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Improved Saliency Detection in RGB-D Images
Using Two-Phase Depth Estimation
and Selective Deep Fusion

Chenglizhao Chen™, Jipeng Wei, Chong Peng™, Weizhong Zhang, and Hong Qin

Abstract—To solve the saliency detection problem in RGB-D
images, the depth information plays a critical role in distin-
guishing salient objects or foregrounds from cluttered back-
grounds. As the complementary component to color information,
the depth quality directly dictates the subsequent saliency detec-
tion performance. However, due to artifacts and the limitation
of depth acquisition devices, the quality of the obtained depth
varies tremendously across different scenarios. Consequently,
conventional selective fusion-based RGB-D saliency detection
methods may result in a degraded detection performance in
cases containing salient objects with low color contrast coupled
with a low depth quality. To solve this problem, we make
our initial attempt to estimate additional high-quality depth
information, which is denoted by Depth™. Serving as a com-
plement to the original depth, Depth™ will be fed into our
newly designed selective fusion network to boost the detection
performance. To achieve this aim, we first retrieve a small group
of images that are similar to the given input, and then the inter-
image, nonlocal correspondences are built accordingly. Thus,
by using these inter-image correspondences, the overall depth
can be coarsely estimated by utilizing our newly designed depth-
transferring strategy. Next, we build fine-grained, object-level
correspondences coupled with a saliency prior to further improve
the depth quality of the previous estimation. Compared to the
original depth, our newly estimated Depth™ is potentially more
informative for detection improvement. Finally, we feed both
the original depth and the newly estimated Depth™ into our
selective deep fusion network, whose key novelty is to achieve an
optimal complementary balance to make better decisions toward
improving saliency boundaries.

Index Terms—RGB-D saliency detection, inter-image corre-
spondences, low-level saliency, selective deep fusion.

I. INTRODUCTION AND MOTIVATION
MAGE saliency detection aims to rapidly and accurately
locate salient objects in a given scene, and currently, it fre-
quently serves as a preprocessing tool in various applications
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including object tracking [1], video saliency detection [2]-[5],
image quality assessment [6], background subtraction [7], [8],
and object recognition [9].

Different from the conventional RGB image saliency [10]-
[13], which has achieved remarkable progress in recent years,
RGB-D saliency is a relatively new research topic. Compared
to RGB image saliency [14], [15], which relies its saliency
mechanism in RGB-spanned multiscale/multilevel contrasts
that might encounter feature conflict, the depth information in
RGB-D images provides a new venue to potentially alleviate
this problem.

Generally, the current mainstream saliency-revealing solu-
tions in the depth channel [16] usually follow the assumption
that salient objects should be located at different depth lay-
ers to their nearby, non-salient surroundings. Thus, quite a
few uniqueness-based depth-saliency-revealing strategies have
been proposed, including the depth customized enclosure
distribution [17], [18], the center-surround difference compu-
tation [19], and the multiscale uniqueness computation [20],
[21]. As a result, the saliency detection performance can be
significantly improved by simply fusing the depth saliency
with the RGB saliency.

However, there still exists one persistent problem, which
causes the current state-of-the-art RGB-D methods to reach a
performance bottle-neck; i.e., the depth information itself may
not always be trustworthy to separate a salient object from its
non-salient surroundings (see the demonstrations in Fig. 1).
Moreover, saliency clues revealed from those untrustworthy
depths may result in an even worse fused saliency. Therefore,
the main focus of this paper is to estimate an additional high-
quality depth map to alleviate the abovementioned difficulty.
The key rationale of our method is based on the phenomenon
that images with similar scenes should exhibit a similar depth
layout [22], [23]. Thus, we estimate the depth by transferring
the depth information from other RGB-D images.

Our depth estimation method consists of two compo-
nents: coarse-level depth estimation and saliency-aware depth
enhancement. We utilize the former component (i.e., coarse-
level depth estimation) to estimate the initial image-level
depth; the depth-transferring procedure mainly considers both
the mid-level and the object-level inter-image similarity. Next,
we utilize the latter component (i.e., saliency-aware depth
enhancement) to further improve the depth quality from the
saliency perspective; the core rationale is to enlarge the
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Fig. 1. The motivation behind our method. Conventional selective fusion-
based RGB-D saliency methods (e.g., [20] and [17]) easily produce imperfect
detection results for RGB-D images with low-quality depth. Thus, our method
attempts to estimate a novel depth map, which can be regarded as as a
complementary component to the original depth, to increase the detection
performance.

difference in depths between those potentially salient regions
from their non-salient surroundings, making the estimated
depth map more suitable for the subsequent saliency detection.
Then, both the original depth and the novel depth will be
fed into our newly designed deep fully convolutional network
to reveal image-level saliency clues. These revealed saliency
clues will be further utilized to reduce the problem domain
of our subsequent nonlocal selective deep fusion network,
whose key focus is to ensure an effective complementary state
between multichannel data while avoiding feature-conflict-
induced learning ambiguity. Specifically, the major contribu-
tions of this paper can be summarized as follows:

« We propose a novel two-phase, exemplar-driven approach
to the estimation of relatively trustworthy depth. Our
newly estimated depth may potentially alleviate the learn-
ing ambiguity when both the RGB information and the
depth information are incapable of separating the salient
object from its non-salient surroundings.

« We design a novel deep selective saliency fusion network
to compute an optimal complementary state between the
RGB information, the original depth, and the newly esti-
mated depth. Compared to the conventional end-to-end
fusion schemes, our method makes full use of the image-
level saliency assumptions to reduce the problem domain
of nonlocal selective fusion, which is more suitable for
robust RGB-D saliency detection.

II. RELATED WORKS
A. Saliency-Revealing Methods for the Depth Channel

RGB-D saliency detection is a rapidly growing field. In its
early stages, studies consider depth as an additional infor-
mation to formulate saliency clues to balance RGB saliency,
which mainly focuses on the designation of the saliency-
revealing strategy in the depth channel. Maki er al. [24]
proposed to utilize an early computational model of depth-
based attention by integrating stereo disparity, image flow, and
motion. Zhang et al. [25] proposed to utilize both the depth
contrast and the motion contrast to formulate stereoscopic
visual attention for video data. Ju et al. [19] proposed to
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formulate depth saliency clues via the anisotropic center-
surround difference to simultaneously enable the saliency-
revealing scope covering both the fine-grained global struc-
ture and coarse-grained local detail. Then, Feng ef al. [18]
proposed to measure the background enclosure degree to
represent the saliency of the target region in the depth channel.
Additionally, to respect one important, common phenomenon
of salient objects (i.e., salient regions are often characterized
by an unusual surface orientation profile different from its
nearby surroundings), Feng et al. [26] proposed to utilize the
histogram of surface orientation to measure the corresponding
saliency degree in the depth channel. Although many improve-
ments have been made, the hidden core rationale of these
methods [20], [27] still follow the general principle of conven-
tional multiscale/multilevel/multidirectional depth contrast.

B. Handcrafted Fusion-Based Methods

Another branch of RGB-D saliency detection methods is
fusion-based methods, and their rationale mainly focuses on
pursuing an optimal complementary state between color and
depth. Peng er al. [28] proposed to utilize the Bayesian integra-
tion scheme to fuse previously computed multistage saliency
clues into one saliency prediction. Ren et al. [29] proposed
to estimate multiple saliency priors from the depth channel,
e.g., the background, depth, and orientation priors. Then, these
priors are integrated with the color saliency to jointly boost the
detection performance. More directly, Guo et al. [30] adopted
the multiplicative-based fusion strategy to fuse RGB saliency
clues with depth saliency clues. Although fusion-based RGB-
D saliency detection methods can outperform conventional
methods that rely on color information only, the possible
performance improvement of these methods is limited because
it is difficult for these handcrafted fusion strategies [31] to
achieve an optimal balance between the RGB information and
the depth information.

C. Deep Fusion-Based Methods

Benefiting from the recently developed deep learning frame-
works, the RGB-D saliency fusion problem can now be
selectively balanced; i.e., the final fused saliency map may be
automatically biased toward to the RGB channel or the depth
channel. Qu et al. [20] adopted a CNN to selectively fuse mul-
tiple previously handcrafted low-level saliency clues to achieve
high-performing RGB-D saliency prediction. Similarly, Shige-
matsu et al. [17] extracted multiple mid-level, handcrafted
depth features as inputs for a network with two fully connected
layers to make the saliency fusion process more robust.
By using the newly designed cross-modal residual function,
Chen and Li [32] further improved the complementary state
between the RGB and depth features from a multilevel,
deep fusion perspective. Although many improvements have
been made; for example, the deep learning framework-based
methods easily reach the performance bottleneck, which is
mainly caused by limited depth quality (i.e., either induced
by the hardware limitations or external disturbances). Thus,
we propose to follow the exemplar-driven approach [33] to
ensure an acceptable depth quality, and then we feed it into
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The functional pipeline of our method. Our method consists of two main steps. Step 1 estimates an additional depth map of the given input image;

Step 2 utilizes our newly designed selective deep fusion network to achieve high-performance RGB-D saliency detection by obtaining an optimal fusion

balance.

our newly designed selective deep fusion network to improve
the RGB-D saliency detection performance. Moreover, due
to overfitting, it is difficult for a deep learning-based depth
estimation solution [34] to benefit RGB-D image saliency
detection.

III. METHOD OVERVIEW

As shown in Fig. 2, our method mainly consists of two
components: the depth estimation component and the selective
deep fusion component. Given an input image, we utilize the
common element to retrieve a subgroup of images sharing
similar scenes to the given input. Then, for each image pair
(i.e., the given input image and one of the retrieved subgroup
images), we propose to coarsely build the inter-image regional
correspondences by interactively considering the pixel-level
similarity, the mid-level similarity and the object-level simi-
larity. Once the coarse-level inter-image correspondences have
been built, we use them in our coarse-level depth estimation
(see Sec. IV-A). Based on the coarsely estimated depth, we fur-
ther improve its quality by enlarging the depth differences
between those potentially salient regions and its non-salient
surroundings (see Sec. IV-B). Then, we utilize our newly
designed selective deep saliency fusion network to achieve
an optimal balance between the RGB information, the original
depth information, and our newly estimated depth information,
which will be further discussed in Sec. V.

IV. TWO-PHASE DEPTH ESTIMATION

n [33], it has been proven that two images with simi-
lar scenes tend to have similar saliency layouts, and here,
we assume that such rationale is also effective for the “depth
channel”, i.e., two images with similar RGB topology should

have similar overall depth layouts. Thus, we adopt GIST
features to retrieve subgroup RGB-D images with similar
overall scene layouts (i.e., top-K images). That is, 1) we
compute the GIST feature for each image in our database;
and 2) we rank all the images in our database using the
L2 distance in the GIST features between the input image
and the other images in the database. Then, we determine
dense inter-image correspondences between the given image
and each its retrieved subgroup image (see Sec. [IV-A) and use
it to transfer depth information as the coarsely estimated depth
layout of the given image.

Specifically, the depth value of salient objects between two
aligned RGB-D images may be different, and the depth map
produced using the depth-transferring strategy tends to obscure
the area around the salient object (see Depth™ in Fig. 3),
and it is difficult to use the depth map to effectively benefit
the salient object detection problem. Therefore, based on the
previously estimated coarse depth layout, we further conduct
another round of depth estimation (see Sec. IV-B) to pursue
a distinct depth layer for the salient object compared to its
non-salient nearby surroundings (see Depth™ in Fig. 3).

A. Coarse-Level Depth Estimation

To transfer depth information from the retrieved subgroup
of RGB-D images, we need to build the inter-image corre-
spondences beforehand. Moreover, because regions belonging
to an identical object tend to exhibit similar depth values,
we simultaneously use both the object-level homogeneity and
the non-local similarity to build the inter-image correspon-
dences. Given an input RGB-D image, we initially adopt the
classic SLIC [35] algorithm to conduct mid-level superpixel
decomposition and use the EdgeBox [36] method to propose
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object-level rectangles. Then, the inter-image correspondences
can be built by interactively conducting the binary alignments
between superpixels and object proposals over the classic SIFT
flow method [37], provided pixel-wise correspondences.

In general, the SIFT flow algorithm consists of match-
ing densely sampled, pixel-wise SIFT features between two
images while preserving spatial discontinuities. To achieve
this goal, the SIFT flow algorithm converts the matching
problem into a binary alignment problem by solving the energy
minimization problem. Therefore, the dense binary matching
from the SIFT flow algorithm may be slightly different from
the conventional image matching problem, in which the former
does not need to use a predefined hard threshold to produce
the pixel-level correspondence. Meanwhile, because the SIFT
flow part is slightly beyond the main focus of our work,
we directly use the classic, simple SIFT flow algorithm [37] as
the preprocessing tool to obtain the initial inter-image dense
correspondences.

The pixel-level correspondences provided by the SIFT flow
method can be represented by matrix Q, € {0, 1} WxHWxH
where W and H represent the image width and image height,
respectively, and the non-zero elements in Q,, represent the
existence of pixel-wise correspondence.

Thus, based on pixel-wise correspondences Q,, we adopt
the majority voting strategy to measure the superpixel-level
similarity § € [0, 11V*N and then use it to formulate the
mid-level inter-image correspondences; i.e., Qy, € {0, 1}V >V,
where N represents the superpixel number and Q;, is the
column-wise correspondence subject to Qy, x IVXD = N
Here, we formulate the superpixel-wise similarity (S) as Eq. 1.

num{<(Q,,i) NE(Q,, j)}
num{<(Q,,i) UZL(Q,, DY

where the superscripts I and IS denote the input image,
respectively, and one of its retrieved subgroup images and
spl.l denotes the i-th superpixel in the input image; function
¢(Q,,1) returns the pixel-wise correspondences of the i-th
superpixel; function num{-} returns the total number of ele-
ments in its input.

Based on the superpixel-wise similarity (i.e., function §
in Eq. 1), the superpixel-level correspondences Qy, can be
formulated as:

(1)

S(spl.sp’®) =

1, if Sspl,sp™) = max{S(sp}, spi)}
.. N — e’
Q,, (i, j) < keft,2,..n) (2)

0, otherwise.

Once the superpixel-level inter-image correspondences (Qy),
in Eq. 2) have been computed, we can easily build the object-
level inter-image correspondences (Eq. 4) using the object-
level similarity. Here, we represent the object-level inter-image
correspondences as Q,;, € {0, 1}Y*M where M represents the
object proposal number (empirically set to 10) and Q,,, is also
column-wisely subject to Q,, x 1M*1 = 1M*1 We formulate
the object-level similarity O € [0, 1]1M*™ as Eq. 3.

{(Qyp, 1) N Qsp, /)

0 I IS — ,
©i- %) = Q) UL (Qsyr )

i»0j

3)
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Fig. 3.  Depth quality improvements achieved by our two-phase depth

estimation.

where o} denotes the i-th object proposal in the given image
I and function {(Qy,,i) returns the previously established
superpixel-wise inter-image correspondences of the i-th object
proposal. Thus, we represent the object-level correspondence
matrix Q,; as follows:
1, if 0(0}, o™%) = max {0(0}, ois)}
R —_—
Qob (l, J) <~

0, otherwise.

ker,2,..my (4

Specifically, instead of directly using the pixel-wise corre-
spondences Q,, provided by the SIFT flow method, we choose
to use the mid-level superpixel correspondence matrix Q)
because of the following reasons:

1) the mid-level decomposition (i.e., superpixels) can effec-
tively preserve the boundary information to produce robust
object-level correspondences;

2) it can effectively alleviate the computational burden.

Thus far, the object-level inter-image correspondences Q,,,
are already capable of guiding the transference of depth values
between two aligned object proposals in the object-level depth
estimation. However, due to the absence of local details,
it is difficult to use the object-level depth to improve the
saliency detection performance. To improve it, for each pairs
of already aligned object proposals, we recursively conduct
the superpixel-level realignment to obtain accurate inter-image
correspondences, which can be formulated as a minimization
problem:

if Qupli. j) = 1,
argmin|| 3 > S(spisspi®) x Qs (k. Dl
f

keo} leof.s

s, Qp x 190 =141, (5)

where Q; € {0, 1}4%4 represents the final inter-image, non-
local correspondences, d = max{size(o}), size(o?s)}, function
size(-) returns the superpixel number of the corresponding
object proposal and the similarity measurement S(-) is iden-
tical to that in Eq. 1. We also fill in the missing elements
in Q; with dummy nodes. In fact, Eq. 5 can be efficiently
solved by the Hungarian algorithm [38] in polynomial time.
To this end, we coarsely estimate the depth information (cD)
by using the correspondences provided by matrix Q s, which
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can be formulated as:

K
Dy = %Z[Z;Qﬁb(i,j)- {le}(u, v -DY1 . (6)

k=1

only if spueolI and spveo}s
where cD, denotes the coarsely estimated depth information
of the u-th superpixel, Z denotes the total transferred time, D{f
denotes the original depth value of the v-th superpixel in IS,
and K is the total number of images in IS.

We also show the qualitative demonstrations of the coarsely
estimated depth in the 1%t-round coarse depth column of Fig. 3.
The postprocessed results can be found in the Depth™ column
in Fig. 3, which is obtained by applying a spatial weighting
scheme (we follow the suggestion of [27]) over the estimated
coarse depth cD.

B. Second-Round Depth Estimation

In general, the coarsely estimated depth (cD, Eq. 6) is
generally reasonable, yet the depth quality (Depth™) may still
be incapable of effectively benefiting the subsequent RGB-D
saliency detection due to its obscured local details. Moreover,
the quality of cD also heavily relies on the following 3 aspects:

1) the original depth quality of the retrieved sub-group
RGB-D images (IS);

2) the similarity degree between the given input RGB-D
image (I) and the retrieved subgroup of RGB-D images (IS);

3) the accuracy of the SIFT flow algorithm provided pixel-
level inter-image correspondences (Q,,).

Since the former 2 aspects are objectively determined
by either the RGB-D image database or the depth-sensing
equipment, here we mainly focus on the last aspect to further
improve the quality of our estimated depth map.

In general, the SIFT flow method itself is heavily sensitive
to both scale variations and movement (or view-angle-change)-
induced displacements. Thus, the SIFT flow method provides
pixel-level inter-image correspondences (Q,,) that may become
untrustworthy if the salient object undergoes fast movement
coupling with extensive scale variation. Therefore, based on
the previously estimated coarse depth map cD, we perform
another round of depth transference, which is saliency-aware
via enlarging the different in depth between those potentially
salient regions and its non-salient nearby surroundings.

To locate potentially salient regions, here we formulate our
coarse-level saliency (cS) via replacing the last element DES
(Eq. 6) with the corresponding saliency ground truth of IS
(salGTe {0, 1}); see Eq. 7, in which all other components are
identical to those in Eq. 6. In fact, the computation of ¢S can be
regarded as a byproduct of our coarse-level depth estimation,
which has almost no additional computational costs.

K
Su= 2 DU Y Qi) (X Q) - salGTHI, ()

k=1 i v

only if spueo} and sp‘,eo}s

The pictorial demonstrations toward the transferred saliency
(cS) can be found in the transferred GT in Fig. 2. Then, based
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Fig. 4. Pictorial demonstration toward the main steps to build inter-
image correspondences via interactively considering both the “object-level
homogeneity” and the “non-local similarity”.

on cS, we perform object proposal ranking via Eq. 8 to select
one rectangular box (so) to coarsely locate the salient object.

I [IG © Rect(cS, i)|]1

SO <— arg max
oi Gl

where o; denotes the i-th EdgeBox-provided object pro-
posal [36] in the given input RGB-D image, function
Rect(cS, i) returns the transferred saliency value of the i-th
object proposal, G represents the Gaussian function with
o = 0.1 of identical size to the given object proposal, Score;
represents the objectness score of the i-th object proposal, and
the balance parameter A; can be automatically selected via
performing parameter optimization (method of least squares)
over the dataset IS.

Due to the availability of the salient ground truths, for
each RGB-D image in the retrieved subgroup IS, the salient
objects can also be precisely located and then tightly warped
by rectangular boxes, and we denote these boxes by so'S.

Once both the salient object in the input RGB-D image (I)
and the salient ground truths in the retrieved subgroup images
(IS) have been obtained, we will conduct second-round depth
transference to enhance the estimated depth, which can be
formulated by Eq. 9.

+ A1 - Score;,  (8)

K

1
D(sp,) = 5 > (3 Qhu(uw.0)-DF} ©)

k=1 [

only if sp,esol and sp,esol®

where K is the total number of images in IS, fD(sp,) denotes
the transferred depth information of the u-th superpixel
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Fig. 5. Depth-quality comparisons between the original depth (Depth) and our newly estimated depth (Depth™). By feeding Depth and Depth™ to the simple
RGB-D deep saliency model [17], we regard Depth quality>Depth™ quality only if the Depth-corresponding maximum F-measure (saliency predictions) is

larger than the Depth™ -corresponding maximum F-measure, and vice versa.

(belonging to the coarsely located salient object rectangle sol
from Eq. 8), and Q’S‘ 1 denotes the superpixel-level correspon-
dences between the target rectangle so! and the k-th retrieved
rectangles so'S. The detailed steps can be summarized as
follows:
1) perform a new round of pixel-wise SIFT flow alignments
between so! and so'S to obtain Qp;
2) based on Q,, we further compute the superpixel-level
correspondences (similar to Eq. 2) to obtain Qy,; in Eq. 9.
To this end, we directly formulate the final estimated depth
information finalD via simply applying additive fusion as
follows:

finalD < cD(Eq. 6) + fD(Eq. 9). (10)

Here, we will provide a pictorial demonstration (Fig. 4) to
review the main steps raised above. As shown in the top row of
Fig. 4, the pixel-wise inter-image correspondence-based depth
transference may easily lead to an estimated depth map with
poor overall layout, which is mainly induced by the lower
consideration of the mid-level depth homogeneity. To address
this problem, we build inter-image correspondences by inter-
actively considering object-level homogeneity and nonlocal
similarity. Thus, we can output a depth map with a much
more reasonable overall depth layout (see the red arrow in
the middle row of Fig. 4). Then, we use second-round depth
transference to further improve the details of the estimated
depth (see the pictorial demonstration in the bottom-left corner
of Fig. 4).

C. Saliency-Aware Depth Enhancement

From the RGB-D saliency-revealing perspective, a desired
finalD should simultaneously possess the following attributes:

1) the estimated depth value of the salient object should be
different from its non-salient nearby surroundings;

2) regions inside the salient object should have similar depth
values.

To ensure these attributes, we propose to take full advantage
of the transferred saliency (cS, Eq. 7) to further enhance the
depth quality. That is, we update finalD (Eq. 10) as follows:

finalD(sp;) < 0.5 - finalD(sp;)
(1-0.5) - sign(Drg — DBG)
1 + exp(—abs(Drg — Dpa))’

where Dpg denotes the spatially weighed depth of the i-th
superpixel sp; (see Eq. 12) and Dpg denotes the transferred
depth toward sp; non-salient nearby surroundings (see Eq. 13).

DrG(sp;) =

jeb

(1)

exp{—w1 - CDist(sp;, sp;)} - finalD(sp;)

>

exp{—w - CDist(sp;, sp;)}
(12)

where 6 determines the nonlocal nearby neighborhood (with
a superpixel center coordinate L2 distance < 45) of the i-th
superpixel sp;. Function CDist(sp;, sp;) returns the L2 RGB
distance between two given superpixels, and w; is a weighting
parameter.

DiG(sp) =

jeo

exp{wy - SDist(sp;, sp;}) - finalD(spj)
exp{w, - SDist(sp;, sp;)}

13)

>

where > 1is another weighting parameter and function
SDist(sp;, sp;) returns the L2 saliency distance (i.e., ¢S, Eq. 7)
between two given superpixels.

We demonstrate the updated finalD in the second-round fine
depth column of Fig. 3. We also adopt the commonly used
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spatial weighting scheme [12], [39] to postprocess the newly
estimated finalD, and the depth quality differences between
the unsmoothed depth maps (i.e., the first-round coarse depth
vs the second-round fine depth) and the smoothed depth maps
(i.e., Depth™ and Depth™) can be found in Fig. 3.

Specifically, we summarize the rationale of our saliency-
driven second-round depth enhancement as follows:

1) we utilize the objectness prior to handling the common
scale/displacement-sensitive limitation of the adopted SIFT
flow method;

2) we further enlarge the depth difference between the
color-similarity-indicated regions (Eq. 12) and the ¢S (Eq. 7)-
determined non-salient nearby surroundings (Eq. 13).

V. COMPUTATION OF DEEP SALIENCY AND SELECTIVE
FuUsIioN

Thus far, we have already obtained the estimated depth map
(i.e., Depth™). As we mentioned before, the newly estimated
Depth™ is informatively complementary to the original depth
information (denoted by Depth). Here, we demonstrate the
quality quantitative comparisons between the Depth and the
Depth™ in Fig. 5. As shown in Fig. 5, almost 17% of the time,
Depth™ outperforms Depth in RGB-D saliency detection. To
achieve an optimal complementary state between Depth and
Deptht, we propose to reveal the low-level saliency clues
from Depth and Depth™t first. These newly revealed low-
level saliency clues will jointly improve the RGB-D saliency
detection via our newly designed selective fusion network.

A. Image-Level, Low-Level Saliency Fusion

Here, we will introduce the low-level saliency computation
to formulate the saliency clues either from the RGB or the
Depth/Depth™ features. To achieve this computation, we pro-
pose to adopt three commonly used handcrafted features,
including the local/global/boundary contrast computation [27],
to reveal the low-level saliency clues. We represent these
computed low-level saliency clues (i.e., lowS and lowS™) in

Image-level Deep Saliency Fusion

Multi-scale Non-Local Selective Saliency Fusion
(MNSSF)

The architecture of our newly designed network, which mainly consists of two subnetworks: the IDSF network and MNSSF network.

Original
Depth

Original
Depth+

DepthSal DepthSal+ GT

Fig. 7. Pictorial demonstration of our lowS (Eq. 14) and LowS™ (Eq. 15)
clues; the final saliency predictions can be found in the last column.

Eq. 14 and Eq. 15.

lowS = {loc(RGB), glo(RGB), bou(RGB),
loc(Depth), glo(Depth), bou(Depth)},

lowS™ = {loc(RGB), glo(RGB), bou(RGB),
loc(Depth™), glo(Depth™), bou(Depth™)}, (15)

(14)

where loc(-) denotes the local contrast computation with a
contrast computation range of 50, glo(-) denotes the global
contrast computation, and bou(-) represents the boundary
contrast [40]. It should also be noted that we conduct all
the abovementioned low-level saliency computations over the
mid-level superpixels, and the component qualitative demon-
strations can be found in Fig. 7.

Since these low-level saliency clues are complementary to
each other, we propose to fuse lowS and lowS™ into single
saliency maps (i.e., DepthSal and Depth™Sal) using our IDSF
(image-level deep saliency fusion) network (see the network
structure in Fig. 6). Our IDSF network receives 6-channel,
low-level saliency clues as inputs. All these inputs are fed into
8 fully convoluted layers to automatically conduct selective
saliency fusion by regressing the hidden parameters toward
the given saliency ground truth:

DepthSal = SW{dec[con(lowS, ©.), O]},
Depth™Sal = SW{dec[con(lowS™, ®,), O4l},

(16)
a7
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The quantitative comparisons between our method and 16 state-of-the-art methods including ACSD14 [19], LMH14 [28], GP15 [29], DHS16 [41],

DCMCI16 [21], LBE16 [18], MDF16 [11], DRFI17 [42], MDC17 [43], DSS18 [10], BDT17 [17], DF17 [20], RAS18 [44], PICA18 [45], PDNetl8 [46],
and RADF18 [47] in the NLPR [28], NJUD [19], DEC [48] and FLSD [49] datasets. The first row shows the PR curves, the second row demonstrates the
F-measure curves, and the third row demonstrates the corresponding precision, recall, and F-measure after using an adaptive binary threshold.

where SW{-} denotes the common thread superpixel-wise spa-
tial weighting operation, which is identical to the one adopted
in Sec. IV-B, aiming to sharpen the depth boundary. dec and
con represent the deconvolution layers and the convolutional
layers, respectively. All the parameters of the convolution (®.)
and deconvolution (®,) layers are learnable.

Thus far, we have already obtained the Depth-based saliency
assumption DepthSal and the Depth™*-based saliency assump-
tion Depth™Sal, and we propose to further perform non-
local selective saliency fusion in a multiscale manner to
jointly improve the RGB-D saliency detection performance
via simultaneously feeding both DepthSal and Depth™Sal
into our newly designed deep network MINSSF (multiscale,
nonlocal selective saliency fusion); see the demonstrations in
the middle-bottom row of Fig. 2.

B. Multiscale, Nonlocal Deep Saliency Network

Since our newly estimated depth information, Depth™,
is complementary to the original depth information, Depth,
there also exists a similar complementary relationship between
the newly computed image-level saliency, i.e., DepthSal and
Depth™Sal. Moreover, since the previously obtained cS (Eq. 7)
can coarsely locate the salient object, we utilize it to reduce
the RGB-D saliency revealing problem domain. Here, we pro-
pose to utilize multiscale, nonlocal deep features coupled
with one strong regressor to enlarge the feature margin
between the salient foregrounds and its non-salient nearby
surroundings.

We formulate the inputs of our deep network MINSSF as
6-channel data (D6, Eq. 18), i.e., DepthSal, Depth™Sal, cS,
and RGB. We follow the [11]-proposed multiscale (local and
nonlocal deep feature concatenation, see the yellow rectangles

in Fig. 6), superpixel-wise VGG16 deep features (with dimen-
sions of 4096+4096) to represent the non-local contrast, see
Eq. 18.

Li = FC6(F;), F; < cat{®ioc(spi, D6), Onon(spi, D6)}, (18)

where L represents the binary saliency ground truths, FC6
denotes the 6-layer fully connected network, cat{-,-} is the
concatenation operation, ©jo¢/non denotes the local/nonlocal
VGGI16 deep features, and sp; and D6 denote the i-th super-
pixel corresponded multi-scale topology and the 6 channel
inputs, respectively. To achieve multiscale detections, we vary
the superpixel decomposition size in both the training and test-
ing stages to further increase the detection result robustness.
The detailed network architecture can be found in Fig. 6, and
more implementation details can be found in the next section.

VI. EXPERIMENTS AND DISCUSSION
A. Implementation Details

We implement our method using MATLAB 2016b with
CAFFE. We oversegment all the input RGB-D images into
two scales; i.e., we initially assign the number of superpixels
{300, 500} to handle the scale problem. We empirically assign
the number of retrieved subgroup RGB images K (Sec. IV),
the weighing parameter w; (Eq. 12) and w» (Eq. 13) as
10, 0.01, and 0.1, respectively. All of these parameters are
fixed throughout all the experiments. All the evaluations were
conducted on a workstation with an NVIDIA GTX 1080Ti
GPU and an Intel Xeon W-2133 CPU (6 cores with 12 threads)
and 32 GB RAM. Meanwhile, we randomly select 1500 RGB-
D images from the adopted datasets for training and use
the remaining data for testing. We trained the network for
50k iterations using stochastic gradient descent (SGD) with a
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Fig. 9. Qualitative comparisons between the GIST-based image retrieval
strategy and the “randomly picking one” scheme.

—MNSSF using All DepthSal and ¢S and Depth* Sal
‘1 --MNSSF using Both DepthSal and ¢S (Eq. 7)

\| —MINSSF using DepthSal Only

: DepthSal (IDSF using Original Depth, Eq. 16)

\| --Depth*Sal (IDSF using Depth*, Eq. 17)

E --IDSF using Depth™ (Eq. 6)

F-Measure

100 150
Threshold

Fig. 10.  Component evaluation results (i.e., the F-measure curve) in the
NJUD [19] dataset.

moment of 0.9, a weight decay of 0.005, and a learning rate
of 0.001.

B. Datasets

We conducted many quantitative experiments to validate the
effectiveness of our method. We also compared our method
to 16 state-of-the-art methods in 4 publicly available RGB-D
datasets ( NLPR [28], NJUD [19], DEC [48] and FLSD [49])
to demonstrate the advantages of our method. The NLPR
dataset contains 1000 RGB-D images captured by a Microsoft
Kinect device in both indoor and outdoor scenes. The NJUDS
dataset contains 2000 RGB-D images. The depth maps are
synthesized using an optical flow method. The LFSD dataset
contains 100 RGB-D images with depth information captured
by a Lytro light field camera. The DEC dataset contains
135 RGB-D indoor images sensed by a Microsoft Kinect
device.

C. Component Evaluation

To validate the effectiveness of our method, we perform
the component evaluation via F-measure curves over the
entire testing dataset (see the details in Fig. 10). As shown
in Fig. 10, the combination directly feeding Depth™ into the
IDSF (image-level deep saliency fusion) network exhibits
the worst performance. Then, by replacing Depth™ with
Depth™, the saliency detection performance can be remarkably
improved because Depth™ can effectively enlarge the depth
difference between those potentially salient regions and their
non-salient nearby surroundings. It should also be noted that
the original Depth can generally outperform Depth™, which
is consistent with our previous quantitative comparison of the
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TABLE I

QUANTITATIVE COMPARISONS BETWEEN THE GIST-BASED IMAGE
RETRIEVAL STRATEGY AND THE “RANDOMLY PICKING ONE”
SCHEME IN THE 4 PUBLICLY AVAILABLE DATASETS. THE ADOPTED
EVALUATION METRICS ARE FROM [50]

Metric maxF  S-measure MAE meanFm

GIST 0.889 0.887 0.057 0.904 0.910 0.928 0.864 0.857

adpEm  meanEm maxEm  adpFm

=}

7

Z Rand 0.662 0.553 0.333 0.405 0.518 0.757 0.627 0.499
(d GIST 0.897 0.900 0.032 0.917 0.928 0.971 0.794 0.826
2 Rand 0.735 0.665 0.174 0.647 0.663 0.897 0.531 0.510
E GIST 0.877 0.881 0.038 0.883 0.906 0.952 0.758 0.800
'i' Rand 0.667 0.592 0.232 0.551 0.577 0.833 0.479 0.440
g GIST 0.888 0.888 0.050 0.888 0.912 0.940 0.841 0.845
Z  Rand 0.615 0.531 0.346 0.422 0.505 0.733 0.570 0.467

TABLE I

QUANTITATIVE PROOFS OF THE PERFORMANCE DEGRADATION AFTER
REPLACING THE ESTIMATED DEPTH MAP Deptht BY A COARSELY
ESTIMATED SALIENCY MAP. THE ADOPTED EVALUATION METRICS
ARE FrROM [50]

Metric maxF  S-measure MAE meanEm  maxEm meanFm

Depth+  0.889 0.887 0.057 0.904 0910 0.928 0.864 0.857
S 0.825 0.829 0.088 0.873 0.857 0.878 0.821 0.806

Depth+  0.897 0.900 0.032 0917 0.928 0.971 0.794 0.826
S 0.880 0.894 0.037 0.919 0.922 0.959 0.797 0.822
Depth+ 0877 0.881 0.038 0.883 0.906 0.952 0.758 0.800
S 0.873 0.881 0.038 0.886 0.906 0.950 0.761 0.801

Depth+  0.888 0.888 0.050 0.888 0.912 0.940 0.841 0.845
S 0.811 0.825 0.089 0.849 0.851 0.877 0.790 0.783

adpEm adpFm

NJUD|NLPR| DEC | FLSD

depth quality between Depth and Depth™ (Fig. 5). Specifically,
a significant performance improvement can be easily observed
after introducing the MINSSF network (using DepthSal only)
to conduct nonlocal selective saliency fusion (see the black
solid line in Fig. 10). Additionally, by feeding the previously
transferred saliency map ¢S (Eq. 7) into the MNSSF network,
the performance can be further improved slightly (see the red
dashed line in Fig. 10). Moreover, the overall performance
can be further improved by simultaneously utilizing DepthSal,
Depth™Sal and ¢S to achieve an optimal complementary state.

Moreover, we quantitatively tested the performance of the
“randomly picking one” strategy (see the details in Fig. 9).
In fact, the “randomly picking one” strategy significantly
degrades the performance of our method. Additionally,
the quantitative proofs can be found in Table. I.

Additionally, we conducted a quantitative evaluation by
replacing the estimated Depth™ with the coarse saliency map
(cS) as the input of our network, and the detailed result can
be found in Table. II.

As shown in Table. II, the overall performance using
Depth™ significantly outperforms the coarse saliency alterna-
tion.

Thus, rather than directly feeding the coarse saliency map
into our IDSF network, we take only the coarse saliency to
facilitate the depth quality estimation, for example, to enable
the second-round regional SIFT flow alignment and then
highlight the salient object in the estimated depth map.

D. Quantitative Comparisons

We compare the proposed algorithm with 16 of the
most representative state-of-the-art methods, including deep
learning-based methods as well as other non-deep competi-
tors: ACSD14 [19], LMHI14 [28], GP15 [29], DHS16 [41],
DCMCI16 [21], LBE16 [18], MDF16 [11], DRFI17 [42],
MDC17 [43], DSS18 [10], BDT17 [17], DF17 [20],
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Ours PDNetl8  PICAIS

Fig. 11.
DSS18 [10], DF17 [20], MDC17 [43], BDT17 [17], and DRFI17 [42].

TABLE III

COMPARISON OF THE QUANTITATIVE RESULTS INCLUDING THE MAX-
IMUM F-MEASURE (A LARGER VALUE IS BETTER), THE MAE (A
SMALLER VALUE IS BETTER) AND THE AUC (A LARGER VALUE
IS BETTER). THE TOP THREE RESULTS ARE HIGHLIGHTED IN
RED, GREEN, AND BLUE, RESPECTIVELY

DATASET FLSD [49] DEC [45] NLPR [25] NJUDS [19]
Metric maxF  AUC  MAE maxF AUC MAE maxF AUC MAE maxF AUC MAE
Ours 0.895 0984 0.057 0905 0992 0.032 0880 099 0.038 0891 0985 0.050
PDNetl8 [46] 0.857 0.973 0.109 0.888 0.991 0.045 0.876 0.989 0.048 0.884 0.983 0.072
RADFI8 [47] 0833 0944 0107 0855 0979 0057 0814 0979 0066 0847 0963 0.869
RASIS [44] 0726 0785 0.64 0809 0855 0060 0.843 0899 0053 0781 0839 0.121
PICAI18 [45] 0.834 0.966 0.106 0.887 0.973 0.037 0.842 0.980 0.051 0.869 0.974 0.064
DSSI8 [10] 0745 0837 0159 0771 0882 0075 0832 0931 0066 078 0893 0.122
MDCI7 [43] 0787 0927 041 0668 0917 0104 0671 0923 0121 068 0882 0171
BDTI7[17] 0817 0939 025 0820 0936 0055 0809 0969 0064 0806 0928 0.127
DF17 [20] 0845 0962 0.146 0752 0953 0.07 0759 0947 0106 0768 0929 0.168
DREI7 [42] 0766 0930 0204 0.667 0934 0122 0724 0949 031 0692 0904 0203
DHSI6 [+1]  0.825 0938 0.07 0885 0969 0.036 0841 0971 0.048 0859 0956 0076
MDFI6 [11] 0751 0905 0167 0757 0917 0083 0769 0946 008 0750 0904 0.140
DCMCI6 [21] 0849 0965 0.155 0750 0948 0108 0697 0932 0.117 0759 0936 0172
LBEI6 [15] 0774 0940 0209 0816 0980 0208 0780 0895 0082 0791 0936 0.153
GPI5 [29] 0464 0627 0282 0672 0884 0.166 0711 0906 0139 0412 0617 0.266
ACSDI4 [19]  0.803 0951 0.I83 0798 0976 0.53 0670 0926 0.164 0746 0929 0.194
LMHI4 [28] 0757 0904 0212 0641 0893 0117 0703 0905 0109 0760 0855 0207

RASI18 [44], PICA18 [45], PDNetl18 [46], and RADF18 [47].
For the objective comparisons, all the quantitative evaluations
are conducted using the source codes provided by the authors
and without changing the parameters.

We evaluate our model using two widely adopted metrics:
the precision-recall (PR) curve and the F-measure. Given a
predicted saliency map, we perform binary segmentation with
a hard threshold T. If the obtained foreground is consistent
with the ground truth mask, it is considered a successful
detection, and the final precision-recall curves are obtained
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RAS18 DSS18 MDC17

RADF18

DF17 BDT17 DRFI17

Qualitative comparisons between our method and the state-of-the-art methods including PDNet18 [46], PICA18 [45],RAS18 [44], RADFI18 [47],

by varying T from 0 to 255. As the recall rate is inversely
proportional to the precision, the tendency of the trade-off
between the precision and recall can truly indicate the overall
video saliency detection performance. The F-measure is an
important performance indicator when the precision rate con-
flicts with the recall rate and can be computed by

(14 %) x Pre x Rec
B? x Pre + Rec
where Pre and Rec denote the corresponding precision rate
and recall rate, respectively, and we assign > = 0.3 to be
biased toward the precision rate. We also report the maximum
F-measure, AUC, MAE in Table. I. Although commonly used,
PR curves have limited value because they fail to consider truly
negative pixels. For a more balanced comparison, we adopt the
MAE as another evaluation metric. The MAE measures the
numerical distance between the ground truth and the estimated
saliency map and is more meaningful in evaluating the applica-
bility of a saliency model in a task such as object segmentation.
It is defined as the average pixel-wise absolute difference
between the binary ground truth (GT) and the saliency map
(SAL). The MAE evaluates the saliency detection accuracy by

Eq. 20.

F — measure = , (19)

W H
1
MAE = ——— SAL(x,y) — GT(x,y)|, (20
WxH;? (x,y) = GT(, ¥, (20)
where W and H represent the width and height of the given
image, respectively, SAL(x,y) denotes the saliency value
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of the pixel with coordinates (x,y), and GT denotes the
corresponding binary ground truth. The ROC curve can be
conveniently generated according to the true positive rates and
false positive rates obtained during the calculation of the PR
curve. The AUC is calculated as the area under the ROC curve.
A perfect model will achieve an AUC of 1, while random
guessing will achieve an AUC of approximately 0.5.

. PosNum x (PosNum+-1)
ZiePos Rank; — 2

PosNum x NegNum

AUC =

, 21

where Rank; represents the serial order of the i-th element,
PosNum is the number of positive samples and Neg Num is
the number of negative samples.

As shown in Fig. 11, the RGB information-based saliency
detection methods (e.g., DSS18, RADF18, DHSI16, etc.)
frequently demonstrate a poor detection performance for
low color contrast salient foregrounds while assigning large
saliency values to non-salient, complex backgrounds. Bene-
fiting from the newly available depth information, the state-
of-the-art RGB-D methods achieve a much better detection
performance. That is, both the low color contrast-induced
hollow effects can be potentially alleviated by the depth
continuity toward those inner regions of the salient object. The
high color contrast-induced false-alarm detections may also
be solved by the large depth differences between those salient
regions and their non-salient nearby surroundings. However,
because the current state-of-the-art RGB-D methods overly
rely their saliency detection on the depth component, it is
difficult to achieve a balance between the RGB information
and the depth information, making the detection sensitive to
the depth quality. By using the newly estimated Depth™, our
method can potentially alleviate the abovementioned problems.

Additionally, from the perspective of the depth-sensing
equipment, the depth quality of the Lytro Light Field camera
is significantly inferior to that of the Microsoft Kinect device.
Thus, our method achieves a significant performance improve-
ment in the LFSD dataset because all depth information in
the LFSD dataset is sensed by the Lytro Light Field camera.
However, our method can only slightly outperform the other
methods in the NJUD dataset because the depth information
in the NJUD dataset is formulated based on the optical flow
method, which frequently exhibits the highest depth quality.
Moreover, the F-measure curves also demonstrate the superi-
ority of our method; i.e., our method outperforms the state-
of-the-art methods by simply using a hard threshold ranging
from 200 to 230 (see the middle row in Fig. 8).

E. Limitations

Our method has two limitations. First, our depth estimation
procedure is time consuming. On a desktop computer with
an i7-6700k 4.00 GHz CPU, a GTX 1080Ti GPU, and 32 GB
RAM, it takes approximately 0.43 s to obtain the coarse depth
(cD, Eq. 6) and another 0.31 s to perform the saliency-driven
depth transference to obtain the fine depth (Depth™). Addi-
tionally, since our deep learning network (MNSSF) follows a
superpixel-wise method, it takes approximately 2 s to output
the final saliency map.
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Second, the performance of our method relies on the quality
of the estimated Depth™. Thus, our method may also produce
failure detections when the quality of both Depth and Depth™
are poor. Moreover, since a large dataset can ensure a strong
similarity between the input image and its retrieved subgroup
images, the quality of our newly estimated Depth™ is posi-
tively related to the given dataset size.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed a novel method to perform
high-performance RGB-D saliency detection. Our method
consists of two components: two-phase depth estimation and
selective deep saliency fusion network. First-round depth
transfer simultaneously considers both the mid-level and
object-level inter-image similarity to coarsely estimate the
depth information. Then, from a saliency perspective, second-
round depth transfer mainly attempts to enlarge the depth
difference between those potentially salient regions and their
non-salient nearby surroundings. Our selective deep saliency
fusion network consists of two subnetworks: the IDSF network
and the MINSSF network. The IDSF network performs image-
level selective saliency fusion to complement the RGB infor-
mation with the depth information to reduce the subsequent
problem domain. Then, the MNSSF network mainly attempts
to compute an optimal nonlocal complimentary state between
the original depth and the newly estimated depth. Both quan-
titative and qualitative comparisons indicated that our method
outperformed all the current state-of-the-art methods.

As for our future works, we are particularly interested in
developing an explicit solution to make blind depth quality
assessments. Thus, the selective saliency fusion performance
may be further improved if we can adaptively control its fusion
balance using the previously assessed depth quality.
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