303-316. New York, NY, USA: ACM.
ISBN 978-1-4503-2809-8, DOI: 10.1145/2628071.2628092.

Balay S, Abhyankar S, Adams MF, et al. (2018) PETSc web page.
Available at: http://www.mcs.anl.gov/petsc (accessed 24 July
2019).

Balay S, Gropp WD, Mclnnes LC, et al. (1997) Efficient man-
agement of parallelism in object oriented numerical software
libraries. In: Arge E, Bruaset AM and Langtangen HP (eds)
Modern Software Tools in Scientific Computing. Basel:
Birkhduser Press, pp. 163-202.

Basili VR, Carver JC, Cruzes D, et al. (2008) Understanding the
high-performance-computing community: a software engi-
neer’s perspective. IEEE Software 25(4): 29-36.

Bergstra J, Yamins D and Cox DD (2013) Making a science of
model search: hyperparameter optimization in hundreds of
dimensions for vision architectures. In: Proceedings of the
30th International Conference on International Conference
on Machine Learning - Volume 28, ICML’13. JMLR. org,
Atlanta, GA, USA, 16-21 June 2013, pp. 1-115-1-123.
Available at: http://dl.acm.org/citation.cfm?id=3042817.3
042832

Bilmes J, Asanovic K, Chin CW, et al. (1997) Optimizing matrix
multiply using PHiPAC: a portable, high-performance, ANSI
C coding methodology. In: Proceedings of the 11th Interna-
tional Conference on Supercomputing, ICS '97, Vienna, Aus-
tria, 7-11 July 1997, pp. 340-347. New York, NY, USA:
ACM. ISBN 0-89791-902-5, DOI:10.1145/263580.263662.
Available at: http://doi.acm.org/10.1145/263580.263662

Bondhugula U, Hartono A, Ramanujam J, et al. (2008) A practical
automatic polyhedral parallelizer and locality optimizer. In:
Proceedings of the 29th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 08,
Tucson, AZ, USA, 7-13 June 2008, pp. 101-113. New York,
NY, USA: ACM. ISBN 978-1-59593-860-2, DOI:10.1145/
1375581.1375595. Available at: http://doi.acm.org/10.1145/
1375581.1375595

Teixeira et al.

1305

Chen C, Chame J and Hall M (2008) CHILL: A framework for
composing high-level loop transformations. Technical report,
University of Utah.

Chung IH and Hollingsworth JK (2004) Using information from
prior runs to improve automated tuning systems. In: Proceed-
ings of the 2004 ACM/IEEE Conference on Supercomputing,
SC '04, Pittsburgh, PA, USA, 6-12 November 2004, p. 30.
Washington, DC, USA: IEEE Computer Society. ISBN 0-
7695-2153-3, DOL: 10.1109/SC.2004.65.

Dagum L and Menon R (1998) OpenMP: an industry standard
API for shared-memory programming. /[EEE Computational
Science and Engineering 5(1): 46-55.

Datta K, Kamil S, Williams S, et al. (2009) Optimization and
performance modeling of stencil computations on modemn
microprocessors. SIAM Review 51(1): 129-159.

Donadio S, Brodman J, Roeder T, et al. (2006) A language for
the compact representation of multiple program versions. In:
Proceedings of the 18th International Conference on Lan-
guages and Compilers for Parallel Computing, LCPC’05,
Hawthome, NY, USA, 20-22 October 2005, pp. 136-151.
Berlin, Heidelberg: Springer-Verlag. ISBN 3-540-69329-7,
978-3-540-69329 -1, DOI: 10.1007/978-3-540-69330-7_10.

Edwards HC, Trott CR and Sunderland D (2014) Kokkos:
enabling manycore performance portability through poly-
morphic memory access patterns. Journal of Parallel and
Distributed Computing 74(12): 3202-3216. Available at:
http://www.sciencedirect.com/science/article/pii/S074373
1514001257 (accessed 24 July 2019). Domain-Specific
Languages and High-Level Frameworks for High-
Performance Computing.

Fatahalian K, Knight TJ, Houston M, et al. (2006) Sequoia: pro-
gramming the memory hierarchy. In: Proceedings of the ACM/
1EEE of SC 2006 Conference, Tampa, FL, USA, 11-17
November 2006, pp. 4-4. DOIL: 10.1109/8C.2006.55.

Frigo M (1999) A fast Fourier transform compiler. In: Proceed-
ings of the ACM SIGPLAN 1999 Conference on Programming
Language Design and Implementation, PLDI ‘99, Atlanta,
Georgia, USA, pp. 169-180. New York, NY, USA: ACM.
ISBN 1-58113-094-5, DOL: 10.1145/301618.301661.

Hartono A, Norris B and Sadayappan P (2009) Annotation-based
empirical performance tuning using Orio. In: 2009 IEEE Inter-
national Symposium on Parallel Distributed Processing, May
2009, pp. 1-11. DOI: 10.1109/IPDPS.2009.5161004.

Hormung RD and Keasler JA (2014) The RAJA portability layer:
Overview and status. Technical Report LLNL-TR-661403,
Lawrence Livermore National Lab. DOI: 10.2172/1169830.

Keryell R, Ancourt C, Coelho F, et al. (1996) Pips: A workbench
for building interprocedural parallelizers, compilers and opti-
mizers. Technical Report A/289, Centre de Recherche en
Informatique, Ecole des Mines de Paris.

Li X, Garzardin MJ and Padua D (2004) A dynamically tuned
sorting library. In: Proceedings of the International Sympo-
sium on Code Generation and Optimization: Feedback-
Directed and Runtime Optimization, CGO ‘04, pp. 111.
Washington, DC, USA: IEEE Computer Society. ISBN 0-
7695-2102-9, Available at: http://dl.acm.org/citation.cfm?
1d=977395.977663 (accessed 24 July 2019).

Lidman J, Quinlan DJ, Liao C, et al. (2012) ROSE: FTTransform -
a source-to-source translation framework for exascale fault-
tolerance research. In: IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN
2012), Boston, MA, USA, 25-28 June 2012, pp. 1-6. IEEE.
DOI:10.1109/DSNW.2012.6264672.

Muralidharan S, Shantharam M, Hall M, et al. (2014) Nitro: a
framework for adaptive code variant tuning. In: 2014 IEEE
28th International Parallel and Distributed Processing Sym-
posium, Phoenix, AZ, USA, 19-23 May 2014, pp. 501-512.
IEEE. DOI: 10.1109/[PDPS.2014.59.

Pennycook SJ, Sewall JD and Lee VW (2016) A metric for per-
formance portability. arXiv e-prints. Available at: https://
arxiv.org/abs/1611.07409 (accessed 24 July 2019).

Piischel M, Moura JMF, Johnson J, et al. (2005) SPIRAL: Code
generation for DSP transforms. Proceedings of the IEEE,
special issue on “Program Generation, Optimization, and
Adaptation 93(2): 232-275.

Ragan-Kelley J, Adams A, Sharlet D, et al. (2017) Halide: decou-
pling algorithms from schedules for high-performance image
processing. ACM Commun 61(1): 106-115.

Steuwer M, Fensch C, Lindley S, et al. (2015) Generating perfor-
mance portable code using rewrite rules: from high-level func-
tional expressions to high-performance OpenCL code. ACM
SIGPLAN Notices 50(9): 205-217.

Tang Y, Chowdhury RA, Kuszmaul BC, et al. (2011) The Pochoir
stencil compiler. In: Proceedings of the Twenty-third Annual
ACM Symposium on Parallelism in Algorithms and Architec-
tures SPAA ‘11, San Jose, California, USA, pp. 117-128. New
York, NY, USA: ACM. ISBN 978-1-4503-0743-7, DOI: 10.
1145/1989493.1989508.

Tange O (2011) GNU parallel - the command-line power tool.
login: The USENIX Magazine 36(1): 42-47. Available at:
http://www.gnu.org/s/parallel (accessed 24 July 2019).

Teixeira TSFX, Ancourt C, Padua D, et al. (2019) Locus: a system
and a language for program optimization. In: Proceedings of
the 2019 IEEE/ACM International Symposium on Code Gen-
eration and Optimization CGO 2019, Washington, DC, USA,
pp. 217-228. Piscataway, NJ, USA: 1EEE Press.

Tiwari A, Hollingsworth JK, Chen C, et al. (2011) Auto-tuning
full applications: a case study. International Journal of High
Performance Computing Applications 25(3): 286-294.

Vuduc R, Demmel JW and Yelick KA (2005) OSKI: a library of
automatically tuned sparse matrix kernels. Journal of Physics:
Conference Series 16(1): 521. Availble at: http://stacks.iop.
org/1742-6596/16/i=1/a=071

Whaley RC and Dongarra JJ (1998) Automatically tuned linear
algebra software. In: Proceedings of the 1998 ACM/IEEE
Conference on Supercomputing, SC ‘98, pp. 1-27. Washing-
ton, DC, USA: IEEE Computer Society. ISBN 0-89791-984-
X. Available at: http://dl.acm.org/citation.cfm?id=509058.
509096 (accessed 24 July 2019).

Wolfe M (2016) Compilers and more: what makes performance
portable? Available at: https://www hpcwire.com/2016/04/19/
compilers-makes-performance-portabl (accessed 19 April
2016).

1306

The International Journal of High Performance Computing Applications 33(6)

XPACC (2018) Center for the exascale simulation of plasma-
coupled combustion web page. Available at: http://xpacc.
illinois.edu; http://xpacc.illinois.edu (accessed 24 July
2019).

Yi Q, Seymour K, You H, et al. (2007) POET: parameterized
optimizations for empirical tuning. In: 2007 IEEE Interna-
tional Parallel and Distributed Processing Symposium, Rome,
Italy, 26-30 March 2007, pp. 1-8. IEEE. DOI: 10.1109/
IPDPS.2007.370637.

Author biographies

Thiago SFX Teixeira is a PhD candidate in computer sci-
ence at the University of Illinois at Urbana-Champaign.
Prior to joining the University of Illinois, Thiago worked
for 6 years in the research and development of parallel
scientific applications for the oil and gas industry. Thiago
holds BS and MS in computer science from the Federal
University of Minas Gerais, Brazil. His master’s disserta-
tion was awarded as the best dissertation in computer archi-
tecture and high performance computing by the Brazilian
Computer Society in 2011.

William Gropp is the director and chief scientist of the
National Center for Supercomputing Applications and
holds the Thomas M. Siebel Chair in the Department of
Computer Science at the University of Illinois in Urbana-
Champaign. He received his PhD in computer science from

Stanford University in 1982. He was on the faculty of the
Computer Science Department of Yale University from
1982 to 1990 and from 1990 to 2007, he was a member
of the Mathematics and Computer Science Division at
Argonne National Laboratory. His research interests are
in parallel computing, software for scientific computing,
and numerical methods for partial differential equations.
He is a fellow of AAAS, ACM, IEEE, and SIAM and a
member of the National Academy of Engineering.

David Padua is Donald Biggar Willet Professor in engi-
neering in the University of Illinois at Urbana-Cham-
paign. He has served as program committee member,
program chair, or general chair to more than 70 confer-
ences and workshops. He was the editor-in-chief of
Springer-Verlag’s Encyclopedia of Parallel Computing
and is currently a member of the editorial board of the
IEEE Transactions of Parallel and Distributed Systems,
the Journal of Parallel and Distributed Computing, and
the International Journal of Parallel Programming. He
has supervised the dissertations of 35 PhD students. He
has published more than 170 papers in programming lan-
guages, compilers, tools, and parallel machine design. He
was awarded the 2015 IEEE Computer Society Harry H.
Goode Award. In 2017, he received an honorary doctorate
from the University of Valladolid in Spain. He is a fellow
of the ACM and the IEEE.

