Department: Novel Architectures
Editors: Volodymyr Kindratenko, kindr@ncsa.uiuc.edu

Anne Elster, anne.elster@gmail.com

High-Level Synt
Based Approac

Accelerating Sc
Codes on FPGAs

Ramshankar Venkatakrishnan, Ashish Misra,
and Volodymyr Kindratenko

National Center for Supercomputing Applications
(NCSA), University of lllinois

104

B TRADITIONALLY, HARDWARE DESCRIPTION Lan-
guages (HDLs), such as Verilog or VHDL, have
been used for programming Field-Programmable
Gate Arrays (FPGAs). However, this approach
requires an advanced knowledge of digital design
and computer architecture. Recently emerged
high-level design tools make it easier for the pro-
grammers to code complex designs in C/C++.
High-level synthesis (HLS)" and OpenCL2 are the
two leading high-level design platforms that are
becoming widely used for programming FPGAs.
Their proponents claim that these tools require
little to no knowledge of the hardware design
principles and can significantly improve devel-
oper’s productivity. In this article, we explore

Digital Object Identifier 10.1109/MCSE.2020.2996072
Date of current version 19 June 2020.

1521-9615 © 2020 IEEE

nes
N for

Published by the IEEE Computer Society C

ent

these two high-level design approaches from the
point of view of a software developer. We use
Xilinx Vivado HLS C/C++ ver. 201 9.1 and Xilinx
SDAccel OpenCL ver. 2019.1* to implement a
cross-correlation operation from scratch and
synthesize it for a Xilinx u250 Alveo FPGA board .’
The selected operation is at the core of convolu-
tional neural networks and is generally nontrivial
to implement using a traditional HDL methodol-
ogy, but is rather simple to implement using a
programming language, such as C. We opted not
to focus on the design optimization, but rather
getting a design that works on the FPGA with the
minimal time spent on its implementation. We
use the Xilinx SDAccel platform that provides
support for implementing both OpenCL-and HLS-
based kernels to run on an FPGA using OpenCL
drivers on the host platform. We also took note of
how capable each tool is in terms of optimization,

puting in Sci & Engineering

Authonzed licensed use limited to: University of lllinois. Downloaded on June 22 2020 at 18:31:18 UTC from IEEE Xplore. Restrictions apply.

without using tool-specific attributes or pragmas,
as well as how well it utilizes the available hard-
ware. We find that HLS tools are easy to learn and
the time to design is much shorter compared to
the HDL approach. However, a good knowledge
of digital design and the underlying FPGA archi-
tecture is still needed to deliver a high-perfor-
mance implementation.

OVERVIEW OF THE TOOLS

The OpenCL kernel was implemented using
the Xilinx SDAccel environment and the C-based
HLS kernel was implemented in Xilinx Vivado
HLS, and then brought into the SDAccel environ-
ment to integrate with the host side of the
application.

Xilinx Vivado HLS

The Vivado HLS compiler is used to convert
code written in C/C++ or SystemC into a register
transfer level (RTL) representation, which can
then be synthesized to run on an FPGA. From the
point of view of the end-user, the HLS compiler is
similar to other language compilers that are avail-
able for application development. This tool is sim-
ple to learn and use, as long as the designer has a
good knowledge of C or C4++. The overall design
approach consists of the following steps.

1. Compile, execute, and debug the algorithm
written in C/C++.

2. Synthesize the C/C++ algorithm into an RTL
implementation, optionally using user-guided
optimization directives.

3. Generate comprehensive reports and ana-
lyze the design.

4. Optimize the design to meet application
requirements.

5. Verify the Register Transfer Language (RTL)
implementation using a pushbutton flow.

6. Package the RTL implementation into a selec-
tion of Intellectual Property (IP) formats.

The last step is to package the RTL output
files as an IP core. There are three formats they
can be packed into depending upon the way in
which the IP is going to be used further in the
design process. In our case, we packed IP as a
Vivado IP catalog format and exported the gener-
ated xo file into SDAccel. This .xo file, which

July/August 2020

contains the actual kernel, will be integrated
with the OpenCL FPGA wrapper by the SDAccel
tools and can be loaded onto the FPGA from the
code executed on the host.

Xilinx SDAccel

The OpenCL-based design flow utilizes SDAc-
cel, an Eclipse-based integrated development
environment. We use C/C++ with OpenCL API
calls for the host software implementation, and
OpenCL for hardware kernel development. The
host application is built through using the stan-
dard gcc host compiler, and the FPGA binary is
built through a separate process that uses the
Xilinx xocc compiler. The overall design approach
consists of the following steps.

1. Code the desired kernel in OpenCL.

2. Run software emulation to ensure functional
correctness.

3. Run hardware emulation to generate host
and kernel profiling data.

4. Optimize kernel for performance using direc-
tives and code restructuring techniques.

5. Run hardware synthesis to generate the
FPGA kernel bit file.

6. Write host code using the OpenCL API to inter-
face with the kernel executed on the FPGA.

Note that nearly the same host code can be
used to interface with the FPGA kernel regard-
less of the way the kernel was produced, as
long as it was imported into SDAccel. Therefore,
we use the same host code to test both our
designs.

OpenCL IMPLEMENTATION

The source code of the cross-correlation
kernel implemented in OpenCL is shown in
Figure 1. The host code writes the data required
by the kernel into a memory bank on the FPGA
board. The kernel code then performs the com-
putation by accessing the data from that mem-
ory. Once the kernel execution completes and
the data are written back to the FPGA-attached
memory, the host code reads the data back
from the global memory and continues process-
ing as needed.

The input image, filter mask, and output
image are declared as global variables in our

105

Authonzed licensed use limited to: University of lllinois. Downloaded on June 22 2020 at 18:31:18 UTC from IEEE Xplore. Restrictions apply.

Novel Architectures

void krnl convolution (
__glebal int* input img,
__global int* input krnl,
__global int* output img,
int dim_img,
int dim krnl

(|
int sum;
int dim out=dim img-dim krnl+l;

/!
/
/!
1
/!

loop 2: for(int x=0; x<dim out; x++)
sum = 0;
loop 3:
loop 4:

for{int j=0:

}
}
output img[y*dim out+x] =

}

sum;

}

kernel attribute ((regd work group size(l,

Read-only input Image
Read-only input Kernel
Output Image

Input Dimension

Kernel Dimensions

loop 1: for(int y=0; y<dim out; y++) {

j<dim krnl; j++) {
for(int k=0; k<dim krnl; k++) {
sum += input_img[(y+j)*dim img+x+k]*input_krnl[j*dim krnl+k];

1, 1N

{

Figure 1. OpenCL kernel implementation.

kernel. Along with these variables, the image and
mask dimensions are also declared as function
arguments. The values for the function argu-
ments are written into the global memory by the
host code and are read in during kernel execu-
tion. The design consists of four nested loops
that are responsible for moving the mask across
the image horizontally and vertically. The design
uses a stride and padding equal to 1.

Compared to a straight OpenCL code, our ker-
nel uses one additional line of code, __attribute__
((reqd_work_group_size(1, 1, 1))), which speci-
fies working size of the kernel to be just one copy.

Once the host code and kernel code are cre-
ated, the next step is to build the application.
The build target can be chosen by the program-
mer. The SDAccel provides three such targets:
software emulation, hardware emulation, and
system. Our design was compiled and built using
the system option targeting the Xilinx u250 Alveo
FPGA board. The SDAccel generates reports that
can be used to analyze the timing, latency, and
area information of a design.

From the timing information we can, for
example, verify that the estimated frequency is
same as the target frequency. The area informa-
tion can be used to further guide the optimiza-
tion of the design.

106

VIVADO HLS C/C++
IMPLEMENTATION

In the HLS implementation, the hardware
kernel is created in C/C++ using the Vivado
HLS tool. The optimization and performance
validation are done in HLS. The major differ-
ence between OpenCL and Vivado HLS C/C++
kernel implementation is the use of HLS prag-
mas instead of OpenCL attributes. These prag-
mas are used to declare appropriate interfaces
for scalar and vector variables (see Figure 2).
The kernel acts as an accelerator in SDAccel
and is required to be modeled using the guide-
lines provided by SDAccel. Interfaces are mod-
eled as Advanced eXtensible Interface (AXI)
memory interfaces and scalar parameters
called by the value are mapped to an AXI4-Lite
interface. When creating interfaces, it is impor-
tant to specify the depth of the AXI ports—the
wrong depth size will result in a C/RTL simula-
tion mismatch.

Once the kernel design is complete, the C
simulation tool can be used to verify the design.
A simple testbench can be written to run the
C simulation. Once the functionality of the
design is verified, the C Synthesis tool is used to
synthesize the design to an RTL implementation.
A top-level function is required in the tool. The

Computing in Science & Engineering

Authonzed licensed use limited to: University of lllinois. Downloaded on June 22 2020 at 18:31:18 UTC from IEEE Xplore. Restrictions apply.

extern "C"

{

void conveolution hls(int

*input img, //

m_axi port=output img offset=slave depth=4 bundle=gmem
s_axilite port=input_img bundle=control

s_axilite port=input krnl bundle=control

s_axilite port=output img bundle=control

5 axilite port=dim img bundle=control

s_axilite port=dim krnl bundle=control

s axilite port=return bundle=control

int *input krnl, /7
int *output img, //
int dim img, 7
int dim_krnl /7
)

#pragma HLS INTERFACE m axi port=input

fpragma HLS INTERFACE m_axi port=input |

#pragma HLS INTERFACE

fpragma HLS INTERFACE

#pragma HLS INTERFACE

#pragma HLS INTERFACE

#fpragma HLS INTERFACE

#pragma HLS INTERFACE

#pragma HLS INTERFACE

int sum;

ap_int<8> dim out=dim img-dim krnl+l;

loop 1: for(int y=0; y<dim out; y++} {
loop 2: for(int x=0; x<dim out; x++)

sum=0;
loop 3: for(int j=0;

}
output img[y*dim out+x]=sum;

j<dim krnl; j++) {
loop_4: for(int k=0; k<dim krnl; k++) |
sum += input img[(y+])*dim img+x+k]*input krnl[j*dim krnl+k];

Read-only input Image
Read-only input Kernel
Output Image

Input Dimension

Kernel Dimensions

img cffset=slave depth=% bundle=gmem
krnl offset=slave depth=4 bundle=gmem

{

Figure 2. HLS C kernel implementation.

C Synthesis tools have several options to make
this simpler, such as echoing the progress of the
synthesis project to console and a GUI interface
that provides enhanced information hyperlinks
in the output messages, which provide more
information on the source of design issues and
how to resolve them. When synthesis is com-
plete, a report for the top-level function is gener-
ated. The report provides details on both the
performance and the area of the RTL design
and can be used to guide further performance
optimizations.

After successfully synthesizing the design,
the next step is to verify if the RTL is correct.
This is done using the C/RTL co-simulation tool.
When the verification completes, the last step in
the Vivado HLS design flow is to package the
RTL output as an IP. This is done using the
Export RTL tool that packages the RTL as a

July/August 2020

Xilinx object (.xo0) file that can then be included
in the SDAccel project. Thus, when creating a
new project in the Vivado HLS, it is important to
select the SDAccel Bottom Up Flow option,
which allows one to run HLS kernels in SDAccel.
A host code similar to the one used in the
OpenCL implementation can be used to run the
HLS kernel on the FPGA.

DISCUSSION

We have shown how to implement the cross-
correlation operation with the two programming
frameworks. The biggest challenge was to learn
how to use the tools and how to implement a
host code using API calls for creating platforms,
attributes, and contexts for executing a kernel
on the FPGA hardware. The design tools are
rather complex and the code implementation

107

Authonzed licensed use limited to: University of lllinois. Downloaded on June 22 2020 at 18:31:18 UTC from IEEE Xplore. Restrictions apply.

Novel Architectures

methodology is tailored more toward hardware
designers that software programmers.

The kernel code very closely resembles the
original C code, with some additional direc-
tives for guiding the compiler to properly
implement the intended design. However, the
kernels we have implemented were not opti-
mized, and only basic attributes or pragmas
were applied to enable proper functionality.
Our OpenCL implementation consists of 29
lines of kernel code and 131 lines of host
code, whereas the HLS kernel consists of 40
lines of kernel code and 154 lines of host
code. (Our host code also included a CPU ver-
sion of the kernel for verification.) Compared
with a traditional CPU-only implementation,
this is a similar code size.

A typical compilation time to generate the
complete FPGA design even for such a small ker-
nel is well over three hours on a multicore sys-
tem where multiple cores are used by the Xilinx
tools. This is, of course, a significantly longer
compilation time than software designers are
used to in more common environments.

Even though we have not applied any manual
optimizations, the compilers attempt to flatten,
unroll, and pipeline loops on their own, albeit
with limited success. For example, as reported
by HLS synthesis tools, loops 3 and 4 are flat-
tened and pipelined with a depth of 21 cycles
and a loop initiation interval of 2. The limiting
factor for the loop initiation interval is the fact
that the data is coming from a single memory
port that can only provide one input value on
each clock cycle. Both designs are reported to
work at 300 Mhz.

The kernel could be further optimized using
attributes or pragmas and code restructuring.
The OpenCL approach is somewhat easier for
software programmers who are not familiar with
hardware design, but even this approach is not
entirely friendly for those not familiar with the
hardware design terminology. The application
developer needs to be able to read hardware
synthesis reports and correlate the information
from these reports with their design. The tools
produce a substantial amount of reports in each
phase of the code compilation process, and
each of these reports contains information
instrumental in guiding the kernel optimization.

These reports are oriented toward hardware
designers.

Can software developers without knowledge
of hardware design principles use these platforms
to develop codes for FPGAs? Yes, but they will
have to learn a lot in the process. The Vivado HLS
approach is quite involved with all the verifica-
tion steps, IP generation, integration with SDAccel
project, etc., whereas OpenCL is easier for soft-
ware developers. However, even a naive imple-
mentation, which is what we have done here, is
relatively involved and time-consuming regard-
less of the framework used. And of course, any
performance optimizations will require an under-
standing of the specific FPGA board’s architec-
ture. For example, efficient utilization of the
available memory bandwidth on the u250 Alveo
FPGA board requires distributing data across
four DDR memory banks as well as defining global
pointers as 512-bit data types to sustain the maxi-
mum data bandwidth between the kernel and
DDR memory. This requires changes to the host
and kernel code to specify which bank is to be
used for which data buffer as well as splitting data
into several buffers. Software developers are
almost never concerned with such issues.

ACKNOWLEDGMENTS

This work was supported by the National
Science Foundation’s Major Research Instru-
mentation program under Grant 1725729, as
well as the University of Illinois at Urbana-
Champaign.

Il REFERENCES

1. G. Martin and G. Smith, "High-level synthesis: Past,
present, and future,” IEEE Des. Test Comput., vol. 26,
no. 4, pp. 18-25, Jul./Aug. 2009, doi: 10.1109/
MDT.2009.83.

2. J. Stone, D. Gohara, and G. Shi, "“OpenCL: A parallel
programming standard for heterogeneous computing
systems,” Comput. Sci. Eng., vol. 12, no. 3, pp. 66-72,
May/Jun. 2010, doi: 10.1109/MCSE.2010.69.

3. Vivado design suite user guide: High-level synthesis,
UG902 (v2019.1) July 12, 2019. [Online]. Available:
hitps:/fwww.xilinx.com/support/documentation/
sw_manuals/xilinx2019_1/ug902-vivado-high-level-
synthesis.pdf

Computing in Science & Engineering

Authonzed licensed use limited to: University of lllinois. Downloaded on June 22 2020 at 18:31:18 UTC from IEEE Xplore. Restrictions apply.

4. SDAccel development environment: Release notes,
installation, and licensing guide, UG1238 (v2019.1)
July 26, 2019. [Online]. Available: https:/www.xilinx.
com/support/documentation/sw_manuals/
xilinx2019_1/ug 1238-sdx-rnil.pdf

5. Getting started with alveo data center accelerator cards,
UG1301 (v1.4) December 18, 2019. [Online]. Available:
https:/Aww. xilinx. com/support/documentation/
boards_and_kits/accelerator-cards/1_4/ug1301-
getting-started-guide-alveo-accelerator-cards. pdf

Ramshankar Venkatakrishnan is a Research
Programmer at the National Center for Supercomput-
ing Applications. He received the master's degree
from University of lllinois at Chicago in 2015. Contact
him at rvenka21@illinois.edu.

Ashish Misra is a Postdoctoral Research Asso-
ciate at the National Center for Supercomputing
Applications. He received the master's and Ph.D.
degrees from Birla Institute of Technology and Sci-
ence, India, in 2008 and 2017, respectively. Contact
him at ashishm@illinois.edu.

Volodymyr Kindratenko is a Senior Research
Scientist at the National Center for Supercomputing
Applications. He received the Specialist degree
from the Vynnychenko State Pedagogical University,
Kirovograd, Ukraine, in 1993 and the D.Sc. degree
from the University of Antwerp, Belgium, in 1997.
Contact him at kindrtnk@illinois.edu.

TECHNOLOGY SOLUTIONS FOR THE ENTERPRISE

IT Professional seeks original submissions on technology
solutions for the enterprise. Topics include

We welcome arficles accompanied by web-based demos.
For more information, see our author guidelines at
www.computer.orgfitprofauthor.htm.

CALL FOR ARTICLES

» emerging technologies, e social software,

e cloud computing, e data management and mining,
* Web 2.0 and services, ® systems integration,

» cybersecurity, e communication networks,

» mobile computing, e datacenter operations,

e green IT, e [T asset management, and

= RFID, ¢ health information technology.

WWW.COMPUTER.ORG/ITPRO

.

July/August 2020

109

Authonzed licensed use limited to: University of lllinois. Downloaded on June 22 2020 at 18:31:18 UTC from IEEE Xplore. Restrictions apply.

