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ABSTRACT

Digital Breast Tomosynthesis (DBT) provides a quasi-3D im-
pression of the breast volume resulting in a better visualiza-
tion of mass. However, one serious drawback of Tomosynthe-
sis is that compared to Mammography, each projection gets
lower x-ray dose resulting into higher quantum noise which
seriously hampers the visibility of calcifications. To solve this
problem we propose a Convolutional Neural Network model
based on Adversarial loss. We train the deep network using
synthetic data obtained from Virtual Clinical Trials. Unlike
earlier works which tested model on phantoms only, we per-
formed experiments on real samples obtained in clinical set-
tings as well. Our approach shows encouraging results in de-
noising the projections. De-noised projections show higher
perceptual similarity with mammograms and superior signal-
to-noise ratio. The reconstructed volume also enhances cal-
cification visibility. Our work shows the viability of utilizing
synthetic data for training the deep network for de-noising
purposes.

Index Terms— Digital Breast Tomosynthesis, Low dose
projection de-noising, Generative Adversarial Network.

1. INTRODUCTION

Digital Breast Tomosynthesis (DBT) is a relatively new
modality for capturing the breast projections for cancer di-
agnosis purpose. In DBT multiple low-dose projections of
breast volume are taken over an angular range which can be
later reconstructed as a quasi-3D volume in the form of paral-
lel thin image slices, as shown in Figure 1. Numerous studies
have shown the advantages of using DBT over Mammogra-
phy [1, 2]. Having multiple projections over an angular range
reduces the overlapping tissues artifact resulting in better
mass detection in case of DBT. However, a severe drawback
of taking multiple projections is that each projection needs to
be low-dose compared to the dose used in conventional mam-
mography. This is necessary to make the total x-ray dose
within the permissible limit. Lower x-ray dose results into
higher quantum noise which severely impacts the calcifica-
tion visibility in DBT volume [3, 4]. And therefore, a method

Fig. 1: Geometry of the Siemens Inspiration Digital Breast
Tomosynthesis used in our experiments [14].

which could reduce the quantum noise in DBT projections
will be of great importance.

Classical de-noising methods such as BM3D [5] and
KSVD [6] require considerable parameter tuning on case by
case basis to work properly [7]. Moreover, in certain occa-
sions their output result loses the details of important features
such as calcifications [8]. Recently, multiple works using
Convolutional Neural Network models have been proposed
for de-noising CT projections [7, 8, 9, 10]. These models
are typically trained by minimizing the mean squared error
between the low and high dose projection pairs. Recently, the
usage of Generative Adversarial Networks (GAN) [11] which
use the adversarial loss have shown a huge improvement in
de-noising tasks [12, 13]. In GAN based methods, the Gen-
erator learns to map the low-dose to high-dose images while
the discriminator learns to distinguish between the de-noised
image and real high-dose image.

In [13], authors compared three different approaches for
training the de-noising GAN network. In their experiments,
they found that a loss function which minimizes a combi-
nation of mean squared error and adversarial loss performs
better in comparison to only minimizing the adversarial loss.
However, one crucial requirement for using mean squared er-
ror is that the low-dose and high-dose projections should be
perfectly aligned. Perfect alignment of projections for two
different clinical trials is difficult because of patient motion
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Fig. 2: Generator and Discriminator architectures used in our
model. Generator minimizes both mean squared error and
adversarial loss whereas discriminator minimizes the least
squares objective between correct and predicted value. Input
of Generator is 200x200 patch from DBT projection.

which is inevitable during the course of the trial which typi-
cally lasts for around 2 minutes. Moreover, obtaining a large
amount of paired real data for training deep network is a prob-
lem in itself.

To circumvent such problems we propose a novel ap-
proach where the adversarial loss based network is trained
entirely using the synthetic data. In the field of Breast To-
mosynthesis, Virtual Clinical Trials (VCT) are utilized to
study the impact of various parameters present in the acqui-
sition systems for example system geometry, angular range,
detector elements, x-ray dose etc. We generate perfectly
aligned low and high dose projection pairs by varying the x-
ray dose parameter in a Virtual Clinical Trial software called
OpenVCT. The network is then trained using the synthetic
projection pairs and tested on real projection pairs obtained
from clinical settings. In our knowledge, this is first such at-
tempt to study the feasibility of synthetic data for training the
de-noising network in bio-medical domain. Our contributions
in this paper are:-

1. Adversarial loss based de-noising of low-dose Digital
Breast Tomosynthesis projections.

2. Evaluating training of neural network using synthetic
data (phantoms) obtained from Virtual Clinical Trials.

2. NETWORK ARCHITECTURE

Earlier attempts in designing de-noising networks utilized
only mean squared loss (mse). However, only using mean
squared error results in smoothed output which lacks the
detail present in high-dose images. Moreover, unrealistic
looking smoothed images are not desirable for radiologists
while reading. Therefore, to add realism and to avoid smooth-
ing the output recent works utilized the concept of Generative
Adversarial Networks popularly known as GANs. The main
intuition behind GAN is to construct a generative model
which learns the data distribution given some sample train-
ing data. It is trained by having a Discriminator (D) and a

Generator network (G) being trained alternatively such that
after the training is complete, the Generator (G) learns the
distribution of the data. For our problem, the task of the Gen-
erator (G) is to take a low-dose image Ild and to map it to its
corresponding high-dose image Ihd. To achieve this objective
the Generator minimizes loss lG defined below which is a
combination of mean squared loss and adversarial loss A:

lG = λ
‖G(Ild)− Ihd‖2

S
+ (1− λ)A(D(G(Ild)), 1), (1)

where, λ = 0.99, S= pixels in an image I , G(Ild) is the Gen-
erator’s output for a low-dose image Ild andA(D(G(Ild)), 1)
is the error between the Discriminator’s (D) output forG(Ild)
and the label for high-dose images i.e. 1.

The task of Discriminator (D) is to accurately predict the la-
bel of the input image I . Therefore the formulation of the loss
lD for Discriminator (D) is:

lD = A(D(Ihd), 1) +A(D(G(Ild)), 0), (2)

whereA(Ihd, 1) is the error between Discriminator’s (D) out-
put for high-dose image Ihd and target label for high-dose im-
ages i.e. 1. Similarly, A(D(G(Ild)), 0) is the error between
Discriminator’s output forG(Ild) and the target label for low-
dose images Ild i.e. 0.

The main objective of this work is to demonstrate the fea-
sibility of synthetic data for training de-noising networks and
therefore we adopt very simple architectures for Generator
and Discriminator networks as shown in Figure. 2. Filter size
of 3x3 is used everywhere in both Generator and Discrimina-
tor. Relu activation is used in all the layers in Generator (G),
while LeakyRelu activation with α = 0.2 is used after all
the layers in Discriminator (D). All the convolutions in Gen-
erator have a stride of 1 while in Discriminator stride of 2 is
used in alternate convolution layers instead of max-pooling to
reduce the feature dimension [15]. Fully connected layer with
a dimension of 1024 is added after the last convolution layer
in Discriminator followed by the final layer which outputs the
prediction value. We do not use any activation for the final
layer in Discriminator. The Generator uses skip connection,
see Figure 2 and subtracts the output of the last convolution
layer from the low-dose input image as shown below:

G(lld) = Ild − ν, (3)

where ν is the output of the last convolution layer and can
be interpreted as the quantum noise present in the projec-
tions [16].

3. EXPERIMENTS AND RESULTS

In this section we describe the experiment details in four
sub-sections. First, we describe the synthetic data genera-
tion pipeline using OpenVCT [17] and the training of the
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Fig. 3: Data generation pipeline for obtaining low and high
dose projection pairs. Each stage takes parameters in the form
of xml file.

de-noising GAN network in subsection 3.1. The de-noising
of real projections using the GAN network is described in
subsection 3.2 and finally the reconstruction of the volume
using the de-noised projections is described in subsection 3.3.

3.1. Network Training

Training Data Generation Pipeline: We used OpenVCT
for generating the synthetic dataset. OpenVCT provides a UI
based simulation software to generate breast phantoms and
takes the parameters of the system like system geometry, sys-
tem parameters such as detector element, x-ray dose, phantom
dimension etc. in the form of XML files, see Figure 3. Scripts
were written to automate the phantom generation procedure
and a total of 30 phantoms were generated with each phantom
having 25 projections. We replicated the system geometry of
the Siemens Inspiration DBT, see Figure 1, by providing the
desired system geometry in XML file to the software. The
detector element size is 0.085x0.085 mm2. Random seed
values are used to generate different distribution of tissues in
the phantom and random breast density is selected for each
phantom to obtain breast phantoms of both dense and non-
dense types. Low and high dose projections for each phantom
are simulated by using exposure equivalent to DBT and mam-
mogram respectively. A sample of a synthetic low-dose and
high-dose projection obtained from OpenVCT is shown in
Figure 3. To only obtain the portion of projection containing
the impression of breast we used otsu’s thresholding. Mask of
the non-breast region obtained by thresholding is then set to
zero. While training we only consider image patches having
breast occupancy greater than 90%.

GAN Training: In traditional GAN architectures adversarial
loss A is taken as the binary cross-entropy, however, in [18]
authors introduced Least Squares GAN where they showed
that minimizing the mean squared error gives better results
and hence we use the same. While sigmoid cross-entropy
loss yields minimizing the KL divergence between the data
distribution, the least squares loss minimizes Pearson χ2 di-
vergence [18]. Adam optimizer is used for both the Generator
and Discriminator network with a learning rate of 0.0002 and
β1 = 0.5. Batch size of 32 samples is used. In each epoch

crops of size 200x200 are sampled from random locations in
a projection. The model is trained for a maximum of 20000
epochs as we found that discriminator’s loss saturates after
that. In each epoch the discriminator is trained 5 times while
the generator is trained once.

3.2. De-noising of Real Projections

We test our de-noising network using images acquired in
a pilot clinical study which investigates contrast-enhanced
digital mammography and contrast-enhanced Digital Breast
Tomosynthesis [19]. This study was approved by Institu-
tional Review Board (IRB). Informed consents were obtained
for research subjects prior to their participation in the study.
Women who have suspicious breast lesions classified as BI-
RADS grade 4 or 5 and scheduled for surgical biopsy are
recruited in this study. A prototype system for dual energy
contrast-enhanced breast imaging modified from Siemens
Mammomat Inspiration DBT system is used for image ac-
quisition. This system can generate high-energy (HE) and
low-energy (LE) x-rays for imaging iodinated contrast agent.
It acquires 25 projections in 25 seconds spanning an angular
range of 50 degrees in one DBT scan, see Figure 1. Prior
to imaging, the research subjects are injected with iodinated
contrast agent. Approximately 2 minutes later, the breast
with suspicious lesions is positioned and compressed. HE
and LE mammograms are acquired first, followed by HE and
LE DBT scans. The image acquisition is completed in one
breast compression in approximately 3.5 minutes.

DBT projections have a resolution of the order of 2000
px x1000 px, therefore we de-noise the projections (LE) by
feeding patches of size 200px x 200px into the generator
network (G). To compare the model’s performance we com-
pare the de-noised projections (LE) with the mammograms
(LE). While taking mammograms only one central projec-
tion is taken and hence higher-dose is used. MSE ignores
the perceptual information present in the image and hence
has limitations while quantifying the performance of the de-
noising algorithm. Therefore, we use a recently introduced
metric called HaarPSI (Haar Wavelet-Based Perceptual Sim-
ilarity Index) [20] which takes the perceptual similarity also
into account. HaarPSI metric determines the similarity of two
images in the range [0,1], with higher value meaning greater
similarity. The formulation of the metric can be found in
[20]. Results of the de-noising network on real projections is
shown in Figure 4 where the HaarPSI and PSNR (Peak Signal
to Noise Ratio) metrics are shown below image.

3.3. Volume Reconstruction

The breast volume was reconstructed from projections using
OS-SART (Ordered Subsets Simultaneous Algebraic Recon-
struction Technique) method [21]. We used a subset size of
5 and reconstruction is done for 5 iterations. Comparison of
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Fig. 4: Results of our GAN based de-noising model tested on real DBT central projections and their comparison with the
Mammogram which acts as high-dose. HaarPSI and PSNR values is displayed below for each image patch.

Fig. 5: Comparison between volume reconstructed using de-
noised projections and original low-dose projections. Visi-
bility of calcification is enhanced in case of adversarial loss
while mean squared loss function gives blurry result.

volume reconstructed using de-noised projections and orig-
inal low-dose projections is shown in Figure 5. De-noising
done using mean squared error is also compared with the ad-
versarial loss based de-noising in Figure 5. Blurring of cal-
cifications is less in case of GAN based de-noising compared
to mean squared error de-noising. Performance comparison
of traditional algorithms such as K-SVD and BM3D is per-
formed on six clinical cases with the metrics calculated on the
crop extracted from central region. The summary of results is
shown in Table 1. The GAN based de-noising method out-
performs the K-SVD and BM3D methods based on HaarPSI
metric. Comparison on a sample crop is shown in Figure 6.

Table 1: Comparison of KSVD, BM3D, MSE loss vs GAN
based de-noising method for projection patches.

Metric MSE GAN KSVD BM3D
HaarPSI (mean) 0.367 0.383 0.295 0.2851
PSNR (mean) 19.90 18.91 20.16 18.44

Fig. 6: Qualitative comparison of different de-noising algo-
rithms on a real projection crop.

4. CONCLUSION AND FUTURE WORK

Our work demonstrates that synthetic data has good poten-
tial to be used for training the de-noising network specially
when obtaining paired training data is difficult, for example
in the case of Digital Breast Tomosynthesis. Our future work
will explore the usage of GAN methodologies for decreas-
ing out-of-plane artifacts in reconstructed volume caused due
to limited angle acquisition which can improve lesion detec-
tion in dense breast. Another promising research direction is
to explore the impact of angular range in reconstruction by
varying the angular range in VCT. We also want to explore
alternative digital breast phantoms which can further improve
the performance of our approach [22].
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