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A Lightweight Multi-Section CNN for Lung
Nodule Classification and Malignancy Estimation

Pranjal Sahu

Abstract—The size and shape of a nodule are the es-
sential indicators of malignancy in lung cancer diagno-
sis. However, effectively capturing the nodule’s structural
information from CT scans in a computer-aided system
is a challenging task. Unlike previous models that pro-
posed computationally intensive deep ensemble models or
three-dimensional CNN models, we propose a lightweight,
multiple view sampling based multi-section CNN architec-
ture. The model obtains a nodule’s cross sections from
multiple view angles and encodes the nodule’s volumetric
information into a compact representation by aggregating
information from its different cross sections via a view pool-
ing layer. The compact feature is subsequently used for
the task of nodule classification. The method does not re-
quire the nodule’s spatial annotation and works directly on
the cross sections generated from volume enclosing the
nodule. We evaluated the proposed method on lung image
database consortium (LIDC) and image database resource
initiative (IDRI) dataset. It achieved the state-of-the-art per-
formance with a mean 93.18% classification accuracy. The
architecture could also be used to select the representative
cross sections determining the nodule’s malignancy that
facilitates in the interpretation of results. Because of being
lightweight, the model could be ported to mobile devices,
which brings the power of artificial intelligence (Al) driven
application directly into the practitioner’s hand.

Index Terms—Lung cancer, deep learning, nodule classi-
fication, transfer Learning, spherical sampling.

|. INTRODUCTION

S OF 2017, lung cancer accounts for the most number
A of deaths in the world [1]. Typically, early diagnosis of
lung cancer relies on accurately detecting the presence of lung
nodules in CT scans [2]. A lung nodule is a structure with
approximately 3 mm in diameter and classified as benign or
malignant [3]. For this purpose radiologists read chest CT slice
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Fig. 1. Figure explaining how different cross-sections of a nodule
from view 1 and 2 can capture the spiculations effectively. In Fig. (a),
(b) and (c) upper row is benign and lower is malignant. The spiculations
on malignant one become clear once the view point is altered as seen
in view 2.

by slice. However, this process is not only laborious but also
error-prone.

Inspecting the 3-D lung nodule slice by slice deems to be in-
sufficient and results in information loss and missing diagnosis.
This can be easily understood by looking at the two samples of
lung nodules in Figure 1: one benign case and one malignant
one, both appear to be similar to each other at one view angle.
Once the view angle is altered, their structural differences that
determine the diagnosis become evident. Therefore, incorporat-
ing the full 3D information of a nodule is necessary.

To help the radiologists in the task of lung nodule classi-
fication, numerous computer-aided diagnosis (CAD) method-
ologies have been proposed in the past [4]-[9]. Traditional
approaches used handcrafted features for this purpose. For
example Han et al. in [5] used Haarlick texture features for
nodule classification, while Jacobs et al. in [6] used a combi-
nation of texture, shape, and context features to classify lung
nodules. Similarly, Murphy et al. in [8] used a combination of
handcrafted features summarizing the structural properties of
the nodule with a kNN classifier. These methods predominantly
have utilized the 2D slices from CT-scans instead of the avail-
able 3-D volumetric data with few exceptions such as in [10]
and [4]. In [10], Way et al. used active 3D contours for nod-
ule segmentation and extracted morphological features, such as
volume, surface area etc. along with texture features from the
axial planes of nodule for classification. Similarly in [4], au-
thors utilized Spherical Harmonics for describing lung nodule’s
shape complexity and used it with a K-nearest classifier for
distinguishing malignant and benign lung nodules.

The recent successes of Deep Learning in computer vision
showed superior performance of data-driven methods over those
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handcrafted features for a variety of tasks. Several attempts
[11]-[16] introduced deep CNNs in nodule classification and
showed impressive performance. However, the existing meth-
ods are computation-intensive, require considerable manual in-
tervention in the form of spatial annotation, and fail to maximize
the strength of a full 3D volumetric data. In many cases, even
though these approaches provide the final diagnosis result, they
fall short of providing the causal factors that are easily inter-
pretable by practitioners. For example, Shen ef al. [12] adopted
a multi-scale 2D CNN approach for lung nodule classification,
where they adopt multi-scale nodule patches and learn class
specific features by concatenating feature responses from the
last layer for each scale. However, their approach ignored the
full 3D volumetric information. In [17] authors proposed a 3D
dual path network using 3D CNN for lung nodule detection
and feature extraction for classification using GBM (Gradient
Boosting Machine). However, these methods fail to provide any
causal factors for the obtained results. Arnaud et al. in [18] ex-
tracted nine different patches from the volume of a lung nodule:
three patches from the sagittal, coronal, and axial planes and
the remaining six from the diagonal planes of symmetry. How-
ever, a severe limitation of the method is that it requires training
nine separate deep networks and needs a significant amount of
computational resources. Recently, Xie ez al. [19] proposed an
ensemble approach based on transfer learning. Although this
method produced promising results, it had significant limita-
tions, since it relied on accurate delineation among lung nodules
from CT scans that is costly to obtain because such a delineation
requires an expert’s supervision.

In contrast to the related works and methods, we propose
a single-stack CNN that is lightweight, utilizes a full 3D vol-
ume of a nodule and generates the interpretable diagnosis. Two
previous studies in [20] and [21] heavily inspired our design
choices of the neural network. In the first related work [20], the
authors introduced a handcrafted feature called “Ipris” that rep-
resents the intensity and gradient transitions from the center to
peripheral of a nodule and serves as a good indicator of its ma-
lignancy. The other related work [21] demonstrated that under a

Malignant
- (0.78)
View { CNN 2
Pooling
— Benign
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across all sections  pooling of features from  retraining of  classification
all sections final layer

The pipeline of the Multi-section CNN based on spherical sampling.

limited number of training samples and computation resources,
a CNN for object recognition based on the 2D rendering of 3D
objects shows a better discriminative ability than the one with
the entire 3D volume. We incorporate these two findings in our
model by introducing a Multi-section CNN architecture. Our
contributions in this paper are:

® A lightweight Multi-section CNN architecture for obtain-
ing a compact representation of a lung nodule from its
volumetric data for classification and malignancy estima-
tion.

e Evaluation of sampling approaches to extract a nodule’s
cross-sections to capture the intensity and gradient tran-
sitions going from internal to external of a nodule in a
data-driven automated manner.

® Nodule’s salient section detection to assist clinical practi-
tioners in highlighting the causal factor i.e., crucial cross-
section and thereby interpreting the diagnosis results.

The proposed model being lightweight can be easily ported to
mobile devices such as tablets etc. We also perform experiments
on a mobile device to compare the inference latency of Multi-
section CNN with other state-of-the-art method and demonstrate
the efficient design of our model. The design of Multi-section
CNN is described in detail in next section.

Il. MuLTI-SECTION CNN

The central idea in this paper is to aggregate information
from multiple cross-sections in a data-driven manner to fully
exploit the information contained in a nodule’s volume. For this
purpose, we introduce a Multi-section CNN architecture that
is shown in Figure 2. To obtain the Multi-section representa-
tions, the first step is to extract multiple cross-sections from a
lung nodule for training deep neural networks. Unlike natural
objects, a lung nodule is orientation-agnostic; therefore a sam-
pling approach which is rotation invariant is required. Once
the cross-sections are obtained from the sampling approach
the Multi-section CNN is trained in two stages. We detail the
sampling approach, CNN architecture and training, inference
methodology in the following sub-sections.
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(b) t-design views  (c) Two opposite view
angles.

(a) Spherical sampling
views

Fig. 3. Two sampling approaches are used in our experiments to obtain
the multiple cross-sections of the lung nodule. (a) # and 1) are the angle
per division in spherical sampling views. (b) The blue dots represent the
points in a 40 point spherical t-design. (c) Two opposite view angles will
generate the same cross section therefore only [0, 7] angular range is
taken.

(a) d azimuthal (b) d polar divisions (c) Total d? Spherical
divisions sampling views

Fig. 4. Figure illustrating how d> points are obtained after dividing az-
imuthal and polar angular range into d equal divisions. Each intersection
point (blue dot) represents a view direction used for getting the cross-
section.

A. View Sampling Approach

We experimented with two rotation invariant sampling ap-
proaches, namely spherical sampling views and t-design views.
They are are described as follows:

Spherical Sampling Views: A view point on a sphere is
described as a pair of angles (,v) where 0 is the azimuthal
angle, and v is the polar angle as shown in Figure 3(a). Each
view angle acts as the direction of the normal to the plane of
cross-section. Since we take a cross-section view of a nodule
which passes through nodule’s center, two viewing directions
exactly opposite to each other on a sphere will generate the
same cross-section as shown in Figure 3(c). Hence, we limit the
range of 6 and ¢ to [0, 7]. The view angles are generated by
dividing each of the two angular domains into d intervals. Then
the number of cross-sections generated for a nodule with the
spherical sampling approach becomes d” as shown in Figure 4.

t-Design Views: One disadvantage of taking Spherical sam-
pling views is that they are non-uniformly distributed over the
sphere. The number of views along the equator is sparse (under-
sampled) compared to the number of views taken from the
polar views (over-sampled) on a sphere. The asymmetrical sam-
pling results in non-optimal view sampling and information loss
around the equator. An alternative approach is to adopt the view
sampling of spherical t-design. A spherical t-design is a set of
points X on sphere S? iff for any polynomial f with a degree
less than ¢, it is possible to determine its average precisely over
S? by sampling f only at the points in X. In other words a
t-design can accurately integrate a polynomial of order t and

TABLE |
MOBILENET ARCHITECTURE USED IN MULTI-SECTION CNN. C'N N
COMPRISE LAYERS UP TO AVG-PooL/S1 WHILE C'N N, COMPRISE LAYERS
FrRom FC/s1 upP TO THE SOFTMAX LAYER. HERE CONV-DW INDICATES
DEPTH-WISE SEPARABLE CONVOLUTION

Type/Stride Filter Shape Input Size
Conv/s2 3x3x3x32 224 x 224 x 3
Conv dw/sl 3 X3 x32dw 112 x 112 x 32
Conv/sl 1 x1x32x 64 112 x 112 x 32
Conv dw/s2 3 X 3 X 64 dw 112 x 112 x 64
Conv/sl 1 x 1 x 64 x 128 56 X 56 x 64
Conv dw/sl 3 x 3 x 128 dw 56 x 56 x 128
Conv/sl 1 x 1 x 128 x 128 56 x 56 x 128
Conv dw/s2 3 x 3 x 128 dw 56 x 56 x 128
Conv/sl 1 x1 x 128 x 256 28 x 28 x 128
Conv dw/sl 3 x 3 x 256 dw 28 x 28 x 256
Conv/sl 1 x 1 x 256 x 256 28 x 28 x 128
Conv dw/s2 3 x 3 x 256 dw 28 x 28 x 256
Conv/sl 1 x 1 x 256 x 512 14 x 14 x 256
5 x Conv dw/sl | 3 x 3 x 512 dw 14 x 14 x 512
5 x Conv/sl 1 x1x512x 512 14 x 14 x 512
Conv dw/s2 3 x 3 x 512dw 14 x 14 x 512
Conv/sl 1 x 1 x512x 1024 7 x 7 x 512
Conv dw/s1 3 X 3 x 1024 dw 7 x 7 x 1024
Conv/sl 1 X1 x 1024 x 1024 | 7 x 7 x 1024
Avg Pool/s1 Pool 7 x 7 7 x 7 x 1024
FC/s1 1024 x 1000 1 x 1 x 1024
Softmax/s1 Classifier 1 x 1 x 1000

below. This can also be represented by the following equation:

1 1

Vol Jo, TOde= 57 2;( f(@), (1)

where in Equation 1, the left hand side represents the average
of function f over the entire sphere S? and the right hand side
represents the average of the values of function f sampled only
over points in set X.

Spherical t-designs produce an isotropic distribution of points
on S? and results in a better sampling of view points. We only
consider the points (x, y, z) where 2 > 0. Figure 3(b) shows the
placement of t-design points on a sphere S2. It should be noted
in Figure 3(b) that each point is equidistant to all its neighbours
unlike spherical sampling points shown in Figure 4(c).

B. Network Architecture

It requires a large number of images to train deep network
models from scratch while our available cancer dataset only
contains a few thousand of nodule samples. To avoid the over-
fitting problem and accelerate training process, we applied the
transfer learning approach and adopted a lightweight network,
called MobileNet [22], that is pre-trained with the ImageNet
and employs a depth-wise separable convolution for reducing
the number of parameters (weights) see Table 1. The last fully
connected layer (FC) in the MobileNet network (FC/sl) is re-
placed with a fully connected layer that is randomly initialized
for the task of binary classification. This new final layer is de-
noted by CNN; and the layers before the FC/s1 are denoted as
CNN; (shown in Figure 2). We used the sigmoid activation func-
tion in the final layer and chose the categorical cross-entropy as
the loss function of the network. We introduced a View Pooling
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Layer between CNN; and CNNj that acts as an information
aggregator and performs an element-wise max-pooling opera-
tion on the feature representations across all the sections of a
nodule.

C. Training and Inference

The network training process has two stages: during the first
stage, the training is nodule-independent and uses the cross-
sections of all the nodules obtained from spherical sampling to
fine-tune the network end-to-end; the second stage of training
is nodule dependent where the weights in the first half of the
network are fixed while the second half of the network (CNNy)
is re-trained. The View Pooling Layer performs an element-wise
max-pooling operation across all cross-sections and generates
a compact representation for each nodule. The compact feature
is then used to fine-tune the CNN; again. Similarly, the infer-
ence process also consists of two steps. All the cross-sections
of a nodule at first are passed through the network to obtain
the CNN; representations. During the second inference step,
the View Pooling Layer aggregates the representations of all
cross-sections into a compact feature and sends to CNNj that
subsequently generates the final classification result. We will
detail the hyper-parameters for training and the cross-section
generation in the next section.

[ll. EXPERIMENT DETAILS

Here we describe the major steps, i.e., preparing training
data and selecting hyper-parameters required for training Multi-
section CNNS.

A. Data Pre-Processing

1) Lung image database consortium (LIDC) and image
database resource initiative (IDRI) Dataset: We utilize the
LIDC-IDRI [23] benchmark dataset that has been extensively
used in several studies [9], [19], [24]-[26]. The malignancy in
the dataset are marked with five levels, namely, Highly Un-
likely (1), Moderately Unlikely (2), Indeterminate (3), Moder-
ately Suspicious (4) and Highly Suspicious (5). Similar to the
earlier works, we only use the nodules having diameter >3 mm
to ensure the consistency in the evaluation and model compari-
son. For the same nodule, multiple annotations from up to four
radiologists are present in LIDC-IDRI dataset. However, the
dataset does not provide any attribute for determining whether
two different annotations belong to the same nodule. There-
fore, to associate each annotation to some nodule, we form the
adjacency matrix for the annotations. The annotations are then
clustered following an iterative approach where in each iteration
annotations are grouped when the minimum distance between
the contour boundary points is smaller than a certain thresh-
old 7, where 7 is initialized with the pixel spacing of the CT
scan. In each iteration the threshold 7 is reduced by multiplying
it with a factor v = 0.9 and the process is continued till each
group of annotation (cluster) has <4 annotations. The mean of
the nodule center in a cluster is defined as the final location for
the nodule and mode of the malignancy values in a cluster is

Nodule Diameter vs Malignancy Distribution
500

446
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400
5350 330
S 300
v 250
= 1
£200 165 -
Z 150 88
1
(s)g 44 37
2
0
Highly Suspicious ~ Moderately Moderately Highly Unlikely
Suspicious Unlikely
>10 mm B <=10 mm
Fig. 5. Nodules’ diameter vs malignancy distribution in LIDC-IDRI

dataset for nodules having diameter >3 mm. Number of Benign samples
are more as compared to Malignant Samples.

taken as the final malignancy level for that nodule. Finally, we
labeled 448 nodules with the malignancy level of 4 or 5 “Ma-
lignant” and 857 nodules with the malignancy level 1 or 2 as
“Benign” and converted the multi-class classification to a binary
one. Our experiments used the nodules from 649 patients. Fig-
ure 5 shows the distribution of nodules’ diameter vs malignancy
in the dataset used in our experiments.

2) Pre-Processing: All the volume samples are obtained by
doing the bi-cubic interpolation of the CT scans to obtain 1mm
spacing in each dimension (xy, yz and xz). In our experiments all
the nodules had diameter less than 50 mm, therefore we limited
the volume size to 50 x 50 x 50 mm?. The extracted volume
of size 50 x 50 x 50 mm?® is centered around the centroid of
the nodule. Finally, for each volume, the view direction d, is
obtained using the selected view sampling approach and a plane
of size 50 x 50 centered at nodule is rotated such that d,, is
the normal to it. Grid sampling (using bi-cubic interpolation)
is done on the planes. This process results into multiple cross-
sections from different view angles. Each cross-section is then
resized to 224 x 224. We replicated the obtained sections to
form a three-channel image because the MobileNet model takes
as input only three-channel images. The model is then trained
independently 10 times by a 10-fold cross-validation. In each
fold, we divide the dataset based on the nodule id so that all
cross-sections of a nodule belong to the same split i.e., either
training or testing.

B. Parameter Selection

1) Spherical Sampling Views: The dataset is imbalanced be-
tween the benign and malignant cases as shown in Figure 5, and
thereby, we sample more views from malignant nodules than
from benign nodules during the training step to ensure the total
number of views for malignant and benign classes to be the
same to each other. To equalize the view count for both classes,
we set

Tm d72n = nbdlga (2)

where n,, = 448, n, = 857 and d,, d,, are the number of di-
visions for a benign and malignant sample respectively. After
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solving for this equation and rounding the values of d,,, and d;
to the nearest integers, we obtain d, = 5 and d,,, = 7. Note that
there are more than one solutions for this equation. We show the
view sensitivity experiments later to explore the impact of more
number of views. The class label is not known for prediction in
prior. Therefore we generate the view angles with d; = dj, for
each nodule sample in the test split.

2) Spherical t-Design Views: Similar to the spherical sam-
pling, we need to ensure that the number of cross-sections/views
from Malignant and Benign samples in the training dataset re-
mains same. Therefore we use the following equation to obtain
the number of the sampled views:

Ny Uy = Ny Uy, (3)

where n,, = 448, n, = 857 and vy, v,, are the number of
views using the t-design sampling approach. We used the pre-
computed values of t-design with v, = 20 and v,,, = 40 points.
Here also since the class label is not available while doing pre-
diction we use v; = v;, for nodules in the test split.

3) Training Hyper-Parameters: The network is already pre-
trained on ImageNet and needs to be fine-tuned with the cancer
dataset at a low learning rate. Therefore we set the learning rate
of 0.0001 for a stochastic gradient descent optimizer. In each
fold, 10% of the training sections are reserved for validation in
the first stage training, while 10% of nodules from the training
split are reserved for validation in the second training stage. We
reduce the learning rate by a factor of 0.2 once the validation
loss reaches a plateau. A patience of five epochs and a minimum
delta of 0.001 are used as the criteria for the early stopping.
Each epoch has 400 steps, each step comprising 32 mini-batch
training samples and the network is trained for a maximum of
50 epochs. We implemented the classification network with
Keras library and trained it on a Titan Xp Nvidia GPU.

IV. RESULTS

We performed multiple experiments using the Multi-section
CNN to obtain its performance under various settings. Two
experiments were done to quantify its performance for classi-
fication and malignancy estimation along with two other ex-
periments to understand its sensitivity to the number of views
and choice of CNN. To compare the performance of 2D and
3D approaches, we performed two more experiments 1) us-
ing only Axial cross-section and 2) using the three orthogo-
nal cross-sections, see Figure 6. Results of the experiments are
discussed below.

A. Classification Results

We evaluated the performance of the models using the stan-
dard metrics for evaluating binary classification models namely,
Accuracy, Sensitivity, Specificity and AUC (Area Under the
ROC Curve). Results of the binary classification experiments
are shown in Table II. We observed that the 3D information
from multiple cross-sections increases the sensitivity and speci-
ficity considerably as compared to that of cross-sections using
axial only. Table III shows that the proposed Multi-section CNN
method outperforms all of the previous fully automated methods

~ <
10 0
o 0 -20

(a) Axial cross-section only (b) Axial, Coronal and Sagittal

cross-sections

(c) Spherical sampling based cross-sections

Fig. 6. Sampling approaches considered in our experiments to com-
pare the performance of 2D (Axial) vs 3D (Axial, Coronal, Sagittal)
approaches. Our spherical sampling based approach is shown in
(c). Results of the experiments are shown in Table II.

[51, [12], [24]-[27] in term of the accuracy in binary classifica-
tion (malignant vs benign). The ensemble method proposed by
Xie et al. in [19] achieves slightly better accuracy (93.40%) than
ours. However, their method relies on the manual spatial anno-
tation of nodules in the CT slices and is not fully automated.
The Multi-section CNN does not require this manual annotation
and still achieves comparable performance. Moreover, while the
ensemble method in [19] takes 12 hours to train, our MobileNet
based model trains within 1 hour.

We also conducted experiments using classical features such
as SIFT using a Bag of Words model. We use 16 x 16 neigh-
borhood around the key-points obtained from SIFT for feature
extraction. Then we divided each block into 16 sub-blocks of
size 4 x 4 and created an eight-bin orientation histogram for
each sub-block. This generates 128 bin values for each block.
We applied K-means clustering with & = 20 to cluster these
128-bin features and generate a code-book.

Finally, each nodule is represented by a 20-D feature vec-
tor which represents the frequency of each code-word. Three
classifiers Logistic Regression, k-Nearest Neighbor and Sup-
port Vector Machine (SVM) are trained on these features for
the binary classification task. We applied the grid sampling to
obtain the parameters for each classifier. The results listed in
Table III show that the performance of the SIFT feature based
classifiers is considerably lower than that of our Multi-section
CNN. ROC curves obtained from some representative models
for fold-1 of Test split is shown in Figure 7.

B. Malignancy Estimation Results

Beyond simply classifying into the malignant and benign
classes, few methods in the past attempted to quantitatively
estimate the malignancy level of a nodule i.e., Highly Suspi-
cious (5), Moderately Suspicious (4), Moderately Unlikely (2)
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TABLE Il
PERFORMANCE COMPARISON OF DIFFERENT SAMPLING APPROACHES FOR BINARY CLASSIFICATION TASK
View sampling strategy Accuracy (%) | Sensitivity (%) | Specificity (%) | AUC
Axial section only, MobileNet 81.14 80.22 82.08 0.87
Axial section only, InceptionV3 81.68 82.54 82.01 0.87
Axial, Coronal and Sagittal sections, MobileNet 84.75 83.33 85.46 0.89
Axial, Coronal and Sagittal sections, InceptionV3 86.02 85.13 86.94 091
Spherical sampling, MobileNet, (dp, dm) = (2, 3) 93.01 88.15 96.04 0.98
Spherical sampling, MobileNet, (dp, dm) = (5,7) 93.18 89.40 95.61 0.98
Spherical sampling, MobileNet, (dy,, dm) = (10, 14) 92.41 89.01 95.01 0.97
t-Design sampling, MobileNet, (dp, dm) = (42, 80) 93.10 89.53 95.02 0.98
t-Design sampling, MobileNet, (dy, dpm) = (62, 120) 91.95 86.98 94.85 0.98
t-Design sampling, MobileNet, (dp, dm) = (93, 180) 91.73 89.55 92.96 0.97
t-Design sampling, InceptionV3, (dp, dm ) = (42, 80) 91.57 86.60 94.59 0.97
t-Design sampling, InceptionV3, (dyp, dm) = (62,120) 91.88 87.76 94.25 0.98
t-Design sampling, InceptionV3, (dp, dm) = (93, 180) 91.41 87.81 93.65 0.97
TABLE IlI
COMPARISON OF BINARY CLASSIFICATION METHODS ON LIDC-IDRI DATASET
Algorithms Accuracy (%) | Sensitivity (%) | Specificity (%) AUC
Shen et al. 2017 [12] 87.14 77.00 93.00 0.93
Dhara et al. 2016 [27] - 89.73 86.36 0.95
Han et al. 2015 [5] - 89.35 86.02 0.94
Anand [24] 86.3 89.60 86.70 -
Hua et al. 2015 [26] - 73.40 82.20 -
Han et al. 2013 [9] - - - 0.94
Xie et al. 2016 [25] 86.79 60.26 95.42 -
Xie et al. 2017 [19] (Single ResNet model) 91.65 88.35 93.34 0.97
Xie et al. 2017 [19] (Ensemble ResNet model)* 93.40 91.43 94.09 0.97
SIFT Bag of Words (Support Vector Machine) 76.09 74.44 76.11 0.79
SIFT Bag of Words (Nearest Neighbor) 70.88 70.54 73.22 0.71
SIFT Bag of Words (Logistic Regression) 74.11 73.66 70.33 0.75
Multi-section CNN (mean =+ standard deviation) 93.18+0.03 89.40 +£0.02 95.61 +0.07 0.98 +0.01
spherical sampling, (dp, dm) = (5,7)

* Ensemble model in [19] requires spatial annotation of nodule which is hard to obtain and requires considerable human intervention.

Receiver operating characteristic
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Fig. 7. ROC curves for some representative models for fold-1 of
Test split.

and Highly Unlikely (1). We tested the effectiveness of the
Multi-section representation in estimating the severity of malig-
nancy by obtaining the class probability using a logistic regres-
sion model. The compact feature is used along with the nodule’s
malignancy level for training the logistic regression model. We
performed a 10-fold cross-validation on the same folds used for
the classification task. While doing inference the malignancy
level with maximum probability is assigned to a nodule. To

account for the variability in the malignancy annotations from
radiologists, methods in the past adopted the Off-By-One accu-
racy metric that discounts the error within the range of 1 from
the actual value [11], [13], [28]. The formulation of Off-By-
One accuracy and mean score difference is shown in Equation 4
and 5 as follows.

Off — By — OneAccuracy

1 n
:;Z

i=1

L,
0,

if absolute(p; — g;) < 1,
4)

otherwise,

Mean score dif ference = % Z absolute(p; — gi), (5)
i=1
where in Equation 4 and 5, n is the total number of test sam-
ples, p; is the predicted malignancy level for nodule ¢ obtained
from the logistic regression model and g; is the ground truth
malignancy value.

Table IV shows the performance of the Multi-section repre-
sentation in terms of the mean score difference and Off-By-One
accuracy. Our proposed method outperforms those earlier meth-
ods and attained lower mean score difference and higher Off-
By-One accuracy than the Multi-task learning method using the
3D CNN in [28].
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TABLE IV
COMPARISON OF MALIGNANCY ESTIMATION METHODS
Algorithms Off-By-One Mean Score
Accuracy (%) Difference

Sarfaraz et al. (transfer learning) [28] 80.08 0.6259
Sarfaraz et al. (multi-task learning) [28] 91.26 0.4593
Sarfaraz [13] 82.47 0.6200
Mario et al. [11] 82.40 -
MultiSection CNN 93.79 0.2713
spherical sampling, (dp, dm) = (5,7)

C. View Sensitivity Results

We also performed experiments to determine the sensitivity
of Multi-section CNN to the number of views. Ideally the large
the number of views, the better should be the accuracy. For
the spherical view sampling and t-design view sampling, we
vary the values of (d,,, d,) and (v, , v,) satisfying equation 2
and 3 respectively to obtain more cross-sections. The sensitivity
of the model’s performance to the number of cross-sections is
shown in Table II. From the results, we observed that having
too many cross-sections incur a negative impact on the model’s
performance. We also observe that the best results are obtained
using the spherical sampling approach with d,,, = 7and d;, = 5.

D. Model Sensitivity Results

In our model, we used MobileNet as the base CNN that is
optimized for Mobile devices and has a small number of param-
eters. Ideally, a model with more parameters or more complex
architecture should perform better than a smaller network. To
understand the impact of the choice in CNNs in our prediction
model, we conducted experiments using another CNN model,
i.e., InceptionV3 [29]. For the InceptionV3 model, CNN; com-
prises multiple layers before fully connected and CNN, com-
prise several layers from the fully connected layer to the softmax
layer. We conducted experiments with only the t-design views
for the model sensitivity study.

The performance variation with the choice of CNN is shown
in Table II. We observed that MobileNet, in spite of having a
lesser number of parameters, performs better than InceptionV3.
One possible explanation for this is that InceptionV3 has about
five times more parameters than the MobileNet does and there-
fore it might experience an over-fitting problem on the dataset
with a fixed size.

V. APPLICATIONS AND DISCUSSION

In addition to the diagnosis result, a practitioner always needs
to locate the malignancy and visually inspect its formation. One
advantage of our method is that it naturally leads to the salient
view selection. We use the gradient-based approach to evaluate
the saliency of each view. Given a trained network, its output
score (denoted by F') and an input cross-section S, the impact of
the cross-section to the final output score is determined by taking
the gradient of predicted class ¢ score (F}) with respect to the
input cross-section S, i.e., OF,. /0S. Algorithm 1 describes how
to select the salient section. Figure 8 shows the salient sections
obtained by Algorithm 1. From Figure 8 we note that the model

Least Salient
@
’

Nodule Most Salient

b2t
5
i

b
W

Fig. 8.

Salient cross-sections of Malignant nodules. Spiculations are
captured clearly in the most salient cross-sections.

Algorithm 1: Salient Sections.

1: N < Number of sections

2: S « Section images

3: K « Output Salient Sections Count

4: procedure GETSALIENTSECTION(/V, K)

5 for: in N do

6 Gradient; — OF./0S;
7 AbsGradient; «— absolute(Gradient;)
8: end for > Sort views on absolute gradient score
9
0
1

sortedSections «— sort(AbsGradient, S)
return K sections from sortedSections
: end procedure

can highlight the discriminative features, such as spiculations
on the nodule. Those less salient cross-sections are devoid of
these spiculations and appear to be quite benign in some cases.
This observation validates the requirement for a Multi-section
approach.

To demonstrate the discriminative ability and effectiveness
of the aggregated information from multiple sections in the
Multi-section model, we visualized the feature embeddings us-
ing the t-SNE algorithm [30]. Figure 9 shows the compari-
son between the t-SNE embeddings of the axial cross-section’s
representation and the aggregated feature representation. We
observed that the nodules are cleanly separated between two
classes with the Multi-section compact representation, while
the two classes are significantly overlapping with each other
under the representation of the axial cross-section.

We also ported the Multi-section CNN model to an An-
droid tablet (Google Pixel C) which comes with an 8-core
ARM processor and 3 GB of RAM. Figure 10 shows a pro-
totype of the android application where a practitioner can select
the suspicious nodule location on a CT scan. The model then
outputs the malignancy probability. We also performed experi-
ments to measure the inference time for a nodule using Multi-
section CNN. For the inference on ten cross-sections with the
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Fig. 9.
Multi-section features compared to only axial section features.

t-SNE Embedding comparison

Multi-section features

t-SNE embedding (perplexity = 70) comparison for fold-1 of Train split. We observe that the overlapping is significantly less in case of

TABLE V
COMPARISON OF MEMORY FOOTPRINT AND INFERENCE TIME. HERE, MULTI-SECTION CNN USES MOBILENET AS BASE CNN

Model Max RAM Inference Size Parameters
Accuracy | Requirement Time (in MB) | (in millions)
(in MB) (in sec)
Xie et al. [19], Ensemble Model 93.40 517 1.3740.25 | 313 MB 76.9
Ours, Spherical Sampling, (dp, dm) = (5,7) 93.18 131 0.89+0.06 43 42
Ours, Spherical Sampling, (dy, dm) = (2, 3) 93.01 101 0.454+0.05 43 4.2

Fig. 10.  Screen capture of an Android application running on a Google
Pixel C tablet. User selects the slice location by varying the z position
and picks a nodule location. The Multi-section CNN model does the
on-device prediction of malignancy.

MobiletNet Multi-Section CNN it took an average 974 + 28 ms
(for 10 cross-sections and the average taken over 5 runs). To
demonstrate the efficient design of our model, we compared its
memory requirements and inference latency with the Ensemble
model proposed by Xie et al. in [19]. The testing device in this
experiment is Google Pixel 2 that comes with an 8-core ARM
processor and 4 GB of RAM. We calculated the mean infer-
ence time for the classification of a nodule over five runs. Also,
the maximum memory (RAM) requirement during the inference
was recorded by the Android Profiler Tool. The results of the ex-
periments in Table V confirmed that our model has considerably

less inference time and memory requirement than the model for
comparison and will run efficiently even on mobile devices.

Currently Android does not support the complete Tensor-
Flow [31] functionalities, therefore we can not implement the
salient section algorithm on a mobile device. In future, we expect
that a lightweight Tensorflow with the entire functionalities will
be available for mobile devices. Moreover, determining salient
sections requires to calculate the gradient of the output score
with respect to the input image and incurs intensive computa-
tion as compared to the inference only machine learning model.
Therefore, an alternative is to adopt a hybrid approach using
both on-device and cloud capabilities. Because the practitioner
might need to observe the malignancy in multiple nodules, an
on-device malignancy prediction will provide a smooth expe-
rience. However, for the salient section determination, a cloud
based paradigm is needed where a model exploits GPU’s ca-
pabilities to determine and fetch the salient sections quickly.
Another future extension to our approach is to design an au-
tomated nodule detection algorithm to assist the practitioner in
identifying and locating a suspicious nodule from a large image
of CT scan.

VI. CONCLUSION

In this paper, we introduced a novel Multi-section CNN for
classifying lung nodules and estimating the probability of malig-
nancy. The experiment results showed that our proposed model
outperforms several state-of-the-art classification methods. Our
Multi-section CNN method does not require the tedious man-
ual spatial annotation, is lightweight, and can be easily ported

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 01,2021 at 16:56:14 UTC from IEEE Xplore. Restrictions apply.



968

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 23, NO. 3, MAY 2019

to Mobile devices, such as tablets and embedded system. This
portability will lead to a wide adoption by practitioners. In addi-
tion, we envision a hybrid solution that utilizes the cloud-based
computing capacity to highlight the causal factors of prediction
results and delivers them back to the mobile device, making our
method a compelling choice for the clinical settings.
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