
Topological Coded Distributed Computing
Kai Wan∗, Mingyue Ji†, Giuseppe Caire∗

∗Technische Universität Berlin, 10587 Berlin, Germany, {kai.wan, caire}@tu-berlin.de
†University of Utah, Salt Lake City, UT 84112, USA, mingyue.ji@utah.edu

Abstract—This paper considers the MapReduce-like coded
distributed computing framework originally proposed by Li et
al., which uses coding techniques when distributed computing
servers exchange their computed intermediate values, in order to
reduce the overall traffic load. In their original model, servers are
connected via an error-free common communication bus allowing
broadcast transmissions. However, this assumption is one of the
major limitations for practical implementations since real-world
data centers may have network topologies far more involved
than a single broadcast bus. We formulate a topological coded
distributed computing problem, where the computing servers
communicate with each other through some switch network. By
using a special instance of fat-tree topologies, referred to as t-ary
fat-tree proposed by Al-Fares et al. which can be built by some
inexpensive switches, we propose a coded distributed computing
scheme to achieve the optimal max-link communication load
(defined as the maximum load over all links) over any network
topology.

Index Terms—Coded distributed computing, network topology,
fat-tree.

I. INTRODUCTION

Recent years have witnessed the emergence of big data
with wide range of applications. To cope with such a large
dimension of data and the complexity of data mining al-
gorithm, it is increasingly popular to use cloud computing
infrastructures such as Amazon Web Services (AWS) [1],
Google Cloud Platform [2], and Microsoft Azure [3]. In
particular, modern distributed computing platforms such as
MapReduce [4] and Spark [5] have attracted significant atten-
tions since they enable the computation of large tasks on data
sizes of order of terabytes. The path to exascale distributed
computing poses a number of significant research challenges
as distributed computing vendors attempt to deliver a hundred
times performance improvement relative to today’s distributed
computing systems. While large scale distributed algorithms
and simulations running at these extreme scales have the
potential for achieving unprecedented levels of accuracy and
providing dramatic insights into complex phenomena, they
are also presenting new challenges. Keys among these are
the challenges related to the computation and communication
costs. In order to tackle these large-scale problems, it is
critically important to understand the fundamental tradeoff
between computation and communication. Inspired by the idea
from the current development of coded caching networks [6],
[7], the pioneering works [8], [9] introduces the concept of
Coded Distributed Computing (CDC), which enables network
coding among intermediate computed values to save signif-
icant communication load among servers. In particular, [9]
studied the fundamental tradeoff between communication load

and computation load in a “MapReduce-like” distributed com-
puting system. Surprisingly, it showed that if each computation
task is replicated at r servers, the total communication load
L(r) can be reduced by a factor r. This means that we can
trade computation power for communication load, which has
the potential to lead to a solution of the traffic congestion
problem in the current distributed computing systems.
The framework considered in [9] contains Map, Shuffle, and

Reduce phases. In the map phase, the K distributed computing
servers process parts of the stored data locally and generate
some intermediate values. In the shuffle phase, each server
broadcasts some computed intermediate values to other servers
through an error-free common-bus (each server can receive
the packets transmitted by other servers without error), such
that all the servers can obtain enough input values to compute
the output functions in the reduce phase. Other aspects and
extensions of CDC are considered in the literature such as
reducing complexity [10]–[12], randomized connectivity [13],
alternative metrics [14], and over wireless channels [15].
As pointed out in [9], [16], while the common-bus topology

is meaningful for co-located processors, it is generally difficult
to implement such topology for physically separated servers.
Since the publications of [9], [16], designing a practical data
center network topology that can reap the gains of coded
distributed computing in terms of per-link communication load
is widely open. In this paper, we consider a general switch
network connecting the computation servers as illustrated in
Fig. 1. Depending on the network topology, the max-link
communication load may be more relevant compared to the
total communication load sent from each server. In fact,
eventually such max-link communication load may be the
system bottleneck that will dominate the overall communi-
cation performance. Our objective is to find a practically used
network topology and design appropriate coded distributed
computing schemes, such that given the computation load in
the map phase, the max-link communication load over all
links in this topology (related to the communication latency) is
minimized. In addition to the problem formulation, our main
contributions in this paper are as follows.

• We characterize the optimal max-link communication
load by proposing an information theoretic converse
based on cut-set bounds and a coded distributed com-
puting scheme on a single-switch topology.

• Motivated by the fact that a single switch topology is in
general not scalable with the number of servers and very
costly, because a powerful switch whose number of ports
is equal to the number of servers K becomes more and

978-1-7281-8298-8/20/$31.00 ©2020 IEEE

GL
O

BE
CO

M
 2

02
0

- 2
02

0
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

8-
1-

72
81

-8
29

8-
8/

20
/$

31
.0

0
©

20
20

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
42

00
2.

20
20

.9
32

22
45

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 16:54:17 UTC from IEEE Xplore. Restrictions apply.

more costly and impractical as K increases, we propose
to use the t-ary fat-tree topology proposed in [17] as
illustrated in Fig. 2 (detailed description on the topology
will be provided in Section III-B), which has been widely
used in practice for data center networks [18]. This t-ary
fat-tree is built by some t-ports switches which can handle
up to t3

4 servers, and can significantly reduce the network
building cost. By leveraging the symmetry of the t-ary
fat-tree network and the fact that there exist some
paths between any two servers, we then propose a coded
distributed computing scheme based on the t-ary fat-tree,
which achieves the optimal max-link communication load
over any network topology.

To the best of the authors’ knowledge this is the first paper
showing that the whole distributed computing gain of [9] can
be achieved in a different and much more practical topology
rather than the oversimplified and impractical common-bus
topology. Therefore, this is an important step in the direction of
bringing coded distributed computing much closer to practice.

Notation convention: Calligraphic symbols denote sets
and sans-serif symbols denote system parameters. We use | · |
to represent the cardinality of a set or the length of a vector;
[a : b] := {a, a+ 1, . . . , b} and [n] := [1, 2, . . . , n].

II. SYSTEM MODEL

A. Coded Distributed Computing Problem in [9]

We first briefly review the coded distributed computing
problem in [9], which aims to compute Q arbitrary output
values (denoted by u1, . . . , uQ) from N input data files (de-
noted by w1, . . . , wN) using a cluster of K distributed servers.
For some s ∈ [K] where

(
K
s

)
divides Q, it is required that

each subset of s servers compute a disjoint subset of Q

(Ks)
output values. The set of output values which server k needs
to compute is denoted by Wk. The computation proceeds in
three phases: Map, Shuffle, and Reduce.
Map phase. Each server k ∈ [K] computes the Map

functions of data files in Mk ⊆ [N], where Mk is stored
in its memory. For each data file wn where n ∈ Mk, server k
computes g(wn) = (v1,n, . . . , vQ,n), where vq,n is an interme-
diate value represented by T information bits for each q ∈ [Q].
The output value uq where q ∈ [Q] can be directly computed
from some intermediate values, i.e., uq := hq(vq,1, . . . , vq,N)
for some function hq . The computation load, defined as

r =

∑
k∈[K] |Mk|

N
∈ [1,K],

represents the average number of nodes that map each data
file.

Shuffle phase. To compute the output value uq where
q ∈ Wk, in the shuffle phase server k needs to recover
the intermediate values {vq,n : n /∈ Mk}, which are not
computed by itself in the map phase. For this purpose, each
server k creates an ℓk-bit message Xk based on its computed
intermediate values in the map phase, i.e.,

Xk = ψ({g(wn) : n ∈ Mk}).

The message Xk is then broadcasted from server k to other
servers through a common communication bus. The commu-
nication load, denoted by

L =

∑
k∈[K] ℓk

QNT
,

represents the normalized number of bits communicated in the
system.
Reduce phase. Each server k ∈ [K] first decodes the

intermediate values {vq,n : n /∈ Mk} from the received
messages {Xj : j ∈ [K] \ {k}}, and then computes the output
value uq := hq(vq,1, . . . , vq,N) for each q ∈ Wk.
The objective is to design the Map, Shuffle and Reduce

phases such that the communication load L(r) is minimized
given the computation load r ∈ [1,K].
It was proved in [9, Theorem 2] that the optimal tradeoff

L⋆(r) is the lower convex envelop of the following points,

L⋆(r) =

min{r+s,K}∑
t=max{r+1,s}

t
(
K
t

)(
t−2
r−1

)(
r

t−s

)
r
(
K
r

)(
K
s

) , (1)

where r ∈ [K].
The achievable scheme in [9, Section V] is based on linear

coding. Define Tk as the transmitted message by server k in
the achievable scheme [9] for each k ∈ [K]. Tk contains

L⋆(r)QNT

K
, (2)

bits, and could be written as a set of non-overlapping sub-
messages,

Tk =
{
TS
k : S ⊆ [K] \ {k}

}
,

where TS
k represents the sub-messages transmitted by server

k which are useful to servers in S . For each server j ∈ [K],
the set of received sub-messages which are useful to server j
is defined as

Uj =
{
TS
k : k ∈ [K] \ {j},S ⊆ [K] \ {k}, j ∈ S

}
.

An important observation from the achievable scheme in [9]
is that

|Uj | =
(
N− rN

K

)
QsT

K
, (3)

which is equal to the number of bits in {vq,n : q ∈ Wj , n /∈
Mj} (the total length of the intermediate values to compute
uq for all q ∈ Wj , which are not computed by server j in
the map phase). For the sake of space limitation we invite the
reader to refer to [9] for more details.

B. Topological Coded Distributed Computing

The coded distributed computing framework in [9] assumes
that each server broadcasts some messages to others through
a common communication bus. However, this topology is not
used in practice. Instead, we always need to build a topological
network composed of switches and wired links to enable
the communications among the servers. Fig. 1 illustrates the
general data center networks considered in this paper, where

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 16:54:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: The topological coded distributed computing problem.

each server is connected to a cloud of switches through an
individual wired link. The switches in the network cannot
compute functions, and we assume that there does not exist
any direct link from one server to another.

The map and reduce phases in our considered problem
are the same as in [9]. In the shuffle phase, instead of
assuming the common communication bus, we need to design
the topology in the system. Assume there are totally V wired
links in the designed topology.1 For each link v ∈ [V], the
number of uplink (i.e., from the bottom to the top in the
topology) transmitted bits through link v is denoted by Rup

v ,
and the number of downlink (i.e., from the top to the bottom)
transmitted bits through link v is denoted by Rdown

v . The total
number of bits transmitted through link v is denoted by

Rv = Rup
v +Rdown

v .

We define the max-link communication load D as the maximal
normalized number of bits transmitted through each link,
where

D = max
v∈[V]

Rv

QNT
.

The objective is to design a network topology and an achiev-
able scheme to characterize the communication load D⋆(r)
given the computation load r ∈ [1,K].

III. MAIN RESULTS

A. Optimal max-link communication load

Theorem 1. For the considered topological coded distributed
computing problem, the optimal tradeoff between the max-link
communication load and the computation load is the lower
convex envelop of the following points,

D⋆(r) =
L⋆(r)

K
+

s

K

(
1− r

K

)
, ∀r ∈ [K]. (4)

1Notice that we consider here both the links from servers to the intercon-
nection switching network and possible internal links between the switches.

Proof: Achievability. First, we need to design a network
topology. We simply let all servers be connected to one switch
at the top. Recall that Tk where k ∈ [K] is the transmitted
message by server k in the achievable scheme [9]. Each server
k transmits Tk to the top switch. The switch forwards Uj to
each server j ∈ [K]. The lengths of Tk and Uj are given in (2)
and (3), respectively. Hence, we prove that the communication
load in (4) is achieved.
Converse. Denote the index of the link directly connected

to server k by vk. We first consider the uplink transmission
from the servers. The total uplink load through the links in
{v1, . . . , vK} should be no less than L⋆(r), i.e.,∑

k∈[K]

Rup
vk

≥ L⋆(r). (5)

We then consider the downlink transmission from the cloud
to the servers. Recall that in the shuffle phase server k
needs to recover {vq,n : q ∈ Wk, n /∈ Mk}, and that
|Wk| = Q

(Ks)

(
K−1
s−1

)
= Qs

K . In other words, server k needs to

recover Qs
K (N− |Mk|). Hence, the total number of interme-

diate values needed to be recovered by all servers is∑
k∈[K]

Qs

K
(N− |Mk|) =

Qs

K
(NK− Nr) . (6)

Recall that the length of each intermediate value is T.
From (6), the total downlink load through the links in
{v1, . . . , vK} can be bounded as follows,∑

k∈[K]

Rdown
vk

≥ Qs

K
(NK− Nr)

T

QNT

= s
(
1− r

K

)
. (7)

From (5) and (7), we have

max
k∈[K]

Rvk
≥ 1

K

∑
k∈[K]

(Rup
vk

+Rdown
vk

)

≥ L⋆(r)

K
+

s

K

(
1− r

K

)
,

which coincides (4). Hence, we prove Theorem 1.
The optimal max-link communication load could be

achieved by using a single switch connected to all the servers.
However, we need a giant switch of K ports, which is
much more expensive than a network with small switches
(see [17]). One important question to ask is whether there
exists a topology formed only by switches with a number of
ports significantly smaller than K, and yet achieving the same
optimal load in (4).

B. Description of t-ary Fat-tree in [17]

We can answer the question above by using the t-ary fat-
tree topology proposed in [17] (illustrated in Fig. 2). As a
matter of fact, the fat tree architecture is viable and practical
interconnection architecture in data centers and enjoys the
property of scalability since it uses only switches with a
constant number of ports independent of the number of nodes

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 16:54:17 UTC from IEEE Xplore. Restrictions apply.

Core switches

Aggregation

switches

Edges

switches

Servers

Fig. 2: The 4-ary fat tree, with 5t2

4
switches in total laying in the top three layers and t3

4
servers laying in the bottom layer. Each of the

t2

4
core switches is connected to t aggregation switches. Each of the t2

2
aggregation switches is connected to t

2
core switches and to t

2

edge switches. Each of the t2

2
edge switches is connected to t

2
aggregation switches and to t

2
servers. The red parts represent the

transmission of T {5,6}
1 from server 1 to servers 5 and 6 through the network.

K. There are four layers in the topology, with 5t2/4 switches
in total laying in the top three layers and t3

4 servers laying
in the bottom layer. The switches in the top three layers are
referred to as core switches, aggregation switches, and edge
switches, respectively, where the numbers of core switches,
aggregation switches, and edge switches are t2

4 ,
t2

2 , and
t2

2 ,
respectively.

The t2

4 core switches are denoted by c1, . . . , c t2

4

from left
to right in the network. A t-ary fat-tree topology contains t
pods. We focus on pod i where i ∈ [t]. Pod i contains t

2
aggregation switches (denoted by ai,1, . . . , ai, t2 from the LHS
to the RHS) and t

2 edge switches (denoted by ei,1, . . . , ei, t2
from left to right). Each aggregation switch ai,j where j ∈

[
t
2

]
is connected to t

2 different core switches (core switches
c (j−1)t

2 +1
, . . . , c jt

2
), such that each core switch is connected

to exactly one aggregation switch in this pod. Aggregation
switch ai,j is also connected to each edge switch in this
pod. Furthermore, each edge switch ei,p where p ∈

[
t
2

]
is

connected to t
2 servers at the bottom, and the positions of

these servers are denoted by wi,p,1, . . . ,wi,p, t2
.

Hence, each switch in the fat-tree has t ports, such that 5t2

4

t-ports switches can handle up to t3

4 servers. The cost to build

this network is much cheaper than one t3

4 -ports switch.
2

C. Coded Distributed Computing through t-ary Fat-tree
Next, we will show that with this low-cost and scalable

topology, there exists an achievable scheme which can also
achieve the optimal communication load in (4). The proposed
achievable scheme is also based on the coded distributed
computing scheme in [9]. The map and reduce phases are the
same as the scheme in [9]. In the following, we will describe
how to deliver the messages {Tk : k ∈ [K]} through the t-ary
fat-tree. The main intuition why the t-ary Fat-tree can lead to
the optimal communication load is that each edge switch or
aggregation switch is connected to t

2 switches/servers at its
lower layer and connected to t

2 switches at its higher layer,
such that the load on each outgoing link of one switch can
be no more than each of its incoming links.
Based on the number of servers K, we choose

t = min

{
t1 ∈ Z :

t31
4

≥ K

}
.

If K < t3

4 , we place the K servers in the first K positions from
the left at the bottom. For each i ∈ [t], p ∈

[
t
2

]
, and s ∈

[
t
2

]
, if

2The cost of cables/links is much lower than the cost of switches. Hence,
as in [17], in this paper we do not consider the cost of cables.

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 16:54:17 UTC from IEEE Xplore. Restrictions apply.

there is one server (assumed to be server k) placed in position
wi,p,s, with a slight abuse of notation, we let wi,p,s = k;
otherwise, wi,p,s = 0. In addition, we define that M0 = W0 =
T0 = ∅.
Uplink transmission for pod i ∈ [t].
• Each server wi,p,s where p ∈

[
t
2

]
and s ∈

[
t
2

]
, sends

Twi,p,s to its connected edge switch ei,p.
The number of bits transmitted through the link from
server wi,p,s to edge switch ei,p is

|Twi,p,s
| ≤ L⋆(r)

QNT

K
. (8)

• We focus on edge switch ei,p where p ∈
[
t
2

]
. For

each s ∈
[
t
2

]
, edge switch ei,p divides Twi,p,s

into
t
2 non-overlapping and equal-length pieces, denoted by
Twi,p,s

(1), . . . , Twi,p,s
(t2). Recall that T

S
k represents the

sub-message in Tk which are exclusively useful to servers
in S . For each j ∈

[
t
2

]
, we define TS

wi,p,s
(j) as the set of

bits in Twi,p,s(j) which are exclusively useful to servers
in S . The above partition of Twi,p,s

is symmetric, i.e.,∣∣∣TS
wi,p,s

(1)
∣∣∣ = · · · =

∣∣∣∣TS
wi,p,s

(
t

2
)

∣∣∣∣ = 2|TS
wi,p,s

|
t

,

for each S ⊆ [K] \ {wi,p,s}. Edge switch ei,p then sends
Twi,p,s

(j) to aggregation switch ai,j for each j ∈
[
t
2

]
.

The number of bits transmitted through the link from
edge switch ei,p to aggregation switch ai,j is∑

s∈[t2]

|Twi,p,s(j)| =
∑
s∈[t2]

2|Twi,p,s
|

t

≤ L⋆(r)QNT

K
. (9)

• We then focus on aggregation switch ai,j where j ∈[
t
2

]
. For each p ∈

[
t
2

]
and s ∈

[
t
2

]
, aggre-

gation switch ai,j further divides Twi,p,s
(j) into t

2
non-overlapping and equal-length pieces, denoted by
Twi,p,s(j, 1), . . . , Twi,p,s(j,

t
2). For each d ∈

[
t
2

]
, We also

define TS
wi,p,s

(j, d) as the set of bits in Twi,p,s
(j, d) which

are exclusively useful to servers in S . The above partition
of Twi,p,s

(j) is also symmetric, such that∣∣∣TS
wi,p,s

(j, 1)
∣∣∣ = · · · =

∣∣∣∣TS
wi,p,s

(j,
t

2
)

∣∣∣∣ = 2|TS
wi,p,s

(j)|
t

,

for each S ⊆ [K]\{wi,p,s}. Aggregation switch ai,j sends
Twi,p,s

(j, d) to core switch c (j−1)t
2 +d

for each d ∈
[
t
2

]
.

The number of bits transmitted through the link from
aggregation switch ai,j to core switch c (j−1)t

2 +d
is∑

p∈[t2]

∑
s∈[t2]

|Twi,p,s(j, d)| =
∑
p∈[t2]

∑
s∈[t2]

2|Twi,p,s
(j)|

t

=
∑
p∈[t2]

∑
s∈[t2]

4|Twi,p,s
|

t2

≤ L⋆(r)QNT

K
. (10)

Before introducing the downlink transmission, for each pod
i ∈ [t], we define Ni = {wi,p,s : p ∈

[
t
2

]
, s ∈

[
t
2

]
}, as the

set of servers connected to the edge switches in pod i.
Downlink transmission for pod i ∈ [t].
• We focus on aggregation switch ai,j where j ∈

[
t
2

]
. For

each d ∈
[
t
2

]
, core switch c (j−1)t

2 +d
sends to aggregation

switch ai,j ,{
TS
k (j, d) : k ∈ [K] \ Ni,S ⊆ [K] \ {k},S ∩ Ni ̸= ∅

}
.

Notice that the aggregation switches in pod i have already
received the bits in Tk for k ∈ Ni from the edge switches
in this pod, and thus the aggregation switches need not
to receive those bits from the core switches.
The number of bits transmitted through the link from core
switch c (j−1)t

2 +d
to aggregation switch ai,j is no more

than∑
u∈Ni

∣∣∣{TS
k (j, d) : k ∈ [K] \ {u},S ⊆ [K] \ {k}, u ∈ S

}∣∣∣
=

∑
u∈Ni

4

t2

∣∣∣{TS
k : k ∈ [K] \ {u},S ⊆ [K] \ {k}, u ∈ S

}∣∣∣
≤

(
N− rN

K

)
QsT

K
. (11)

• We then focus on edge switch ei,p where p ∈
[
t
2

]
. For

each j ∈
[
t
2

]
, the messages from aggregation switch ai,j

to edge switch ei,p are given by{
TS
k (j) : k ∈ [K] \ {wi,p,1, . . . ,wi,p, t2

},S ⊆ [K] \ {k},

S ∩ {wi,p,1, . . . ,wi,p, t2
} ̸= ∅

}
. (12)

Notice that edge switch ei,p have already received Tk for
k ∈ {wi,p,1, . . . ,wi,p, t2

} from its connected servers, and
thus edge switch ei,p needs not to receive those bits from
the aggregation switches.
The number of bits transmitted through the link from
aggregation switch ai,j to edge switch ei,p is no more
than ∑

u∈{wi,p,1,...,wi,p, t
2
}

∣∣∣{TS
k (j) : k ∈ [K] \ {u},

S ⊆ [K] \ {k}, u ∈ S
}∣∣∣

=
∑

u∈{wi,p,1,...,wi,p, t
2
}

2

t

∣∣∣{TS
k : k ∈ [K] \ {u},

S ⊆ [K] \ {k}, u ∈ S
}∣∣∣

≤
(
N− rN

K

)
QsT

K
. (13)

• Finally we focus on server wi,p,s where p ∈
[
t
2

]
and

s ∈
[
t
2

]
. Edge switch ei,p sends to server wi,p,s,

Uwi,p,s =
{
TS
k : k ∈ [K] \ {wi,p,s},

S ⊆ [K] \ {k},wi,p,s ∈ S
}
.

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 16:54:17 UTC from IEEE Xplore. Restrictions apply.

The number of bits transmitted through the link from
edge switch ei,p to server wi,p,s is no more than(

N− rN

K

)
QsT

K
. (14)

By summing (8) and (11), summing (9) and (13), sum-
ming (10) and (14), it can be seen that the total number of
bits transmitted through each link in the t-ary fat-tree is no
more than

L⋆(r)QNT

K
+

(
N− rN

K

)
QsT

K
.

Hence, we prove that the proposed scheme through the t-ary
fat-tree can achieve the optimal communication load in (4).

To explain explicitly our proposed scheme through the t-
ary fat-tree network, in Fig. 2 we illustrate the transmission
of T {5,6}

1 (which is sent by server 1 and useful to servers 5
and 6).

Remark 1. In the proposed distributed computing scheme, the
switches only receive and forward packets. However, due to
the congestion over the links, while receiving one packet, a
switch may not be possible to forward it immediately. Hence,
the switch needs a buffer to put this packet in the transmission
queue. As a matter of fact, in real systems switches always are
equipped with buffers.

D. Discussions

In this section, we will discuss two other practical issues.
Congestion at higher links: In hierarchical computing

networks, the traffic at the top layers is always higher than the
bottom layers and the higher links always need to have higher
capacities to avoid the congestion. However, in our t-ary fat-
tree coded computing system, as we proved in Section III-C,
all links in the fat-tree topology have similar link loads (the
traffic at the bottom layers is slightly higher than the top
layers) and thus we can build the network using links with
the same capacity, which also reduces the construction cost.

Fault-tolerance: On the one hand, any failure happening
at the switches or the links among the switches can be
tolerated, because there are multiple paths from each server to
another (each edge switch is connected t

2 aggregation switches
and each aggregation switch is connected to t

2 core switches).
On the other hand, if a server node or the link connected
to it fails, we can add some redundancies in the system by
using some form of the Minimum Distance Separable (MDS)
code as used in [7]. However, the detailed description of such
schemes is beyond the scope of this paper.

IV. CONCLUSIONS

In this paper, we considered the topological coded dis-
tributed computing problem. We first characterized the optimal
max-link communication load over any network topology
and showed that it could be achieved by using the single-
switch topology. To reduce the cost to build the network and
enable the scalability, we then considered the t-ary fat-tree
topology. We then proposed a coded distributed computing

scheme through the t-ary fat tree, which can indeed achieve the
optimal max-link communication load. The proposed scheme
can avoid the congestion at higher links and tolerate the
failures in the network components, such that our result
has both a significant intellectual merit and a high practical
relevance. Finally, the proposed scheme can be easily extended
to other computing problems with distributed servers, such as
decentralized data shuffling [19].

ACKNOWLEDGEMENTS

This work has been partially funded by the ERC Advanced
Grant Grant No. 789190 “CARENET”, and the National Sci-
ence Foundation grants CCF-1817154 and SpecEES-1824558.

REFERENCES

[1] E. Amazon, “Amazon web services,” Available in: http://aws. amazon.
com/es/ec2/(November 2012), 2015.

[2] K. S. P. T. and L. U. Gonzalez, Building Your Next Big Thing with
Google Cloud Platform: A Guide for Developers and Enterprise Archi-
tects. Apress, 2015.

[3] B. Wilder, Cloud architecture patterns: using microsoft azure. "
O’Reilly Media, Inc.", 2012.

[4] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[5] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, no.
10-10, p. 95, 2010.

[6] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Infor. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[7] M. Ji, G. Caire, and A. Molisch, “Fundamental limits of caching in
wireless d2d networks,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp.
849–869, 2016.

[8] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded mapreduce,” in
Communication, Control, and Computing (Allerton), 2015 53rd Annual
Allerton Conference on. IEEE, 2015, pp. 964–971.

[9] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A funda-
mental tradeoff between computation and communication in distributed
computing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, Jan.
2018.

[10] N. Woolsey, R. Chen, and M. Ji, “A new combinatorial design of
coded distributed computing,” in 2018 IEEE International Symposium
on Information Theory (ISIT), June 2018, pp. 726–730.

[11] K. Konstantinidis and A. Ramamoorthy, “Resolvable designs for speed-
ing up distributed computing,” 2019.

[12] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Compressed coded
distributed computing,” in 2018 IEEE International Symposium on
Information Theory (ISIT), June 2018, pp. 2032–2036.

[13] S. R. Srinivasavaradhan, L. Song, and C. Fragouli, “Distributed com-
puting trade-offs with random connectivity,” in 2018 IEEE International
Symposium on Information Theory (ISIT), June 2018, pp. 1281–1285.

[14] Y. H. Ezzeldin, M. Karmoose, and C. Fragouli, “Communication vs
distributed computation: An alternative trade-off curve,” in 2017 IEEE
Information Theory Workshop (ITW), Nov 2017, pp. 279–283.

[15] S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “A scalable
framework for wireless distributed computing,” IEEE/ACM Transactions
on Networking, vol. 25, pp. 2643 – 2654, Oct. 2017.

[16] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coding for distributed
fog computing,” IEEE Communications Magazine, vol. 55, pp. 34–40,
Apr. 2017.

[17] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Computer Communica-
tion Review, vol. 38, no. 4, pp. 63–74, 2008.

[18] W. Xia, P. Zhao, and Y. Wen, “A survey on data center networking
(dcn): Infrastructure and operations,” IEEE Communications Surveys and
Tutorials, vol. 19, pp. 640 – 656, 2017.

[19] K. Wan, D. Tuninetti, M. Ji, G. Caire, and P. Piantanida, “Fundamental
limits of decentralized data shuffling,” IEEE Transactions on Information
Theory, doi: 10.1109/TIT.2020.2966197, Jan. 2020.

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 16:54:17 UTC from IEEE Xplore. Restrictions apply.

