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Multi-Cue Semi-Supervised Color Constancy
With Limited Training Samples
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Abstract— Color constancy is one of the fundamental tasks in
computer vision. Many supervised methods, including recently
proposed Convolutional Neural Networks (CNN)-based methods,
have been proved to work well on this problem, but they often
require a sufficient number of labeled data. However, it is
expensive and time-consuming to collect a large number of
labeled training images with accurately measured illumination.
In order to reduce the dependence on labeled images and leverage
unlabeled ones without measured illumination, we propose a
novel semi-supervised framework with limited training samples
for illumination estimation. Our key insight is that the images
with similar features from different cues will share similar
lighting conditions. Consequently, three graphs based on three
visual cues, low-level RGB color distribution, mid-level initial
illuminant estimates and high-level scene content, are constructed
to represent the relationship among different images. Then a
multi-cue semi-supervised color constancy method (MSCC) is
proposed after integrating these three graphs into a unified
model. Extensive experiments on benchmark datasets demon-
strate that our proposed MSCC method outperforms nearly all
the existing supervised methods with limited labeled samples.
Even with no unlabeled samples, MSCC still obtains better
performance and stableness than most supervised methods.

Index Terms— Color constancy, illumination estimation, white
balancing, multi-cue, semi-supervised.
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I. INTRODUCTION

COLOR constancy, which aims at correcting image’s color
deviations caused by a difference in illumination as

done by the human vision system [1], [2], has become an
important problem in several important applications in the
field of computer vision, such as auto white balancing, object
recognition, image matching and visual tracking. It normally
includes two steps: obtaining an estimate of the light color and
computing illumination independent surface descriptor under
the help of Von Kries Diagonal transformation [3]. Therefore,
the illumination estimation is the key to the color constancy.

Many methods have been proposed to solve the illumi-
nation estimation problem. Supervised methods, especially
recently proposed CNN-based methods, have achieved leading
performance with large scale datasets. However, labeling a
large training dataset with accurate illumination values is
usually done using human expertise, which is expensive,
time-consuming and error-prone. A standard object with
known chromatic properties, such as a gray ball or a color
checker, is usually required when taking images for the
datasets used for color constancy problem. The object is used
to calculate the ground-truth illumination of the image. It is
clear that the procedure is impractical. In fact, the benchmark
datasets only contain up to hundreds or thousands of images,
which are much less than those used for other computer vision
tasks. Besides, most supervised methods need to train different
models for different types of cameras, which means that one
needs to strenuously collect and label a new dataset for every
new camera type. Conversely, obtaining unlabeled data is
usually much easier since it only involves collecting images
without having to give out their ground-truth illumination. For
example, it is easy to collect lots of images with a specific
camera, but it is very tedious and difficult to get the exact
illumination value for each image.

In this paper, leveraging both labeled and unlabeled samples,
we propose a graph-based semi-supervised color constancy
algorithm (SCC), in which the relationship among samples
(including both labeled and unlabeled ones) is represented
as a graph, and then a semi-supervised regression model is
trained on the graph for illumination estimation. We construct
the graph using different features from different visual cues,
respectively: low-level color histogram (LL), mid-level initial
illumination estimates (ML) and high-level scene category
(HL). Furthermore, in order to improve the stability and
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Fig. 1. An overview of our proposed multi-cue semi-supervised color constancy. Given a dataset including both labeled and unlabeled samples, we construct
the relationship among them using graphs from three visual cues: low-level color histogram (LL), mid-level initial illumination estimates (ML) and high-level
scene category (HL). Then three cues are integrated into a unified semi-supervised regression model for illumination estimation.

performance of the SCC, we integrate these three cues into
a unified semi-supervised framework called multi-cue semi-
supervised color constancy algorithm (MSCC). An overview
of the proposed MSCC is shown in Fig.1.

The contributions of this paper can be summarized as
follows:

• It proposes a semi-supervised color constancy (SCC)
method to solve the problem of insufficient labeled
training samples. Three different cues are introduced to
construct the graph in SCC. As far as we are aware, this
paper is the first to use the semi-supervised method in
the color constancy field.

• It extends the SCC to a multi-cue semi-supervised color
constancy method (MSCC) by integrating low-level, mid-
level, and high-level visual cues into a unified framework
to improve stability and performance of illumination
estimation.

• Experimental results on different datasets show that the
proposed MSCC not only outperforms nearly all the
supervised and unsupervised methods with limited train-
ing samples, but also achieves comparable performance
to state-of-the-art supervised methods without unlabeled
samples.

• Experimental results show that the proposed methods
can achieve better results if more unlabeled data are
added. This is an important advantage for practical color
constancy.

The remainder of this paper is organized as follows:
Section II introduces the image model and related work.
Section III presents the details of the graph-based semi-
supervised color constancy. Section IV extends the SCC into

the MSCC. Section V demonstrates the experimental results.
Section VI concludes the paper.

II. BACKGROUND

A. Imaging Model

The color signal I(ε) = [IR(ε), IG (ε), IB(ε)]T recorded by
a camera for light reflected from a matte surface at spatial
coordinate ε depends on three factors: the surface reflectance,
q(ε, λ), the spectral power distribution of the incident light,
p(λ), and the camera’s spectral sensitivity functions, ρ(λ) =
[ρR(λ), ρG(λ), ρB (λ)]T :

Iθ (ε) =
�
ω

p(λ)q(ε, λ)ρθ (λ)dλ, θ = {R, G, B}, (1)

where λ indicates wavelength, and � is the visible spectrum
interval. For a specific scene, we assume that the relative
spectral power distribution remains the same. For the case of
an ideal ’white’ reflectance, we obtain the color signal cor-
responding to the illumination e(ε) = [eR(ε), eG (ε), eB(ε)]T

as:
eθ (ε) =

�
�

p(λ)ρθ (λ)dλ, θ = {R, G, B}. (2)

Thus, illumination estimation from an image is an ill-posed
and under-determined inverse problem due to collinearity
between object color and illuminant color.

B. Related Work

Illumination estimation has been the subject of a large body
of research and many different methods have been proposed
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in both scientific community and imaging industry for several
decades. Most of these methods generally rely on some kinds
of assumptions and can be roughly divided into two major
categories: unsupervised methods and supervised methods.

1) Unsupervised Methods: The methods belonging to the
unsupervised category explicitly predefine illumination esti-
mation models based on certain hypotheses. MaxRGB [4]
algorithm estimates the illumination based on the maximum
response found within different color channels, and then
is improved with some simple preprocessing operations by
Funt and Shi [5]. Grey World (GW) algorithm proposed by
Buchsbaum [6] assumes that the average of the channels taken
separately represents the illuminant color signal. The MaxRGB
and GW are then generalized to Shades of Grey algorithm
(SoG) [7] using Minkowski-norm. Grey Edge (GE) [8] method
assumes that the average reflectance differences in a scene
are achromatic. Furthermore, a Grey Edge framework is
introduced to unify a variety of unsupervised methods by
including higher-order and derivatives. By concerning the role
of the retinal mechanism of the biological visual system,
Zhang et al. [9] propose a novel color constancy method
that models the double-opponent (DO) cells of the human
visual system. Cheng and Brown [10] assume that large
color differences are the key to estimating the illumination.
Intuitively, bright and dark pixels are chosen using a pro-
jection distance for illumination estimation. Yang et al. [11]
hypothesize that there are grey pixels widely appearing in
natural scenes. By calculating a Grey Index (GI) for each
pixel, those grey pixels are detected and used for illumina-
tion estimation. Recently, Bianco and Cusano [12] propose
a quasi-unsupervised method, in which a pre-trained deep
convolutional neural network is exploited to obtain a weighted
average of detected achromatic pixels. Although the method
does not require illumination information, a training phase is
still necessary.

In general, unsupervised methods are simple and have
much lower complexity. However, the fixed estimation models
embedded in them result in lower generalization. Once the
model is selected, the illumination colors of all the test images
are computed out using the same model. Therefore, the meth-
ods are effective only when the distribution of colors of the
test image fits the assumed model very well. Besides, exist-
ing unsupervised methods mainly concentrate on low-level
statistical information and ignore useful high-level semantic
information, which leads to an unsatisfactory performance
compared to supervised ones.

2) Supervised Methods: Supervised methods learn the esti-
mation models on the color distribution or related features
of training data. Color by correlation (CbyC) [13] constructs
a correlation matrix which describes the interrelation between
illumination values and image chromaticity distributions. Then
the illumination with the highest probability is chosen. CbyC
is extended by Vazquez-Corral et al. [14] with a category
hypothesis. Forsyth [15] notice that there is a corresponding
limited set of color signals for a given illumination and pro-
pose Gamut Mapping algorithm (GM). By computing the color
signals under a certain illumination, the corresponding limited
set, referred to as the canonical gamut, can be learned and used

to constrain the possible illumination set for an input image.
Gijsenji et al. [16] extend GM to generalized GM by using
image derivative structures. Another classic supervised method
is Bayesian color constancy (BCC) [17], which models the
reflectance and illumination as random variables and estimates
illumination from the posterior distribution. BCC is further
extended by Gehler et al. [18]. Neural networks (NN)-based
method [19] estimates illumination using a multi-layer percep-
tion fed with binary chromaticity histograms of images and
corresponding illumination chromaticities. Better results have
been achieved by using support vector regression (SVR) [20]
that minimizes the structure risk without knowing the expected
distribution of the image data. Cheng et al. [21] exploit four
simple features with regression trees. Spatio-spectral statistics
method (SSS) [22] is another efficient maximum likelihood
approach that develops a statistical model for the spatial distri-
bution of colors. A corrected moment illumination estimation
algorithm (CM) [23] learns a regression mapping matrix of
the color moments and the illumination. Focusing on natural
image statistics (NIS), Gijsenij and Gevers [24] notice that
image scenes can be classified using a Weibull distribution.
Based on the scene classification, the optimal unsupervised
method can be chosen for images in each scene category.
Similarly, Image-classification-guided combination (IC) [25]
provides a framework to select the most suitable unsupervised
method using a decision forest for each image. And 3D
stage geometry (SG) [26] models are used to determine the
best color constancy method for different geometrical regions
found in images. Exemplar-based color constancy [27] focuses
on surfaces in the images. Nearest neighbor surfaces for each
surface in a test image are found and illumination is estimated
based on comparing the statistics of pixels belonging to nearest
neighbor surfaces and the target surface. Bianco et al. [28] find
that there are significant differences in content and illumination
conditions among indoor and outdoor images. So, a prior
indoor/outdoor (IO) classification is implemented to improve
the performance of illumination estimation. Weijer et al. [29]
improve illumination estimation using high-level-information
(HVI). Images are modeled as a mixture of semantic classes.
Then illumination estimation is guided by prior knowledge
of the world, such as green grass, blue sky and gray roads.
In [30], color statistics extracted from the faces are exploiting
and clusters formed by skin colors are used as cues to estimate
the illumination.

Recently, with the rapid growth of deep convolutional
neural networks, several approaches have been proposed to
solve the illumination estimation problem in an end-to-end
manner and promising performance is demonstrated. One of
the advantages of CNN is that it can take color images
as input and incorporate feature learning into the training
process. With a deep structure, CNN can learn complicated
mappings while requiring minimal domain knowledge. Several
typical methods include the works from Bianco et al. [31],
[32], Hu et al. [33], Buzzelli et al. [34], Oh and Kim [35],
Shi et al. [36], Barron [37] and Barron and Tsai [38].

Supervised methods are shown to be more accurate than
unsupervised ones [39]. Because of the training phase with
various categories of real-world scenes, supervised methods
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are more robust and adaptable for different situations. How-
ever, supervised methods, especially the deep convolutional
neural networks-based methods, should face a serious issue
that is the lack of large scale of color image datasets of
real-world scenes with ground-truth light color. Some methods
try to solve this critical problem by implementing a train-
ing phase on synthetic datasets or public datasets without
ground-truth illumination. Although these alternative datasets
can be used, they do not reflect the complexity of realistic
photometric effects and illumination in natural scenes. As we
know, it is difficult and expensive to collect a large number
of natural images of various scenes with different lighting
conditions and measure corresponding illumination values.

III. SEMI-SUPERVISED COLOR CONSTANCY

This section proposes a graph-based semi-supervised color
constancy (SCC) method by using both labeled data (i.e.,
images with the ground-truth lighting colors) and unlabeled
data (i.e., images without the ground-truth). Firstly, we give
out a brief overview of the SCC. Then we discuss the feature
extraction and graph construction for SCC.

A. Formulation

Assume that we are given n samples, which con-
tains l training images I1, . . . , Il along with their corre-
sponding ground-truth illumination chromaticities c1, . . . , cl

(ci = [cr , cg]T , cr = log2 (G/R) , cg = log2 (G/B))
of the measured scene illumination and u training images
Il+1, . . . , In , (n = l + u) without the ground-truth. The visual
feature of each training image Ii is represented as xi ∈
R

d , (i = 1, . . . , n). The goal of graph-based SCC is to learn
an illumination prediction function f(x) = wTx using both
labeled and unlabeled samples. To this end, inspired by the
basic idea of semi-supervised learning, the function f(x)
should have two major properties: (1) For those labeled
samples, function f(x) should ensure that f(xi ) ≈ ci , meaning
that our estimated values are close to the given ground-truth;
(2) All training samples, including unlabeled or labeled ones,
should result in a similar estimation if they share certain
similar visual characters. This motivates us to minimize the
following loss function as:

min
1

2

⎡
⎣ l�

i=1

�f (xi )−ci�2+λ1

n�
i, j=1

si, j
��f(xi )−f

�
x j

���2+λ2�w�2

⎤
⎦,

(3)

where λ1 is a hyperparameter which balances the contribution
between the illumination estimation and image similarity.
A graph represented by an adjacency matrix, S = [si, j ], (i, j =
1, . . . , n), indicates the similarity between two images Ii and
I j . The graph ensures that samples with similar features result
in similar estimation results. A regularization term �w�2 with
a coefficient λ2 is added to control the model complexity
and prevent overfitting. There are two important components
in (3): (1) visual feature extraction, xi ∈ R

d , for illumination
estimation; (2) adjacency matrix S in graph construction. The
following sections will detail these two parts.

B. Feature Extraction for SCC

The extraction of the feature vector xi ∈ R
d in (3) is

used to map the relationship between an image and lighting
color incident on it. Binarized chromaticity histogram, color
moments and other visual features are widely used for illumi-
nation estimation. In this paper, inspired by recent work [38],
the histogram based on a logarithm of the RGB color signal
is used. We define a logarithm chromaticity space (r, g)T on
RGB color space as:�

r = log2 (G/R)

g = log2 (G/B).
(4)

The range of R/G/B color signal depends on the format of the
images, so the width of the histogram varies. Taking the SFU
dataset [40] for instance that will be used in the following
experiment, all images are in 8-bits data and the histogram is
built on the data between [−8, 8]. We equally divide the r or
g component into N bins and create a normalized histogram
as the feature vector xi ∈ R

N2
.

C. Graph Construction for SCC From Different Cues

The second key component in (3) is the adjacency matrix
S, indicating that images with similar visual characters should
have similar illumination values. The loss function with the
adjacency matrix makes our methods be an integration of
regression and classification. Consequently, we create a graph
G (V, S) where the nodes V are all the images, represented by
the feature vectors [v1, v2, . . . , vn] based on the selected cue.
The edge between nodes (i, j) represents their similarity and
the weight matrix S is computed as:

si, j = exp

�
−

M�
m=1

�
vim − v jm

�2

σ 2
m



, (5)

where vim is the m-th component of the feature vector vi of the
image Ii used in graph construction, σm is the corresponding
scale hyperparameter for each component, and all components
can share a same value.

How to select the feature vector vi is the key step for graph
construction. Inspired by the observations in [39], we can
define feature vector vi and construct corresponding graphs
from low-, mid-, and high-level cues.

1) Low-Level Graph Using Color Distribution Cue: As we
know, images having similar color distributions tend to be
captured under similar illumination colors. Several different
illumination estimation methods rely on this observation,
including those based on neural networks [19], support vector
regression [20], and color by correlation [13]. For low-level
(LL) cues, images are treated as a bag of pixels, so LL cues
are often the statistical distributions of color signals. Here we
use the same histogram feature defined in section II-B, i.e.
vi = xi .

2) Mid-Level Graph Using Initial Estimate Cue: Although
the unsupervised color constancy methods are simple and
inaccurate, the estimates of them can reflect the illuminates of
images to a certain degree. So, we assume that images having
similar initial estimates using simple unsupervised methods
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tend to be captured under similar illumination colors. To this
end, the grey edge framework in [8] is used to get initial
estimates as: �� ����∂ t I σ (ε)

∂εt

����
p

dx

� 1
p

= het,p,σ , (6)

where I σ (ε) = I (ε) ⊗ Gσ is a convolution of the image
with a Gaussian filter Gσ , t is the order of the derivative,

 is the Minkowski-norm and σ is the scale parame-
ter of a Gaussian filter. With 9 different parameters set-
tings of (t, 
, σ ) based on the previous studies [24], [41],
which are (0, 1, 3), (1, 2, 1), (2, 1, 2), (0, 1, 0), (0,∞, 0),
(0, 6, 0), (2, 1, 5), (0, 13, 2), (1, 1, 6), initial illumination esti-
mations are obtained. After changing into logarithm form
using (4), an 18-dimensional feature vector is generated
as our mid-level cue, which can be represented as vi =
[c0,1,3

i , c
1,2,1

i , c
2,1,2

i , c
0,1,0

i , c
0,∞,0

i , c
0,6,0

i , c
2,1,5

i , c
0,13,2

i , c
1,1,6

i ]T .
3) High-Level Graph Using Scene Category Cue: For a spe-

cific scene category, some corresponding lighting conditions
are more likely to occur and this relationship can be exploited
in illumination estimation. For example, compared with the
skylight, indoor illumination is generally redder and more
various. HL cues focus on those features that are reflections
of the scene content and attempt to use this knowledge to
guide illumination estimation. The Weibull parameterization
is implemented to get our HL cue because it is valuable in
determining the scenes of an image. Further, we can fit the
distribution of edge responses with a Weibull distribution:

wb(a) = ϑ exp

�
− 1

α

���� z

β

����α
�

, (7)

where α and β reflect the grain size and image contrast respec-
tively. z represents the edge responses and ϑ is a constant
for normalization. With the same parameter setting in [24],
we transform the image into the 3-dimensional opponent color
space (O1, O2, O3)

1 and a 24-dimensional feature vector can
be obtained as our HL cue.

IV. MULTI-CUE SEMI-SUPERVISED COLOR CONSTANCY

In this section, we extend SCC to integrate three cues and
optimize the corresponding objective function. According to
Section II, we can obtain three different adjacency matrices,
Sk = [sk

i, j ], (i, j = 1, . . . , n; k = 1, 2, 3), with different cues,
resulting in different SCC models: SCC with low-level graph
(SCC_L), SCC with mid-level graph (SCC_M), and SCC with
high-level graph (SCC_H). However, any cue can only reflect
some constraints from one viewpoint. In order to obtain more
accurate and stable illumination estimation, we integrate these
three cues into a unified semi-supervised learning model by
extending SCC to multi-cue semi-supervised color constancy
(MSCC).

A. Formulation of MSCC

The objective function of MSCC includes three aspects:
J = Jlabel + λ1Junlabel + λ2Juni . (8)

1 O1 = R−G√
2

, O2 = R+G−2B√
6

, O3 = R+B+G√
3

Similar to SCC, the first term Jlabel defines the similarity
between the estimation and ground-truth for those labeled data
on three cues:

Jlabel =
�

k

l�
i=1

�fk (xi ) − ci�2. (9)

Here, for each cue, fk is defined as a linear regression function
fk (x) = wT

k x (k = 1, 2, 3), which represents the illumination
prediction function of SCC_L, SCC_M, SCC_H, respectively.
wT

k = �
w1

k , . . . , w
d
k

� ∈ R
d is the corresponding weight vector.

All these 3 weights’ vectors can be concatenated into a matrix,
W ∈ R

d × k, to be estimated.
The second term focuses on the distance consistency among

samples, which is the key idea of the graph-based semi-
supervised method. So we have Junlabel :

Junlabel =
�

k

⎛
⎝ n�

i, j=1

Si, j
��fk (xi)−fk

�
x j

���2+δ�wk�2

⎞
⎠. (10)

The last term Juni defines a consistency constraint on
different distance matrices from these three cues, that is,
the different wk from different cues should share similar
values. So we have:

Juni =
3�

k=1

�wk − w̄�2,

w̄ =
3�

k=1

wk/3. (11)

where w̄ is the mean vector of these three models.

B. Optimization

Borrowing the basic ideas from [42], we develop an efficient
and simple method to solve the loss function in (8). In the
first term Jlabel , for each cue k, the corresponding wk can be
further represented as a linear combination of the coefficient
vector hk = �

h1
k , h2

k, . . . , hn
k

�T
and feature data, that is

wk =
n�

i=1
hi

kxi = Xkhk . Then a label truncated identity matrix

Jk ∈ R
n×n and an initial label vector bk ∈ R

n×1 for each
cue’s weight vector, along with some notations are defined as
follows:

Jii =
�

1, i ∈ l

0, otherwi se,

bk (i) =
�

1, i ∈ l

0, otherwi se,

X = [X1, . . . , Xk] ,

H = diag (h1, . . . , hk) ,

B = diag (b1, . . . , bk) ,

A = diag (A1, . . . , Ak) ,

J = diag (J1, . . . , Jk) , (12)

where A is the Gram matrix of X. diag means that we
arrange vectors or matrices along the diagonal line and form
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a new matrix. Now Jlabel can be rewritten as Jlabel =
�B − JAH�2

F . Also, for the second term Junlabel in the loss
function, we have Junlabel = tr

�
HT (A + δALA) H

�
. For the

last term Juni , we introduce a vector E = (1, 1, 1)T and
M = I−E

�
ET E

�−1
ET . Then we have Juni = tr

�
WMWT

� =
tr

�
XHMHT XT

�
. Now we can rewrite our loss function J as:

J = �B − JAH�2
F + λ1tr

�
HT (A + δALA) H

�
+ λ2tr

�
XHMHT XT

�
. (13)

By optimizing H and setting ∂ J
∂H = 0, we can get:

(λ1A + A (J + λ1δL) A) H + λ2XT XHM = AB. (14)

The equation can be easily solved by using the method in [43].
We can also apply gradient descent to solve H instead if the
scales are too large to solve directly.

C. Combination of Estimates From Multiple Cues

We can obtain three estimates using MSCC with three cues
for an image. We denote the estimate with low-level graph as
fL(x), the estimate with low-level graph as fM (x), and the
estimate with high-level graph as fH (x). The final estimate
can be computed using a weighted average, as:

ĉi = α� fL(xi ) + β � fM (xi ) + (1 − α� − β �) fH (xi ), (15)

where α�, β � ∈ [0, 1] and the optimal values are determined
by a simple exhaustive search method on the training set in
this paper.

V. EXPERIMENT

We evaluate the performance of our proposed methods and
other well-known methods on three datasets: Gehler-Shi [18],
NUS [10] and Linear SFU image set [40]. The first one
is provided by Gehler et al. [18] and then is reprocessed
by Shi and Funt [44]. The second one is from Cheng and
Brown [10], which is also a common dataset of real-world
images and illuminations. The third one is produced by Ciurea
and Funt [40] from a digital video and is linearized by
Gijsenij et al. [16]. In the experiments, we implement our
methods using following parameters. In the feature extraction
process, the number of bins, N, is set as 4096, which generates
a 64 ∗ 64 histogram. In the training process, λ1, λ2 in (8),
δ in (10) are set as 102, 10−1 and 10−2 respectively. In the
combination of estimates from multiple cues, α� and β � in (16)
are determined by a grid search. α� is set as 0.5 and β � is set
as 0.4. The σ in (5) varies with cues we use. σ for LL and
ML cue is set as 0.01, and for HL cue, σ is set as 0.001.

A. Error Measurement

Angular error is chosen to evaluate the methods. Given an
estimated chromaticity c = �

cr , cg
�T , we can calculate color

signal e = �
er , eg, eb

�
as:

er = 2(−cr )

ς
, eg = 1

ς
, eb = 2(−cg)

ς
,

ς =
�

2(−cr )
2 + 2(−cg)

2 + 1. (16)

For each image, the ground-truth light source ea is known
and the estimated illumination ey can be gained from each
color constancy method. To evaluate how close ey resembles
ea , the angular error can be computed as follows:

angular(ey, ea) = 180◦

π
cos−1

�
ey • ea��ey

�� �ea�



, (17)

where • is the dot product and �� indicates the Euclidean
norm. Besides the mean and the median of the angle errors,
the tri-mean, the mean of the best 25% (B-25%) and the mean
of the worst of 25% (W-25%) angle errors are also provided
for a more overall comparison. The best 25% (or worst 25%)
measures the mean of the smallest (or largest) 25% angle
errors on the test images. The tri-mean is calculated as the
average of the median and the midhinge.

B. Experiments Without Unlabeled Training Samples

In this section, experiments are conducted without unla-
beled training samples on three datasets. The performance
of our proposed methods and other well-known methods
is reported and analyzed. Without unlabeled samples, our
proposed method works as a multi-task supervised method.

1) Results on the Gehler-Shi Set: The Gehler-Shi dataset
contains 568 images taken using two high-quality DSLR cam-
eras (Canon 5D and 1D). The dataset includes a wide variety
of both indoor and outdoor scenes. Each image in the dataset
contains a color checker, which performs as a calibration
object for the calculation of the ground-truth illumination.
The original images in the dataset are saved as Canon RAW
format and this brings the problem of clipped pixels, which
are non-linear and include the effect of the camera’s white
balancing. To solve the problem, reprocessing is taken by
Shi et al. [18] and a new dataset containing almost raw 12-bit
PNG format images is produced. The images are named in the
sequence in which they were taken. As a result, neighboring
images in the sequence are more likely than others to be taken
from similar scenes. To ensure that the scenes from the training
set and the test set have no overlap, we use an uncorrelated
threefold cross validation provided by Li et al. [41]. In this
experiment, both the SCC and the MSCC use the full training
set without unlabeled samples, which is the same as the other
supervised methods. Besides MSCC, methods combining two
cues are exploited as comparisons. We represent the method
containing low- and mid-level cues as SCC_LM, the method
containing low- and high-level cues as SCC_LH and the
method containing mid- and high-level cues as SCC_MH.

We compare the proposed methods with 29 previous meth-
ods, including both supervised and unsupervised methods. The
results are collected from colorconstancy.com [45]. According
to the experimental results in Table I, the proposed methods,
both SCC and MSCC, outperform all the unsupervised meth-
ods and most supervised methods. MSCC outperforms all the
methods listed in Table I except DS-net [36] and FFCC [38].
DS-net is a deep learning based method that needs a long time
training procedure on the high-performance computers with
expensive GPUs, while MSCC can be efficiently trained on
common PCs. It should be noted that, the error values of the
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TABLE I

PERFORMANCE COMPARISON OF OUR PROPOSED METHODS AGAINST OTHER METHODS ON THE GEHLER-SHI DATA SET

FFCC are based on random threefold cross validation on this
dataset, not our uncorrelated threefold cross validation. The
results of FFCC trained on related threefold cross validation
are shown in Table I as FFCC#, which is trained using the code
provided in [38] and has much lower performance than FFCC.
Besides, we can find that the MSCC outperforms all the SCC
methods. The reason for the improvement is mainly due to two
reasons: (1) the combination step of different cues makes the
results stable and accurate, and more importantly (2) the key
novelty, that all training samples should result in a similar esti-
mation if they share certain similar visual characters, ensures
that different cues can lead to a better estimated illumination.
The SCC_H achieves lower performance than both SCC_L and
SCC_M, which implies that the scene category cue is a loose
constraint for illumination estimation. All the results indicate
that the proposed semi-supervised learning-based methods are
better alternatives than some supervised learning methods for
illumination estimation, even with no unlabeled samples. Fig.2
shows several visual comparison samples of corrected images
using different methods.

Because of the problem raised by G.D.Finlayson
[46]–[48], experiments based on the REC ground-truth
are also implemented. The REC ground-truth notices the
problem in calculating correctly the bounding boxes for Shi’s

release. Results of 12 previous methods are collected from
colorconstancy.com and shown in Table II. It can be seen that
our methods still achieve comparable results under the REC
ground-truth. SCC methods can obtain leading performance,
and the combination of different cues can further reduce the
angular error in most cases. It should be noticed that the
performance of SCC_H is less satisfactory, as the semantic
information may be unreliable with a wide variety of scenes,
which also results in unsatisfactory performance of SCC_MH.

2) Results on the NUS Set: The NUS set is produced by
Cheng and Brown [10] and is composed of 1736 high-quality
images. The images are taken from 8 commercial cameras
(Canon 1DS Mark III, Canon 600D, Fujifilm XM1, Nikon
D5200, Olympus EPL6, Panasonic GX1, Samsung NX 2000,
and Sony α57). For each camera, over 200 images, which
contains both indoor and outdoor scenes, are captured. Similar
to the Gehler-Shi set, a color checker in each image is used
to provide the ground-truth illumination.

We report the results from [37] for 22 methods. For
each camera, learning-based methods are trained and tested
separately, and a threefold cross validation is taken. Then
the average results of 8 cameras are reported in Table III
as the evaluation criterion. It shows that our proposed
semi-supervised methods achieve comparable performance
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Fig. 2. Some examples of corrected images using different methods. The angular error is shown in the lower right corner of each image.

TABLE II

PERFORMANCE COMPARISON OF OUR PROPOSED METHOD AGAINST VARIOUS OTHER METHODS ON THE G.HEMRIT’S COLOR CHECKER DATASET

with the state-of-art color constancy methods. Besides, MSCC
outperforms most supervised methods and is more stable
because of the combination of different cues, which indicates
that more reliable results can be gained in various situations
with MSCC. In addition, the performance of MSCC is much
better than deep learning-based method DS-Net. The reason
is that the NUS set only contains around 200 images for each
camera. It is difficult to learn a good deep neural network
model using such a small scale set.

3) Results on the Linear SFU Set: The SFU dataset is
provided by Ciurea and Funt [40] and contains 11346 images.
The images are from the frames of videos, so a high relevance
exists. To solve this problem, a fixed version of the dataset is
applied by Bianco et al. [28]. 1135 less correlated images are
selected according to a video-based analysis.

To further avoid the correlation, we divide the dataset into
15 parts according to the files they belong to, which indicate
the scenes where the images are taken. Then we apply a
15-fold cross validation. Each file is regarded as the test set
separately and the other 14 files are regarded as the training
set. This strategy ensures that the training set and test set are
truly distinct. We report the results from [39] for 15 methods.
According to Table IV, all the proposed SCC and MSCC
methods outperform all the other methods including both
unsupervised and supervised ones. Especially, MSCC reduces
the median and mean errors by 24% and 18% respectively
comparing with the best supervised method MC.

C. Experiment With Unlabeled Training Samples

This section shows the experiments on different datasets
by gradually decreasing the number of labeled images.
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TABLE III

PERFORMANCE COMPARISON OF OUR PROPOSED METHODS AGAINST OTHER METHODS ON THE NUS DATA SET

TABLE IV

PERFORMANCE COMPARISON OF OUR PROPOSED METHODS AGAINST OTHER METHODS ON THE SFU DATA SET

We further test the proposed semi-supervised methods with
limited labeled training samples.

1) Results on the Gehler-Shi Set: The uncorrelated three-
fold cross validation setting is also used in this experiment.
Differently, in each cross validation, the training dataset is
composed of two parts: p% data are randomly selected out
as labeled images, while the remaining are used as unlabeled.
Those selected labeled images are used to train SVR, NN and
FFCC Methods. The whole training set, including labeled and

unlabeled ones, are used to train our SCC and MSCC methods.
The procedure is repeated 5 times and the mean performance is
used as the final result for each method. Fig.4 shows the mean
and median errors with different values of the percentage.

According to Fig.4, along with the reducing percentage,
the error of SVR, NN and FFCC increases rapidly. Though the
FFCC method achieves the best performance on the Gehler-Shi
Set with p = 100, its performance varies dramatically with
the change of p. Since the deep neural network cannot be
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Fig. 3. Some corrected examples of different methods with different amounts of labeled training data. Our semi-supervised method achieves a stable
performance when the number of labeled samples decreases.

Fig. 4. Experiment results with few training samples on the Gehler-Shi
Set. Cheng et al. 2014 [10] is shown as a baseline of unsupervised method.
It shows that even with a small number of labeled samples, our proposed
method can still perform well.

well trained on a small training set, we use a shallow neural
network architecture in [19] instead. Even though the NN
method has much fewer parameters than deep neural network,
it also cannot produce a reasonable model when p < 30.
In comparison, the MSCC still achieves high performance
even when p = 10 (about 38 labeled images). In this
situation, the median and mean errors of MSCC are 2.21◦ and
3.13◦, which are much lower than most unsupervised methods
and supervised methods with 100% labeled training samples
in Table I. The SCC methods also obtain good performance
with so few training samples. This indicates that low-level
features become more and more important as the number
of training samples decreases. Some corrected examples are
shown in Fig.3.

2) Results on the NUS Set: Similar to the setting of the
experiments on the Gehler-Shi set, we compare different

Fig. 5. Experiment results with few training samples on the NUS Set.
Biano et al. 2019 [12] is shown as a baseline of unsupervised method.
Performance of supervised methods drops sharply while facing insufficient
labeled samples.

methods with limited training samples on the NUS set.
We implement several methods with their best parameter set-
ting and Fig.5 shows the change of performance with different
amounts of labeled training samples. Although the numbers
of images for 8 camera sets are slightly different, we show
the average of results of 8 cameras here for convenience.
It should be noted that the number of training samples is as
low as 20 in some camera datasets when p = 10. And our
semi-supervised methods can still get reasonable results. Both
MSCC and SCC_L perform better than all the unsupervised
methods in all sets of the training set. The median error of
MSCC increases by only 0.26◦ (from 1.35◦ to 1.61◦) even
when the number of labeled samples reduces by 90%. It further
validates the stableness of the MSCC and SCC methods with
limited training samples.
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Fig. 6. Experiment results with few training samples on the SFU Set. GE [8]
is shown as a baseline of unsupervised method. Although all the methods do
not perform well because of the unusual lighting conditions in the dataset,
our methods still achieve a leading performance.

3) Results on the Linear SFU Set: The linear SFU set
contains more images than the Gehler-Shi set and NUS set,
so we set the percentage range p between [5, 100] to simulate
the situation with limited training samples. The result is
shown in Fig.6. It shows that our semi-supervised methods
perform well while other learning methods do not. It is noted
that NN becomes instable. The performance of SVR seems
rather steady when p > 9. However when the number of
labeled samples continues decreasing ( p < 9), the perfor-
mance of it declines sharply. On the contrary, the semi-
supervised methods, especially MSCC, show high and stable
performance, even when p < 9. The performance of SCC_H
is less satisfactory. This indicates that only using the high-level
semantic information may be unreliable when the training set
is small but complex.

D. Comparison Among Different Cues

In this section, different methods generated by the MSCC
framework with different cue combinations are compared and
discussed. We compare results on the Gelher Shi set, with
different amounts of labeled training samples, as shown in
Fig.7. It is noticed that SCC_L achieves the best performance
among methods based on the single cue. And SCC_M can
perform as well as SCC_L in most cases. This indicates
that low-level and mid-level features are meaningful even
when there are only a few training samples. Meanwhile,
SCC_H performs worse as the percent of training samples
goes down. And the gap between SCC_H and other two single
cue methods is getting larger. This is because that the scene
understanding itself is a challenging problem, which calls
for discriminative features and a number of training samples.
Although the performance of SCC_H may be less satisfactory,
it is noticed that MSCC methods with high level cue generally
achieve better results. This means that high-level cues can be
a useful supplement to low-level and mid-level cues.

E. The Effect of Unlabeled Set Size

In this section, we further discuss the effect of the number
of unlabeled samples. First, we equally divide the dataset
into three parts as labeled set, unlabeled set and test set
respectively. Second, we randomly choose l samples from
labeled set and u unlabeled samples from the unlabeled set to

Fig. 7. Performance comparison of SCC_L, SCC_M, SCC_H, SCC_LM,
SCC_LH, SCC_MH and MSCC. In each dataset, experiments with different
amounts of labeled training samples are conducted. (a). Gehler set, (b). NUS
set, (c). SFU set.

Fig. 8. Experiments with an increasing number of unlabeled samples.
Situations with different amounts of labeled samples are reported.

compose a training set. Finally, the SCC and MSCC are trained
on the training set with l labeled samples and u unlabeled
samples, and evaluated on the test set. The performance of
SCC and MSCC with different values of l and u on the Gehler
Shi set are reported in Fig.8. It can be seen that as the number
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TABLE V

MEDIAN ERROR ANGLES OF EXPERIMENTS WITH AUGMENTED IMAGES

TABLE VI

MEAN ERROR ANGLES OF EXPERIMENTS WITH AUGMENTED IMAGES

of the unlabeled samples increases, both median and mean
angular errors are decreasing. Though the advance caused by
unlabeled samples are not as good as that caused by the same
amount of labeled samples, it is still effective and practical.
The unlabeled samples provide additional information for the
distribution of the dataset. By exploiting the extended graph,
which represents the relationship of both labeled samples and
unlabeled ones, a more accurate illuminant estimation can be
gained. This is the reason why the unlabeled samples can
improve the illumination estimation accuracy. As we know,
it is much easier to collect a large number of unlabeled
samples, which makes the proposed semi-supervised methods
effective and practical.

F. The Effect of Augmented Images

Inspired by [37], we extend the training data set after gen-
erating three extra images from each input image artificially.
Let I represent the original image, the four augmented images
can be derived from the following equations:

I1 = I,

I2 = max

⎛
⎝0, I ∗

⎡
⎣ 0 −1 0

−1 5 −1
0 −1 0

⎤
⎦

⎞
⎠ ,

I3 = blur
�

I 4, 11
�1/4

,

I4 =
�

blur
�
I 2, 3

� − blur(I, 3)2, (18)

in which blur is a box filter and the details can be found
in [37] and ∗ represents a convolution operation. Using the
same experimental settings in Section IV-B, we test the SCC
and MSCC methods on different images (I1, I2, I3, I4) respec-
tively with different p on the Gehler-Shi Set. Accordingly,
we can obtain four estimates for each image I . Then the four

estimates are averaged as the final estimation. The median
and mean errors are shown in Tables V and VI. The methods
without ’#’ mean using only original image I1, while the
methods with ’#’ mean combining estimates form all the four
images. L P means the error reduction of the method using
four augmented images comparing with the method using
original image. From the comparison in Tables V and VI,
the augmented images can provide much more information
of an image from different views and this results in better
performance, especially when the labeled training samples are
limited. For example, when p = 10, the median and mean
errors of MSCC# are reduced by 19% and 10% respectively
comparing with MSCC. It indicates that combining different
augmented images is an effective way to improve the per-
formance of the semi-supervised methods when the labeled
training samples are very limited.

G. Efficiency Comparison

In this section, the computational cost of different methods
is summarized and compared. We use the average computa-
tional time for each image as the evaluation criterion. The
Gehler-Shi dataset is chosen to implement the experiment. For
unsupervised methods, no training process is needed and only
test time is given. The codes are run in Matlab R2017 on
a computer with Intel Core i7-9800X 3.80GHz with 16 GB
RAM. The results are shown in Table VII.

It can be seen in Table VII that unsupervised methods
are fastest. In these methods, images are treated as bags of
pixels and only basic calculations and statistics are needed.
For supervised methods, more time is required to get high
dimensional image features. The test time cost of methods
is close to unsupervised methods. And the time cost of the
training process is also acceptable, which can be carried
out offline. The test time costs of proposed methods mainly
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TABLE VII

COMPUTATION TIME OF DIFFERENT METHODS

contain two parts: feature extraction and illumination calcula-
tion. The time cost of three SCC methods is slightly different
because of different coefficient matrix. The combination step
makes MSCC cost a little more time than SCC.

VI. CONCLUSION AND FUTURE WORK

Supervised methods have been shown to be superior to
those unsupervised ones in illumination estimation. However,
they must face a basic issue that is lack of sufficient labeled
data for each specific camera. This paper presents a novel
semi-supervised method to leverage both labeled and unla-
beled samples. To the end, three graphs based on three visual
cues, low-level RGB color distribution, mid-level initial illu-
minant estimates and high-level scene content, are constructed
to represent the relationship among different images. Then a
multi-cue semi-supervised color constancy method (MSCC)
is proposed by integrating these three graphs into a unified
model. Extensive evaluations on several benchmark datasets
demonstrate that the proposed method outperforms the super-
vised approaches illumination estimation with inadequate
labeled samples.

Among the three cues, methods based on high-level cues
perform slightly worse while the number of training samples
drops down. And the combination results may be slightly
influenced in several cases due to the instable performance.
Beside high-level cues we use in this work, other cues such
as 3D scene geometry [26] or color moment-based feature [23]
can also be exploited. In future work, the choose of optional
high-level cues can be further explored. Besides, due to the
different sensors of cameras, only unlabeled images which
are captured under a certain type of camera can be used in
our semi-supervised methods. This limitation can be another
avenue of future research.
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