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Abstract

Today convolutional neural networks (CNNs) have
reached out to specialized applications in science commu-
nities that otherwise would not be adequately tackled. In
this paper, we systematically study a multi-label annotation
problem of x-ray scattering images in material science. For
this application, we tackle an open challenge with train-
ing CNNs — identifying weak scattered patterns with dif-
fuse background interference, which is common in scientific
imaging. We articulate an Attentional Aggregation Mod-
ule (AAM) to enhance feature representations. First, we
reweight and highlight important features in the images us-
ing data-driven attention maps. We decompose the attention
maps into channel and spatial attention components. In the
spatial attention component, we design a mechanism to gen-
erate multiple spatial attention maps tailored for diversified
multi-label learning. Then, we condense the enhanced lo-
cal features into non-local representations by performing
feature aggregation. Both attention and aggregation are
designed as network layers with learnable parameters so
that CNN training remains fluidly end-to-end, and we apply
it in-network a few times so that the feature enhancement
is multi-scale. We conduct extensive experiments on CNN
training and testing, as well as transfer learning, and em-
pirical studies confirm that our method enhances the dis-
criminative power of visual features of scientific imaging.

1. Introduction

In recent years, deep learning and convolutional neu-
ral networks (CNNs) have moved on from success in gen-
eral computer vision problems and applications, to working
with more specialized data and problems, e.g. applications
in science communities. These dedicated applications usu-
ally come with a relatively small dataset and unique chal-
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a) Scattered tiny peaks
(Polycrystalline)

b) Weak signal
Rlngs Oriented z)

(c) Overlapping
(Yoneda + Bragg rods)

Figure 1. Examples of x-ray scattering images. The original im-
age is a single-channel intensity map captured on the detector; it
is shown here with false color for visualization purposes. In the
enlarged window of each image, we highlight the challenging fea-
tures, and the attributes that should be deduced from the said
features: (a) related peaks are scattered and far apart (Polycrys-
talline); (b) signal too dim (Rings: Oriented z); (c) thin vertical
bars (Bragg rods) overlaying bright regions (Yoneda). Enlarged
windows of (a) and (b) are brightened to show weak signals.

lenges with data distributions. This causes a lot of trouble
for CNNs to capture them properly and realize their full po-
tential. From a feature space’s point of view, visual features
in scientific imaging lie in a low-dimensional, highly re-
stricted and “narrow” subspace compared to natural images,
and the feature representations must be enhanced properly
to work with CNNS.

We will illustrate this difficulty of feature space with ex-
amples of x-ray scattering images, which are the subject
of our analysis in this paper. In x-ray scattering, a beam
of x-rays is directed through a material sample of interest,
diffracted by the ordering within the sample; the far-field
pattern of scattered rays is captured on an x-ray area detec-
tor. This diffractive imaging process is essentially described
by a Fourier transform of the sample’s real space distribu-

tion p(r):
2

= ‘/‘/p(r)exp(iq-r)d‘/ ; )]

from which only the intensity is captured, while the phase is
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lost. Thus, the diffraction is non-invertible. To circumvent
the inverse reconstruction problem, material scientists can
directly inspect the image to deduce a set of characteristics,
e.g. visual appearance (‘halo’ or ‘ring’), style variations
(‘isotropic’ or ‘6-fold symmetric’), material type (‘powder’
or ‘polycrystalline’) or crystal lattice structure (‘BCC’ or
‘lamellar’). In other words, this is an multi-label image
annotation problem in the reciprocal space (or g-space);
multi-label meaning the aforementioned attributes are non-
mutually-exclusive.

When we apply CNNs to this multi-label annotation
problem, the key challenge comes from the weak and scat-
tered patterns in the x-ray scattering images. Here we show
a few difficult cases in Figure 1. In Figure 1 (a), a sample
is bearing the attribute “polycrystalline”, implied by the set
of high-intensity peaks in the image. The peaks themselves
are local, yet the “polycrystalline” character can only be in-
ferred by identifying a non-local set of peaks combined. If
a CNN unit is to perceive a window large enough to cap-
ture all the peaks, it will take in a much bigger portion of
background and possibly other overlapping signals, over-
whelming the peaks in question. Figure 1 (b)(c) shows two
other cases of difficult attributes caused by weak visual fea-
tures and overlapping. For weak, noisy features like these,
we need effective measures to encode them robustly.

In this paper, we present the Attentional Aggregation
Module (AAM), a modularized two-step strategy to en-
hance feature representations. Given a certain set of convo-
lutional feature maps, first we attempt to explicitly reweight
and highlight key features with attention mechanism. When
generating attention maps, We decompose them into chan-
nel and spatial attention components for better separation
between them. In the spatial attention component, we de-
sign a mechanism to generate multiple spatial attention
maps to apply to partitions of the feature maps, which diver-
sifies the attentional features for different attributes of inter-
est. Then, we attempt to condense those scattered sparse
features by feature aggregation. We extend the classic Bag-
of-Words (BoW) with learnable parameters so that it can be
performed in-network. We apply AAM multiple times in
the network at different depths so that the feature enhance-
ment is multi-scale.

Our main contributions in this paper are as follows:

e We designed the Attentional Aggregation Module us-
ing differentiable layers and learnable parameters,
which enabled end-to-end forward and backward flows
in the CNN, and repeated deployment in multiple CNN
layers. Thus, feature enhancement is seamless and
multi-scale;

e We improved the attention modules with new tac-
tics and multiple spatial attention maps to specifically
tackle the multi-label learning problem, and demon-
strated their benefits via experiments.

2. Related Work

X-ray scattering image analysis. Studying x-ray scat-
tering imagery is an interdisciplinary effort of computer vi-
sion and scattering communities. There are unsupervised
methods such as spectral clustering [41] and diffusion-
based clustering [10], as well as supervised methods such
as [13] using handcrafted image descriptors. CNN based
techniques are first used in other similar scientific dataset
problems, e.g. [40] applies a CNN to classify x-ray protein
crystallization images. For the x-ray scattering image anno-
tation problem, [21] performs 1D convolutions on the cir-
cular average curve of the images; [32] implements residual
learning [6] and convolutional autoencoders; [5] proposes a
joint learning framework with physics-aware feature trans-
form [34]. Despite the general success of these methods,
some attributes are connected to more intricate features as
we explained in Figure 1, and thus they are hard to observe
by even humans and so remain difficult for machine learn-
ing methods.

Feature aggregation. Typical feature aggregation meth-
ods organize generic features by encoding statistics of
a collection of features, e.g., Bag-of-Words (BoW) [29],
VLAD [12, 2], Fisher Vector [23, 24], spatial pyramid
matching [15] and Bag-of-Feature-Graphs [8].

Deep CNN generates dense collections of features.
Many works attempt to incorporate classic feature aggrega-
tion methods, e.g. MOP-CNN [4] pools VLADs of multi-
scale CNN activations, and NetVLAD [1] presents a learn-
able VLAD in deep CNNs. Later [19] generalized the learn-
able construction of NetVLAD to BoW and Fisher Vec-
tor. On the other hand, since multi-scale is naturally im-
plied in the depths of CNNs, researchers have tried count-
less network designs to fuse cross-layer features as a form
of feature aggregation, e.g. U-Net [25] reusing mid-layer
feature maps. More sophisticated connection designs in-
clude recombinator networks [7] and stacked hourglass
networks [20], and [17] has made some detailed discus-
sions about various pathway designs in multi-scale analysis.
However, many of these methods rely on reasonably good
local features to aggregate. They mostly work like repre-
senting the composition of a scene given all the objects have
been well depicted. As for x-ray scattering images, the fea-
tures are tricky to capture even at the local level and we need
explicit strategies to boost local features so that aggregation
can be effective.

Attention mechanism. It is known that humans per-
ceive images not by observing the entire scene, but focusing
their attention on salient regions [14]. In computer vision,
researchers have attempted to mimic attention for feature
learning [14] and generative models [31, 37]. For com-
puting attention maps, researchers have proposed to use
fully-connected MLP [37], convolutions and residual con-
volutions [33], and correlations to encode non-local inter-
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actions [42]. With the recent success of channel attention in
SENet [9, 43], dual attention, which is a decomposition of
channel and spatial attention, has become a popular method
to model attention [3, 18, 35].

3. Attentional Aggregation Module

In this section we describe the Attentional Aggregation
Module (AAM), which is designed as learnable network
layers and applied several times to enhance the features in a
multi-scale fashion. The structure of AAM is described in
Algorithm 1, and the overall network is shown in Figure 2.

3.1. Attention: Local Refinement

Given a feature map F € RE*H>XW e first attempt to

refine the features locally using attention mechanism. At-
tention in features is essentially a reweighting process to
highlight certain parts of the features, represented by multi-
plying F with attention map M. When the attention module
is trained to compute from the data F to mimic human at-
tention, it can be written as

F'=M(F)®F, 2

where ® represents elementwise multiplication, and M(-)
becomes a data-driven attention estimator.

Dual attention. We use a dual attention to approximate
M, i.e. decompose the overall attention into 2 multiplicative
components: 1D channel attention and 2D spatial attention

F =Mc(F)®F, F/' =Ms(F)®F. @)

We can think of M as modulating the C feature channels,
or amplifying/suppressing the C' feature detectors if we con-
sider each channel as a specific detector; and Mg focuses
on pixel locations. This is similar to a low-rank matrix de-
composition and the attention in different dimensions can
be better separated.

We follow a typical dual attention model — Convolu-
tional Block Attention Module [35] (CBAM, shown in Fig-
ure 3) — to formulate M ¢ and Mg. The channel attention
component first spatially pools F to a C'-dimension vector,
and then encodes the vector with a 2-layer fully-connected
network (or Multi-Layer Perceptron, MLP):

Mc(-) = o o MLP o Poolc(+), 4)

where o is sigmoid. Similarly, the spatial attention com-
ponent first performs a channelwise pooling to generate a
H x W matrix, and then computes a convolution:

Mg(-) = o o Conv o Poolg(-). )

Finally, we add up the reweighted F”/ with F and normal-
ize it with batch normalization [11] (BN) to prevent feature

degradation due to successive multiplications with values
between [0, 1] [33]:

Faitn = BN(F + F”). 6)

Unfortunately, the original CBAM in the network does
not improve annotation on our x-ray scattering datasets, be-
cause smaller dataset size and fewer positive samples cause
more difficulty to learn. We made a few improvements for
the attention mechanism, as follows:

Pre-activation normalization of attention maps. We
find that both channel and spatial attention components tend
to saturate sigmoid and generate attention maps that are all
0 or 1. To correct this, we add a BN prior to sigmoid, in
both channel and spatial components, to stabilize the range
of features. The channel attention component is now written
as

Me(-) = 0 o BN o MLP o Poolg(+). @)

With normalization, the generated attention maps can actu-
ally have values in [0, 1].

Multiple spatial attention maps. We argue that for spa-
tial attention, one single spatial map to reweight all C' fea-
ture channels does not account for the different features that
these channels specialize in for multi-label annotation. In-
stead, we feed the feature F’ into p duplicate branches of
the spatial attention component:

{Mj =6 0BN'oConv'oPoolg |1 <i<p}. (8)

Then, we split F/ into p uniform slices along the channel
dimension C, and reweight each C'/p-channel slice F; with
MY (F’). Then we concatenate all the slices into a p-way
reweighted F”. In our experiments, we set p = 4.

Specialized loss for multi-maps. We further push the
p spatial attention branches to diversify. For this purpose,
we partition the attributes into p groups and associate each
group with one spatial attention branch. For each branch
during training, we compute the label loss with respect to
its own attribute group, and update its parameters with this
specialized loss/gradient only.

For instance, we denote the image attributes as Y =
{y1,92, ., yn}. Wemay associate YV = {yy, ..., Yn/p}
with Mé()’ Y(2) = {yn/p+17 A 7y2n/p} with M%(), and
so forth. Pick a label loss function, e.g. binary cross en-
tropy:

A
1
EQCEZ—WE yjlogo; + (1 —y;)log(l—o0;), (9)
J

where A is a certain attribute set, y; is the true value of
attribute j, and o; is the prediction value. For training the
rest of the network, our objective is to fit all the attribute
predictions, A = Y; For M’s(), A=Y®,

The full attention module is shown in Figure 4.
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Figure 2. Left: Architecture of our network with Attentional Aggregation Modules. Right: Structure of the aggregation module.

ALGORITHM 1: Attentional Aggregation Module.
RC XHXW .

Input: Convolutional feature F' €

Output: Attentional feature Fatn
aggregated vector foge, € RY.

Compute channelwise attention M (F), F’ using (3)(7);

c RCXHXW and

-

Compute spatial attention maps {Mg (F”’)}; using (8);
Split F’ along the channel dimension into p slices {F}};;
Compute spatial attention

Ms(F’) = Concat({M5(F') ® F;};), and F” using (3);
Compute attentional features F,t¢n, using (6);
c RHW X C;

s W N

Reshape Faien t0 Fagin

Compute A = a(Fagtn) € RV > using (11);

Sum A up along the columns and normalize to unit 2-norm
to get fager;

® N W

Channel Attn Spatial Attn

Figure 3. Structure of CBAM [35].

Channel Pool ] BatchNorm
Attn
Spatial Pool
Attn —> HxW
Split

Figure 4. Our channel and spatial attention modules.

3.2. Aggregation: Non-local Representation

We then aggregate the local attention feature F ., to
condense non-local feature representations. Our feature
aggregation module is based on the classic Bag-of-Words
(BoW). Formally, given a corpus of sampled feature vec-
tors (words), BoW computes a clustering to determine a set
of K clusters {C}} and their centroids {ci}. For an im-

age with N extracted features {f;}, its BoW is its feature
distribution with respect to the clusters

N N N
[Z a1 (£), Zag(fi), s Za;{(f,;)] . (10

where ag(+) is an assignment function, typically a hard 0-1
assignment determined by the nearest cy.

Consider F 4, as an H x W pool of C'-dimensional fea-
ture words and we attempt to aggregate them spatially. In
order to perform aggregation in-network and have it com-
patible with back-propagation, the key is a differentiable
formulation for the cluster assignment ay(-). NetVLAD [1]
manages to do this by replacing the hard assignment ay(-)
with soft assignment and relaxing the learnable parameters.
Learnable BoW is similar, as we need to replace ay(-) with
a softmax

a(x) = softmax({w{x + by }1<r<k), (11)

and then all the K -assignment vectors are summed up and
normalized, denoted as f,ge. In our experiments, we set
K = 64. The aggregation module is shown in Figure 2 on
the right.

3.3. Network Architecture

We adopt VGG-16 [28] as our backbone network. VGG-
16 is naturally divided into 5 blocks with pooling layers
in between, implying different scales. We put in residual
bypass [6] over each block to separate the features at each
scale. After the last convolution, we feed the feature maps
into a global average pooling layer and a sigmoid output.

We plug in an AAM before the addition in each of the
aforementioned residual bypasses. The AAM computes
Fattn and foger. We pass F,i, through onto subsequent
CNN layers, and f,,,, leads to a fully-connected layer and
a sigmoid, which serves as a side output y,,1 < s < 5.
We fit the side output to ground truth attributes, similar to
[30]. The purpose is to stimulate multi-scale features to bet-
ter relate to attributes. As a result, the overall loss function
is:

5
‘C:‘C%CE<y’O)+wZ‘C§CE(YS70)’ (12)
s=1
where A is a specialized attribute set (described in Sec-
tion 3.1), y is the output from the last CNN layer, y; is
a side output, and o is the real attribute. We set w = 0.2.
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mAP

(a) VGG-16 0.6760
(b) +Aggregation 0.7224
(c) +Normalized CBAM 0.7398
(d) +Residual Attention 0.7248
(e) +SENet 0.7304
) +AAM—specialized loss  0.7407
(g) +AAM 0.7433

Table 1. mAPs with different network setups and other attention
mechanisms, on synthetic dataset.

4. Experiments
4.1. Datasets and Metrics

We use the following 3 datasets to evaluate our network:

Synthetic Dataset. We use simulation software [38] to
generate high volumes of simulated x-ray scattering images
with auto-generated attributes. The software models x-ray
imagery with high fidelity [22, 39, 27] and adapts well for
machine learning models that extend to real data [32, 5]. For
comparisons with previously reported methods, we generate
45,000 images for training and 5,000 images for testing as
our synthetic dataset. We pick 20 attributes with typical
visual appearances and/or physical meanings to predict.

Experimental Dataset. We take the experimental
dataset assembled in [5] to assess our method with real ex-
perimental data. The experimental dataset is collected from
various x-ray beamline facilities and fully annotated by a
domain expert. It is organized into 2 groups: “single” con-
sists of different image captures with homogeneous experi-
ment setups (beam center position, detector placement etc.),
and “mixed” where experiment setups are diverse. The sin-
gle dataset has 2,000 training images, 429 testing images
and 12 attributes; and the mixed dataset has 2,300 train-
ing images, 418 testing images and 20 attributes. These
attributes are not the same as those in the synthetic dataset.

Fashion-MNIST. To test the AAM with other forms of
data, we choose Fashion-MNIST [36] as a general pur-
pose dataset. It is designed as a drop-in replacement of the
heavily-used MNIST [16] and consists of grayscale images
of 10 types of clothing articles of size 28 x 28, 60,000 train-
ing samples and 10,000 testing samples.

For synthetic and experimental datasets, the annotation
is multi-label, and we report the average precisions (APs)
per attribute and mean average precision (mAP); Fashion-
MNIST is a multi-class classification dataset, and we report
the classification accuracy.

4.2. Ablation Studies

To verify the effect of the attention and aggregation mod-
ules, we trained and tested the CNN on synthetic dataset,
with our proposed strategies added incrementally. They are

mAP
Method Single  Mixed
VGG-16 0.8312 0.7997
ResNet-50 0.8231 0.7084
DVFB-CNN 0.8513 0.7989
SENet 0.8723 0.8071
Residual Attention 0.8837 0.8183
Ours 0.8739 0.8225

Table 2. Comparison with state-of-the-art deep learning methods,
on experimental dataset.

listed in Table 1 as: (a) barebone VGG-16, (b) with aggrega-
tion module, (c) with aggregation and normalized CBAM,
(f) with AAM, but without specialized loss, and (g) with
AAM. Since CBAM has the saturation problem (described
in Section 3.1), we added a BN in (c).

We trained all the 5 networks end-to-end and directly
evaluated the outputs. For specialized loss, the 20 attributes
were grouped as follows: (1) major visual elements: Diff
low-q, Diff hi-q, Halo, Higher ord, and Ring; (2) symme-
try: Sym halo, Sym ring, 2-fold, 4-fold, and 6-fold; (3)
texture: Anisotropic, Isotropic, Spotted, and Textured; (4)
visual style: Orientation: sharp, Orientation: broad, Ori-
entation: interm, Width: sharp, Width: broad and Width:
interm. We report the APs per attribute in Figure 5, and the
mAPs in Table 1.

We can see consistent improvements from (a)(b)(c)(f)(g)
with the added components:

e The performance gain from (a) to (b) comes from fea-
ture aggregation and early side supervisions, which ef-
fectively shape the multi-scale features as proven by
GooglLeNet [30];

e (c)(f)(g) shows the benefit of multiple spatial attention
maps, and demonstrates that specialized loss provides
the additional information to effectively train more
learnable parameters and operations.

4.3. Comparison with Other Attention Methods

We also compared AAM with some other attention
mechanisms: (d) SENet [9] and (e) residual attention mod-
ule [33], as shown in Table 1. We kept the VGG-16 with
AAM structure unchanged but swapped all the attention
modules with the other methods.

The results show that AAM enables better precision. Es-
sentially, SENet is channel attention only, and residual at-
tention does not decompose the attention into channel and
spatial components, while AAM exploits both dual atten-
tion and residual attention, and also utilizes multiple spatial
attention maps.
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Figure 6. Comparison of transfer learning performance using different deep learning methods, on experimental dataset.

4.4. Transfer Learning with Experimental Dataset

We used the experimental dataset to evaluate transfer
learning. The reason to perform transfer learning is that
real experimental data is not enough for training a CNN.
This is a common hurdle for many specific applications and
datasets. For example, our experimental dataset has less
than 3,000 images. Therefore, to train on a bigger set of
synthetic data is a crucial strategy to actually use the CNN.

We input the images into the trained network from Sec-
tion 4.2 and computed the global average pooling layer as
feature vectors. Then we normalized them and used them to
predict the images’ attribute with RBF kernel SVMs. SVM
parameters C' and  were determined via cross validation.

We compared our method with some state-of-the-art
deep learning methods: VGG-16 [28], ResNet-50 [6] and
DVFB-CNN [5], as well as the other attention methods
trained in Section 4.3: SENet and residual attention. We
followed the same experiment setup as in [5] and compared
with the APs reported therein, shown in Figure 6. We also

list the mAPs in Table 2.

We can conclude from the results that our proposed fea-
ture enhancement improves the features further than much
deeper networks like ResNet-50; it is even better than
DVFB-CNN without precomputed feature transforms or as-
sumption of structural symmetry, and thus our method is
more general. AAM shows comparable results among the
attention methods which consistently improves the annota-
tions. In particular, AAM has the best mAP in the mixed
dataset, showing that multiple spatial attention maps are ca-
pable of handling discrepancies of different experimental
and imaging setups.

4.5. Classification with Fashion-MNIST

To show AAM is applicable to other tasks and net-
work configurations, we ran classification experiments on
Fashion-MNIST. We set up 3 CNNs of different depths to
learn to classify the 10 types of clothing articles. The layer
configurations are shown in Table 3. We report the pre-
diction accuracy in Table 4. Experiments show improve-
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2-layer 3-layer 5-layer

conv-64 conv-64 conv-64
conv-128

(AAM)

maxpool
conv-128 conv-128 conv-256
conv-256  conv-256
conv-256

(AAM)

maxpool

Global Avg Pool
fc-10
softmax

Table 3. Structures of CNNss to predict Fashion-MNIST.

2-layer 3-layer 5-layer
Original 0.9050 09166 0.9294
+AAM 09202 0.9269 0.9393

Table 4. Prediction accuracy, on Fashion-MNIST.

ments in accuracy in all of the setups, and thus prove that
AAM is equally effective to enhance the features for general
datasets.

4.6. Attention Visualization

For qualitative assessment of the attentional features, we
computed Grad-CAM [26] to visualize the attribute related
activities in our network. We show in Figure 7, from left to
right, the input image, and Grad-CAM visualizations of the
last convolutional layers, in the networks without attention
(VGG-16 + Aggr.), with Normalized CBAM and AAM.
We can see the activation regions continue to improve with
more sophisticated attention setups. Take (b) as an example:
Normalized CBAM and AAM both correctly identify the 2
disjoint high intensity areas that implied 2-fold symmetry,
and the Grad-CAM activity of AAM is more precise. This
shows that our multiple spatial attention maps can indeed
adapt to diverse attributes and react to different features ac-
cordingly.

5. Discussions

AAM is a two-step, local-to-global feature enhancement
strategy, as proven by the experiments. On one hand, the
attentional module reweights the convolutional features at
pixel level, maintaining the pixel structure. The result is
meaningful local regions being highlighted, evidenced by
Section 4.6. On the other hand, the aggregation module re-
organizes and summarizes the features by histogram bin-
ning. The local pixel structure is not preserved; the result
is a representation of non-local feature distributions. Ag-
gregation contributes to better training features with multi-

scale and early side supervisions [30]. In summary, atten-
tion and aggregation work effectively to encode x-ray scat-
tering image features that are weak (local) and scattered
(non-local).

6. Conclusions

In this paper, we detailed a multi-label visual fea-
ture learning framework with the Attentional Aggregation
Model. We validated with the experiments that these mod-
ules served the purpose of enhancing image features from
local to global, which is crucial to understand scientific im-
ages with weak, scattered and noisy features.

In the near future, we are interested in finding more ef-
fective non-local methods to represent small and “narrow”
feature spaces. We are planning to study various graph,
correlation and transformation based methods for fine-scale
scientific image analysis.
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