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Abstract

Today convolutional neural networks (CNNs) have

reached out to specialized applications in science commu-

nities that otherwise would not be adequately tackled. In

this paper, we systematically study a multi-label annotation

problem of x-ray scattering images in material science. For

this application, we tackle an open challenge with train-

ing CNNs — identifying weak scattered patterns with dif-

fuse background interference, which is common in scientific

imaging. We articulate an Attentional Aggregation Mod-

ule (AAM) to enhance feature representations. First, we

reweight and highlight important features in the images us-

ing data-driven attention maps. We decompose the attention

maps into channel and spatial attention components. In the

spatial attention component, we design a mechanism to gen-

erate multiple spatial attention maps tailored for diversified

multi-label learning. Then, we condense the enhanced lo-

cal features into non-local representations by performing

feature aggregation. Both attention and aggregation are

designed as network layers with learnable parameters so

that CNN training remains fluidly end-to-end, and we apply

it in-network a few times so that the feature enhancement

is multi-scale. We conduct extensive experiments on CNN

training and testing, as well as transfer learning, and em-

pirical studies confirm that our method enhances the dis-

criminative power of visual features of scientific imaging.

1. Introduction

In recent years, deep learning and convolutional neu-

ral networks (CNNs) have moved on from success in gen-

eral computer vision problems and applications, to working

with more specialized data and problems, e.g. applications

in science communities. These dedicated applications usu-

ally come with a relatively small dataset and unique chal-

(a) Scattered tiny peaks
(Polycrystalline)

(b) Weak signal
(Rings: Oriented z)

(c) Overlapping
(Yoneda + Bragg rods)

Figure 1. Examples of x-ray scattering images. The original im-

age is a single-channel intensity map captured on the detector; it

is shown here with false color for visualization purposes. In the

enlarged window of each image, we highlight the challenging fea-

tures, and the attributes that should be deduced from the said

features: (a) related peaks are scattered and far apart (Polycrys-

talline); (b) signal too dim (Rings: Oriented z); (c) thin vertical

bars (Bragg rods) overlaying bright regions (Yoneda). Enlarged

windows of (a) and (b) are brightened to show weak signals.

lenges with data distributions. This causes a lot of trouble

for CNNs to capture them properly and realize their full po-

tential. From a feature space’s point of view, visual features

in scientific imaging lie in a low-dimensional, highly re-

stricted and “narrow” subspace compared to natural images,

and the feature representations must be enhanced properly

to work with CNNs.

We will illustrate this difficulty of feature space with ex-

amples of x-ray scattering images, which are the subject

of our analysis in this paper. In x-ray scattering, a beam

of x-rays is directed through a material sample of interest,

diffracted by the ordering within the sample; the far-field

pattern of scattered rays is captured on an x-ray area detec-

tor. This diffractive imaging process is essentially described

by a Fourier transform of the sample’s real space distribu-

tion ρ(r):

I(q) =

∣

∣

∣

∣

∫

V

ρ(r) exp(iq · r) dV

∣

∣

∣

∣

2

, (1)

from which only the intensity is captured, while the phase is
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lost. Thus, the diffraction is non-invertible. To circumvent

the inverse reconstruction problem, material scientists can

directly inspect the image to deduce a set of characteristics,

e.g. visual appearance (‘halo’ or ‘ring’), style variations

(‘isotropic’ or ‘6-fold symmetric’), material type (‘powder’

or ‘polycrystalline’) or crystal lattice structure (‘BCC’ or

‘lamellar’). In other words, this is an multi-label image

annotation problem in the reciprocal space (or q-space);

multi-label meaning the aforementioned attributes are non-

mutually-exclusive.

When we apply CNNs to this multi-label annotation

problem, the key challenge comes from the weak and scat-

tered patterns in the x-ray scattering images. Here we show

a few difficult cases in Figure 1. In Figure 1 (a), a sample

is bearing the attribute “polycrystalline”, implied by the set

of high-intensity peaks in the image. The peaks themselves

are local, yet the “polycrystalline” character can only be in-

ferred by identifying a non-local set of peaks combined. If

a CNN unit is to perceive a window large enough to cap-

ture all the peaks, it will take in a much bigger portion of

background and possibly other overlapping signals, over-

whelming the peaks in question. Figure 1 (b)(c) shows two

other cases of difficult attributes caused by weak visual fea-

tures and overlapping. For weak, noisy features like these,

we need effective measures to encode them robustly.

In this paper, we present the Attentional Aggregation

Module (AAM), a modularized two-step strategy to en-

hance feature representations. Given a certain set of convo-

lutional feature maps, first we attempt to explicitly reweight

and highlight key features with attention mechanism. When

generating attention maps, We decompose them into chan-

nel and spatial attention components for better separation

between them. In the spatial attention component, we de-

sign a mechanism to generate multiple spatial attention

maps to apply to partitions of the feature maps, which diver-

sifies the attentional features for different attributes of inter-

est. Then, we attempt to condense those scattered sparse

features by feature aggregation. We extend the classic Bag-

of-Words (BoW) with learnable parameters so that it can be

performed in-network. We apply AAM multiple times in

the network at different depths so that the feature enhance-

ment is multi-scale.

Our main contributions in this paper are as follows:

• We designed the Attentional Aggregation Module us-

ing differentiable layers and learnable parameters,

which enabled end-to-end forward and backward flows

in the CNN, and repeated deployment in multiple CNN

layers. Thus, feature enhancement is seamless and

multi-scale;

• We improved the attention modules with new tac-

tics and multiple spatial attention maps to specifically

tackle the multi-label learning problem, and demon-

strated their benefits via experiments.

2. Related Work

X-ray scattering image analysis. Studying x-ray scat-

tering imagery is an interdisciplinary effort of computer vi-

sion and scattering communities. There are unsupervised

methods such as spectral clustering [41] and diffusion-

based clustering [10], as well as supervised methods such

as [13] using handcrafted image descriptors. CNN based

techniques are first used in other similar scientific dataset

problems, e.g. [40] applies a CNN to classify x-ray protein

crystallization images. For the x-ray scattering image anno-

tation problem, [21] performs 1D convolutions on the cir-

cular average curve of the images; [32] implements residual

learning [6] and convolutional autoencoders; [5] proposes a

joint learning framework with physics-aware feature trans-

form [34]. Despite the general success of these methods,

some attributes are connected to more intricate features as

we explained in Figure 1, and thus they are hard to observe

by even humans and so remain difficult for machine learn-

ing methods.

Feature aggregation. Typical feature aggregation meth-

ods organize generic features by encoding statistics of

a collection of features, e.g., Bag-of-Words (BoW) [29],

VLAD [12, 2], Fisher Vector [23, 24], spatial pyramid

matching [15] and Bag-of-Feature-Graphs [8].

Deep CNN generates dense collections of features.

Many works attempt to incorporate classic feature aggrega-

tion methods, e.g. MOP-CNN [4] pools VLADs of multi-

scale CNN activations, and NetVLAD [1] presents a learn-

able VLAD in deep CNNs. Later [19] generalized the learn-

able construction of NetVLAD to BoW and Fisher Vec-

tor. On the other hand, since multi-scale is naturally im-

plied in the depths of CNNs, researchers have tried count-

less network designs to fuse cross-layer features as a form

of feature aggregation, e.g. U-Net [25] reusing mid-layer

feature maps. More sophisticated connection designs in-

clude recombinator networks [7] and stacked hourglass

networks [20], and [17] has made some detailed discus-

sions about various pathway designs in multi-scale analysis.

However, many of these methods rely on reasonably good

local features to aggregate. They mostly work like repre-

senting the composition of a scene given all the objects have

been well depicted. As for x-ray scattering images, the fea-

tures are tricky to capture even at the local level and we need

explicit strategies to boost local features so that aggregation

can be effective.

Attention mechanism. It is known that humans per-

ceive images not by observing the entire scene, but focusing

their attention on salient regions [14]. In computer vision,

researchers have attempted to mimic attention for feature

learning [14] and generative models [31, 37]. For com-

puting attention maps, researchers have proposed to use

fully-connected MLP [37], convolutions and residual con-

volutions [33], and correlations to encode non-local inter-
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actions [42]. With the recent success of channel attention in

SENet [9, 43], dual attention, which is a decomposition of

channel and spatial attention, has become a popular method

to model attention [3, 18, 35].

3. Attentional Aggregation Module

In this section we describe the Attentional Aggregation

Module (AAM), which is designed as learnable network

layers and applied several times to enhance the features in a

multi-scale fashion. The structure of AAM is described in

Algorithm 1, and the overall network is shown in Figure 2.

3.1. Attention: Local Refinement

Given a feature map F ∈ R
C×H×W , we first attempt to

refine the features locally using attention mechanism. At-

tention in features is essentially a reweighting process to

highlight certain parts of the features, represented by multi-

plying F with attention map M. When the attention module

is trained to compute from the data F to mimic human at-

tention, it can be written as

F′ = M(F)⊗ F, (2)

where ⊗ represents elementwise multiplication, and M(·)
becomes a data-driven attention estimator.

Dual attention. We use a dual attention to approximate

M, i.e. decompose the overall attention into 2 multiplicative

components: 1D channel attention and 2D spatial attention

F′ = MC(F)⊗ F, F′′ = MS(F
′)⊗ F′. (3)

We can think of MC as modulating the C feature channels,

or amplifying/suppressing the C feature detectors if we con-

sider each channel as a specific detector; and MS focuses

on pixel locations. This is similar to a low-rank matrix de-

composition and the attention in different dimensions can

be better separated.

We follow a typical dual attention model — Convolu-

tional Block Attention Module [35] (CBAM, shown in Fig-

ure 3) — to formulate MC and MS. The channel attention

component first spatially pools F to a C-dimension vector,

and then encodes the vector with a 2-layer fully-connected

network (or Multi-Layer Perceptron, MLP):

MC(·) = σ ◦MLP ◦ PoolC(·), (4)

where σ is sigmoid. Similarly, the spatial attention com-

ponent first performs a channelwise pooling to generate a

H ×W matrix, and then computes a convolution:

MS(·) = σ ◦ Conv ◦ PoolS(·). (5)

Finally, we add up the reweighted F′′ with F and normal-

ize it with batch normalization [11] (BN) to prevent feature

degradation due to successive multiplications with values

between [0, 1] [33]:

Fattn = BN(F+ F′′). (6)

Unfortunately, the original CBAM in the network does

not improve annotation on our x-ray scattering datasets, be-

cause smaller dataset size and fewer positive samples cause

more difficulty to learn. We made a few improvements for

the attention mechanism, as follows:

Pre-activation normalization of attention maps. We

find that both channel and spatial attention components tend

to saturate sigmoid and generate attention maps that are all

0 or 1. To correct this, we add a BN prior to sigmoid, in

both channel and spatial components, to stabilize the range

of features. The channel attention component is now written

as

MC(·) = σ ◦ BN ◦MLP ◦ PoolC(·). (7)

With normalization, the generated attention maps can actu-

ally have values in [0, 1].
Multiple spatial attention maps. We argue that for spa-

tial attention, one single spatial map to reweight all C fea-

ture channels does not account for the different features that

these channels specialize in for multi-label annotation. In-

stead, we feed the feature F′ into p duplicate branches of

the spatial attention component:

{Mi
S = σ ◦ BNi ◦ Convi ◦ PoolS | 1 ≤ i ≤ p}. (8)

Then, we split F′ into p uniform slices along the channel

dimension C, and reweight each C/p-channel slice F′
i with

Mi
S
(F′). Then we concatenate all the slices into a p-way

reweighted F′′. In our experiments, we set p = 4.

Specialized loss for multi-maps. We further push the

p spatial attention branches to diversify. For this purpose,

we partition the attributes into p groups and associate each

group with one spatial attention branch. For each branch

during training, we compute the label loss with respect to

its own attribute group, and update its parameters with this

specialized loss/gradient only.

For instance, we denote the image attributes as Y =
{y1, y2, . . . , yn}. We may associate Y(1) = {y1, . . . , yn/p}

with M1
S
(·), Y(2) = {yn/p+1, . . . , y2n/p} with M2

S
(·), and

so forth. Pick a label loss function, e.g. binary cross en-

tropy:

LΛ
BCE = −

1

|Λ|

Λ
∑

j

yj log oj + (1− yj) log(1− oj), (9)

where Λ is a certain attribute set, yj is the true value of

attribute j, and oj is the prediction value. For training the

rest of the network, our objective is to fit all the attribute

predictions, Λ = Y; For Mi
S
(·), Λ = Y(i).

The full attention module is shown in Figure 4.
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Figure 2. Left: Architecture of our network with Attentional Aggregation Modules. Right: Structure of the aggregation module.

ALGORITHM 1: Attentional Aggregation Module.

Input: Convolutional feature F ∈ R
C×H×W

.

Output: Attentional feature Fattn ∈ R
C×H×W and

aggregated vector faggr ∈ R
K .

1 Compute channelwise attention MC(F),F′ using (3)(7);

2 Compute spatial attention maps {Mi

S(F
′)}i using (8);

3 Split F′ along the channel dimension into p slices {F′

i}i;
4 Compute spatial attention

MS(F
′) = Concat({Mi

S(F
′)⊗ F

′

i}i), and F
′′ using (3);

5 Compute attentional features Fattn using (6);

6 Reshape Fattn to F̄attn ∈ R
HW×C ;

7 Compute A = ā(F̄attn) ∈ R
HW×K using (11);

8 Sum A up along the columns and normalize to unit 2-norm

to get faggr;

H

WC x

C

MLPPool

Channel Attn

Pool
HxW

conv

x +
Spatial Attn

Figure 3. Structure of CBAM [35].

BatchNormChannel 
Attn

Pool

x

Spatial 
Attn HxW

Pool
Conv2

Conv3

Conv4

Conv1

Split

F1"

x F2"

x F3"

x F4"F4'

concat

Figure 4. Our channel and spatial attention modules.

3.2. Aggregation: Non­local Representation

We then aggregate the local attention feature Fattn to

condense non-local feature representations. Our feature

aggregation module is based on the classic Bag-of-Words

(BoW). Formally, given a corpus of sampled feature vec-

tors (words), BoW computes a clustering to determine a set

of K clusters {Ck} and their centroids {ck}. For an im-

age with N extracted features {fi}, its BoW is its feature

distribution with respect to the clusters
[

N
∑

i=1

a1(fi),
N
∑

i=1

a2(fi), . . . ,

N
∑

i=1

aK(fi)

]

, (10)

where ak(·) is an assignment function, typically a hard 0-1

assignment determined by the nearest ck.

Consider Fattn as an H×W pool of C-dimensional fea-

ture words and we attempt to aggregate them spatially. In

order to perform aggregation in-network and have it com-

patible with back-propagation, the key is a differentiable

formulation for the cluster assignment ak(·). NetVLAD [1]

manages to do this by replacing the hard assignment ak(·)
with soft assignment and relaxing the learnable parameters.

Learnable BoW is similar, as we need to replace ak(·) with

a softmax

ā(x) = softmax({wT
k x+ bk}1≤k≤K), (11)

and then all the K-assignment vectors are summed up and

normalized, denoted as faggr. In our experiments, we set

K = 64. The aggregation module is shown in Figure 2 on

the right.

3.3. Network Architecture

We adopt VGG-16 [28] as our backbone network. VGG-

16 is naturally divided into 5 blocks with pooling layers

in between, implying different scales. We put in residual

bypass [6] over each block to separate the features at each

scale. After the last convolution, we feed the feature maps

into a global average pooling layer and a sigmoid output.

We plug in an AAM before the addition in each of the

aforementioned residual bypasses. The AAM computes

Fattn and faggr. We pass Fattn through onto subsequent

CNN layers, and faggr leads to a fully-connected layer and

a sigmoid, which serves as a side output ys, 1 ≤ s ≤ 5.

We fit the side output to ground truth attributes, similar to

[30]. The purpose is to stimulate multi-scale features to bet-

ter relate to attributes. As a result, the overall loss function

is:

L = LΛ
BCE(y,o) + w

5
∑

s=1

LΛ
BCE(ys,o), (12)

where Λ is a specialized attribute set (described in Sec-

tion 3.1), y is the output from the last CNN layer, ys is

a side output, and o is the real attribute. We set w = 0.2.
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mAP

(a) VGG-16 0.6760

(b) +Aggregation 0.7224

(c) +Normalized CBAM 0.7398

(d) +Residual Attention 0.7248

(e) +SENet 0.7304

(f) +AAM−specialized loss 0.7407

(g) +AAM 0.7433

Table 1. mAPs with different network setups and other attention

mechanisms, on synthetic dataset.

4. Experiments

4.1. Datasets and Metrics

We use the following 3 datasets to evaluate our network:

Synthetic Dataset. We use simulation software [38] to

generate high volumes of simulated x-ray scattering images

with auto-generated attributes. The software models x-ray

imagery with high fidelity [22, 39, 27] and adapts well for

machine learning models that extend to real data [32, 5]. For

comparisons with previously reported methods, we generate

45,000 images for training and 5,000 images for testing as

our synthetic dataset. We pick 20 attributes with typical

visual appearances and/or physical meanings to predict.

Experimental Dataset. We take the experimental

dataset assembled in [5] to assess our method with real ex-

perimental data. The experimental dataset is collected from

various x-ray beamline facilities and fully annotated by a

domain expert. It is organized into 2 groups: “single” con-

sists of different image captures with homogeneous experi-

ment setups (beam center position, detector placement etc.),

and “mixed” where experiment setups are diverse. The sin-

gle dataset has 2,000 training images, 429 testing images

and 12 attributes; and the mixed dataset has 2,300 train-

ing images, 418 testing images and 20 attributes. These

attributes are not the same as those in the synthetic dataset.

Fashion-MNIST. To test the AAM with other forms of

data, we choose Fashion-MNIST [36] as a general pur-

pose dataset. It is designed as a drop-in replacement of the

heavily-used MNIST [16] and consists of grayscale images

of 10 types of clothing articles of size 28×28, 60,000 train-

ing samples and 10,000 testing samples.

For synthetic and experimental datasets, the annotation

is multi-label, and we report the average precisions (APs)

per attribute and mean average precision (mAP); Fashion-

MNIST is a multi-class classification dataset, and we report

the classification accuracy.

4.2. Ablation Studies

To verify the effect of the attention and aggregation mod-

ules, we trained and tested the CNN on synthetic dataset,

with our proposed strategies added incrementally. They are

mAP

Method Single Mixed

VGG-16 0.8312 0.7997

ResNet-50 0.8231 0.7084

DVFB-CNN 0.8513 0.7989

SENet 0.8723 0.8071

Residual Attention 0.8837 0.8183

Ours 0.8739 0.8225

Table 2. Comparison with state-of-the-art deep learning methods,

on experimental dataset.

listed in Table 1 as: (a) barebone VGG-16, (b) with aggrega-

tion module, (c) with aggregation and normalized CBAM,

(f) with AAM, but without specialized loss, and (g) with

AAM. Since CBAM has the saturation problem (described

in Section 3.1), we added a BN in (c).

We trained all the 5 networks end-to-end and directly

evaluated the outputs. For specialized loss, the 20 attributes

were grouped as follows: (1) major visual elements: Diff

low-q, Diff hi-q, Halo, Higher ord, and Ring; (2) symme-

try: Sym halo, Sym ring, 2-fold, 4-fold, and 6-fold; (3)

texture: Anisotropic, Isotropic, Spotted, and Textured; (4)

visual style: Orientation: sharp, Orientation: broad, Ori-

entation: interm, Width: sharp, Width: broad and Width:

interm. We report the APs per attribute in Figure 5, and the

mAPs in Table 1.

We can see consistent improvements from (a)(b)(c)(f)(g)

with the added components:

• The performance gain from (a) to (b) comes from fea-

ture aggregation and early side supervisions, which ef-

fectively shape the multi-scale features as proven by

GoogLeNet [30];

• (c)(f)(g) shows the benefit of multiple spatial attention

maps, and demonstrates that specialized loss provides

the additional information to effectively train more

learnable parameters and operations.

4.3. Comparison with Other Attention Methods

We also compared AAM with some other attention

mechanisms: (d) SENet [9] and (e) residual attention mod-

ule [33], as shown in Table 1. We kept the VGG-16 with

AAM structure unchanged but swapped all the attention

modules with the other methods.

The results show that AAM enables better precision. Es-

sentially, SENet is channel attention only, and residual at-

tention does not decompose the attention into channel and

spatial components, while AAM exploits both dual atten-

tion and residual attention, and also utilizes multiple spatial

attention maps.
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VGG-16 + Aggregation + Aggr. + Normalized CBAM + AAM - specialized loss + AAM

Figure 5. APs per category with different network setups, on synthetic dataset.
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Figure 6. Comparison of transfer learning performance using different deep learning methods, on experimental dataset.

4.4. Transfer Learning with Experimental Dataset

We used the experimental dataset to evaluate transfer

learning. The reason to perform transfer learning is that

real experimental data is not enough for training a CNN.

This is a common hurdle for many specific applications and

datasets. For example, our experimental dataset has less

than 3,000 images. Therefore, to train on a bigger set of

synthetic data is a crucial strategy to actually use the CNN.

We input the images into the trained network from Sec-

tion 4.2 and computed the global average pooling layer as

feature vectors. Then we normalized them and used them to

predict the images’ attribute with RBF kernel SVMs. SVM

parameters C and γ were determined via cross validation.

We compared our method with some state-of-the-art

deep learning methods: VGG-16 [28], ResNet-50 [6] and

DVFB-CNN [5], as well as the other attention methods

trained in Section 4.3: SENet and residual attention. We

followed the same experiment setup as in [5] and compared

with the APs reported therein, shown in Figure 6. We also

list the mAPs in Table 2.

We can conclude from the results that our proposed fea-

ture enhancement improves the features further than much

deeper networks like ResNet-50; it is even better than

DVFB-CNN without precomputed feature transforms or as-

sumption of structural symmetry, and thus our method is

more general. AAM shows comparable results among the

attention methods which consistently improves the annota-

tions. In particular, AAM has the best mAP in the mixed

dataset, showing that multiple spatial attention maps are ca-

pable of handling discrepancies of different experimental

and imaging setups.

4.5. Classification with Fashion­MNIST

To show AAM is applicable to other tasks and net-

work configurations, we ran classification experiments on

Fashion-MNIST. We set up 3 CNNs of different depths to

learn to classify the 10 types of clothing articles. The layer

configurations are shown in Table 3. We report the pre-

diction accuracy in Table 4. Experiments show improve-
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2-layer 3-layer 5-layer

conv-64 conv-64 conv-64

conv-128

(AAM)

maxpool

conv-128 conv-128 conv-256

conv-256 conv-256

conv-256

(AAM)

maxpool

Global Avg Pool

fc-10

softmax

Table 3. Structures of CNNs to predict Fashion-MNIST.

2-layer 3-layer 5-layer

Original 0.9050 0.9166 0.9294

+AAM 0.9202 0.9269 0.9393

Table 4. Prediction accuracy, on Fashion-MNIST.

ments in accuracy in all of the setups, and thus prove that

AAM is equally effective to enhance the features for general

datasets.

4.6. Attention Visualization

For qualitative assessment of the attentional features, we

computed Grad-CAM [26] to visualize the attribute related

activities in our network. We show in Figure 7, from left to

right, the input image, and Grad-CAM visualizations of the

last convolutional layers, in the networks without attention

(VGG-16 + Aggr.), with Normalized CBAM and AAM.

We can see the activation regions continue to improve with

more sophisticated attention setups. Take (b) as an example:

Normalized CBAM and AAM both correctly identify the 2

disjoint high intensity areas that implied 2-fold symmetry,

and the Grad-CAM activity of AAM is more precise. This

shows that our multiple spatial attention maps can indeed

adapt to diverse attributes and react to different features ac-

cordingly.

5. Discussions

AAM is a two-step, local-to-global feature enhancement

strategy, as proven by the experiments. On one hand, the

attentional module reweights the convolutional features at

pixel level, maintaining the pixel structure. The result is

meaningful local regions being highlighted, evidenced by

Section 4.6. On the other hand, the aggregation module re-

organizes and summarizes the features by histogram bin-

ning. The local pixel structure is not preserved; the result

is a representation of non-local feature distributions. Ag-

gregation contributes to better training features with multi-

scale and early side supervisions [30]. In summary, atten-

tion and aggregation work effectively to encode x-ray scat-

tering image features that are weak (local) and scattered

(non-local).

6. Conclusions

In this paper, we detailed a multi-label visual fea-

ture learning framework with the Attentional Aggregation

Model. We validated with the experiments that these mod-

ules served the purpose of enhancing image features from

local to global, which is crucial to understand scientific im-

ages with weak, scattered and noisy features.

In the near future, we are interested in finding more ef-

fective non-local methods to represent small and “narrow”

feature spaces. We are planning to study various graph,

correlation and transformation based methods for fine-scale

scientific image analysis.
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