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ABSTRACT
The structures of many material systems evolve as they are
treated with physical processing. For instance, organic and
inorganic crystallinematerials frequently coarsen over time
as they are thermally treated; with domains (grains) rotating
and growing in size.When amaterial systemundergoing the
structural transformation is probed using x-ray scattering
beams, the peaks in the scattering images will sharpen and
intensify, and the scattering rings will become increasingly
’textured’. Accurate identification of the transition frame in
advance bringsmultiple benefits to the NSLS-II in-operando
experiments of studying material systems such as minimal
beamline damage to samples, reduced energy costs, and the
optimal sampling of material properties. In this paper, we
formulate the prediction and identification of the structural
transition event as a classificationproblemand apply anovel
LSTM model to identify sequences having transition event.
The preliminary results of the experiments are encouraging
and confirm the viability of the detection and prediction of
transition in advance. Our ultimate goal is to deploy such a
prediction system in the real-world environment at the se-
lected beamline of NSLS-II for improving the efficiency of
the experimental facility.
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1 INTRODUCTION
X-ray scattering is a technique utilized to probe the physical char-
acteristics of material at the molecular scale [3]. During the process
of X-ray scattering, the crystals of the material being examined
go through different phases and show specific transformation pat-
terns. Different classes of materials exhibit distinct phases, due to
radically different structural order at different temperatures. For
instance, liquid crystalline materials are known to undergo a series
of phase transitions as a function of temperature, and concentration.
Organic self-assembling materials (molecular and polymeric) ex-
hibit a host of re-orientations and phase transformations, including
non-equilibrium (irreversible) conversions. Each of these transfor-
mations has unique and complex transition patterns: the changes in
peak positions, shapes, and intensities and even the appearance and
disappearance of peaks when organizational symmetry changes
dramatically. These dynamic patterns are observable in x-ray scat-
tering imaging. Figure 1 shows a representative example of this
type of transformation process.

Although the phase transformations may be distinct and appear
to be evident after their completion; it is often extremely chal-
lenging to detect the early signatures of these changes since the
beginning stages of conversion involve small, highly disordered
grains of the newly appearing morphology (with the corresponding
weak and diffuse signal in x-ray scattering). Methods to robustly
and rapidly detect transitions at the early stages of reorganization
would result in better data sampling and reduction in experimen-
tal costs because they would enable automated experiment that
identifies the boundaries phase accurately and robustly, tracks the
kinetics of material conversion, avoids undesirable transformations,
and minimizes redundant sampling of data.

In this paper, we propose an autonomous agent with the objective
of predicting the transition stage in an X-ray scattering imaging
sequence right before it starts. This will help in dialing up the
intensity of beamline and the speed of collecting X-ray observations
of the crystal sample during the critical stage where the structural
transition event occurs. As a result, the transition prediction will
reduce the beamline usage time and minimize the deterioration
of crystal sample resulting from unnecessary damage to crystal
particles by photons from light sources.
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Figure 1: A sample sequence showing eight frames of X-ray In-Operando experiment tracking the structural transition of a
crystal sample. A quick transition happens between Frames 3 and 5. The identification of the structural transition event in
advance has significant importance since the transition event is rich in information, i.e., obtaining asmany samples as possible
during this period means better experimental results and more efficient beamline usage.

2 RELATEDWORK
Recent advances in deep learning have opened up several new
research frontiers that are unthinkable in the past. One of them
is the application of predicting future video frames that have a
significant resemblance to our problem in scientific experiments.
The problem of predicting future frames is defined as follow:

Given a set of n images [X1,X2, ...Xn ] from a video sequence, the
objective is to predict (generate) the nextm images [X̂n+1, X̂n+2,
..., X̂n+m ] of the given video sequence as closely as possible to
the ground truth frames [Xn+1,Xn+2..,Xn+m ] between time n and
n +m. Prior work in this domain of predicting immediate future
has focused on getting representations using each frame individu-
ally [8]. However, this approach ignores the temporal information
among frames. Inspired by the language model for predicting subse-
quent word embeddings and learning sequence from sequence [6],
Srivastava et al. introduced an unsupervised approach in [5] for
learning the motion patterns in a video sequence and prediction
of the future motion frames. Recently methods using Generative
Adversarial Networks have shown promising results in generating
the future content [1, 7, 9].

Similar to the related efforts, our objective is to predict the future
images in an X-Ray sequence obtained during the in-Operando
experiment for tracking the structural transition in the crystals of a
material sample. We approach this problem in following two steps:

(1) Identification of sequences having structural transition event.
(2) Prediction of the future frame in the sequence based on

historical image frames.
In this paper, we tackle the first problem of the accurate iden-

tification of sequences that contain a structural transition event
and briefly discuss the future works and specific steps to be taken
to obtain a fully functional transition frame prediction system in
section 5.

3 METHOD
Taking inspiration from the earlier work in the domain of video
sequence classification, we adopt a hybrid deep neural network
model that consists of CNN and LSTM for identifying a transition
sequence. Training a deep learning model requires a considerable
amount of labeled training data that is infeasible to obtain from
the real experimental setup. Therefore we adopt a synthetic data

Figure 2: A sequence of artificial real-space crystal and cor-
responding X-ray scattering data generated for the task of
training the CNN-LSTM model. (a) Real-space crystal, (b) X-
ray scattering sequence.

generation process to obtain a large number of training samples. In
Section 3.1, we describe the training data generation process. And
in section 3.2 we describe the CNN-LSTM model that we used for
classifying transition sequences.

3.1 Training Data Generation
We consider three types of crystal structures in our experiment
namely BCC (Body-Centered Cubic), FCC (Face Centered Cubic)
and SC (Simple Cubic). A crystal structure is selected with some
probability, and a 3D box is filled with particles based on the chosen
structure (shown in Figure 2). Some random noise of the normal
distribution is added to each particle’s location in the 3D box. We
generate a synthetic sequence of real-space crystal by repeatedly
rotating the 3D box by a random angle. To generate the X-ray
sequence from the obtained real-space sequence, we first project the
particles in the 3D bounding box into a 2D projection, apply a Fast
Fourier Transform (FFT) to the projected image in the second step,
and in the final step we keep the magnitude image of the spectrum
and discard the phase component of the Fourier transformation
because detector can only register the amplitude components.

To minimize the computational cost, we generate images with
the 64x64 resolution. Since the magnitude images created by FFT
have a big range, we take the ten base logarithm of images that are
added to a constant value one to prevent the input of zero value.
The obtained images are then replicated to form three channels.
In a real-life data sampling procedure, the beamline collides with
particles and causes the crystal structure to deteriorate gradually.
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Figure 3: LSTM Architecture [4]. It resolves the long term
dependencies problem and helps capturing the temporal in-
formation in a sequence.Ct represents cell state,ht is hidden
state, Xt is input and yt is output.

Figure 4: CNN-LSTM model for classification of sequence
with or without a transition event.

To simulate this effect, we first translate particles with some ran-
dom distance in the 3D space to simulate the Brownian motion.
It results in the crystal structure gradually losing its shape. The
frame at which deterioration starts is termed “transition” frame. In
our experiments, we generated synthetic image sequences with the
length ranging between 20 and 45. The index of the transition frame
is selected randomly. For each generated sequence, we create two
data samples, each of which has the length of 10: the first sequence
contains transition frame, while the second one does not. After the
data generation process, we obtain a total of 20k samples in the
training split, with 10K samples containing transition frames and
10K samples without it. Similarly, 4800 samples were obtained in
the testing split.

3.2 LSTM based Sequence Classification
We formulate the identification of transition frame(s) as a classifi-
cation problem. Given a sequence of n frames: [x1,x2....,xn], the
LSTM model outputs the likelihood of the sequence containing a
transition frame. The transition frame identification is essentially a
binary classification problem. Formally this can be interpreted as

transitionSequence = argmax
0≤i≤1

P(yi |x1,x2, ..,xn ,w) (1)

wherew denotes the weights of the LSTM model that is obtained
via the training process. Figure 3 shows a reference architecture of
a standard LSTM and the computation process of an LSTM cell is

described below:

ft = σ (Wf .[ht−1,xt ]i + bf ) (2)

it = σ (Wi .[ht−1,xt ] + bi ) (3)
C̃t = tanh(WC .[ht−1,xt ] + bC ) (4)

Ct = ft ∗Ct−1 + ut ∗ C̃t (5)
ot = σ (Wo .[ht−1,xt ] + bo ) (6)

ht = ot ∗ tanh(Ct ) (7)
We modified the input component in the LSTM and created a

new LSTM architecture (shown in Figure 4) for the purpose of
classifying image sequences.

In addition to the temporal relationship among the sequence of
images, the X-ray scattering images also have the spatial correla-
tion, a CNN-LSTM approach can better exploit these two context
information and therefore is applied in this paper. A Mobilenet
CNN [2] pre-trained on ImageNet is used to extract from each
frame the spatial features and latent state information that is fed
into an LSTM that continues to exploit the temporal information
and state transitions contained in the X-ray sequence. The Mo-
bileNet CNN uses a depth-wise separable convolution and results
in a substantial decrease in the number of learning weights. The
weights of the MobileNet CNN are shared across time domain for
processing individual frames. The CNN-LSTM network employs a
temporal max-pooling layer to aggregate the outputs at each time
step across the entire sequence and feeds the pooling result into
a softmax classifier that outputs the probability of the sequence
having a transition frame. The model comprises around 11 million
trainable parameters in total. We trained the network using the
back-propagation algorithm and the Adam optimizer. Because we
attempt to fine-tuning the pre-trained MobileNet CNN with our
X-ray images in a transfer learning configuration, we use a low
learning rate of 0.0001. Training batch size is set to 10.

4 RESULTS
In this section, we quantify the performance of the CNN-LSTM clas-
sification model. We calculate the Area Under the ROC curve (AUC)
as the performance metric for the binary sequence classification
problem where the sequence having a transition event belongs to
the positive class (label “1”). The ROC curve on the holdout testing
data shown in Figure 6 demonstrates that the CNN-LSTM model
can classify the sequences with high accuracy as evident from the
achieved AUC value of 0.97. Figure 5 shows some sample sequences
and their prediction results in the test split. The model is able to
capture the transitional event when the changes are prominent.
Some sequences have very subtle variations during the transitional
event that the model cannot detect and result in a false negative
because low-resolution images (64x64) are being used in our cur-
rent model. We expect that an improved model for the images of a
higher resolution can reduce the false positives and generate better
performance.

5 FUTUREWORK
In the future work, we will design a model that can also identify and
predict the particular transition frame given the past sequence of
X-ray image frames. To achieve this, we plan to adopt a multi-task
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Figure 5: We show four sequence samples in the test split and their classification results, each of which is from True Positive
(TP), False Positive (FP), True Negative (TN) and False Negative (FN). Some sequences have veryminute changes that themodel
makes a false prediction.

Figure 6: ROC curve for Transition Sequence classification.

learning approach where the objectives will be to construct the
future frames as well as identify the transition frame. This will be
similar to an encoder-decoder model with two branches, one for
classification and other for predicting (constructing) future frames.

We also aim to solve a similar task of using an autonomous agent
to explore the state space. For example, amulti-layered block copoly-
mer material begins in a non-equilibrium and kinetically trapped
state. Such a material can be annealed in a wide variety of pathways:
the combination of different temperature and time histories repre-
sents a large and complex state space. Complex non-equilibrium
morphologies exist within the space, but are transient, occupying
a small region of state space. Those conventional searches are ill-
suited to the challenge that reliably generates or even finds such
states. A computer-guided autonomous agent can instead select
processing pathways during experimentation. The agent-based
approach involves both searches for target states (informed by cou-
pling to physical models) and avoidance of transitions to undesired
states (by refining the materials model in real time).

6 CONCLUSIONS
In conclusion, we propose a binary classification approach (LSTM-
CNN) to predict whether a sequence of experiment images contains

a transient event and to enable the possible automation to steer the
experiment to focus on the transient event with increased luminos-
ity and probing frequency and skip the static stage. The experiment
automation will improve the efficacy of beamline and minimize the
sample damage by X-ray. The LSTM-CNN is an approach based on
the deep neural network. It considers both spatial and temporal
state information and detects the existence of a transient event
based on the history of transformation indicating whether the crys-
tal is about to enter the structural transition phase. The preliminary
results of sequence classification shows that such a approach is
feasible. We will evaluate whether the LSTM-CNN can be extended
to explore the state space of a material in an automated fashion.
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